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Abstract. Model-Based System and Software Engineering (MBSE) tech-
nology such as simulation has been adopted for decades by the space
industry. During the lifecycle of a space mission a number of models are
developed to support simulation and other analysis capabilities address-
ing needs specific for the different project phases. Typical concerns are:
feasibility assessment, design optimization and validation, system per-
formance and safety assessments, detail design verification and on-board
software validation. In this context, symbolic and data-driven AI tech-
niques can provide advanced capabilities to support the online operations
of space missions. One of the main challenges to enable AI in the virtual
flight segment is the problem of combining heterogeneous models in a
common framework.
The ROBDT project aims at developing a Robotic Digital Twin frame-
work that combines data-driven models, physics-based and symbolic mod-
els and uses online data and data analytics to adapt the models at run-
time. The digital twin will support the robotic asset operations by pro-
viding timing and reliable prediction and by supporting what-if analysis
to assess multiple scenarios. In this paper, we present the architecture of
the ROBDT framework and the preliminary achievements.

Keywords: Digital Twins · Space Domain · Planning and Scheduling · Diagno-
sis · Monitoring.

1 Introduction

In this paper, we present the objectives and the early achievements of the
ROBDT system, which is under development by the “Robotic Digital Twin”
Activity funded by ESA and led by TRASYS in collaboration with FBK and
GMV. In robotics, Digital Models of the target systems are traditionally used
in all phases of a mission under the name ‘Virtual Flight Segment’ ranging from
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design to the development and the operations. These digital systems struggle
to fully support their objectives in particular when the involved models are not
able to capture the complete physical reality. This is particularly true when the
operations environment evolves during the mission (e.g., when discovering a new
planetary area).

The ROBDT activity proposes a new framework (see Figure 1) where en-
gineering methods and AI techniques are integrated into a coherent Robotic
Digital Twin Framework in order to allow:

– On-line update of the system models: The appropriate combination of data-
driven and physics-based simulation models enables the application of on-
line data analytics for adapting at runtime the models of the virtual asset
guaranteeing a high-fidelity representation of the physical asset and its en-
vironment.

– Planning and what-if analyses: A digital twin enables planning of actions
and what-if analyses based on more reliable models. These analyses allow
to synthesize unexpected scenarios and study the response of the system as
well as the corresponding mitigation strategies. This kind of analysis without
jeopardizing the real asset is only possible via a digital twin.

– Plan monitoring and fault diagnosis: Telemetry data are monitored to detect
and identify anomalies. Diagnosis is performed to enable a retrospective
analysis to extract the root causes of the observed failures. This is essential
in order to support timely recovery from problematic situations and/or safely
operate the real asset in a degraded mode of operation.

In this paper, we present the proposed software architecture to build the
ROBDT system and the corresponding functionalities, with particular attention
to the interplay and synergies between engineering methods, symbolic and data-
driven AI. E.g., in a planetary exploration mission, the terrain model used for
planning is the same as the one used for simulation, and it is adapted with ma-
chine learning algorithms based on the telemetry data. Finally, we describe the
preliminary achievement in the demonstrator based on the ExoMars planetary
exploration mission.

The rest of the paper is organized as follows: Section 2 discusses the related
work; Section 3 details the framework’s components; Section 4 describes the
rover demonstrator; and Section 5 draws the conclusions.

2 Related work

Analysed at its roots, NASA pioneered the concept of twins in the 1960s with
Apollo project where two identical spacecraft were built, with the one on Earth
called twin which reflected (or mirrored) the status of the spacecraft on a mission.
Since then, digital twin (DT) concept has been applied extensively in the fields
of manufacturing and robotics [2, 9, 10, 33, 35, 36, 43]. Many research works dis-
cussed the connotation, definition of digital twin concept, independently of the
industry field [11, 16, 19, 22, 31, 34]. The term is not always used consistently and
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is explained in various ways from different perspectives. Considering the scope
of this study, the following definition from [34] (adapted from [31]) is considered
as the baseline:

“A Digital Twin is defined as a dynamic and self-evolving digital/virtual
model or simulation of a physical asset (part, machine, process, human, etc.)
representing its exact state at any given point of time enabled through real-time
bi-directional data assimilation as well as keeping the historical data, for real-
time prediction, monitoring, control and optimization of the asset to improve
decision making throughout the life cycle of the asset.”

Combination of data with models is at the heart of any DT. However, the
specific types of models and integration of data strongly depend on the required
services built on top of the DT.

With regards to online model adaptation, different methods have been pro-
posed in literature to handle various uncertainties and partial observability (cfr.,
e.g., [15, 8, 23]). Digital twin frameworks based on supervised/unsupervised ML
methods, such as dynamic Bayesian networks [13], particle filters [41], stacked
denoising autoencoders (SDA) [24], etc., have been shown to enable continuous
adaptation of physics based models for end-to-end uncertainty quantification,
optimal decision-making, anomaly detection and the prediction of future condi-
tions.

Hybrid modeling approaches have been widely used in scientific applications
to embed the knowledge from simplified theories of physics-based models directly
into an intermediate layer of the neural network (see for example [4]). Within this
paradigm, physics-informed learning (PIL) [30, 39, 14] is based on regularization
design for discriminative properties, while physics-augmented learning (PAL)
[20] is based on model design for generative properties.

Reinforcement learning (RL) algorithms typically replace the traditional model-
based planning and control processes. Recent scientific applications [37, 42, 32]
have utilized the potential of RL for the inference of physics-based model parame-
ters. They have been shown to: provide accurate real-time dynamical calibration,
adapt to new scenarios, scale to large datasets and high-dimensional spaces, and
to be robust to observation and model uncertainty. Within the context of DT,
RL algorithms have been applied in the field of manufacturing [43], robotics [27,
32] and autonomous driving [42, 28], to provide services such as real-time model
adaptation, anomaly detection, or what-if analysis.

In the context of planning, [26] proposes a production system control concept
where a digital twin and an automated AI planner are tightly integrated together
as one smart production planning and execution system. In the context of run-
time monitoring, [25] proposes a formal specification framework to facilitate and
automate specification extraction in natural language from documentation, as
well as formalizing them for the digital twin. [21] proposes an approach for active
monitoring of a neural network (NN) deployed in the real-world, which detects
previously unseen inputs and creates interpretable queries for incremental NN
adaptation to ensure safe behaviour.
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Fig. 1. The ROBDT architecture.

Overall, with respect to the above mentioned works, ROBDT presents some
novel contributions. On one side, it is focused on space robotic systems, with the
relevant peculiarities as for example the communication delays. On the other
side, it provides a unique combination of symbolic automated reasoning, simu-
lation, and machine learning techniques.

3 The ROBDT framework

3.1 System architecture

Figure 1 shows the ROBDT architecture as a first layer decomposition of the
software into the following components:

Simulation As A Service (SimAAS): consists of multiple simulators which
simulate the functionality of the robotic assets as well as the mechanisms
for their upload to the system, their configuration and management (start,
stop, delete), and finally the monitoring of their status. It involves the use of
Kubernetes [18] and associated services.

Model As A Service (MAAS): provides ML Ops capabilities to the ROBDT
by facilitating tasks such as data preparation, model training and model serv-
ing, while also enabling easy, repeatable, portable deployments on diverse
infrastructure. It is based on the Kubeflow [17] open-source project. In the
demonstrator, two such models and the corresponding pipelines are proposed:
the wheel-terrain interaction model and the Data Handling Subsystem (DHS)
update model.
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Fig. 2. Information exchanged between ROBDT models.

Digital Twin Models: the models are handled by a Digital Twin Manager
(DTM), which manages DT definitions and facilitates operations associated
with launching, monitoring and stopping the corresponding simulations by
hiding the complexities of Kubernetes’ APIs that are used in SimAAS to
perform the same operations.

What-if Analysis (WIA): allows simulating the system from its current state
or from a hypothetical state according to a given scenario with the additional
possibility to check whether a certain goal condition is satisfied, or it is vi-
olated. In the context of this activity the WIA component focuses on the
simulation of activity plans under various conditions with the additional ca-
pability of automatic activity plan generation,

Diagnosis (FDIRPM) : allows detecting faults in the current execution or
on historic data, identifying causes of the faults based on their models, and
providing the corresponding feedback to the operators. In the context of this
activity, we propose to focus on the detection of faults during the execution of
an activity plan and to propose a recovery action by generating an alternative
one.

Operations Support (SCIDET): supports engineering or science operations
planning and assessment. In this activity, a “scientific agent” is integrated
to detect predefined patterns of interest or novelty on on-line or historical
images acquired by the robotic asset.

These components use various heterogeneous models and there is a strong
interplay between data-driven models, physics-based, and symbolic models, as
summarized in Figure 2. In the following sections, we describe in more detail the
components using these models.

3.2 Simulator

The simulation capabilities are provided by the instantiation of the SIMROB
multi-asset space robotics simulator [12]. A high-level breakdown in models of
SIMROB is depicted in Figure 3. It includes:

– TheAssets models that allow to compute the state evolution of the subsys-
tems of the assets that are under control. For each asset, it mainly includes
models of its mechanical, electrical and thermal dynamics, of its data han-
dling, communications and payload subsystems as well as the model of its
control software. In particular:
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Fig. 3. The SIMROB simulator breakdown.

• The Mechanical Dynamic Model provides the state evolution of a multi-
body actuated and sensorised mechanism possibly subject to external
forces. Main elements of the models are the bodies (rigid or flexible)
with their inertial parameters, the joints (actuated or passive) including
fixed, prismatic, rotoid and universal joints, and finally their topology.

• The Power Generation & Distribution Model predicts the instantaneous
energy flow in the power conditioning and distribution network in terms
of current, voltages and losses at each relevant node, the state of charge
and the behaviour of the battery, replicates the PCDE control logic and
behaviour and finally simulates the power interfaces conditions (voltage,
current) for all connected units.

• The Controller Model is a model of particular importance as it repro-
duces the role of the onboard flight software ranging from asset control
to instruments control and mission management. It is structured in a
three-layered architecture. At the lowest level, close to the actuators and
sensors, the Functional layer implements the Actions representing the
elementary Activities of the asset. The Executive layer implements the
Tasks defined as a logical and temporal composition of Actions. Finally,
the Mission layer handles mission planning and scheduling aspects exe-
cuting Activity Plans either created on-ground or on-board.

– The Environment models are in charge of the simulation of the environ-
ments that interact with the assets. These models encompass the reproduc-
tion of planetary and orbiter ephemerides, the provision of planetary atmo-
spheric data as well as the morphology and the topology of the environment
in which the assets evolve. In particular:
• The Atmosphere Model provides at any time and location of the asset

the relevant atmospheric characteristics. For example, for Mars surface
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operations, elements such as the air temperature, the surface tempera-
ture, the air specific heat capacity, the wind velocity, the dust optical
depth, the atmospheric chemistry, as well as the radiation flux at ground
level are important inputs for the simulation.

• The Environment Dynamic Model represents the topological, the mor-
phological and the mechanical dynamics aspects of the environment in
which the assets evolve. It concerns exclusively the assets which oper-
ate in close loop with their environment: a rover moving on a terrain,
a robotic arm grasping an object, a robotic system using exteroceptive
sensors (e.g. imagers) to perceive its environment. The outputs of this
model are forces/torques applied at a given point, distances measured
from a given point, images generated from a given point-of-view, etc.
These measures are used by the mechanical dynamic model of the as-
set to evaluate its state after impact/contact, and by the sensor models
(imagers, distance, force/torque sensors, etc) to compute their outputs.

– The Simulation framework is based on SIMULUS. It covers both the ex-
ecution of a spacecraft simulation and the simulator architectural design.
The SIMSAT Simulation Engine is the ‘engine’ of the simulator, the SIM-
SAT Man-Machine Interface provides the interface between the user and
the simulator, the Generic Models (GENM) comprise a suite of reusable
generic simulation models, the SMP2 standard enables reuse and portabil-
ity of the simulation models, the Reference Architecture (REFA) establishes
a suitable breakdown of simulators into models and finally the Universal
Modelling Framework (UMF) supports an efficient and smooth approach of
software development for SMP2 simulations.

3.3 Model updaters

In the ROBDT architecture, the Model As A Service (MAAS) is a component
whose goal is to provide ML Ops capabilities to the system. The MAAS facil-
itates data preparation, model training, and model serving and enables easy,
repeatable, portable deployments on diverse infrastructure. Serving the models
from MAAS allows specific digital twin components to access the model predic-
tions for different use such as simulation and diagnosis.

Infrastructure The MAAS is based on a specific component of the Kube-
flow open-source project: Kubeflow Pipeline. Kubeflow is a service capable of
making deployments of machine learning (ML) workflows on Kubernetes simple,
portable and scalable. The Kubeflow Pipeline is a platform in Kubeflow that
has a UI and an API for triggering and tracking experiments, jobs, and runs.
It also contains the engine used to manage and execute the ML workflows cre-
ated by the Model Training Pipeline steps. The Kubeflow Pipelines is a platform
for building and deploying portable, scalable machine learning (ML) workflows
based on Docker containers. The role of the ROBDT’s private Docker Registry
is to manage the Docker images into which the various steps of model train-
ing pipelines are packaged. Based on Seldon’s Core, the Model Server exposes
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trained models as web APIs, providing its clients the ability to make predic-
tions and get information on the models. The MAAS offers interaction with the
Monitoring and Control Station (MCS) component to obtain the historical and
real-time telemetries. Those data are requested from the model updaters and
used to build the training dataset.

Model Updater Component Based on the functionality provided by Kube-
flow it is possible to trigger the training of a model manually or automatically at
regular intervals. Both can be performed and configured via Kubeflow’s Pipeline
UI or the corresponding API. Once the pipeline is triggered, Kubeflow Pipeline’s
orchestration engine starts executing the described workflow. The pipeline is
made up of Docker images related to each other as a graph through input and
output files dependencies. The pipeline steps are the following:

– Telemetry acquisition: the first step of the pipeline is responsible for the
telemetry acquisition. The operation is done by contacting the MCS compo-
nent by REST API, which provides the requested data in JSON format.

– Data pre-processing : the historical telemetries of the mission are pre-processed
for the training and testing phase of the model.

– Training : the training dataset is obtained from the previous step and loaded
using a custom DataLoader. The model is instantiated and trained; the
model parameters are saved on a dedicated, persistent volume. As a result
of this step, the best performing model is available for the next steps.

– Test : the model runs on the testing dataset to validate the performance.
The score is then passed to the next step to provide information about the
behavior of the updated model.

– Deployment : to enable inference service to the other ROBT components, this
final step provides the configuration for the Seldon Core platform about the
model parameters and the Python’s handler script.

3.4 Planner and what-if analysis

One of the main problems when managing a remote asset is to plan the activities
to be performed ahead-of-time, because a significant time delay can hinder direct
tele-commanding. For example, it is not possible to tele-command an asset on
the surface of Mars due to the communication delay that is in the order of tens
of minutes. For this reason, the remote assets are equipped with autonomous
executors of mission plans that need to be properly formulated on-ground ahead
of time and uploaded before execution. Designing activity plans that are robust
and achieve a desired objective is no trivial task when the complexity of the
target system is more than trivial. For this reason, automated planning tech-
nologies have been historically employed in space applications. The usefulness
of such technique is not limited to the generation of plans for the immediate
future, but also to investigate hypothetical situations and to perform so-called
“what-if analyses” (WIA): before committing to a specific plan or addressing a
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problematic situation, a planning and simulation system allows the study of dif-
ferent plans and objectives in different real or hypothetical situations. Finally,
WIA allows for retrospective analyses: in light of new model information, one
can re-assess past decision in order to improve future decision-making.

Within the ROBDT framework, WIA is seen as a service that takes advantage
of the superior precision of digital twin models: thanks to the strong alignment
between the models and the physical assets it is possible to provide more realistic
estimations of the costs of a certain plan and ultimately to provide a better
support for decision-making. Moreover, an interesting and pivotal feature offered
by digital twins is the evolution of models, making it possible to adapt automated
planning to the degradation of capabilities or to the evolving conditions of the
environment.

On the practical side, the overall idea behind our digital-twin-enhanced WIA
is to maintain a model-based approach for planning and high-level simulation,
but to allow for parameters that are to be estimated/learned from the telemetry
data within the digital twin. Concretely, we will study the behavior of automated
planning when some parameters (in particular the duration of some activities)
are estimated by means of ML models. Ideally, having a more precise timing
model of the system will allow a less conservative planning which in turn will
allow to fully exploit the remote asset capabilities.

3.5 Fault detection and diagnosis

Diagnosing faults is essential in order to detect and identify anomalies that could
endanger the real asset. To this aim, the system is equipped with a Fault De-
tection, Isolation, and Recovery (FDIR) component that monitors the telemetry
data and the execution of the activities, in their initial, in progress and terminat-
ing phase. A relevant aspect strictly related to the monitoring phase is the ability
to perform its task even in absence of complete information on the state; for ex-
ample, both the state of some components and the currently executed action
may be unknown. In such a case, a set of belief states that are compatible with
the observations, strictly contained in the set of all possible states, is considered
and the diagnosis phase can be employed with this partial information. With
the aim of addressing the partial observability problem we have used NuRV [5],
[6], [7]; this tool is able to generate a monitor for a specific LTL property to be
monitored on a given system. In this case the system consists of the plan, which
can be seen as a loop-free algorithm, synthesized by the planner component,
while the conditions to be monitored are pre, in progress and post conditions. In
case an anomaly is detected, a retrospective analysis based on the DT models
and the historical information on past states, is carried out to localize the pos-
sible faults and identify the root causes of the failure. Diagnosis is based on a
fault model which describes the effects of faults, their dependencies and the fault
propagation rules. The adaptation of the DT models at run-time can improve
the situational awareness of the real asset and provide a more precise analysis
with respect to the FDIR capabilities of the physical system alone. When an
anomaly is detected, the FDIR component can trigger a reconfiguration of the
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system, e.g. to continue operation in a degraded mode. FDIR can also be used
to aid predictive maintenance by supporting the detection of the performance
degradation of some component. Finally, the FDIR component provides a service
to the what-if analysis functionality, namely it supports the planning activities
by monitoring the plan execution in order to detect and identify unexpected
outcomes of the actions.

4 The ROBDT case study

For the demonstration of the ROBDT framework, we chose to work on a plan-
etary robotic asset provided by TRASYS. Because of the inherent uncertainty
of the robot-environment interaction, data-based models are well suited. More-
over, it is an ideal case study for path planning and monitoring. Let us consider
a typical scenario prepared for a ‘sol’ execution from the ExoMars planetary
exploration mission: the ‘Drilling site approach and surface sample acquisition’.
The following activities shall be performed autonomously under the constraints
of the available power, memory capacity for data storage, and duration (single
sol). Initially, the rover waits the transition Night to Day to wake-up (driven by
the rover PCDE, when the solar panels generate power greater than a threshold
(20W)) and configures accordingly the rover for the day activities. In particular,
the subsystems involved for travelling are warmed-up and moved to a ‘standby’
state. These steps involve several uncertainties, mainly the exact local Mars time
at which the rover wakes-up as well as the warm-up durations, which all depend
on the external conditions (e.g., atmospheric temperatures, relative orientation
of the rover solar panels with respect to the Sun, etc.).

At completion of the rover configuration, the rover starts traveling to reach
the outcrop whose position has been identified from ground. Although the dura-
tion of the travel depends on the topology and characteristics of the encountered
terrain, it can be estimated at planning time. At arrival at the outcrop, the rover
is unconfigured from travelling operations and configured for drilling: travel re-
lated units are switched off while the drill box and the drill are warmed-up
and moved to the ‘standby’ state. Again, the expected durations (and there-
fore power consumptions) have to be estimated as they depend on the time in
the ‘sol’ that the rover reached the outcrop. At the next step the drill box is
deployed, the drill is initialised, and reaches the soil to collect the surface sam-
ple (10cm depth). Afterwards, the drill retracts. The duration of the sampling
procedure, and therefore the power consumption, depends on the hardness of
the soil. Finally, images of the environment shall be acquired and downloaded
to guarantee that the ground planning team has enough information for plan-
ning for the next sol. After establishing the communications with the orbiter
and transferring the acquired data, the rover waits the transition Day to Night
(driven by the rover PCDE, when the solar panels generate power less than the
threshold of 20W), configures the Rover for night and ‘sleeps’ waiting for the
next plan to be uploaded for execution.

In this scenario, the use case foresees:
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Fig. 4. The architecture of the Fully connected neural network for the WTI model.

– For the ROBDT system, there are two specific machine learning models that
are adapted online: the wheel terrain interaction (WTI) model and the DHS
model that predicts the Actuator Drive Electronics (ADE) warm-up time.
Those elements run on top of the MAAS component taking advantage of the
Kubeflow Pipeline architecture. In both cases, the approach used to fix the
model architecture is the same. As an example, we present here the case of
the WTI model. The purpose of the WTI model is to estimate the drawbar
pull of the robotic asset and the power consumption of the motors. These
calculations are made from the terrain and rover characteristics given as in-
put from pre-processed telemetries. In particular, the inputs of the model are
the terrain type (class), slip ratio (%), stiffness (%), and normal axis load
(Newton). The outputs are the average drawbar pull (Newton) and the power
consumption (Watt). Given the small number of input features of the model,
the advantage of using Deep Learning solutions is not clear, as they usually
require many parameters and are therefore heavy to train. For this reason,
we are testing two different solutions to achieve the described functionality:
the first is based on a Deep Learning Fully Connected Neural Network, and
the second uses Boosted Decision Tree. While both can fit in the pipeline
based on the MAAS, predictive power and computational resources required
for the online adaptation can be different and must be carefully evaluated.
The framework adopted for the development of the fully connected neural
network is Pytorch. The neural network solution is composed of an initial
embedding layer that maps the terrain class to a higher dimensional space.
Then, this embedding is merged with the other features forming the input
of the first layer of the network. A full representation of the network archi-
tecture is presented in Figure 4. For the boosted decision tree we used the
Catboost Python library [29].

– For the planning part, we are setting up and experimenting with a fully-
integrated solution, which is capable of planning with semi-opaque models.
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In particular, we have access to a model of the activities and tasks of the
rover and we need to automatically synthesize activity plans. However, some
of the actions have simulated effects, meaning that the consequences of ap-
plying such actions are not modeled but can only be simulated, and the du-
ration of some actions are also not formally modeled. Most notably, among
these “evaluatable” quantities, we have the ADE warm-up timing that is es-
timated by a learned and evolving ML model as discussed above. We use
the AIPlan4EU Unified Planning library [1] to model simulated effects and
the TAMER planner3 [38] for the actual plan generation. Preliminary results
show that the approach is capable of generating valid plans quickly, and we
are currently working on experimenting with the quantities estimated by
means of ML.

– As for the fault detection part, we are monitoring the execution of the plan.
The telemetry provides complete information about the state components,
but no information about the state of the task execution. Looking at the
case study, the plan provided by the planner requires first to run a task
that waits for the rover to warm up and switch on a set of subsystems for
traveling. Upon completion of this action, a state component is modified.
This state component acts as a precondition for a task that is used for
updating the rover heading estimate with a value provided by ground. If
the monitor notices that the heating level has just been changed, but the
precondition state component of the heating level update task has not been
satisfied before, it can decide that the heating update task has been executed
violating its preconditions in one of the possible belief states will report this
violation to the operator and to the diagnostic component.

– Given the anomalies identified by the monitoring component, the goal of the
diagnosis component is to provide a list of most probable explanations for
these anomalies. The explanations are identified using a fault propagation
graph (FPG), which describes how failures of one subsystem or component of
the rover can cause failures of other components. In particular, for ROBDT,
we construct the FPG as follows. First, for each task, we use the DT specifi-
cation to identify the actions of other subsystems that can cause a failure of
the given task. For example, the warm-up task that prepares the rover for
travel depends on warming up the navigation cameras, localization cameras,
actuator drive etc. Second, we use the description of hardware implementa-
tion and FMECA tables to describe how failures in the hardware components
can cause failures of the higher level subsystems. For example, the actua-
tor drive depends on working hold-down release mechanism, which in turn
depends on working motors, motor heaters, etc. We then use efficient tech-
niques rooted in formal methods [3] that for each set of identified failures
list all the possible root causes.
As a result, if the monitoring component reports an anomaly in the warm-
up task, we can list failure of motors as one of the root causes (among
many others). More interestingly, if the monitoring component reports sev-

3 https://tamer.fbk.eu
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eral anomalies, which all transitively depend on the motors, the diagnosis
component can report the motor failure as the most probable root cause as it
is more probable than multiple separate failures of independent subsystems.

5 Conclusions

In this paper, we presented the architecture of the Robotic Digital Twin, which
is under development as part of the ROBDT study funded by ESA. We detailed
the planning and monitoring functionalities and the related combination of data-
driven physics-based, and symbolic models. Finally, we described the preliminary
achievement in the demonstrator based on the ExoMars planetary exploration
mission. In the remaining activities of the project, which will conclude within
2022, we will complete the prototype implementation and will evaluate it on the
described scenario, thus identifying strengths and weaknesses of the approach.
In the future, we are going to use the same infrastructure to validate and verify
autonomous systems with AI/ML components with a simulation-based system
level approach. This is part of VIVAS, another ESA-funded study started in May
2022 [40].
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