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Abstract. The process of developing civil aircraft and their related sys-
tems includes multiple phases of Preliminary Safety Assessment (PSA).
An objective of PSA is to link the classification of failure conditions and
effects (produced in the functional hazard analysis phases) to appropriate
safety requirements for elements in the aircraft architecture. A complete
and correct preliminary safety assessment phase avoids potentially costly
revisions to the design late in the design process. Hence, automated ways
to support PSA are an important challenge in modern aircraft design.
A modern approach to conducting PSAs is via the use of abstract prop-
agation models, that are basically hyper-graphs where arcs model the
dependency among components, e.g. how the degradation of one com-
ponent may lead to the degraded or failed operation of another. Such
models are used for computing failure propagations: the fault of a com-
ponent may have multiple ramifications within the system, causing the
malfunction of several interconnected components. A central aspect of
this problem is that of identifying the minimal fault combinations, also
referred to as minimal cut sets, that cause overall failures.

In this paper we propose an expressive framework to model failure prop-
agation, catering for multiple levels of degradation as well as cyclic and
nondeterministic dependencies. We define a formal sequential semantics,
and present an efficient SMT-based method for the analysis of failure
propagation, able to enumerate cut sets that are minimal with respect
to the order between levels of degradation. In contrast with the state of
the art, the proposed approach is provably more expressive, and dramat-
ically outperforms other systems when a comparison is possible.

1 Introduction

The process of developing civil aircraft and their related systems is guided by
documents ARP4754A [17] and ARP4761 [16] produced by the engineering and
standards organization SAE International. These documents describe a struc-
tured process for the safety assessment of these classes of platforms. An impor-
tant stage is that of the Preliminary Aircraft Safety Assessment (PASA) and
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Preliminary System Safety Assessment (PSSA). The PASA is followed by mul-
tiple PSSA, carried out at the level of the systems composing the aircraft. One
important goal of these process stages is to link the classification of failure con-
ditions and effects (produced in the aircraft functional hazard analysis phase) to
appropriate safety requirements for elements in the aircraft architecture. These
safety requirements drive, among other things, assignment of target Develop-
ment Assurance Levels (DAL) for items within the architecture. A complete and
correct preliminary safety assessment phase avoids potentially costly revisions
to the design late in the design process. Hence, automated ways to support PSA
are an important challenge in modern aircraft design [18].

An important goal of PSAs is to fully understand how faults of simple func-
tions (e.g. providing electrical power, on-ground braking) interact and propagate
to affect the overall behaviours (e.g. landing, take-off, taxiing). A modern ap-
proach to conducting such safety assessments is via propagation models [1,19,14],
that model the dependency among components, e.g. how the degradation of one
component may lead to the degraded or failed operation of another. Such mod-
els are used for computing failure propagations: the fault of a component may
have multiple ramifications within the system, causing the malfunction of several
interconnected components. A central problem is identifying the minimal fault
combinations, also referred to as minimal cut sets, that cause overall failures [12].

Given that PSAs occur in the early stages of the development process when
limited information regarding the design is available, reasoning is carried out at
a very high level of abstraction. Therefore, instead of using behavioural models
(e.g., infinite-state transition systems) adopted in formal verification, the system
is more naturally modeled by a simpler formalism of propagation graphs. This
does not make PSA any easier. There are in fact several aspects that must be
taken into account. The first problem is the sheer size of propagation graphs,
both in terms of nodes and hyper-paths to be explored, which make enumerative
techniques completely inadequate.

Second, the propagation is non-Boolean [19]. That fu
is, the degradation levels of the system functions are
not binary (working vs not working) but the func-
tions may be subject to different levels of degrada- fs fd
tion (e.g. fully operational, partly failed, completely \ /
failed), and fail in different ways (e.g. detected vs w
undetected, stuck open vs stuck closed), and differ-
ent failures may be associated to different probabili- Fig.1: Hasse diagram of
ties [19]. For example, the state of a component can be the FDs W3F [11].
abstractly modeled into working (w), failed safe (fs),
failed detected (fd), or failed undetected (fu), with degrees of degradation par-
tially ordered as shown in Figure 1. In this setting, the notion of minimality
needs to take into account the order among the levels of degradation, and can
not be simply considered in terms of minimality with respect to set-inclusion.
Third, various forms of failure propagation may be possible, e.g., nondeterminis-
tic, temporally-constrained, cyclic. For example, the failure of a power generator
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may lead, within a certain amount of time, to a depleted battery and then to the
loss of an engine. In turn, the loss of an engine may compromise the ability to
generate power, which clearly requires the ability to deal with cyclic propagation
graphs. Additionally, a failure of the control system might cause a pressure valve
to become either stuck open or stuck closed; this requires the ability to deal with
nondeterministic propagations.

In this paper we tackle the problem of analyzing failure propagation in the full
generality required by real-world applications. We start from Finite Degradation
Structures (FDS) [14], a recently-proposed modeling framework, which unifies
various combinational models traditionally used in safety analysis (such as fault
trees and minimal cut sets) and generalizes them to deal with different levels of
degradation. We propose a framework, referred to as PGFDS (Propagation Graphs
over FDS), that allows to model non-deterministic and cyclic propagation graphs.
The framework is general and can be used in other safety-critical domains.

In order to deal with cyclic behaviours, PGFDS require a sequential semantics,
expressed via symbolic transition systems. The computation of minimal cut sets
over PGFDS can be carried out by means of techniques based on model checking,
developed for the general case of behavioural models [0].

Then, we prove that it is possible to carry out the same analysis within a
combinational setting, leveraging two widely adopted assumptions: that faults
are persistent and that the fault propagation is monotone. These assumptions
allow us to devise an efficient algorithm that can analyze fault propagations of
realistic industrial benchmarks that are currently out of reach of state-of-the-art
methods. The analysis of PGFDS is reduced to model enumeration for an SMT
formula that does not require the explicit unrolling of the transition system.
We tackle two key difficulties. The first one is to ensure causality and rule out
self-supporting fault configurations in the combinational encoding. This is done
by imposing cycle-breaking constraints requiring the existence of a partial order
that is then constructed by the SMT solver during the analysis. The second one
is to devise efficient enumeration techniques of models that are FDS-minimal,
i.e., minimal with respect to the severity of the degradation given by the FDS.
To this end, we propose an SMT-based enumerator of FDS-minimal models.

We have experimentally evaluated our approach on a comprehensive set of
realistic benchmarks, also generating random systems that have a similar struc-
ture as our proprietary systems®. The results demonstrate substantial advances
with respect to the state of the art. Our approach is clearly superior to the
approach proposed in [14], that is limited to the case of acyclic deterministic
PGFDS. For the cyclic PGFDSs, we contrast our approach against the sequential
approach based on model-checking and show that our approach is able to scale
to large PGFDS, dramatically outperforming the sequential approach.

This paper is structured as follows. In Section 2 we present the mathematical
notation and background on FDS. In Section 3 we describe Propagation Graphs
over FDS (PGFDS). In Section 4 we present the combinational encoding of PGFDS
into SMT. In Section 5 we describe how to use the SMT encoding for the enu-

3 Unfortunately the proprietary systems cannot be disclosed.
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meration of FDS-minimal cut sets. In Section 6 we discuss some related work,
and in Section 7 we present the experimental evaluation. In Section 8 we draw
some conclusions and outline directions for future work.

2 Preliminaries

In the section, we explain the basic mathematical conventions that are used
in the paper. We assume that the reader is familiar with the basic ideas of
Satisfiability Modulo Theories (SMT) and in particular with the theory of linear
integer arithmetic and the DPLL(T) procedure, as presented, e.g., in [2].

If convenient, we define unary functions with small domains in-place exten-
sionally, e.g., {1 — 2,2+ 3} is a function with domain {1,2} that maps 1 to 2
and 2 to 3. We say that the n-ary function f(x1,x2,...,x,) depends on its for-
mal argument z; if there are some values vy, vg, ..., v, v, in the corresponding
domains such that f(vi,va,...,v4...0,) # f(v1,02,...,0},...0,). Given sets A
and B, we denote as B4 the set of all functions from A to B. Given a partially
ordered set (A4, <), its subset B C A is called an upper (resp. lower) set if for
all b € B, a € A, the condition a > b (resp. a < b) implies a € B.

A Finite Degradation Structure (FDS) [14] is a triple (FM, <, L), where FM
is a finite set of failure modes and < is a partial order on FM with the least
element 1. For any set A and an ¥FDS B = (FMp,<p, L), the FDS B4 for
the set of functions from A to FM p is defined as ((FM g)*,<pa, La), where
Llpa(a) = Lp foralla € A, and f <ga f’if and only if f(a) <g f’(a) for all
a € A. We assume that each FDS contains at least two elements. We say that
an FDS is Boolean if it is isomorphic to the structure ({L, T}, L < T,1). In the
following, for an Fps D = (FM,<, 1), we denote elements of the set FMwith
f, f' and call them failure modes.

Given a first-order formula ¢ over the language of the theory of linear integer
arithmetic, an assignment p that assigns a value p(b) € {false, true} to each
free Boolean variable b of ¢ and a value u(n) € Z to each free integer variable n
of ¢ is called a model of ¢ (denoted u |= ) if p makes ¢ true. If B is a subset
of free Boolean variables of ¢, the model p = ¢ is called subset-minimal with
respect to B if there is no model p/ = ¢ such that {b € B | 1/ (b) = true} C {b €
B | p(b) = true}.

A transition system TS is a tuple (X, I,T) where X is a set of (state) vari-
ables, I(X) is a formula representing the initial states, and T'(X, X’) is a formula
representing the transitions. A state of T'S is an assignment to the variables X.
A trace of M is a (possibly infinite) sequence sg, s1, . . . of states such that sg = I
and, for all i > 0, s;, 5], =T

3 Propagation Graphs over FDSs

In this section, we introduce our model for fault propagation, which we call
Propagation Graphs over FDSs (PGFDS), and provide a sequential semantics for
it which can be used to encode PGFDSs into transition systems.



Efficient SMT-based Analysis of Failure Propagation 5

Intuitively, a Propagation Graph over FDS (PGFDS) consists of a set of com-
ponents of the system and of the next function. In each step of the failure
propagation, each component is in some failure mode from the underlying FDS.
In the next step of the failure propagation, each component can either 1) stay in
its previous failure mode or 2) switch to an arbitrary failure mode from the set
of possible next failure modes. The set of possible next failure modes for each
component is given by the function nezt, based on the current failure modes of
all components in the system.

Definition 1 (Propagation Graph over FDS (PGFDS)). Given a finite
degradation structure D = (FM,<, 1), a propagation graph over D is a pair
S = (C, next), where

— C is a finite set of system components, and

— next: C — (FMC — 2FM) is a mapping that assigns to each component
¢ € C a next failure mode function next(c), which maps failure modes of all
components in C to a set of possible next failure modes of c.

A state of S is a mapping s: C — FM that assigns a failure mode f € FM to
each system component c € C.

Ezample 1. Consider a system with three components, H (hydraulic), E (elec-
tric), and G (control on ground), over the Boolean FDs ({1, T} L < T,1).
Each of the components is either working correctly (represented by the failure
mode L) or incorrectly (T). Component G depends on the correct functionality
of either E or H. Component E depends on H to function correctly and, symmet-
rically, H depends on E. The failure propagation of this system can be described
by a PGFDs S = ({G, E, H}, next), where

— next(G)(s) ={T}if s(E) = s(0) = T and next(G)(s) = () otherwise;
— next(E)(s) = {T} if s(H) = T and next(E)(s) = @ otherwise;
— next(H)(s) = {T}if s(E) = T and next(H)(s) = 0 otherwise.

Note that nezt(c)(s) = @ means that if the system is in the state s, the component
¢ cannot change its current failure mode.

The structure is intuitively associated with the hypergraph depicted in Fig-
ure 2. The dashed rectangles represent the fact that each component can fail on
its own (locally); the hyper-arc from E and H to G is conjunctive, while the arcs
incoming into a node are disjunctive. ad

The important assumption of our approach is that we consider only fault-
persistent propagations, i.e., fault propagations where each component can fail
only once and after it does, it stays in the same failure mode forever. Note that
this is a realistic assumption that is also used in other techniques for reliability
analysis [5]. It is also implicitly used in other modeling techniques that are purely
combinational (e.g., [19]) because they model the system only in a single time
step, without considering any change in time whatsoever. Single propagation step
of such computations can be described by a fault-persistent transition relation;
the whole such computation as fault-persistent failure propagation.
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Fig. 2: The hypergraph view of a simple PGFDS.

Definition 2 (Fault-persistent transition relation). Let S = (C, next) be
a PGFDS over an FDS with the least element 1. The fault-persistent transition
relation of S, denoted as Rs, is the binary relation between states of S such that
for all states s, s, the relation Rs(s,s’) holds if and only if for each ¢ € C

— §'(¢) = s(c) or
— s(c) = L and s'(c) € next(c)(s).

Definition 3 (Fault-persistent failure propagation). Given a PGFDS S =
(C, next), its fault-persistent transition relation Rs, and k € N, the sequence
(si)o<i<k of states of S is called a fault-persistent failure propagation if the
relation Rgs(s;, si+1) holds for all 0 <i < k.

Because we deal only with fault-persistent failure propagations in this paper,
we from now on refer to the fault-persistent transition relation and the fault-
persistent failure propagation only as transition relation and failure propagation,
respectively.

Definition 4 (Cyclic PGFDS). Let S = (C, next) be a PGFDS. A component
¢ € C depends on a component d € C iff next(c)(s) # next(c)(s’) for some
s,8': C — FM such that s(d) # s'(d) and s(¢) = §'(¢') for all ¢ # d. Let
deps(c) = {d € C' | ¢ depends on d}, D C C x C be such that D(c,c) if and
only if ¢ € deps(c), and let DV be the transitive closure of D. Then we say that
S is cyclic if and only if there exists ¢ € C' such that DV (c,c) holds.

Ezxample 2. In the PGFDS S from Example 1, the component G depends on com-
ponents E and H, the component E depends on H, and the component H depends
on E. The PGFDS S is therefore cyclic because E (and also H) transitively depends
on itself. ad

To analyze reliability of the modeled system, it is important to identify the
failures of its components (i.e., assignment of failure modes to the components)
which cause the system to reach a given set of dangerous states, usually called top
level event (TLE). Such assignments are called cut sets. Since the number of all
cut sets can be prohibitively large, it is often enough to identify the least severe
failures in terms of the underlying FDS that are sufficient to cause the TLE.
Such cut sets are called FDS-minimal, or minimal for short. These concepts are
formalized in the following definitions.
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Definition 5 (Top Level Event). Given a PGFDS S, a Top Level Event
(TLE) is an arbitrary set of states of S.

Definition 6 ((FDS-Minimal) Cut Set). Given a PGFDS S = (C, next), and
a top level event TLE, a cut set is any state s for which there is a fault-persistent
failure propagation that starts in s and ends in some s € TLE. A cut set is
called FDs-minimal (or minimal for short) if it is minimal with respect to the
pointwise ordering < of the underlying FDS.

Given a system S and a top level event TLE, we denote the set of all correspond-
ing cut sets as CS(S, TLE) and the set of all minimal cut sets as MCS(S, TLE).
As a convention, when talking about cut sets, we will explicitly mention only
the components to which the cut set assigns a failure mode different from L.

Ezample 3. Consider again the PGFDS S from Example 1 and the top level event
TLE = {s: {¢,E,H} — {T,L1} | s(¢) = T}, which corresponds to the compo-
nent G not working correctly. The minimal cut sets for the PGFDS S and the
given top level event are

1. {G — T}, witnessed by a failure propagation ({G — T,E+— L, H+— L}) of
length 1.

2. {E — T}, witnessed by a failure propagation ({¢ — L,E — T,H —
1} {c— LLEmnT,H—~ T} {G— T,E~ T,H— T}) of length 3.

3. {H — T}, witnessed by a failure propagation ({¢ — L,E — L,H —
Th{c— LLEmsT,H— T} {G— T,E~ T,H— T}) of length 3.

Note that besides these three minimal cut sets, there are other cut sets that are
not minimal, such as {E+— T,H— T}. O

Fault-persistent computations of a PGFDS can be easily represented as traces
of a (symbolic) transition system.

Definition 7 (Fault-persistent transition system). Given a PGFDS S =
(C, next) and an ¥Ds D = (FM, <, 1), the corresponding fault-persistent (sym-
bolic) transition system is given by TSs = (X, true,T), where:

— X ={x. | c € C} is the set of state variables, with domain FM ;

— T(X,X') is a symbolic encoding of the fault-persistent transition relation of
S as given in Definition 2. That is, for each assignment p: X UX' — FM,
wE T if and only if Rs(s,s’) holds, where s: C — FM is defined as s(c) =
w(xe) (and similarly for s').

By definition, every fault-persistent computation of S has a corresponding trace
(of the same length) in T'Ss. Therefore, encoding PGFDSs as transition systems
allows leveraging off-the-shelf algorithms for subset-minimal cut set enumer-
ation, such as those given in [6]. However, this might be inefficient, particu-
larly for TLEs that are triggered by long failure propagations (corresponding
to equally-long traces of the induced transition system). Moreover, as we show
later, enumerating FDS-minimal cut sets is more involved.
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Fault propagation systems used in practice often have the property that no
transition can be disabled by additional faults, i.e., by switching a failure mode
of a component from | to f # L. This is also the case for the PGFDS from
Example 1. Such systems are called subset-monotone or monotone for short.
This is formalized by the following definition.

Definition 8 (Subset-monotone PGFDS). A PaFDs S = (C, next) is called
subset-monotone if for all s,s": C — FM, the condition Ve € C. s(c) # L —
s(c) = §'(c) implies Ve € C. next(c)(s) C next(c)(s).

4 From Sequential to Combinational

In this section, we describe a combinational encoding of fault-persistent compu-
tations of a PGFDS, which is guaranteed to be exact for subset-monotone PGFDSs
and provides a useful overapproximation for general PGFDSs. In the rest of the
section, let S = (C, next) be a PGFDS over the FDs D = (FM,<, 1), and TLE
be a top level event. We show how to construct a first-order formula ¢ s over
the theory of linear integer arithmetic whose models correspond to cut sets of S
with respect to TLE. In the next section, we then use this formula to enumerate
all FDS-minimal cut sets of .S.

To encode the propagations of S, for each component ¢ € C' and each failure
mode f € FM we introduce two Boolean variables: I. s and F. ;. The variable
1. encodes whether ¢ was in the failure mode f in the initial state of the
propagation. The variable F, s encodes whether ¢ has been in the failure mode
f at any time during the propagation. We can then encode TLE as a formula
@7LE over variables F f.4

Considering now a possible propagation, a component ¢ can be in failure
mode f # 1 at some time during the propagation for two reasons: either it was
already in f in the initial state of the propagation, or it transitions to f because
of its nezt function. The first case is represented by I. y being true. The second
case can be encoded as follows (for each ¢ € C and f € FM \ {L}):

V A Fasa, (1)

s: C—FM
feneat(e)s) “sies”

stating that there must exist a row in the truth table of nezt(c), whose result
includes f and which agrees with the current state on the failure modes of failed
dependencies.> The above, however, would not work in the presence of cycles.
This can already be seen on the simple cyclic PGFDS from Example 1.

4 A naive encoding would be using the formula VSETLE(/\cec,s(c);éJ_ Festey A
Acec,s(e)=1 Nrerm g1y ~Fe.r), but more compact representations are of course pos-
sible (particularly if TLE is given symbolically).

5 This formula can again be encoded more compactly; particularly if the nezt function
is given symbolically, which is usually the case in practice.
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Ezample 4. Consider again the PGFDS S from Example 1. The above-described
encoding of the propagations of S is

(Fat — a1V UIETAFHT)) A
(Fe,r — (g7 VFu7T)) A
(Fau,t — (IaTVFgeT)).

Although this encoding has a model p such that u = -Ig 1t A =Ig 1T A ~IgT A
Fo 1 A Fg,1 A Fy,7, there is no propagation path of S in which both components
E and H are initially in the state | and switch to state T during the propagation.
The problem is that the encoding allows models where a failure of E was caused
by a failure of H, which was in turn caused by the same failure of E. ad

In order to solve the problem, we introduce constraints imposing a causal
ordering among the components, stating that the failure of a component can be
caused only by other components that precede it in the causal order. We encode
this by introducing one additional integer variable o. for each component c,
which intuitively corresponds to the time when the component ¢ switched to a
failure mode different from 1, and modifying the formula (1) to take the causal
ordering into account:%

\/ /\ (Fd,s(d) Nog < OC) . (2)

s: C—FM dedeps(c
fencate)s) el

Putting it all together, the encoding for the failure mode changes is given by the
formula @;,e.e below:

Prest = /\ (Fc,f - (I&f Vv (2))) A (Icyf - FC,f)'
ceC
FEFM\{L}

Ezxample 5. For the PGFDS S from Example 1, the correct encoding of the prop-
agations of S is thus the following formula e

(Far — (g1 V((F1 ANog <og) A (FuT Aon <og))) A

(Ig,t — Fa,1) A

(Fg,1 — (Ig 7V (FutAon <og))) A
(Ie,r — Fe1) A

(FH,T — (IH,TV(FE,T/\OE<OH))) A
(In,t — Fur7)

Note that the constraints for causal ordering now rule out the spurious self-
supporting propagation in which E fails because of H and H fails because of E.

5 We remark that such ordering constraints are needed only if the input PGFDS is
cyclic, and only between components in the same strongly connected component of
the dependency graph.
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This would require that oy < og and og < op are both true, which is clearly
impossible in the theory of linear integer arithmetic (or, more generally, in any
theory in which < is interpreted as a strict ordering relation).

The propagations of S mentioned in Example 3 correspond to the following
assignments:

1. The propagation for the cut set {G — T} corresponds to an assignment
w such that p = Ig+ A =Ig 1t A ~InuTt A Fg1 A ~Fg 1 A —Fp 1 and
noc) = p(og) = plon) = 0.

2. The propagation for the cut set {E — T} corresponds to an assignment u
such that p = —Ig v A g1 A—Iu T A Fg1m A Fg 1 A Fu1 and p(og) = 2,
(o) = 0, pi(op) = 1.

3. The propagation for the cut set {H — T} corresponds to an assignment u
such that u ): _‘IG,T A _‘IE,T AN IH,T A FG,T NFgT A Fu T and /L(O(;) =2,
1(ok) = 1, (og) = 0.

These assignments are not unique; there are infinitely many choices for the values
of the ordering variables o.. Also note that there is no global causality ordering
for the system: the causality ordering is different for different propagations. O

Finally, we encode the fault-persistence constraint by stating that no component
can be in two failure modes either in the initial state of the propagation or at
any time during the propagation:

Ponce = /\ (_' c, f \ _‘Ic7f/) A (_' c,f Vo Cvf/) .

ceC
fof € FM\{L}
F#5

The final formula is then given by ¢.:

Pes = PTLE N Pnext N\ Ponce-

As the following theorem shows, the formula ¢, for general systems encodes
an overapprozimation of the set CS(S, TLE). The reason for this is that the
encoding does not enforce failure mode of dependencies that are working, i.e.,
are in the failure mode L. Note that even an overapproximation of CS(S, TLE)
is useful for safety analysis; it can be used, for example, for computing an up-
per bound on the probability of failure of the system. Moreover, if the system
S is subset-monotone, which is often the case in practice, the formula ¢.s is
guaranteed to encode the set CS(S, TLE) exactly.

To formulate the relationship precisely, we define the function that provides
the correspondence between the models of p and the cut sets of S. Observe
that thanks to @ynce, each model p of ¢ s corresponds to a unique initial state
modelToState(p) of S as defined below:

f it {f e FMA{L} | u(lep) = true} = {f},

modelToState(y1)(c) = {J_, it {f' € FM\{L} | u(I. ) = true} = 0.
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MCS-enumeration(¢.s, modelToState):
solver := SMT-solver()
res := )
assert-formula(solver, @cs)
for I. s € vars(pes):
add-preferred-var(solver, I, f, false)
while check-sat(solver):
u = get-model(solver)
1 1= true
for I. 5 € vars(yes):
if u(le,5) = true:
Yi=yPA Ic,f
res := res U {modelToState(p)}
assert-formula(solver, —))
return res

© ® N e wN

e e e
e E o

Fig.3: SMT-based MCS enumeration algorithm.

Theorem 1. For an arbitrary PGFDS S and a top level event TLFE,
CS(S, TLE) C {modelToState(u) | ju |= ¢es}-

Moreover, if S is subset-monotone, these sets are equal.

5 Enumeration of FDS-Minimal Cut Sets

In this section, we show how to efficiently enumerate FDS-minimal cut sets of
subset-monotone systems using the formula ¢.; and an SMT solver. We first
consider a simplified case, in which the underlying FDS D is Boolean. We then
show how to generalize our solution to arbitrary FDSs.

5.1 Algorithm for Boolean FDSs

The pseudo-code of our procedure for the case when the underlying FDS is
Boolean is shown in Figure 3. Intuitively, the algorithm enumerates all the
subset-minimal models of ¢.s with respect to the set of variables of form I, ;.
These models are enumerated one by one and each enumerated model is, to-
gether with all its supermodels, blocked by the assertion on line 13, until the
formula becomes unsatisfiable. Each model of the formula is converted to a cut
set by the function modelToState.

The algorithm makes use of a DPLL(T)-based SMT solver that provides the
following functionalities:

1. An assert-formula method that allows to add constraints incrementally;
2. A check-sat method to determine the satisfiability of the current set of con-
straints;
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3. A get-model method that returns a model for the current asserted set of
constraints, in case they are satisfiable;

4. An add-preferred-var method that allows to control the branching heuristics
of the internal SAT engine of the solver, such that whenever a SAT decision
needs to be performed, variables in the preferred set are always considered
before the other variables for branching, and are assigned the value specified
in the add-preferred-var call.”

The correctness for our algorithm is formalized by the theorem below.

Theorem 2 (MCS enumeration over Boolean FDS). For a subset-monotone
PGFDS S over the Boolean FDS, the result of MCS-enumeration(p.s, modelToState)
is the set of all ¥DS-minimal cut sets of S.

Proof. Let S = (C,next) be a subset-monotone PGFDS. It was proven by Di
Rosa et al. [15] that if branching heuristics of a CDCL-based SAT solver are
modified to assign false to a subset V of variables before branching on other
variables (lines 4-5 of our pseudocode), the produced model is subset-minimal
with respect to the set of variables V. This claim straightforwardly extends to
DPLL(T)-based SMT solvers. In every iteration, the algorithm thus finds one
subset-minimal model p of .5 with respect to the set of variables I. s and
adds a constraint that prevents enumerating any model p’ such that {I. s €
vars(pes) | p(le,f) = true} C {I. 5 € vars(pes) | 1/ (Ie,f) = true} in the
following iterations. Therefore, the described algorithm enumerates, for each
model 7 of the formula 3{F,.; | c € C,f € FM}3{o. | ¢ € C}(pcs) that is
subset-minimal with respect to the set of variables I. r, exactly one model p of
s that agrees with 1z on all variables I f.

Note that vars(yp.s) does not contain the variable I. ; for any ¢ € C. For a
Boolean ¥Ds and models p, i’ = ¢cs, we thus have {I. ¢ € vars(pes) | p(le,f) =
true} C {I. ;s € vars(pcs) | 1/ (Ic,f) = true} if and only if modelToState(p) <
modelToState(p'). Therefore, Theorem 1 implies that for subset-monotone S,
subset-minimal models of ¢, with respect to the set of variables of form I. ¢
precisely correspond to FDS-minimal cut sets of S and the correspondence is
given by the function modelToState. a

5.2 Extension to arbitrary FDSs

The algorithm of Figure 3 does not work in general for arbitrary FDss, but only
for the FDSs in which all the failure modes different from 1 are incomparable.
The problem is that the assumption that a cut set is FDS-minimal iff the corre-
sponding model of ¢, is subset-minimal with respect to the set of variables I.. ¢
with f # L does not hold in general with the encoding of Section 4, as can be
seen on the following simple example.

" For example, calling add-preferred-var(solver, v, true) means that if the solver has
to perform a case split, v will be assigned before all non-preferred variables, and it
will always be assigned to true by the branching heuristic.
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{w,fd,fu} = wA=fsAfdAfu
{w,fs} = wAfsAN-fdAN-fu {w,fd} = wA-fsAfdAN-fu
{w} = wA-fsAfdAN-fu

Fig. 4: Hasse diagram of the ordered set (W3F |, C) together with the encoding
of the elements as formulas.

Ezample 6. Consider the Fps D = ({L,m, T}, L <m < T, 1) and the PGFDS
S = ({c}, next) with next(c)(s) = 0 for all ¢ and s. Intuitively, S contains
one component that cannot change its failure mode during the computation.
Consider further the top-level event TLE = {{c — m},{c+— T}}.

Both {¢+ T} and {¢ — m} are cut sets, but only the latter is FDS-minimal.
However, the algorithm of Figure 3 will return both, since they both correspond
to subset-minimal models with respect to the set of variables I, ¢. O

We can adapt the procedure of Figure 3 to arbitrary FDSs by using an encod-
ing in which the ordering of assignments to the I. s variables corresponds to the
severity ordering < of the underlying FDS D. In order to do this, we exploit the
isomorphism between D = (FM, <, 1) and the poset D | of its lower subsets gen-
erated by single elements defined as D= {{f' € FM | f' < f} | f € FM} with
partial order C and the least element {1}. For example, the poset (W3F |, C)
for the FDS W3F of Figure 1 is shown in Figure 4, together with an encoding of
the elements as formulas.

With this isomorphism in mind, we define for each ¢ € C' and f € FM the
formula t.—y that represents the failure mode f of component ¢ by assigning
the subset of variables {I, ; f < f} to true:

¢c:f = /\ Ic,f A /\ _‘I&f'

ferMm, f<f ferM, ff

The important property of this definition is that for all ¢ € C, f,f' € FM
and assignments p = =y and p' = Ye—y, we have f < f’ if and only if
{1, ;| n, 5) =true} C{I_; | W/ (I, ;)= true}.

We then modify the encoding ¢ s of §4 as follows:

1. First, we modify ¢nes to encode the initial state by using 1.—s instead of
I. ;. This ensures that the ordering of assignments to the initial variables
reflects the ordering given by the underlying FDS. We also remove the mutual
exclusion constraints on the variables I. ¢ from @opnce, because the mutual
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exclusion of initial failure modes is now guaranteed by the definition of ¥.—y:

Pnext = /\ (Fc,f — ({lpC:f \% (2))) A (wC:f — Fwa)’
ceC
feFM\{L}

Ponce = /\ (_‘ of 2 Cvf/) .
ceC
fof € FM\{L1}
r#£f
2. Then, we add domain constraints that ensure that the resulting formula

represents only models with assignments to I. y that correspond to elements

of D|:
o=\ V e

ceC feFM
The new encoding is then given by ¢ZM:

Sof's]\/[ = @1LE N Pnext /\ Ponce N YD -

The modified encoding pZM represents the cut sets in a different way: instead
of representing the failure modes directly by I. ; as in ¢, they are now repre-
sented by the subformulas 1.—¢. Therefore, to prove correctness of the modified
encoding, the function modelToState that maps models to cut sets also has to
be changed. We define the initial state model T oState™ () corresponding to the
model yu by modelToState™ (11)(¢) = max{f € FM | u(I. ;) = true}. Note that
the maximum is guaranteed to exist because of the ¢p constraint.

Theorem 3. For an arbitrary PGFDS S and a top level event TLFE,
CS(S, TLE) C {modelToState™ () | p = @FM}.
Moreover, if S is subset-monotone, these sets are equal.

Therefore, the algorithm MCS-enumeration from Figure 3 can be used to
enumerate FDS-minimal cut sets of a subset-monotone PGFDS, given as the inputs
the modified encoding ¢ and the modified function model ToState™ . This is
formalized by the following theorem:

Theorem 4 (MCS enumeration for general FDS). For a subset-monotone
PGFDS S over an FDS D, the result of MCS-enumeration(ofM modelToState™)
is the set of all ¥DS-minimal cut sets of S.

Note that our encoding of FDs-minimality is general and does not depend on
the algorithm for enumeration of subset-minimal models. Indeed, thanks to our
encoding, any off-the-shelf minimal-model enumerator can be used to enumerate
FDs-minimal models. Therefore, any improvements to minimal model enumera-
tion directly translate to improved performance of our method for FDS-minimal
cut set enumeration. From the opposite point of view, our encoding can in prin-
ciple be employed by other tools to reduce FDS-minimal cut set enumeration to
subset-minimal cut set enumeration.
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6 Related Work

Finite Degradation Models (FDMs) [14] are an algebraic framework accommo-
dating the concept of fault degradation, where faults may have different values
organized into a semi-lattice. Using FDMs (probabilistic) safety analysis (fault
trees and minimal cut sets) can be generalized from Boolean models to multistate
systems. Compared to FDMs, fault-persistent PGFDSs differ in two significant as-
pects: first, since the function next returns a set of possible next failure modes,
PGFDSs allow non-determinism in the failure propagation, i.e., the failure of a
component is not uniquely determined by the failure modes of its dependencies.
Second, and more importantly, PGFDSs allow cyclic dependencies and give them
well-defined and expected semantics. Since the work on FDMs is the closest to
ours, we shall discuss it in detail below.

In [8] the authors present a framework for failure propagation which enables
modeling sets of failure modes using a domain specific language. It is less expres-
sive than FDMs, in that sets of failure modes cannot be related by degradation
orders, which significantly simplifies the enumeration of MCSs. Finally, classical
formalisms for failure propagation, but less expressive than FDS, include FPTN [9]
and Hip-HOps [11].

TFPGs (Timed Failure Propagation Graphs) [l] extend fault propagation
model by enabling the specification of time bounds and mode constraints on
the propagation links. However, TFPGs do not consider degradation, and they
do not support cyclic dependencies. Conversely, the PGFDS formalism can be
easily extended to support time bounds, failure probabilities, mode constraints,
and constraints on propagation delays similar to those available in TFPGs (e.g.,
following [5]). Moreover, once the minimal cut sets of a PGFDS are computed,
the existing approach to computing probability of overall failure [5] can be used
almost unchanged.

Finally, xSAP [3] is a safety analysis platform that supports library-based
fault models and the generation of safety artifacts for fully general behavioral
models, e.g., it can generate fault trees and minimal cut sets for arbitrary transi-
tion systems [6]. Currently, xSAP does not support FDS and degradation models.

6.1 Detailed Comparison with Finite Degradation Models

As outlined above, the formalism Finite Degradation Models (FDMs), introduced
in [14], is closely related to our PGFDS. Here, we describe FDM in further detail
and show that PGFDS are a strict generalization of FDS, obtained by (i) consid-
ering non-determinism in the propagation of failures, and (ii) by allowing cyclic
dependencies among the components.

Each FDM has state variables, which correspond to the sources of failures in
the system, and flow variables, which correspond to the propagated consequences
of these failures. Each flow variable has an associated equation, which prescribes
the failure mode of the corresponding flow variable based on the failure modes
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of state variables and other flow variables. We assume that the failure modes of
all state and flow variables are modeled by the Fps D = (FM, <, 1).8

Definition 9 (Finite Degradation Model [14]). Given an arbitrary FDS
D = (FM,<,1), a Finite Degradation Model (FDM) is a pair M = (V =
SWF,E), where

— S§={V1,...,V,u} is a finite set of state variables,

— F={Wpnt1,..., Wiin} is a finite set of flow variables,

— E={Wit1:=bmi1,-- - Winin := Omin} @S a finite set of equations, where
each ¢myi for 1 <i<mn is a function of type FMY — FM.

We say that a flow variable W,,,1; depends on a variable v if the function ¢, +;
depends on v. An FDM is called acyclic if there are no cyclic dependencies among
its flow variables, i.e., no flow variable transitively depends on itself. We stress
out that in contrast to our definitions of PGFDs, the original paper [14] only deals
with acyclic FDMs and does not provide semantics and necessary definitions for
cyclic FDMs. We thus assume in the rest of the section that all FDMs are acyclic.

An assignment o: V — FM is called admissible if the failure modes assigned
to the flow variables satisfy all the corresponding equations, i.e., c(Wy,1i) =
¢m+i(0) for each 1 < i < n. The assumption of acyclicity of FDMs, together with
the fact that all equations are deterministic functions and not general relations,
guarantees that in each admissible assignment, failure modes of the flow variables
are uniquely determined by the failure modes of the state variables. This defines
a function [M](c) = T, which maps each state variable assignment o to its
unique admissible extension @ j; that assigns values to all variables. This is a
stark contrast to PGFDS, where a single initial state can give rise to multiple
different propagation paths.

A corresponding notion to our notion of top level event for FDM is the notion
of observer. An observer is a pair (R, U), where R is a flow variable and U C FM
is a set of failure modes. Intuitively, the observer represents a set of dangerous
failure modes of the given flow variable. A cut set is any assignment o: S — FM
of failure modes to state variables such that 7(R) € U.

A notion related to our notion of monotonicity for FDM is coherence. The
observer is coherent if for all assignments o,0’: S — FM such that o is a cut
set and o < ¢, the assignment ¢’ is also a cut set.

Each ¥FDM M can be translated to a PGFDS S); such that the cut sets of
M correspond to the cut sets of Sy;. Moreover, if the FDM M is coherent, the
resulting PGFDs S), is guaranteed to be subset-monotone. This enables efficient
analysis of coherent FDMs by our SMT-based technique. Intuitively, the PGFDS
S has one component for each state variable of M and an additional component
R for the observer flow variable R. The next function is defined in a way that the
failure modes of all the components that correspond to state variables cannot

8 Both FDMs and our PGFDS can be defined over multiple different FDss for different
variables. Such generalization is straightforward, but it complicates the notation and
the exposition significantly.
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Table 1: Classes of PGFDS and their traces that each of the compared tools can
handle precisely.

Tool ‘ FDS Cycles Nondeterministic Not fault-persistent
Emmy Arbitrary No No No

xSAP Boolean Yes Yes Yes

SMT-PGFPS | Arbitrary Yes Yes No

change and that the component R can switch to a predefined set of failure modes
if (R) € U. This is achieved by composing all equations for the flow variables.
If local variables are used in the symbolic encoding”, the size of the result is
guaranteed to be polynomial.

7 Experimental Evaluation

To evaluate the performance and scalability of our approach, we have imple-
mented the proposed algorithm MCS-enumeration in a simple Python tool that
uses the solver MathSAT [7], which supports all the required functionalities that
are described in §5.1. In this section, we refer to the tool as SMT-PGFPS.

As a comparison, we have used Emmy [13], a tool based on decision diagrams
for the enumeration of FDS-minimal cut sets of FDMs, and xSAP [3], a tool
for safety assessment for arbitrary transition systems. Each of these tools only
supports a subset of the capabilities of our approach, as summarized in Table 1.

Emmy supports minimal cut set enumeration with respect to an arbitrary or-
dering of failure modes given by an FDS, but only for acyclic and deterministic
FDMSs;

xSAP supports analysis of arbitrary transition systems with cycles, given that
it internally relies on the nuXmv model checker. However, it cannot enu-
merate FDS-minimal cut sets, but only subset-minimal ones. Note that for
computation of subset-minimal cut sets, xSAP is more general than our
approach, as it supports general transition systems and arbitrary temporal
properties. However, we use xSAP as a baseline to compare performance and
scalability of our approach for cyclic PGFDS because it is a subcase of general
transition systems that is important in practice. In the evaluation, we use
the IC3-based engine described in [6] (denoted as xXSAP-IC3). Note that this
algorithm assumes that the verified property is monotone and leverages this
assumption for efficiency.

For the comparison, we have created three sets of benchmarks:

9 For example, let-expressions of form (let ((var definition) ...) body) in SMT-
LIB.
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Scalable acyclic benchmarks consisting of linear structures extended by a
triple modular redundancy scheme. The basic architecture of these structures
is parameterized by its size n and the system contains 6n components: 3n
modules and 3n voters. These benchmarks use the ¥Ds W2F, which is a
restriction of the FDS W3F of Figure 1 to failure modes {w, fd, fu}, with the
ordering w < fd < fu.

Note that FDS-minimal cut sets of these benchmarks cannot be enumerated
by xSAP, as the benchmarks use a non-Boolean FDS.

Randomly generated systems with cycles over Boolean FDS which share
some structural properties with real-world systems. In particular, we gen-
erated random systems that have a similar distribution of in-degrees and
out-degrees of the components as our proprietary systems, which we cannot
disclose. We have generated 950 such systems of sizes ranging between 50
and 1000 components. We have used the Boolean FDs for these benchmarks,
so that they can be precisely analyzed also by xSAP.

Note that these benchmarks cannot be solved by Emmy, as they contain
cyclic dependencies among the components.

Randomly generated systems over W2F which are created from the above-
mentioned randomly generated systems by using the FDS W2F instead of
the Boolean one. Although this does not change the overall structure of the
system, it makes the transition relation more complicated and significantly
increases number of minimal cut sets.

In the evaluation, we only used systems of size at most 400, as both the
compared approaches timed out on the vast majority of larger systems.
Note that these benchmarks cannot be solved by Emmy, as they contain
cyclic dependencies among the components. They can be solved by xSAP,
but the generated cut sets are only subset-minimal with respect to fault
variables, and not (in general) FDs-minimal.

For the scalable benchmarks, we have generated encodings in the SMT for-
mat described in this paper and in the FDS-ML format used by Emmy. For
the randomly generated cyclic benchmarks, we have generated encodings in the
SMT format and in the SMV format used by xSAP. The SMV encodings also
include the assumption of fault-persistence. All the used benchmarks are subset-
monotone, and therefore our SMT-based approach can be used to compute the
set of minimal cut sets correctly.

We have used wall time limit of 30 minutes for each solver-benchmark pair.
All experiments were performed on a Linux laptop with Intel Core i7-8665U CPU
and 32 GiB of rRAM.

A comparison of SMT-PGFPS and Emmy on the scalable acyclic benchmarks
can be seen in Table 2. It shows that Emmy times out already on systems of
size b, i.e., on systems with 30 components. On the other hand, our approach is
able to scale to systems with three thousand components.

A comparison against the sequential approach of xXSAP on cyclic benchmarks
can be seen in Figure 5. Subfigures 5a and 5b show that on random systems over
Boolean FDSs, our approach significantly outperforms the sequential approach of
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Table 2: Numbers of minimal cut sets (#MCS) and solving times for top level
events failed detected (fd) and failed undetected (fu) on linear systems extended
with triple-modular redundancy scheme. Note that the system with size n con-
sists of 6n components (column #Comp).

Failed detected Failed undetected
Size #Comp #MCS Emmy (s) SMT (s) #MCS Emmy (s) SMT (s)
1 6 4 0.051 0.001 7 0.071 0.001
2 12 16 0.137 0.002 31 0.172 0.003
3 18 28 3.052 0.004 55 3.141 0.007
4 24 40 160.493 0.006 79 163.556 0.013
5 30 52 > 1800 0.009 103 > 1800 0.017
10 60 112 > 1800 0.032 223 > 1800 0.063
100 600 1192 > 1800 3.456 2383 > 1800 6.748

500 3000 5992 > 1800 171.042 11983 > 1800  328.737

xSAP. As the size of the system grows, the difference can be up to several orders
of magnitude. Both xSAP and SMT-PGFPS compute exactly the same minimal
cut sets. Hence, the dramatic difference in performance can be justified by the
reduction to the combinational case, which prevents the unrolling of the tran-
sition relation by implicitly encoding the propagations in the total ordering(s)
found by the SMT solver.

The performance difference on the systems over the FDS W2F, shown in
Subfigures 5¢ and 5d, is even more pronounced. This can be caused by two
additional factors. First, the systems over the FDS W2F have more complicated
transition relation, more minimal cut sets, and are in general harder. Thus,
the unrolling performed by xSAP is even more costly. Second, xSAP has to
enumerate more cut sets, because it is enumerating all subset-minimal cut sets
and not only FDS-minimal cut sets. However, this cannot be the main source of
the observed performance gap: on 35 from the 113 benchmarks on which both
xSAP and SMT-PGFPS finished before timeout, the number of cut sets are the
same; on the remaining 78 benchmarks, xSAP enumerates on average 6% more
cut sets and at most 62% more cut sets. In order to obtain FDS-minimal cut
sets from xSAP, the produced subset-minimal cut sets would have to be filtered
or explicitly minimized, which would add yet another performance penalty for
xSAP.

Overall, the SMT-based techniques presented in this paper yield a funda-
mental advancement with respect to the state of the art, both in terms of ex-
pressiveness as well as in terms of performance.
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Fig.5: Comparison of SMT-PGFPS and xSAP-IC3 on random cyclic systems.

8 Conclusions and Further Work

We tackled the problem of supporting the Preliminary Safety Assessment phase
of aircraft design. Specifically, we defined an expressive framework for modeling
failure propagation over components with multiple levels of degradation, with
nondeterminism and cyclic dependencies. We presented a sequential semantics
and proved that the problem can be tackled by means of minimal models enu-
meration in SMT. The framework is more expressive than the state of the art,
and the proposed method outperforms the BDD-based techniques from [14] on
acyclic benchmarks over generic FDSs, and the model checking techniques of [6]
on cyclic benchmarks.

In the future, we are going to introduce timing constraints and analyze re-
dundancy architectures. We also investigate ways to relax the monotonicity and
fault-persistence assumptions to explore recovery mechanisms and to further ex-
tend the reach of our approach. We are also working on encoding the causality
constraints in the frameworks of SAT modulo acyclicity [10] and ASP modulo
acyclicity [4], which could improve the performance of our approach even fur-
ther.
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