
SMT-based Validation of Timed Failure Propagation Graphs

Marco Bozzano and Alessandro Cimatti and Marco Gario and Andrea Micheli
Fondazione Bruno Kessler – Italy

{bozzano,cimatti,gario,amicheli}@fbk.eu

Abstract

Timed Failure Propagation Graphs (TFPGs) are a formalism
used in industry to describe failure propagation in a dynamic
partially observable system. TFPGs are commonly used to
perform model-based diagnosis. As in any model-based diag-
nosis approach, however, the quality of the diagnosis strongly
depends on the quality of the model. Approaches to cer-
tify the quality of the TFPG are limited and mainly rely on
testing. In this work we address this problem by leverag-
ing efficient Satisfiability Modulo Theories (SMT) engines
to perform exhaustive reasoning on TFPGs. We apply model-
checking techniques to certify that a given TFPG satisfies (or
not) a property of interest. Moreover, we discuss the problem
of refinement and diagnosability testing and empirically show
that our technique can be used to efficiently solve them.

1 Introduction
Timely detection, identification and recovery of faults is
an essential component for the correct operation of com-
plex critical systems (e.g., trains, satellites, cars, indus-
trial plants). Failures typically originate from basic faults,
can manifest with delays, and can interact with each other
over time in very complex ways. Timed Failure Propaga-
tion graphs (TFPGs) have been introduced in (Karsai, Ab-
delwahed, and Biswas 2003) as a framework to capture the
temporal propagation of faults in complex systems, and to
support important run-time activities such as diagnosis and
prognosis. Intuitively, a TFPG is a graph-like model that ac-
counts for the temporal progression of failures in dynamic
systems and for the causality between failure effects, taking
into consideration time delays, system reconfiguration, par-
tial observability, and sensor failures.

In practice, TFPGs have been applied in several industrial
contexts. In aerospace, NASA (Hayden et al. 2006) posi-
tively evaluated them in the context of diagnostic technol-
ogy for manned aircraft. Moreover, Boeing has been using
them (Ofsthun and Abdelwahed 2007) for performing main-
tenance monitoring of systems; in particular, in (Atlas et al.
2001) they present an integrated vehicle health management
system based on TFPGs. Furthermore, the European Space
Agency has funded projects (European Space Agency 2011;
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2012) where TFPGs are used as the basis for the specifica-
tion of fault detection and isolation components (Bittner et
al. 2014). Recently, in addition to monitoring of safety criti-
cal systems, there has been some interest in using TFPGs for
performing software monitoring (Dubey, Karsai, and Ma-
hadevan 2010; 2011). Other applications of TFPGs are de-
scribed in (Srivastava and Han 2012).

Unfortunately, the practical application of TFPGs is cur-
rently clashing against the lack of suitable validation meth-
ods and tools. TFPGs are usually built manually by safety
engineers, based on their own knowledge of the relations
between faults in the system, and based on safety artifacts
such as Fault-Trees (Vesely et al. 2002). In the few cases in
which they can be generated from a system model, there is
no way for the users to modify or adapt them and still be
able to certify their quality. TFPGs are usually validated via
extensive testing, and no approach exists for performing a
more exhaustive analysis and validation of the model. How-
ever, since TFPGs are used as a basis for diagnosis, it is fun-
damental to be able to establish their formal properties, and
to gain confidence in their adequacy — similarly to other
model-based approaches, the effectiveness of the reasoning
relies on the accuracy of the model.

Interest in validation is witnessed in (Strasser and Shep-
pard 2011), that introduces a data-driven method called
alarm-sequence maturation in order to correct errors in the
causality relations of the model. This method, however, re-
quires data to be already available, and thus can be applied
only after the overall system has been put into production. In
many contexts, e.g., aerospace, it is not possible or desirable
to wait until deployment of the system to validate the TFPG.
Thus the validation should be performed in the design phase.

In this paper, we propose a practical approach to sup-
port the analysis and validation of TFPG models. We de-
fine some important design-time queries, and show how they
can be efficiently answered by performing symbolic reason-
ing. Our approach is based on a logical characterization of
TFPGs, and cast in the field of Satisfiability Modulo The-
ory (SMT) (Barrett et al. 2009). The set of possible exe-
cutions of a TFPG is modeled as a formula in SMT. The
reasoning tasks are expressed in form of logical queries in
SMT, and the implementation is based on the use of an ef-
ficient SMT solver. We explore the problems of validation,
refinement testing, and diagnosis and diagnosability. We im-



plemented and experimentally evaluated our approach, and
show its ability to leverage symbolic SMT-based techniques
to deal with the state-space explosion problem. In this paper,
we focus only on three possible analyses, but using an SMT
characterization of the TFPG, it becomes possible to eas-
ily define new analyses, or implement other more classical
problems, such as prognosis.

Our approach is complementary to the available tools,
such as the state-of-the-art FACT tool-set (Karsai 2013),
where limited support for model validation is provided. In
FACT, for example, it is not possible to provide a condi-
tion on a TFPG and obtain a complete execution satisfying
it automatically, nor verify properties against the TFPG. One
could use our approach to test the correctness of the TFPG
model, and then perform diagnosis and prognosis using the
FACT tool-set.

The rest of the paper is structured as follows. Section 2
and 3 provide background on SMT and TFPGs. Section 4
and 5 describe the SMT encoding and the reasoning tasks.
In Section 6 we experimentally evaluate the approach, and
Section 7 concludes with ideas for future work.

2 Background
Our setting is standard first order logic and we use the
standard semantic notions of interpretation and satisfiabil-
ity (Kleene 1967). We use the notation x, y, v, . . . for vari-
ables, and ~x, ~y,~v, . . . for vectors of theory or Boolean vari-
ables. Terms and formulae are referred to as expressions. We
write φ(x) to highlight that x is free in φ, and φ(~x) to high-
light that the free variables of φ are variables in ~x. We use the
notation Q~x.φ(~x), with Q ∈ {∀,∃}, to denote the formula
Qx1.Qx2. . . . Qxn.φ(x1, . . . , xn).

Given a first-order formula ψ with non-logical symbols
interpreted in a decidable background theory T, Satisfiabil-
ity Modulo Theory (SMT) (Barrett et al. 2009) is the problem
of deciding whether there exists a satisfying assignment to
the free variables in ψ. In this paper, we use the theory of
linear arithmetic over the real numbers (LRA). A formula
in LRA is an arbitrary Boolean combination, a universal
(∀) or an existential (∃) quantification, of atoms in the form∑
i aixi ./ c where ./∈ {>,<,≤,≥, 6=,=}, each xi is a

real variable, each ai and c are real constants. Difference
logic (RDL) is the subset of LRA such that atoms have the
form xi − xj ./ c. We write x − y ∈ [a, b] meaning the
formula (x− y) ≥ a∧ (x− y) ≤ b. If a is−∞ then the first
conjunct is omitted and similarly, if b is +∞ then the second
conjunct is omitted.

An SMT solver is a decision procedure which solves the
satisfiability problem for a formula in a decidable subset of
First-Order Logic. Due to their efficiency, SMT solvers have
been recently employed in various fields such as Formal Ver-
ification (Beyer et al. 2009), Temporal Reasoning (Cimatti,
Micheli, and Roveri 2014) and many others.

3 Timed Failure Propagation Graphs
The Battery Powered Sensor System (BPSS) (Figure 1) will
be our running example. The BPSS provides a redundant
reading of the sensors to a device. Internal batteries provide
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Figure 1: Battery-Powered Sensor System schema

backup in case of failure of the power supply. The safety of
the system depends on at least one of the sensors providing
a reading at any time.

A failure mode is a failure of a component of the system.
A component might fail in more than one way, therefore hav-
ing more than one failure mode associated with it. We call
fault the occurrence of a failure of the component. A fault in
a component will produce anomalies in the system behav-
ior, that we call discrepancies. In the BPSS, we define one
failure mode for the generator, and one for the sensor. The
generator can fail and stop supplying power (GOff ), and
the sensor can stop providing a reading (SOff ). After the
generator fails, the battery will start discharging. When the
battery is exhausted, the attached sensors will stop working.
Examples of discrepancies are the absence of power from
the generator, the battery level going below a threshold and
the sensor not providing a reading.

Monitored Discrepancies are discrepancies to which we
attach some monitor. In our example, we monitor the level
of the battery, and are warned when the level goes below
a certain threshold. Not all discrepancies can be monitored,
due to physical or design limitations. Monitors can also fail,
providing false positives or false negatives.

System modes (simply modes) are configurations of the
system that are relevant for capturing the propagation of
faults. In the BPSS the sensors are powered by their own bat-
tery, however, in case of faults, one battery can power both.
We define 3 modes: Primary, Secondary1, Secondary2
(e.g., in mode Secondary1 Battery 1 is powering both sen-
sors). If Generator 1 fails while the system is powered by
Generator 2, there will be no impact on the system.

Timed Failure Propagation Graphs (TFPG) were intro-
duced in (Karsai, Abdelwahed, and Biswas 2003) to model
the progression of faults in a system and perform online di-
agnosis and prognosis. A TFPG is a directed graph model
where nodes represent failure modes and discrepancies.
Edges represent the causality between nodes, and provide
information on the delay in the propagation. By labeling the
edges with system modes, we can encode switching-systems
in which different propagations are possible in the different
modes. Figure 2 shows a TFPG for the BPSS. Boxes with
dotted lines are failure modes, whereas discrepancies are ei-
ther circles (OR discrepancies) or boxes (AND discrepan-
cies) with solid lines. BLOW and SysDEAD are monitored
discrepancies, thus we show the monitor graphically (with
diamonds). Edges include information on the propagation
time and modes in which they are active.

The non-determinism on the propagation time between
G1DEAD and B1LOW models the fact that we do not
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Figure 2: Example TFPG for the BPSS example. The “∗” is used to indicate all modes (i.e., P ,S1,S2)

know the charge level of the battery until we get to a crit-
ical level (BLOW ). Additionally, we allow for a small non-
determinism between the activation of the discrepancy, the
absence of output (SNO) and the failure of the system. The
uncertainty on the propagation time between BLOW and
BDEAD is motivated by the fact that the depletion of the
battery will take more time if we are in the Primary mode
rather than in the Secondary1 (or Secondary2) mode.

Definition. A TFPG is a structure G =
〈F,D,E,M,ET,EM,DC,DS〉, where F is a non-empty
set of failure modes; D is a non-empty set of discrepancies;
E⊆V×V is a set of edges connecting the nodes V=F ∪D;
M is a non-empty set of system modes. At each time instant
the system can be in only one mode; ET : E → I is a
map that associates every edge in E with a time interval
[tmin, tmax] ∈ I indicating the min/max propagation
time on the edge (where, I ∈ R+ × (R+ ∪ {+∞}) and
tmin≤ tmax); EM : E → P(M) is a map that associates
to every edge in E a set of modes in M . We assume that
EM(e)6=∅ for any edge e∈E. DC:D→{AND, OR} is a map
defining the type; DS : D → {M, I} defines whether the
discrepancy is monitored (M) or not (I – inactive). Failure
modes are always root nodes, and all discrepancies must
have at least one incoming edge. Circular paths (but not
self-loops) are possible.

The semantics (Abdelwahed et al. 2009) of TFPGs says
that the state of a node indicates whether the failure effects
reached that node. A failure propagates through an edge
e = (v, w), only if the edge is active throughout the prop-
agation, that is, from the moment v activates to the time
w activates. An edge e is active if and only if the current
mode m of the system is compatible with the modes of
the edge (m ∈ EM(e)). For an OR node w and an edge
e = (v, w) ∈ E, once a failure effect reaches v at time t, it
will reach w at a time t′, where e.tmin ≤ t′ − t ≤ e.tmax
and the edge e is active during the whole propagation. On
the other hand, the activation period of an AND node v′

is the composition of the activation periods for each link
(v, w) ∈ E. If an edge is deactivated any time during the
propagation (due to mode switching), the propagation stops.
Links are assumed memory-less thus a failure propagation

is independent of any (incomplete) previous propagation. Fi-
nally, once a node activates, it changes permanently, and will
not be affected by any future failure propagation.

In the rest of this paper, we consider TFPGs in which
the mode is frozen. Namely, we fix any of the available
modes beforehand, and we assume that it does not change
for the entire execution of the system. This assumption has
been validated by domain experts, and it is justified by the
fact that most of the reasoning (e.g., diagnosis) is of inter-
est when the system is in a stable state. Given the number
of system changes and possibly unpredictable interactions,
modeling of fault propagation during mode-switching is not
considered in practice.

4 TFPG as an SMT formula
We translate a TFPG into an SMT formula using the RDL
theory. The encoding closely follows the definition of TFPG,
and has been extensively validated using existing case-
studies, and randomly generated TFPGs.

We associate to each node in the TFPG a state variable
and an activation time-point. The semantics of the TFPG is
encoded by defining constraints for the OR and AND nodes.

Given a TFPG G we create a formula ϕ( ~ud, ~udt,m),
where m is the current system mode, and ~ud and ~udt are
vectors that define, respectively, the state (active or not)
and the activation time of each node in G. Those are un-
observable information and for brevity we combine them in
a single vector ~u = ~ud ∪ ~udt. Let us define M(e,m) =∨
µ∈EM(e)(m = µ) as an expression defining whether an

edge e is compatible with the mode m; ϕ is defined as:

ϕ(~u,m) =
∧

v∈D. DC(v)=OR

Bor(v,m) ∧ Tor(v,m) ∧

∧
v∈D. DC(v)=AND

Band(v,m) ∧ Tand(v,m)

Bor(v,m) = ~ud(v)↔
∨

(w,v)∈E

[ ~ud(w) ∧M((w, v),m)]

Band(v,m) = ~ud(v)↔
∧

(w,v)∈E

[ ~ud(w) ∧M((w, v),m)]



Tor(v,m) = ~ud(v)→ [∨
(w,v)∈E

(
~ud(w) ∧ ( ~udt(v)− ~udt(w)) ∈ ET ((w, v))

)
∧

∧
(w,v)∈E

(
~ud(w)→ ( ~udt(v)− ~udt(w)) ≤ tmax((w, v))

)
]

Tand(v,m) = ~ud(v)→ [∧
(w,v)∈E

(
~ud(w) ∧ ( ~udt(v)− ~udt(w)) ≥ tmin((w, v))

)
∧

∨
(w,v)∈E

(
~ud(v) ∧ ( ~udt(v)− ~udt(w)) ≤ tmax((w, v))

)
]

For each OR and AND, we express constraints on the boolean
part (activation state of the node) with Bor, Band and the
temporal part (activation time of the node) with Tor, Tand.
Intuitively, the boolean part expresses the possible combi-
nations of nodes that can be active, while the temporal part
encodes the temporal relation between their activation.

In Bor we state that a node is active if at least one of the
predecessors is active and the mode is compatible. In Band
we require all predecessors to be active. Tor states that given
an active node, there must be at least one predecessor with
an activation time that is compatible with the tmin/tmax. We
additionally require that all active predecessors nodes have
an activation time that is compatible with the tmax. Finally,
Tand encodes that if a node is active, all the predecessors are
active with timings satisfying the tmin constraint, and that at
least one satisfies the tmax. Note that the second part of Tand
is similar to that of Tor. However, the key difference is that
in the AND case, we allow all but one active discrepancies
to violate the tmaxconstraint. The failure modes are left un-
constrained. If ϕ is satisfiable, then a model for ϕ represents
a possible execution of the TFPG. This encoding is polyno-
mial in the number of nodes in the TFPG. In particular, it
uses O(|E|) theory (RDL) atoms.

Diagnosis requires the ability to reason on the monitored
(i.e., observable) discrepancies. In order to do so, we extend
the encoding by adding new variables for the monitors. The
monitor has the same state and activation time as the dis-
crepancy, however, in order to be able to consider monitor-
ing faults, we condition these constraints to a set of health
variables ~h. We call ~o = ~od ∪ ~odt, the observable variables,
and write as ψ(~o, ~u,m,~h) the TFPG with monitors:

ψ(~o, ~u,m,~h) = ϕ(~u,m) ∧∧
v∈D.DS(v)=M

~h(v)→ ( ~od(v) = ~ud(v) ∧ ~odt(v) = ~udt(v))

5 SMT-based Reasoning
The SMT encoding can be used to perform reasoning on
the TFPG. We distinguish between reasoning tasks that can
be done at design time or runtime (i.e., when a system is
running). The objective of design time reasoning is to help
the designer validate the TFPG, i.e., show that the TFPG

captures the situations of interest. We focus on design time
analysis, but also provide an example of how to perform a
runtime task (diagnosis).

The design time reasoning task that we consider are the
following: model validation, refinement testing and diagnos-
ability. We show that all these problems can be handled in
a uniform way by leveraging the SMT solver, without the
need of defining multiple ad-hoc algorithms.

Partial Traces The SMT encoding of the TFPG represents
the set of all possible executions (i.e., traces) of the TFPG:
every model of the formula is a trace of the TFPG (and vice
versa). We can ask the SMT solver to provide us with a trace
of the TFPG, and can also add constraints defining how this
trace should look like. E.g., we can ask for a trace of the
BPSS in which the discrepancy B2LOW is active by using
the formula τ(~u,m) = ud(B2LOW ). Such a trace can be
obtained from the SMT solver by asking for a model of (1).

ϕ(~u,m) ∧ τ(~u,m) (1)

A model is an assignment of concrete values to all the ~ud,
~udt and m variables, telling which discrepancies and fail-

ure modes are active, and their activation time. If no model
exists (the formula is unsatisfiable) there is no trace in the
TFPG that satisfies the given requirement (τ ). A partial
trace can be defined by describing (with τ ) the activation of
some discrepancies without the need of specifying the be-
havior of all nodes. The SMT solver will provide a complete
trace that satisfies the constraints, thus enabling the user to
explore the behavior of the TFPG. τ can be any LRA for-
mula over the mode, state and time-point variables of the
TFPG, thus providing a large degree of expressiveness.

Model Validation Building on the idea of partial traces,
we can ask whether some behavior is possible or not in the
TFPG. Knowledge of the domain and of the original model,
can be used to define properties that we expect the TFPG
to satisfy. In the BPSS the failure of the generator G1 may
lead S1 to stop working. However, if the system is in mode
Secondary2 the failure of G1 will not have any impact on
S1. We call this type of property a possibility. We are in-
terested in checking that some behaviors are possible in the
TFPG. To do so, we use the concept of partial traces, and ask
whether there exists a trace in the TFPG that satisfies our re-
quirement. This is done by checking the satifiability of (1)
with τ(~u,m) = ~ud(G1Off ) ∧ ~ud(S1NO).

An example of possibility checking is whether all nodes
of the TFPG can eventually be activated. E.g., it might be
that not all nodes can be activated in a given mode. A node
that cannot be activated in any mode represents a modeling
error. We find such nodes by running multiple possibility
checks, optionally specifying in which modes we expect the
node to be enabled. E.g., we cannot activate the discrepancy
B1LOW in the mode Secondary2, thus the following is un-
satisfiable: ϕ(~u,m) ∧ ~ud(B1LOW ) ∧m = Secondary2

The counter-part of possibility is necessity. In the BPSS
we know that a battery cannot discharge if the associated
generator is working. This property can be specified as fol-
lows. For B1LOW to be active, it is necessary for G1Off to
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Figure 3: Scalability of the Refinement and Diagnosability. The “TO” line marks the examples that reached the timeout.

be active. Given τ(~u,m) = ~ud(B1LOW ) → ~ud(G1Off ),
we check that the following is a validity:

ϕ(~u,m)→ ( ~ud(B1LOW )→ ~ud(G1Off ))

In words, every trace of the TFPG in whichB1LOW is active
requires G1Off to be active.

The purpose of model validation is to increase the
confidence on the correct behavior of the model. Lets
modify the BPSS TFPG so that the mode on the edge
(B2DEAD, S1NO) becomes Secondary1. This implies that
there is no propagation between those two nodes in mode
Secondary2. This mistake could be detected with the fol-
lowing possibility requirement: It is possible for the single
failure mode G1Off to cause SysDEAD (2). This execution
is possible in the original BPSS but not in the modified one.

τ(~u,m) =¬( ~ud(G1Off ) ∨ ~ud(S1Off ) ∨ ~ud(S2Off ))

∧ ~ud(G2Off ) ∧ ~ud(SysDEAD) (2)

Refinement Changes in the models are a common ac-
tivity during development. We are then usually interested
in the relation between the original model and the mod-
ified one. In the BPSS example, there is uncertainty on
the propagation time between B1LOW and B1DEAD due
to the different discharge rates of the battery in the pri-
mary and secondary mode. This uncertainty can be removed
by adding two intermediate discrepancies (B1P , B1S) that
have an incoming edge from B1LOW and an outgoing edge
to B1DEAD. Intuitively, B1P can be reached only in mode
Primary, thus providing an exact value for the propaga-
tion (ET = [10, 10]) (similarly for B1S in Secondary1
with ET = [5, 5]). We need to check that this new TFPG
(BPSS′) refines the original TFPG (BPSS). Therefore, we
define a mapping between the two saying that all nodes that
exist in both TFPGs must have the same state and activation
times, and check that each execution in the new TFPG has a
corresponding execution in the old one (i.e., is a refinement).

Given two TFPGs G1, G2 and a (partial) mapping
γ(~u1, ~u2) between their nodes, we say that G1 refines G2

if every trace of G1 can be mapped to a trace of G2 (3). A

simple example of mapping is (5).

∀~u1,m.ϕG1(~u1,m)→∃~u2.(γ(~u1, ~u2) ∧ ϕG2(~u2,m)) (3)
ϕG1(~u1,m) ∧ ∀~u2.¬(γ(~u1, ~u2) ∧ ϕG2(~u2,m)) (4)

We do not feed (3) directly to the SMT solver, but instead
use its negation (4), since satisfiability of (4) will provide
the user with a trace that belongs to the first TFPG but that
cannot be mapped to any trace of the second, thus simplify-
ing the debugging process.

γ(~u1, ~u2) =
∧
v∈V

( ~ud1(v)↔ ~ud2(v)) ∧ (5)

( ~ud2(v)→ ~udt1(v) = ~udt2(v))

Diagnosis and Diagnosability The goal of diagnosis is
to understand which failure modes caused the observed dis-
crepancies. This is achieved by generating all possible exe-
cutions consistent with the observations and considering all
the sets of faults that occur in those executions (Model Based
Diagnosis (Reiter 1987)).

A state condition β(~u) is a relation on the unobservable
discrepancies and time points. In the most basic case, a state
condition is a single failure mode: β(~u) = ~ud(fm). In the
general case, a state condition captures a situation of interest
in the system. E.g., the fact that a failure mode occurred in a
given time-frame: β(~u) = ~ud(fm)∧ 5 ≤ ~udt(fm) ≤ 10 or
that two discrepancies activated in a particular order:

β(~u) = ~ud(D1) ∧ ~ud(D2) ∧ ~udt(D1) ≤ ~udt(D2)

To perform diagnosis, we ask if a given state condition is
possible given the observations provided by the monitored
discrepancies. This basically boils down to a possibility
check in which we define τ = β(~u) ∧ obs(~o), where obs(~o)
denotes the observation. However, we are usually interested
in situations in which there is no ambiguity on the diagnosis,
i.e., there is only one possible explanation for the given ob-
servation (Bozzano et al. 2014). Therefore, instead of check-
ing possibility, we check necessity. We can ask whether
given the observable trace obs(~o) = ~od(SysDEAD) ∧
~odt(SysDEAD) = 10 (SysDEAD was activated at time



t = 10) it is necessary for S1Off to have been activated be-
fore time t = 10: β(~u) = ~ud(S1Off ) ∧ ~udt(S1Off ) ≤ 10.
If ψ(~o, ~u,m,~h) ∧ obs(~o) ∧ ¬β(~u) is unsatisfiable, the state
condition is the only possible explanation for the observa-
tion, otherwise we are provided with a counter-example. The
observable trace obs can be any LRA formula, thus we can
express complex patterns of observations, e.g., temporal un-
certainty: obs = 5 ≤ ~odt(SysDEAD) ≤ 10.

Since the process of diagnosis is performed at runtime, we
would like to have some sort of guarantee on its behavior at
design time. Is it always possible to detect the occurrence
of a state condition given any observation? If so, we say that
the TFPG is diagnosable. To disprove diagnosability, we use
the twin-plant construction (Jiang et al. 2001). Our goal is to
try to find pair of traces that have the same observations s.t.
one satisfies the condition but the other does not, this pair
of traces is known as critical pair (Sampath et al. 1995). A
system is diagnosable if it has no critical pair.

In (6) we test for the existence of a critical pair. More-
over, we enforce some relation on the health variables of the
monitors.

ψ(~o, ~u1,m,~h1) ∧ ψ(~o, ~u2,m,~h2) ∧ (6)

β(~u1) ∧ ¬β(~u2) ∧Healthy(~h1,~h2)
Usually, we are interested in checking diagnosability when
all sensors are working correctly. However, we can explore
other configurations for the health variables. For example,
we can explore how many sensor failures we can afford be-
fore a given state condition becomes non-diagnosable by
changing the relation Healthy.

The definition of diagnosability provided in (6) requires
that all observations have been made. Due to the importance
of timing in detection and recovery of faults, it might not be
possible to wait until all observations have been made. This
can be checked by performing the diagnosability analysis for
subsets of observables. E.g., for the partition ~oA, ~oB of ~o we
check whether the following is satisfiable:
ψ(~oA ∪ ~oB1, ~u1,m,~h1) ∧ ψ(~oA ∪ ~oB2, ~u2,m,~h2) ∧

β(~u1) ∧ ¬β(~u2) ∧Healthy(~h1,~h2)
Intuitively, we ask that the two systems are observationally
equivalent only for a given subset of the observable discrep-
ancies (~oA). If no critical pair exists in this case, we do not
need to wait for the other observation to understand whether
the state condition occurred. This technique can also be used
to search for sets of sensors that are sufficient to guarantee
diagnosability (Bittner et al. 2012).

6 Experimental Evaluation
We implemented a prototype tool using the techniques de-
scribed in this paper. The tool is able to generate partial
traces for a TFPG, test possibility and necessity of arbitrary
conditions, check refinement, and perform diagnosis and di-
agnosability. Due to the lack of publicly available TFPGs,
we evaluated the scalability of the approach on a benchmark
of randomly generated TFPGs 1.

1Prototype tool and benchmarks are available at
http://es.fbk.eu/people/gario/aaai15/

We run two sets of experiments: refinement and diagnos-
ability. For the refinement benchmarks we take a TFPG and
derive a positive and a negative refinement instance. We then
ask the solver to verify whether those instances are refine-
ments of the original TFPG. The transformation for the pos-
itive case requires picking a node of the TFPG, removing
it and reconnecting the predecessors with the successors in
a suitable way. Negative examples are obtained in a similar
way, but we modify the propagation intervals to make them
incompatible with the original ones. Since the check of re-
finement involves a quantifier alternation, we optimize the
formula by inlining whenever possible. For the diagnosabil-
ity problem, we test diagnosability of each failure mode in
the TFPG, assuming that all sensors are healthy. We run our
experiments using Z3 (de Moura and Bjørner 2008) as SMT
Solver on an Intel i7 2.93GHz, using a time-out of 300 sec-
onds and memory-out of 2GB for all experiments. The left
plot of Figure 3 shows the runtime of the refinement testing
when we increase the size of the TFPG, while the right plot
shows the runtime for the diagnosability testing. The run-
time of the diagnosability check increases quickly, since we
are using the twin-plant construction: for every additional
node in the TFPG we add four new variables to the problem.

The industrial TFPGs, to which we have access, are triv-
ially analyzed by our approach. In the literature (Hayden et
al. 2006), TFPGs with 400 nodes are considered medium
size, having more than 1000 nodes is uncommon. Therefore,
our benchmarks consider examples that are reasonably big-
ger than commonly developed TFPGs. These experiments
show that we are able to analyze huge TFPGs in a reasonable
time; hence, we believe that these techniques could be inte-
grated in the design process loop, providing quick feedback
to the designer. The choice of using the number of nodes of
the TFPG as indicator of its complexity is justified by pre-
vious work (Abdelwahed, Karsai, and Biswas 2003) where
the algorithmic complexity of the reasoning algorithm is de-
fined in terms of the number of nodes. However, other fac-
tors might have an impact on the complexity of a TFPG, and
finding a good metric is an open research question.

7 Conclusion
We presented a novel characterization of TFPGs based on
symbolic techniques. We explored several important reason-
ing tasks that aim at increasing the confidence of the de-
signer in the TFPG model, thus guaranteeing that the online
reasoning tasks (e.g., diagnosis) can be effective.

Our framework provides a way to describe and perform
model validation, refinement testing, diagnosis and diagnos-
ability in a unified way. Other reasoning tasks can be de-
fined in the future by relying on the SMT solvers to perform
the reasoning, without implementing ad-hoc reasoning al-
gorithms. Finally, we experimentally show that these tech-
niques are applicable on TFPGs of considerable size.

As future work, we are going to explore ways to generate
a TFPG from a given system model and perform verification
of a TFPG against it. We would also like to integrate our
validation techniques within existing TFPG reasoning tools,
e.g. the FACT tool-set.



References
Abdelwahed, S.; Karsai, G.; Mahadevan, N.; and Ofsthun,
S. C. 2009. Practical implementation of diagnosis systems
using timed failure propagation graph models. Instrumen-
tation and Measurement, IEEE Transactions on 58(2):240–
247.
Abdelwahed, S.; Karsai, G.; and Biswas, G. 2003. System
diagnosis using hybrid failure propagation graphs. Technical
Report ISIS-02-302, Vanderbilt University.
Atlas, L.; Bloor, G.; Brotherton, T.; Howard, L.; Jaw, L.;
Kacprzynski, G.; Karsai, G.; Mackey, R.; Mesick, J.; Reuter,
R.; and Roemer, M. 2001. An evolvable tri-reasoner IVHM
system. In 2001 IEEE Aerospace Conference, 11.0307.
Barrett, C. W.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C.
2009. Satisfiability modulo theories. In Handbook of Satis-
fiability. IOS Press. 825–885.
Beyer, D.; Cimatti, A.; Griggio, A.; Keremoglu, M. E.; and
Sebastiani, R. 2009. Software model checking via large-
block encoding. In FMCAD, 25–32.
Bittner, B.; Bozzano, M.; Cimatti, A.; and Olive, X. 2012.
Symbolic synthesis of observability requirements for diag-
nosability. In AAAI-12.
Bittner, B.; Bozzano, M.; Cimatti, A.; de Ferluc, R.; Gario,
M.; Guiotto, A.; and Yushtein, Y. 2014. An Integrated Pro-
cess for FDIR Design in Aerospace. In Proc. IMBSA 2014.
Bozzano, M.; Cimatti, A.; Gario, M.; and Tonetta, S. 2014.
Formal design of fault detection and identification compo-
nents using temporal epistemic logic. In Ábrahám, E., and
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