
Automated Verification and Tightening of Failure Propagation Models

Benjamin Bittner1,2∗ and Marco Bozzano1 and Alessandro Cimatti1 and Gianni Zampedri1
1Fondazione Bruno Kessler, 2University of Trento

Trento, Italy - lastname@fbk.eu

Abstract
Timed Failure Propagation Graphs (TFPGs) are used in the
design of safety-critical systems as a way of modeling failure
propagation, and to evaluate and implement diagnostic sys-
tems. TFPGs are a very rich formalism: they allow to model
Boolean combinations of faults and events, also dependent on
the operational modes of the system and quantitative delays
between them. TFPGs are often produced manually, from a
given dynamic system of greater complexity, as abstract rep-
resentations of the system behavior under specific faulty con-
ditions.
In this paper we tackle two key difficulties in this process:
first, how to make sure that no important behavior of the sys-
tem is overlooked in the TFPG, and that no spurious, non-
existent behavior is introduced; second, how to devise the
correct values for the delays between events. We propose a
model checking approach to automatically validate the com-
pleteness and tightness of a TFPG for a given infinite-state
dynamic system, and a procedure for the automated synthesis
of the delay parameters. The proposed approach is evaluated
on a number of synthetic and industrial benchmarks.

1 Introduction
Timed Failure Propagation Graphs (TFPGs) (Abdelwahed
et al. 2009) have been studied and used in practice in the
design of safety-critical systems since the early 1990s, as a
way to describe the occurrence of failures and of their direct
and indirect effects, and to assess the corresponding conse-
quences over time. TFPGs are a very rich formalism: they
allow to model Boolean combinations of basic faults, inter-
mediate events, and transitions across them, also dependent
on the operational modes of the system, and to express con-
straints over the delays. TFPGs have been primarily used
as a way to deploy diagnosis systems (Abdelwahed et al.
2009). Their importance is now increasingly recognized in
the design of autonomous systems, in particular for the def-
inition of Fault Detection, Isolation and Recovery (FDIR)
procedures (Bittner et al. 2014b). TFPGs have been the ob-
ject of recent invitations to tender by the European Space
Agency (European Space Agency 2011; 2012). In fact, com-
pared to other techniques such as FMECA (McDermott,

∗The first author was partially supported by the European Space
Agency NPI contract No. 4000111815/14/NL/FE.
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Mikulak, and Beauregard 1996) and FTA (Bozzano, Cimatti,
and Tapparo 2007), failure propagation analysis has substan-
tial advantages. First, it allows for fine-grained and precise
analyses that other techniques such as FMECA do not han-
dle (e.g. timing information). While Fault Tree analysis only
explores subsets of propagation paths in response to specific
feared events, failure propagation presents a more compre-
hensive and integrated picture. Failure propagation also ad-
dresses one of the key difficulties in the implementation of
FDIR, i.e. the fact that the design is based on scattered and
informal analysis, without quantitative reference that is es-
sential for FDIR. In this setting, TFPGs are often manually
derived from a given dynamic system of greater complexity,
as an abstract representation of its behavior under specific
faulty conditions.

In this paper we tackle two key difficulties in this pro-
cess: first, how to make sure that no important behavior of
the system is overlooked in the TFPG, and that no spurious,
nonexistent behavior is introduced; second, how to devise
the correct values for the delays between events. We propose
a formal and automatic approach to validate the complete-
ness and tightness of a TFPG for a given infinite-state dy-
namic system. The approach devises a sufficient set of proof
obligations, in form of temporal properties, that must hold of
the system for the TFPG to be complete. A model checker is
used to check such proof obligations, and to produce diag-
nostic information if the TFPG does not accurately abstract
the system.

A qualitative TFPG structure thus obtained is the in-
put for an automated synthesis procedure, able to devise a
tight set of parameter assignments. Specifically, the minimal
and maximal values for the delay parameters are sought by
means of runs of parametric model checking. The approach
has been fully implemented, and evaluated on a number
of synthetic and industrial benchmarks derived in the con-
text of collaborations with the European Space Agency and
The Boeing Company. The experimental evaluation demon-
strates the practicality of the approach, and positive feed-
back is reported from the application in an industrial setting.

Related Work Next to considerable interest in TFPGs
as tools for timed failure propagation modeling and as a
basis for diagnosis implementations (Misra et al. 1992;
Ofsthun and Abdelwahed 2007; Abdelwahed et al. 2009;

Bozzano et al. 2015b), there has also been some research
in their automatic derivation and validation with respect to
behavioral or structural system models.

A framework for TFPG synthesis for timed automata is
presented in (Priesterjahn, Heinzemann, and Schafer 2013).
The idea is to traverse the zone graph of the automata to dis-
cover discrepancies in output signals based on failures on in-
put signals, as defined by a component model. Tight assign-
ments to timings are also identified during the traversal. No
experimental evaluation of the approach is given. The main
differences to the present work are that we support generic
finite and infinite transition systems as opposed to timed au-
tomata, that our approach directly accommodates both vali-
dation and tightening, and that, by mapping the problem to
the model checking framework, state-of-the-art verification
tools can be directly applied.

(Dubey, Karsai, and Mahadevan 2013) also proposes a
TFPG synthesis approach based on component models.
Only structural information is used to derive the TFPG and
no behavioral model is considered. This approach is only
possible when working with well-defined component mod-
els and is not suitable for the general case considered here.

In (Strasser and Sheppard 2011) an approach for TFPG
maturation is presented. The goal is to use historical mainte-
nance data to improve the model accuracy. The quality of the
improvement depends on the quality of the data, and com-
plete removal of possible errors cannot in general be guar-
anteed, e.g., it is not possible to remove behaviors that are
allowed by the TFPG but are impossible in the application.
Furthermore, the approach is only applicable when a system
implementation is given and cannot be used at design time.

The rest of this paper is structured as follows. In Section 2
we present some background. In Section 3 we relate systems
and TFPGs. In Section 4 we discuss the approach to abstrac-
tion validation. In Section 5 we describe our implementation
of the validation algorithms. In Section 6 we analyze the ex-
perimental evaluation. In Section 7 we draw some conclu-
sions, and discuss future work.

2 Background
2.1 Symbolic Transition Systems
A symbolic transition system is a tuple S = 〈X, I, T 〉, where
X is a finite non-empty set of state variables, I(X) and
T (X,X ′) are formulae representing the initial states and the
transition relation, X ′ being the next-state version of X .

A state s of S is an assignment to the variables of X . We
denote with s′ the corresponding assignment to the variables
in X ′. The domain of x ∈ X is written ∆(x). The set of
all possible states (state space) of S, denoted Σ(S), may be
either finite or infinite (if any x ∈ X has an infinite domain).

We write µ |= φ to indicate that the variable assignment
µ satisfies the formula φ, i.e. that φ evaluates to true if its
variables are assigned the values specified by µ.

A trace of S is an infinite sequence π := s0, s1, . . . of
states such that s0 |= I(X) and for all integers k ≥ 0 we
have (sk, sk+1) |= T (X,X ′). We denote with π[k] the state
sk of trace π and with x(sk) the value of variable x in state
sk. We write sk instead of π[k] if the trace is clear from the

context. A state s is reachable in S iff there exists a trace π
such that s = π[k] for some k ∈ Z≥0. For enabling time-
based analyses, we assume the presence of a variable τ ∈ X
with ∆(τ) = R≥0, associating each state with a time stamp.
We assume that time advances monotonically, i.e. given a
trace π, τ(si) ≤ τ(si+1) for any state si.

2.2 Metric Temporal Logic
Metric Temporal Logic (MTL) (Koymans 1990; Alur and
Henzinger 1993; Ouaknine and Worrell 2008) is an exten-
sion of classical linear time logic LTL, where the tempo-
ral operators are augmented with timing constraints. It is
interpreted over timed state sequences, e.g. the traces with
time-stamps described in Section 2.1. Given a set of atomic
propositions AP , including the symbols > (true) and ⊥
(false), MTL formulae are defined as follows, with p ∈ AP :

φ ::= p|¬φ|φ1 ∧ φ2|φ1U
Iφ2|φ1S

Iφ2

The intervals I can be (partially) open or closed, [a, b],
(a, b), (a, b], [a, b), with a, b ∈ {R≥0 ∪ +∞} and a ≤ b.
I is omitted if I = [0,+∞), and the resulting simplified
operators correspond to their standard LTL versions. Other
operators can be defined as syntactic sugar: F, G, O.

Given a transition system S with timed traces, a labeling
function L : Σ(S) 7→ 2AP , a trace π of S and a trace index
k, we say that an MTL formula φ is satisfied at π[k], written
π[k] |= φ, if the following holds:

• π[k] |= p iff p ∈ L(π[k])

• π[k] |= ¬φ iff not π[k] |= φ

• π[k] |= φ1 ∧ φ2 iff π[k] |= φ1 and π[k] |= φ2

• π[k] |= φ1U
Iφ2 iff ∃i ≥ k · τi − τk ∈ I and π[i] |= φ2

and ∀k ≤ j < i · π[j] |= φ1

• π[k] |= φ1S
Iφ2 iff ∃i ≤ k · τk − τi ∈ I and π[i] |= φ2

and ∀i < j ≤ k · π[j] |= φ1

We write π |= φ for π[0] |= φ, and S |= φ to indicate that
for all traces π of S we have π |= φ.

2.3 Timed Failure Propagation Graphs
TFPGs were first introduced in (Misra et al. 1992) and
(Misra 1994) to model the progression of failures in dy-
namic systems and to analyze diagnosability. A TFPG is a
directed graph model where nodes represent failure modes
(root events of failure propagations) and discrepancies (pos-
sible deviations from nominal behavior caused by failure
modes). Edges model the temporal dependency between the
nodes. They are labeled with propagation delays, and system
modes indicating the system configurations in which propa-
gation is enabled. TFPGs are formally defined as follows.

Definition 1 (TFPG). A TFPG is a structure G =
〈F,D,E,M,ET,EM,DC〉, where:

• F is a non-empty set of failure modes;
• D is a non-empty set of discrepancies;
• E ⊆ V × V is a non-empty set of edges connecting the

set of nodes V = F ∪D;

• M is a non-empty set of system modes (we assume that at
each time instant the system is precisely in one mode);

• ET : E → I is a map that associates every edge in E
with a time interval [tmin, tmax] ∈ I indicating the mini-
mum and maximum propagation time on the edge (where
I ∈ R≥0 × (R≥0 ∪ {+∞}) and tmin ≤ tmax);

• EM : E → 2M is a map that associates to every edge in
E a set of modes in M (we assume that EM(e) 6= ∅ for
every edge e ∈ E);

• DC : D → {AND, OR} is a map defining the discrepancy
type;

Failure modes never have incoming edges, and all discrep-
ancies must have at least one incoming edge and be reach-
able from a failure mode node. Circular paths (but not self-
loops) are possible. We use OR(G) and AND(G) to indicate the
set of OR nodes and AND nodes of a TFPG G, respectively.

As a running example, we consider the Battery Powered
Sensor System (BPSS) of (Bozzano et al. 2015b). The BPSS
consists of a redundant pair of sensors powered by a redun-
dant pair of batteries, charged by dedicated generators. A
hypothetical device that depends on these sensor readings is
assumed to fail if both sensors fail. A generator failureGOff
causes a permanent loss of power supply, and a sensor fail-
ure SOff causes a permanent loss of its readings. In absence
of power supply, a battery starts discharging; when depleted,
the corresponding sensor stops working. Example discrep-
ancies are the charge level of a battery below a threshold, or
the absence of sensor readings. The BPSS has three modes:
P , S1, and S2. In mode P , sensors are powered by their own
batteries; in case of a battery failure, the BPSS may be re-
configured, e.g. in mode S1 Battery 1 powers both sensors.

A TFPG for the BPSS is shown in Fig. 1. Boxes with dot-
ted lines are failure modes, whereas discrepancies are either
circles (OR) or boxes (AND) with solid lines. Edges are la-
beled with propagation intervals and modes (“∗” indicates
all modes). The non-determinism on the propagation time
models uncertainty, e.g., the uncertainty on the propagation
time from B1Low to S1NO indicates that the depletion of
the battery will take longer in mode P rather than in S1.

According to the semantics of TFPGs (Abdelwahed et al.
2009)) a node is active if the failure propagation reached it,
and node activation is permanent. An edge e = (v, w) is
active if and only if v is active and m ∈ EM(e), where
m is the current system mode. A failure propagates through
e = (v, w) only if e is active throughout the propagation,
that is, up to the time w activates. For an OR node w and
an edge e = (v, w), once the edge e becomes active at
time t, the propagation will activate w at time t′, where
e.tmin ≤ t′ − t ≤ e.tmax. For an AND w′ instead, the
activation period is the composition of the activation periods
for each link (v, w′) ∈ E – if an edge is deactivated any
time during the propagation, the propagation stops. Links
are assumed memory-less, thus failure propagations are in-
dependent of any (incomplete) previous propagation.

A maximum propagation time of tmax = +∞ indi-
cates that a propagation can be delayed indefinitely, i.e. it

G1Off

G2Off

B1LOW

B2LOW

S1NO

S2NO

S1Off

S2Off

SysDEAD

[4, 6]{P, S1} [2, 4]{P, S1}

[0, 0]{∗}

[0, 1]{∗}

[2, 5]{P, S2} [3, 6]{P, S2}

[0
, 0

]{∗
}

[0, 1
]{∗}

[0, 1]{S
1 }

[0,
1]{S2
}

Figure 1: An Example TFPG for the BPSS.

can occur but not necessarily will1. This is a useful over-
approximation when the real tmax value is not available or
when the propagation depends on some unconstrained input.

3 Mapping Systems and TFPGs
3.1 TFPGs as Symbolic Transition Systems
To enable the mapping of system traces to TFPG traces, we
define TFPGs as transition systems, whose paths describe
failure propagations as timed sequences of failure mode and
discrepancy occurrences and mode switches. We first de-
fine a TFPG transition system over TFPG nodes, modes, and
time delays. Second, given a TFPG G defined over the same
nodes and modes, we enforce the propagation constraints
represented by the edges and the discrepancy classes.

We remark that in this model it is not always possible
to precisely determine along which path a propagation oc-
curred, e.g. in Fig. 1 it might not be clear along which path
S1NO was activated, if the preconditions of all incoming
edges are satisfied. However, it is always possible to check
whether a trace satisfies the propagation constraints.

Definition 2 (TFPG Transition System). A set of failure
mode variables F , a set of discrepancy variables D, and
a set of system modes M are given. A TFPG Transition Sys-
tem is a tuple Stfpg = 〈X, I, T 〉 such that:

• X = F ∪ D ∪M ∪ {τ}, with ∆(x) = {>,⊥} for x ∈
F ∪D ∪M and ∆(τ) = R≥0;

• I(X) = φmodes(M) ∧ τ = 0;
• T (X,X ′) = φmodes(M

′) ∧
∧
x∈{F∪D}(x→ x′) ∧ (τ ≤

τ ′) ∧ ((
∨
x∈{F∪D∪M}(x 6= x′))→ (τ = τ ′))

where φmodes(M) ≡
∧
m∈M (m ↔

∧
n∈{M\m} ¬n). A

trace π of a TFPG transition system is called a TFPG trace.
We write TS(G) to indicate the TFPG transition system de-
rived from the nodes F ∪D and modes M of the TFPG G.

For x ∈ {F ∪D}, x = > indicates that the node is active
in the current state, whereas for x ∈ M it means the sys-
tem is currently in mode x. Formula φmodes(M) states that

1We are mainly interested in systems with a bounded opera-
tion time, hence we do not adopt the alternative interpretation pre-
scribing that the propagation will eventually occur (Bozzano et al.
2015b)

the system is in precisely one mode at any time. The transi-
tion relation enforces that: TFPG nodes stay active once acti-
vated; time advances monotonically; time does not pass dur-
ing discrete switches (by similarity with timed automata).

We define now under which conditions a trace of a TFPG
transition system Stfpg satisfies the constraints of a given
TFPG. We use the notation µ(e) =

∨
m∈EM(e)m to indicate

the system modes that are supported by an edge e ∈ E.
Definition 3 (OR-node satisfaction). Given a TFPG G, we
say that a trace π of TS(G) satisfies the constraints of an
OR node d ∈ D of G iff for any state π[k]:
A. (π[k] |= d) → ∃j ≤ k · ((π[j] |= d) ∧ ∃e = (v, d) ∈

E ∃i ≤ j · ((τj − τi ≥ tmin(e)) ∧ ∀i ≤ l ≤ j · (π[l] |=
(v ∧ µ(e))))).

B. ∀e = (v, d) ∈ E ·(¬∃i ≤ k·((τk−τi > tmax(e))∧∀i ≤
j ≤ k · π[j] |= (v ∧ µ(e) ∧ ¬d))).

Condition A of Def. 3 states that if d is active in π[k] then
it must have been activated at some previous point π[j] after
some edge leading to d was active for at least the respective
tmin, starting from π[i], up to π[j] where d became active.
Condition B instead states that for no edge e the propagation
can be delayed for more than the respective tmax.
Definition 4 (AND-node satisfaction). Given a TFPG G,
we say that a trace π of TS(G) satisfies the constraints of
an AND node d ∈ D of G iff for any state π[k]:
A. (π[k] |= d) → ∃j ≤ k · ((π[j] |= d) ∧ ∀e = (v, d) ∈

E ∃i ≤ j · ((τj − τi ≥ tmin(e)) ∧ ∀i ≤ l ≤ j · (π[l] |=
(v ∧ µ(e))))).

B. ∃e = (v, d) ∈ E ·(¬∃i ≤ k·((τk−τi > tmax(e))∧∀i ≤
j ≤ k · π[j] |= (v ∧ µ(e) ∧ ¬d))).

Condition A of Def. 4 states that if d is active in π[k]
then it has been activated at some previous point π[j] after
all edges leading to d were active for at least the respec-
tive tmin, each starting from some individual π[i], up to π[j]
where d became active. Condition B instead states that at
least for one edge e the propagation must respect the respec-
tive tmax bound.
Definition 5 (TFPG satisfaction). Given a TFPG G, we say
that a trace π of TS(G) satisfies G iff π satisfies, for all
d ∈ D, the conditions of Def. 3 or Def. 4, depending on
whether d is an OR node or AND node, respectively.

We remark that TFPG satisfaction is based on local node
activation constraints. According to Def. 5, a TFPG trace
satisfies the TFPG constraints if all individual nodes are ac-
tivated according to the respective local constraints, and if no
node activation is delayed beyond the respective local upper
bounds on propagation delay. Note that failure mode nodes
fm ∈ F need not be considered, since their activation is
completely unconstrained w.r.t. the other TFPG elements.

This trace-based semantics for TFPGs closely follows the
original semantics of TFPGs, as described earlier, and has
been validated in various projects with the European Space
Agency and The Boeing Company.

In the following sections we use Π∗(G) to indicate all
possible traces of TS(G), and we use Π(G) ⊆ Π∗(G) to
indicate all traces of TS(G) that satisfy G as per Def. 5.

3.2 System Abstraction via TFPGs
We are interested in abstracting systems using TFPGs, by
associate system traces with TFPG traces. To this aim, we
define TFPG elements of interest (failure modes, discrepan-
cies and modes) in terms of system properties, as follows.

Definition 6 (TFPG Association Map). Given a set of fail-
ure mode variablesF , a set of discrepancy variablesD, a set
of system modes M , a time-stamp variable τ , and a system
model Ssys, a TFPG Association Map is a map Γ that asso-
ciates every variable x ∈ {F∪D∪M} with a Boolean pred-
icate γ over the state variablesX of Ssys, written γx(X), or
simply γx when the reference to X is clear from the context,
and τ with a variable x ∈ X , representing the state time-
stamps in the system, with ∆(x) = R≥0. Given an edge
e ∈ E, we use the short form γµ(e) for

∨
m∈EM(e) γm.

For instance, in the running example the dis-
crepancy B1Low may be defined by the expression
psu1.battery.charge < 40.

When interpreting a system trace in terms of TFPG prim-
itives we are interested in the points in the trace where fail-
ure modes occur, discrepancies become true or the system
mode changes, and in the order and time delay between
these events. Def. 7 defines a mapping from system traces
to TFPG traces that guarantees that the order and timing of
TFPG events is the same as in the system trace.

Definition 7 (Trace Abstraction). Given a system model
Ssys = 〈X, I, T 〉, a TFPG transition system Stfpg =
〈XG, IG, TG〉 withXG = {F∪D∪M∪τ}, and a TFPG as-
sociation map Γ defining the symbols in XG based on pred-
icates interpreted over X , we define the trace abstraction ζΓ
of a system trace π producing an abstract TFPG trace π′ of
Stfpg , written π′ = ζΓ(π), as follows:

• ∀x ∈ {F∪D}∀k ∈ Z≥0·((π′[k] |= x)↔ ∃i ≤ k·(π[i] |=
γx))

• ∀x ∈ {M ∪ τ}∀k ∈ Z≥0 · (x(π′[k]) = γx(π[k]))

Given a system trace π, we assume that for every x ∈ {F∪
D∪M} and every point k it holds that γx(π[k]) 6= γx(π[k+
1]) → γτ (π[k]) = γτ (π[k + 1]), i.e. time does not pass
when the truth value of the predicate defining x changes.
We also assume that the system is at each time instant in
precisely one mode. These assumptions guarantee that the
abstract traces of Def. 7 satisfy the constraints of Def. 2.

Completeness The notion of completeness of a TFPG G
reflects the fact that all possible failure propagations in S are
also modeled by G, in other words, whether the abstraction
of every system trace satisfies the constraints of G.

Definition 8 (TFPG Completeness). Given a system model
S, a TFPG G, and a TFPG association map Γ connecting
the two, we say that G is complete w.r.t. S iff for every trace
π of S, its abstraction ζΓ(π) satisfies G, i.e. ζΓ(π) ∈ Π(G).

In the BPSS example we may be interested in whether,
for instance, the propagation from G1Off to B1Low cannot
happen in mode S2, or take more than 6 time units.

Tightness Conversely to the notion of completeness, it is
legitimate to ask whether each failure propagation modeled
by a TFPG can actually take place in the system (correct-
ness property). This question is misleading, since the TFPG
is naturally an over-approximation, e.g. system modes are
completely unconstrained in the TFPG, but in realistic cases
this is not true in the system, and similarly for timing cor-
relations. Instead we propose to study the property of tight-
ness, i.e., whether certain parameters of the TFPG can be
reduced without breaking its completeness. Specifically we
are interested in tighten the propagation intervals and the
modes.
Definition 9 (Edge Tightness). Given are a system model S,
a TFPG G, an association map Γ, and an edge e ∈ E of G.
We say that tmin(e) is tight iff there is no r > tmin(e) such
that G is complete w.r.t. S with tmin(e) := r and all other
parameters of G remaining the same. We say that tmax(e)
is tight iff there is no r < tmax(e) such that G is complete
w.r.t. S with tmax(e) := r and all other parameters of G
remaining the same. We say that EM(e) is tight iff there ex-
ists no m ∈ EM(e) such that G is complete w.r.t. S with
EM(e) := EM(e) \m and all other parameters of G re-
maining the same. Finally, we say that the edge e is tight iff
tmin(e), tmax(e), and EM(e) are tight.

We remark that this definition checks for the effect of
single parameter changes. As an example, for the BPSS
we could verify whether some behavior really exists where
S1NO occurs only 4 time units after B1Low, or whether
that propagation can indeed occur in mode S1. Complete-
ness might be preserved when changing multiple parameters
simultaneously, e.g. if a mode m on an edge e is dropped in
which the propagation cannot occur at all and tmax(e) is
set to a finite value instead of +∞ that is a correct bound
for the propagation in the remaining modes, completeness is
preserved, while just reducing tmax(e) would break it.

4 Behavioral Validation of TFPGs
In this section we describe how to check whether a TFPG is
a complete and tight abstraction of a system.

TFPG completeness can be reduced to a model checking
problem of an MTL formula over the original system. TFPG
trace validity is expressed directly w.r.t. system traces, us-
ing an association map, hence no composition of the system
model and the TFPG transition system is necessary. Theo-
rem 1 and Theorem 2 below provide partial proof obliga-
tions (for OR and AND nodes, respectively) to check whether
the constraints of individual nodes are satisfied on a system
trace.
Theorem 1. Given a system model S, an association map Γ
relating S to a given TFPG G, and an OR node d of G, we
define the following proof obligations:

1. ψOR·A(d,Γ) := G((Oγd) → O((Oγd) ∧∨
e=(v,d)∈E((Oγv) ∧ γµ(e)S

≥tmin(e)(Oγv) ∧ γµ(e))))

2. ψOR·B(d,Γ) := G¬(
∨
e=(v,d)∈E((Oγv) ∧ γµ(e) ∧

¬(Oγd)S
>tmax(e)((Oγv) ∧ γµ(e) ∧ ¬(Oγd)))

For a trace π of S, ζΓ(π) satisfies the constraints of d, as
per Def. 3, iff π |= ψOR·A(d,Γ) and π |= ψOR·B(d,Γ).

Theorem 2. Given a system model S, an association map Γ
relating S to a given TFPG G, and an AND node d of G, we
define the following proof obligations:

1. ψAND·A(d,Γ) := G((Oγd) → O((Oγd) ∧∧
e=(v,d)∈E((Oγv) ∧ γµ(e)S

≥tmin(e)(Oγv) ∧ γµ(e))))

2. ψAND·B(d,Γ) := G¬(
∧
e=(v,d)∈E((Oγv) ∧ γµ(e) ∧

¬(Oγd)S
>tmax(e)((Oγv) ∧ γµ(e) ∧ ¬(Oγd)))

For a trace π of S, ζΓ(π) satisfies the constraints of d, as
per Def. 4, iff π |= ψAND·A(d,Γ) and π |= ψAND·B(d,Γ).

Based on Theorems 1 and 2, Theorem 3 formulates the
proof obligation that a system trace must satisfy in order for
the corresponding TFPG trace to satisfy a given TFPG.

Theorem 3. Given a system model S, a TFPG G,
and an association map Γ relating S to G, let
Ψ(G,Γ) :=

∧
d∈OR(G)(ψOR·A(d,Γ) ∧ ψOR·B(d,Γ)) ∧∧

d∈AND(G)(ψAND·A(d,Γ)∧ψAND·B(d,Γ)). Then,G is complete
w.r.t. S iff S |= Ψ(G,Γ).

The intuition behind the Theorems is that the proof obli-
gations can be derived from the definitions of OR-node satis-
faction and AND-node satisfaction via the semantics of tem-
poral operators and the mappings of Definition 7.

Note that, given an edge e = (v, d), the subclauses rel-
ative to e in ψOR·B(d,Γ) and ψAND·B(d,Γ) are trivially false
when tmax(e) = +∞ and can be simplified accordingly.
Furthermore, the fact that the proof obligations consist of a
number of local checks makes it easier to pinpoint the source
of any TFPG constraint violation.

Edge tightness can be reduced to a number of complete-
ness checks. As per Def. 9, checking the tightness of an edge
e ∈ E amounts to verifying, individually for each parame-
ter tmin(e), tmax(e), and EM(e), if there exists a tighter
assignment such that the accordingly modified TFPG G′ is
still complete w.r.t. S: S |= Ψ(G′,Γ). This can be done
by searching over the range of possible tighter parameter as-
signments. Note that tightness checks for edge e only require
to evaluate the proof obligations affected by the parameter
change, e.g., if d is an OR node and we check the tightness
of tmin(e), then only ψOR·A(d,Γ) needs to be evaluated.

5 Implementation
The prototype created for the present work is implemented
on top of the safety analysis platform xSAP (Bittner et al.
2015), which in turn is based on nuXmv (Cavada et al.
2014), a symbolic model checker for infinite state transition
systems modeled in the SMV language.

At the core of the implementation we use a reduction of
the completeness check to a reachability problem. For ex-
pressions of the type Oγd we extend the system model with
corresponding history monitors. Furthermore we introduce
one stopwatch per edge e that measures the duration for
which the corresponding expression (Oγv)∧ γµ(e) has been
true on the current path; the stopwatch is disabled when the
edge is not active and frozen when the target discrepancy is
activated. Based on this, the MTL proof obligations are ex-
pressed as invariance proof obligations, which can be solved

with standard reachability algorithms. For instance, to ver-
ify the proof obligation ψOR·A(d,Γ), we check whether the
clock value of at least one edge reaching the respective OR
discrepancy is greater or equal to the corresponding tmin
value when the discrepancy is activated. We remark that the
reachability problem for infinite-state transition systems is
in general undecidable, and plan to adress the computational
complexity of decidable subclasses in future work.

In order to compute tight assignments to the time bounds
of transitions we rely on recent developments in parame-
ter synthesis (Bittner et al. 2014a) and the symbolic model
checking algorithm IC3 (Bradley 2011) as implemented in
xSAP. The idea is to explore the lattice of solutions top-
down and to stop when a tight solution has been found. We
perform the search for tighter time bounds according to the
highest precision of any time constant in the original TFPG;
the rationale is that in practice the precision of interest is al-
ways finite. Key to an efficient implementation is to reuse the
inductive invariant returned by IC3, representing an overap-
proximation of the reachable state space, to bootstrap sub-
sequent calls to the model checker and enable searching for
tighter assignments without the necessity of unrolling the
transition relation.

Our current implementation does not support tightening
of tmax bounds set to ∞. To check for the existence of a
value (in an infinite domain) for some tmax that guaran-
tees completeness, more advanced proving techniques are
required that go beyond simple model checking. The imple-
mentation also does not yet support tightening of modes and
focuses on the tightening of time bounds only, even though
the proposed framework enables it. We plan to extend in fu-
ture work the implementation to cover both issues, based on
a tight integration with more advance proving techniques.

6 Experiments
In this section we provide an experimental evaluation of the
developed algorithms for behavioral validation and tighten-
ing of TFPGs.

For the experimental evaluation we use the following use
cases. ACEX and AUTOGEN are artificial models based on a
state space derived from partially random graphs, containing
discrete clocks. BATTERY SENSOR is the model described
in Section 2.3. It is also mainly discrete with real-valued
clocks. CASSINI are models of the spacecraft propulsion
system described in (Williams and Nayak 1996). SHUTTLE
GUIDANCE is a purely discrete model with discrete clocks
of the Space Shuttle engines contingency guidance require-
ments. FORGEROBOT describes a robot in a hazardous envi-
ronment and how its protection mechanisms can fail. POW-
ERDIST describes the fault protection logic of a power distri-
bution application. Additionally we ran our implementation
on two discrete untimed industrial models, WBS (Bozzano et
al. 2015a) describing an aircraft wheel-braking system, and
X34 (Bajwa and Sweet 2003) describing the propulsion sys-
tem of an experimental spacecraft.2 In total we created 72
tight TFPGs. For all usecases except for the untimed WBS

2Benchmark files and theorem proofs are downloadable at
es.fbk.eu/people/bittner/aaai16.tar.gz.

and X34, we created two “relaxed” versions of the TFPGs,
one by putting all tmin values to 0, and one by putting all
tmin values to 0 and multiplying by 2 all tmax values, re-
sulting in a overall number of 212 use cases. We ran both the
completeness check and the tightening procedure on each
use case.

model bool real TFPGs avg. FM avg. D avg. E

acex-10 31 0 5 2 15 16
acex-12 35 0 11 2 17 18
autogen 99 0 22 8 15 23
battery 43 5 4 4 6 11
cassini2 241 6 5 10 6 11
cassini4 301 10 13 16 10 27
forge-B 16 0 1 2 3 5
forge-R1 10 3 1 2 3 5
forge-R2 17 5 1 4 8 14
forge-R3 25 7 1 6 13 23
guidance 98 0 4 6 6 13
pdist 84 0 2 7 7 19
wbs 1179 0 1 9 8 19
x34 553 0 1 9 18 32

Figure 2: Usecase statistics with number of Boolean and real
variables per model, number of tight TFPGs, average num-
bers of failure modes, discrepancies, and edges.

All tests were run on a dedicated 64bit Linux computer
with a 12 core Intel Xeon CPU at 2.67 GHz and 100GB of
RAM. 4 cores were reserved for each test run to limit time
skew due to parallel executions of the tests. Each test was
executed on a single core with a time limit of 3600 seconds
and a memory limit of 4GB.

Figure 3: Solving time (seconds) of tight vs. relaxed TFPGs

All completeness checks terminated within the timeout
(all except four within 800s) and IC3 was able to prove com-
pleteness in all cases, which shows the feasibility of the ap-
proach. Figure 3 shows the results for these checks, com-
paring the solving times for the tight TFPGs vs. their re-
laxed variants. From the plot it can also be seen that prov-
ing completeness is slightly easier for relaxed TFPGs. Fur-
thermore, the check for WBS terminated after 67s, and the
one for X34 after 21s. Also most tightening runs termi-
nated within the timeout bound; 10 went out-of-time, and
5 out-of-memory. Results are shown in Figure 4, plotting
them against the solving times of the respective complete-
ness check. Not surprisingly the problem is much harder

Figure 4: Solving time (seconds) of completeness check vs.
tightening of time bounds

than verification of completeness. However, most still ter-
minate successfully within the timeout, which shows the ef-
ficiency of current parameter synthesis techniques in solving
the problem.

7 Conclusion
In this paper, we investigated the application of Timed Fail-
ure Propagation Graphs (TFPGs) as abstractions of dynamic
systems with continuous time. We presented an approach,
based on model checking, to validate the completeness and
tightness of a TFPG, and to synthesize a set of tight time
bounds. The experiments carried out on a set of industrial
benchmarks demonstrate the practicality of the approach.

In the future, we will investigate the application of TFPGs
as ways to present sets of counterexamples in model check-
ing. We also want to synthesize the underlying graph using
only failure mode and discrepancy definitions, and investi-
gate scalability improvements obtained by reduction to the
discrete case.

References
Abdelwahed, S.; Karsai, G.; Mahadevan, N.; and Ofsthun, S.
2009. Practical implementation of diagnosis systems using
timed failure propagation graph models. Instrumentation and
Measurement, IEEE Transactions on 58(2):240–247.
Alur, R., and Henzinger, T. A. 1993. Real-time logics:
complexity and expressiveness. Information and Computation
104(1):35–77.
Bajwa, A., and Sweet, A. 2003. The livingstone model of a
main propulsion system. In Proceedings of the IEEE Aerospace
Conference, 63–74.
Bittner, B.; Bozzano, M.; Cimatti, A.; Gario, M.; and Grig-
gio, A. 2014a. Towards pareto-optimal parameter synthesis
for monotonic cost functions. In Proceedings of the 14th Con-
ference on Formal Methods in Computer-Aided Design, 23–30.
FMCAD Inc.
Bittner, B.; Bozzano, M.; Cimatti, A.; De Ferluc, R.; Gario, M.;
Guiotto, A.; and Yushtein, Y. 2014b. An integrated process for
FDIR design in aerospace. In Model-Based Safety and Assess-
ment. Springer. 82–95.

Bittner, B.; Bozzano, M.; Cavada, R.; Cimatti, A.; Gario,
M.; Griggio, A.; Mattarei, C.; Micheli, A.; and Zampedri, G.
2015. The xSAP safety analysis platform. arXiv preprint
arXiv:1504.07513.
Bozzano, M.; Cimatti, A.; Pires, A. F.; Jones, D.; Kimberly, G.;
Petri, T.; Robinson, R.; and Tonetta, S. 2015a. Formal Design
and Safety Analysis of AIR6110 Wheel Brake System. In Proc.
CAV 2015, 518–535.
Bozzano, M.; Cimatti, A.; Gario, M.; and Micheli, A. 2015b.
Smt-based validation of timed failure propagation graphs. In
Twenty-ninth AAAI Conference on Artificial Intelligence.
Bozzano, M.; Cimatti, A.; and Tapparo, F. 2007. Symbolic fault
tree analysis for reactive systems. In Automated Technology for
Verification and Analysis. Springer. 162–176.
Bradley, A. R. 2011. Sat-based model checking without un-
rolling. In Verification, Model Checking, and Abstract Inter-
pretation, 70–87. Springer.
Cavada, R.; Cimatti, A.; Dorigatti, M.; Griggio, A.; Mariotti,
A.; Micheli, A.; Mover, S.; Roveri, M.; and Tonetta, S. 2014.
The nuxmv symbolic model checker. In Computer Aided Veri-
fication, 334–342. Springer.
Dubey, A.; Karsai, G.; and Mahadevan, N. 2013. Fault-
adaptivity in hard real-time component-based software systems.
In Software engineering for self-adaptive systems II. Springer.
294–323.
European Space Agency. 2011. Statement of Work: FDIR De-
velopment and Verification & Validation Process. Appendix to
ESTEC ITT AO/1-6992/11/NL/JK.
European Space Agency. 2012. Statement of Work: Hardware-
Software Dependability for Launchers. Appendix to ESTEC
ITT AO/1-7263/12/NL/AK.
Koymans, R. 1990. Specifying real-time properties with metric
temporal logic. Real-time systems 2(4):255–299.
McDermott, R.; Mikulak, R. J.; and Beauregard, M. 1996. The
basics of FMEA. SteinerBooks.
Misra, A.; Sztipanovits, J.; Underbrink, A.; Carnes, R.; and
Purves, B. 1992. Diagnosability of dynamical systems. In
Third International Workshop on Principles of Diagnosis.
Misra, A. 1994. Senor-based diagnosis of dynamical systems.
Ph.D. Dissertation, Vanderbilt University.
Ofsthun, S. C., and Abdelwahed, S. 2007. Practical applications
of timed failure propagation graphs for vehicle diagnosis. In
Autotestcon, 2007 IEEE, 250–259. IEEE.
Ouaknine, J., and Worrell, J. 2008. Some recent results in
metric temporal logic. In Formal Modeling and Analysis of
Timed Systems. Springer. 1–13.
Priesterjahn, C.; Heinzemann, C.; and Schafer, W. 2013.
From timed automata to timed failure propagation graphs.
In Object/Component/Service-Oriented Real-Time Distributed
Computing (ISORC), 2013 IEEE 16th International Symposium
on, 1–8. IEEE.
Strasser, S., and Sheppard, J. 2011. Diagnostic alarm sequence
maturation in timed failure propagation graphs. In AUTOTEST-
CON, 2011 IEEE, 158–165. IEEE.
Williams, B. C., and Nayak, P. P. 1996. A model-based ap-
proach to reactive self-configuring systems. In Proceedings of
the National Conference on Artificial Intelligence, 971–978.

