
AUTOMATED GENERATION OF FDIR
FOR THE COMPASS INTEGRATED TOOLSET

(AUTOGEF)

(1)Elena Alaña, Héctor Naranjo,
(2)Yuri Yushtein,

(3)Marco Bozzano, Alessandro Cimatti, Marco Gario,
(4)Régis de Ferluc, Gérard Garcia

(1)GMV, Isaac Newton, 11, Tres Cantos, Madrid, 28760, Spain, Email: {ealana, hnaranjo}@gmv.com
(2)European Space Agency (ESA), ESTEC Noordwijk - The Netherlands, Email: yuri.yushtein@esa.int

(3)Fondazione Bruno Kessler (FBK), Italy, Email: {bozzano, cimatti, gario}@fbk.eu
(4)Thales Alenia Space, France, Email: {regis.deferluc, gerald.garcia}@thalesaleniaspace.com

ABSTRACT

The ESA AUTOGEF (Dependability Design Approach 
for Critical Flight Software) study is a direct follow-on 
of the ESA TRP COMPASS (Correctness, Modelling 
and Performance of Aerospace Systems).

The aim of COMPASS project was to develop a model-
based approach to system-software co-engineering, 
tailored to the specifics of critical on-board spacecraft 
systems. COMPASS included the development of a 
platform based on formal methods, which offers a wide 
range of techniques for system verification and 
validation.

AUTOGEF aims to demonstrate that synthesis 
approaches can allow for effective automated FDIR 
development in accordance with the dependability 
requirements, through the implementation of an add-on 
to the COMPASS tool.

1. INTRODUCTION

Achieving mission objectives and ultimate mission 
success depends on the space system’s resilience, 
survivability, ability to sustain continued operation, 
reliability, availability, and safety. As software plays 
more and more a prominent role in space systems, its 
contribution to the achievement of the mission 
objectives and system dependability becomes a vital 
aspect of the system development.

Failure Detection, Isolation and Recovery (FDIR) 
represents one of the main functionalities currently 
implemented in the On-Board Software (OBSW) of the 
spacecrafts. Its complexity is high as it links together 
hardware and software behaviour, failures and 
reconfigurations. However, FDIR definition and design 
is often performed in the last stages of the project due to 
its strong coupling with other parts of the system. This
late initiation of the FDIR development has a 
detrimental effect on the eventual FDIR maturity.

Defining an adequate FDIR strategy is inherently 
complex and implies considering all possible fault and 
failure combinations. The dependencies of the FDIR on 
the mission phase, spacecraft operational mode, and 
FDIR operation history are usually considered only after 
the FDIR development has been initiated. In order to 
accommodate for these dependencies, exceptions must 
be introduced in the FDIR operation logic.

As various sub-systems and equipment tend to 
incorporate some local FDIR functionalities, the global 
FDIR concept shall account for coordination of the local 
FDIR elements to achieve FDIR coherency. As a result, 
FDIR development proves to be a very challenging 
process.

Currently employed approaches to FDIR development 
are poorly phased. In fact, no existing approach to FDIR 
development can be carried out starting from the early 



system development phases, being able to consider the 
design and Reliability, Availability, Maintainability and 
Safety (RAMS) data from both, software and system 
perspectives.

2. COMPASS

The ESA project COMPASS [1] has developed a
model-based approach from the system-software co-
engineering perspective, tailored to the specifics of 
critical on-board systems for the space domain to 
describe nominal hardware and software operations,
hybridity, (probabilistic) faults and their propagation, 
error recovery, and degraded modes of operation.

The COMPASS project required the development of an
integrated language equipped with a unified semantic 
model for system design, called SLIM: System-Level 
Integrated Modelling Language ([2] and [3]).This 
specification formalism has been inspired by the 
Architecture Analysis and Design Language AADL [4]
and its Error Model Annex [5]. AADL is currently 
being used in the space domain to support the software 
and system engineering process.

The techniques investigated in the project have been 
incorporated into a modelling and verification platform, 
called the COMPASS platform [6] which provides a 
facility for automatic model extension, that is, 
integration of nominal and error models, and simulation
of the behaviour of the system in presence of faults once 
one or more fault injections are defined.

The COMPASS framework supports several capabilities
by using a single model description, including
requirements validation, functional verification,
dependability and safety assessment, fault tolerance 
evaluation, and FDIR reliability and performability
analyses [7].

The results of the COMPASS project provide a good 
basis for FDIR development. However, while providing
the necessary elements for the FDIR design and 
modelling together with the facilities for diagnosability 
and FDIR analyses, this toolset does not implement the 
synthesis of any of the FDIR elements, which is thus 
assumed to be manually designed, modelled and 
codified.

The functionalities provided by the COMPASS platform 
are summarized in Figure 1.

Figure 1: Functionalities of the COMPASS platform

3. AUTOGEF CONTEXT

The ESA TRP AUTOGEF is an on-going study which 
has a global objective of demonstrating that synthesis 
approaches, in the context of the system-software co-
engineering environment, can allow for effective 
automated FDIR development in accordance with the 
dependability requirements. Another aim of the project 
is to provide automated FDIR synthesis functionality as 
an add-on tool for the COMPASS platform.

An innovative model-based and dependability-oriented
FDIR development approach is required, which 
considers current FDIR architectures and strategies,
development phasing, and schedule constraints 
concerning FDIR development. This approach shall be 
supported by rigorous formal methods, providing the 
possibility of application in the early development 
stages with short automated development iterations and 
allowing for effective use of the available software and 
system designs and corresponding RAMS analysis data.
Furthermore, FDIR design shall be implemented in 
accordance with the FDIR requirements, software and 
system architectural design, and system-level 
dependability requirements.

This approach shall fit into the system-software co-
engineering environment developed in the COMPASS 
project, and leverage the SLIM modelling for 
architecture, nominal and fault behaviours, and the 
results of the automated analyses (e.g., FMEA/FMECA, 
FTA, Diagnosability).



Synthesis techniques shall provide facilities for 
automated generation of the FDIR sub-system(s) based 
on, not only the available SLIM model(s) and analyses 
results, but also the FDIR specification which
configures it for a specific spacecraft mission.

4. FDIR SPECIFICATION

The FDIR operational behaviour, its architectural 
requirements and the dependability and safety 
characteristics are called “FDIR Specification”. These 
features are not captured in the system model, and its
definition is needed to tailor the FDIR model according 
to the mission goals.

FDIR implementation depends on the architectural 
constraints of the system and additionally, as there is 
currently no standardized architecture for the FDIR 
component, the architecture design varies depending on 
the type of spacecraft mission.

Generally, local FDIR provides a faster detection and 
recovery, whereas a global FDIR is preferred when the 
recovery actions involve different subsystems. FDIR is 
typically distributed across different levels, and FDIR 
mechanisms and operational behaviours may vary 
depending on the hardware or software layers. 
Therefore, each level in the hierarchical architecture 
may be designed following a different design pattern.

AUTOGEF will support the following types of 
architectures: centralized, decentralized/ distributed and 
hierarchical, which can be combined in the different 
components of a synthesized single FDIR system (e.g., 
decentralized architecture for fault detection and 
identification in each subsystem, but centralized for 
fault isolation and recovery).

Pre-existing components can be provided by the user, 
together with additional constraints (operational and 
architectural requirements) that describe how they have 
to be inserted in the FDIR system, and their purpose.

Recovery actions can be prioritized based on the target 
dependability characteristics (e.g., criticality of top 
feared events). The system has to guarantee the selected 
dependability policy, implementing fault tolerance 
mechanisms, and the implementation of allowed 
margins to be applied along the design process. The 
FDIR has to comply with this policy and execute the 
recovery actions accordingly.

In addition, synthesis routines can use predefined 
recovery strategies to reduce the workload of the 
synthesis process. Predefined recovery strategies are 
provided similarly to pre-existing components. The user 
can define constraints (operational and architectural 
requirements) that describe how a specific strategy has 
to be used in the synthesized FDIR, and its purpose.

Finally, a common FDIR specification can be defined 
for the whole mission but also specific requirements 
may be raised depending on the mission phase or active 
operational mode.

5. AUTOGEF INTEGRATION INTO COMPASS

The implementation of AUTOGEF capabilities requires 
interacting with COMPASS data and tools. Figure 2
illustrates the general schema of the integration between 
AUTOGEF and COMPASS. A star identifies those 
inputs, outputs and tools that will be developed during 
AUTOGEF study.

Figure 2. AUTOGEF integration into COMPASS 
platform

As depicted in Figure 2, AUTOGEF inherits the SLIM 
system model (nominal and error behaviour) and the set 
of system unwanted behaviours identified by 
COMPASS safety assessment artefacts (i.e., FMEA 
tables and Fault Trees) from the COMPASS platform.

Nevertheless, FDIR design also relies on the FDIR 
specification which is neither captured in the system 
model nor standardized. Currently, there is a lack of 
FDIR reference architecture and, additionally, the 
operational behaviour and dependability and safety 
requirements are mission-specific. Therefore, FDIR 



specification may differ along different types of 
spacecraft missions, mission phases or even operational 
modes. To take these requirements into account, the 
System/RAMS Engineer shall load this information for 
a particular space mission.

6. AUTOGEF PROCESS

The AUTOGEF tool automatically generates the FDIR 
subsystem(s)/component(s) model based on the 
following inputs:

COMPASS extended model which integrates 
nominal and error models. It is automatically
generated by COMPASS once both models are 
designed and one or more fault injections are 
defined.
The set of system observables. An “Observable” 
represents a system parameter in the nominal model
which is accessible or visible by the FDIR 
component(s).
The set of recovery actions defined in the nominal 
model.
COMPASS dependability and safety analyses: FTA 
and FMEA.
FDIR specification: operational objectives, target 
system dependability (safety) characteristics and 
architectural requirements. This data shall be 
specified by the System/RAMS Engineer.

To achieve this, the System/RAMS Engineer has to 
perform the following set of steps to generate the FDIR 
model in SLIM language:

1) Design nominal and error system models (SLIM 
language).

2) Specify the set of observable attributes in the 
nominal model.

3) Specify one or more fault injections.
4) Define the properties to be verified during Fault 

Tree and FMEA analyses.
5) Generate the FTA:

o Selection of the properties to be analysed.
o Generation of FTA which shows how the state 

of the property is reached expressed in terms of 
fault events in the SLIM language.

6) Generation of FMEA tables:
o Selection of those properties to be analysed.
o Selection of the cardinality.
o Generation of FMEA which shows the failure 

modes and effects.

7) Specify FDIR requirements.
8) Start AUTOGEF execution.

The implementation of AUTOGEF requires 
synthesising one or more diagnosers and controllers
which are compliant with the FDIR specification.

7. DIAGNOSER AND CONTROLLER 
SYNTHESIS

The design and implementation of FDIR synthesis 
routines is based on a special case of system controller
(Figure 3)¡Error! No se encuentra el origen de la 
referencia.. Fault detection and identification can be 
reduced to the diagnoser synthesis problem whereas the 
fault isolation and recovery can be reduced to the 
controller synthesis problem.

Figure 3. Architecture of a diagnosis system in the 
scope of AUTOGEF

The sensors represent a set (or subset) of the system 
visible attributes (observables) that AUTOGEF 
monitors to perform the diagnosis and controller 
functionalities.

The system is continuously monitored for 
inconsistencies and its state is estimated by the 
diagnosis functionality. Unexpected behaviours can be 
defined analysing the FTA and FMEA faults and failure 
modes as well as considering the FDIR detection means 
and operational conditions specified by the 
System/RAMS Engineer.

The FDIR design is constrained by the number of 
sensors (observables) available. Generally, systems are 
not fully observable and diagnosis has to infer the set of 
causes for the unexpected behaviour just considering the 
set of observables available.

Taking this into account, in some circumstances the
state of the system cannot be determined for an 



unexpected behaviour (e.g., several causes generate the 
same failure mode). In this case, the system is not 
diagnosable [8], and it might be possible to apply some 
action that overcomes any of the possible causes.

Additionally, the diagnoser and controller synthesis
depends on the FDIR specification. For instance, instead 
of having just one controller for the whole system 
model as shown in Figure 3, the FDIR specification may 
state that there must be one controller for each 
subsystem: a distributed FDIR system.

8. AUTOGEF SYNTHESIS ROUTINES

The core of AUTOGEF are the synthesis routines for 
FDIR and the generation of the corresponding SLIM 
code. They are illustrated in Figure 4, Figure 5 and 
Figure 6 below.

Figure 4 illustrates the overall approach of AUTOGEF. 
In this picture, the following entities are included:

SLIM components (light green boxes). The SLIM 
model may contain, in general, several components, 
organized in a distributed / hierarchical manner.
AUTOGEF components (light blue boxes). An 
AUTOGEF component is stored using an internal 
format.
Predefined components (red and orange boxes). A 
predefined component is:
o An existing component for Fault Detection 

(FD) / Fault Identification (FID), or
o An existing component for Fault Isolation 

(FIS) / Fault Recovery (FR), or
o A predefined recovery strategy (for FR).

They can be implemented either in SLIM format 
(orange boxes) or AUTOGEF format (red boxes).
In addition, components for fault detection are 
marked as ‘D’ and components for fault recovery 
are marked as ‘R’.

The objective of AUTOGEF is to synthesize an FDIR 
sub-system, organized in accordance with the user’s 
architectural constraints (e.g., centralized, distributed, 
hierarchical), possibly split into several components.

As an example, Figure 4 illustrates the case of an input 
SLIM model which contains one top-level component 
and three nested sub-components. It is assumed that the 
user requirements specify the synthesis of a fully 
distributed FD (one detection component for each SLIM 

sub-component; no central detection) and a partially 
distributed FR (one recovery component for each SLIM 
sub-component, coordinated by one top-level recovery 
component). Moreover, it is assumed that for one 
component (red box), AUTOGEF must re-use an 
existing component and a predefined recovery strategy.

Figure 4. AUTOGEF overall approach

AUTOGEF flow consists of synthesizing two separate 
sets of components for FD/FID and FIS/FR, blending
them using components combination, and translating the 
result into SLIM, producing the final SLIM model for 
FDIR. Logically, four main components are 
distinguished:

The FD/FID synthesizer which produces a set of 
components for FD/FID.

The FIS/FR synthesizer which produces a set of 
components for FIS/FR.

The module that combines the two sets of 
components for FD/FID and FIS/FR into one single 
set of components.

The component which translates a set of 
components into SLIM language.

Figure 5 and Figure 6 illustrate the approach for 
synthesizing the sets of components for FD/FID and 
FIS/FR, respectively. Both approaches can exploit 
different techniques.



Figure 5. AUTOGEF approach to FD and FID

For FD/FID, belief state exploration ([9], [10] and [11]) 
and the twin plant approach [8] will be used. It is 
envisaged that the twin-plant approach will be 
employed to implement a diagnosability check that 
could (optionally) be run before the synthesis routines, 
in order to verify if the diagnosis synthesis problem is 
solvable. This diagnosability check will leverage 
existing functionalities of the COMPASS platform, such 
as diagnosability analysis, although AUTOGEF 
diagnosability analysis might implement more advanced 
functionalities than COMPASS. In some case, it might 
be inconvenient to run the diagnosability check (e.g., 
due to efficiency reasons), and therefore AUTOGEF is 
allowed for running directly the synthesis routine. It is 
envisaged that the synthesis routine itself will be 
implemented using a mixed approach based on belief 
state exploration, and inheriting some characteristics 
from the twin-plant approach.

Figure 6. AUTOGEF approach to FIS and FR

For FIS/FR, planning as model checking ([12], [13], 
[14] and [10]), and temporal logic synthesis ([15], [16], 
[17] and [18]) will be used. It is envisaged that two 
distinct algorithms, based on these techniques, will be 
implemented and evaluated in terms of adequacy and 
efficiency.

9. CONCLUSIONS

FDIR plays a key role in the On-Board Software of the 
spacecrafts. However, FDIR, which is in charge of 
handling most of the failures occurring on the satellite, 
is often defined very late in the process, and based on 
inputs from safety analysis which are hard to link with 
the software items.

An innovative model-based and dependability-oriented 
FDIR development approach is required, which 
considers current FDIR architectures and strategies, and 
relies on existing technical issues, development phasing, 
and schedule constraints concerning FDIR development.
Hence, this approach shall be supported by rigorous 
formal techniques, providing the possibility of 
application in the early development stages with short 
automated development iterations and allowing for 
effective use of the available software and system 
designs and corresponding RAMS analysis data.

The ESA project COMPASS focused on the 
development of a theoretical and technological basis for 
the system-software co-engineering approach, based on 
a coherent set of specification and analysis techniques 
for evaluation of system-level correctness, safety, 
dependability and performability of on-board computer-
based aerospace systems, with the aim of significantly 
improving the reliability of modern and future space 
missions.

The COMPASS project results provide a good basis for 
FDIR development. However, while providing facilities 
for FDIR and dependability analyses, and the necessary 
elements for the FDIR design and modelling, it does not 
implement the synthesis of any of the FDIR elements.

The AUTOGEF project is an on-going study which will 
provide automated FDIR synthesis functionality as an 
add-on tool for the COMPASS platform.

The use of COMPASS and AUTOGEF toolset approach
shall allow for FDIR design in accordance with the 
FDIR requirements, software and system architectural 
design, and system-level dependability requirements
and will provide the following improvements to the 
current FDIR process:

1. Larger vision on the system to define the FDIR. 
AUTOGEF does not only answer to a fault in 
isolation, but has a complete vision of the 
consequences of the fault.



2. Consideration of hardware parts and their 
associated Reliability, Maintainability, Availability 
and Safety (RAMS) analyses in the FDIR 
development process.

3. Early verification framework, supported by a model 
of the system for FDIR analysis.

In order to check that AUTOGEF tool overcomes 
existing drawbacks in current FDIR development 
processes, the tool will be evaluated on a case study 
involving FDIR development for critical on-board space 
systems. The results will be analysed in terms of 
applicability, scalability, usability and performance.

The objective of this case-study is to measure different 
criteria to check if the final product fulfils the project 
aims. These criteria shall measure the applicability of 
the AUTOGEF approach for its use in the context of 
software development for critical on-board space 
systems and its compliance with current FDIR 
development processes.

Therefore, different metrics are generated to evaluate 
whether the FDIR process and the selected FDIR 
operational objectives, architectural constraints, target 
dependability and safety characteristics are 
representative for the whole critical on-board space 
system and identify the exceptions that are left behind.

10. REFERENCES

[1] COMPASS project and Integrated Tool-set. 
Webpage: http://compass.informatik.rwth-
aachen.de

[2] "Specification of the COMPASS System-Level 
Integrated Modeling (SLIM) Language". 
09/06/2011.

[3] "Model-Based Analysis and Verification: Potential 
Solutions". Technical Note D1-2, Issue 2.0, 
COMPASS Project, July 2008.

[4] Architecture Analysis and Design Language 
(AADL) V2. SAE Draft Standard AS5506 V2, 
International Society of Automotive Engineers, 
March 2008.

[5] Architecture Analysis and Design Language Annex 
(AADL), Volume 1, Annex E: Error Model Annex. 
SAE Standard AS5506/1, International Society of 
Automotive Engineers, June 2006.

[6] "Integrated platform user manual". Technical Note 
D9. COMPASS Project, Dec. 2009.

[7] M.Bozzano, A.Cimatti, J.-P.Katoen, V. Y.Nguyen, 
T.Noll and M.Roveri. Safety, Dependability, and 
Performance Analysis of Extended AADL Models. 
The Computer Journal, 54(5):754-775, 2011.

[8] Cimatti, A., Pecheur, C., and Cavada, R., "Formal 
Verification of Diagnosability via Symbolic Model 
Checking". International Joint Conference on 
Artificial Intelligence (IJCAI 2003), Morgan 
Kaufmann, 2003, pp. 363-369.

[9] B. Bonet and H. Geffner. Planning with Incomplete 
Information as Heuristic Search in Belief Space. In 
Proc. 5th International Conference on Artificial 
Intelligence Planning and Scheduling (AIPS 2000), 
pages 52–61, 2000.

[10] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. 
Strong Planning under Partial Observability. 
Artificial Intelligence, 2006.

[11] J. Rintanen. Backward Plan Construction for 
Planning as Search in Belief Space. In Proc. of 6th 
International Conference on Artificial Intelligence 
Planning and Scheduling (AIPS’02), pages 93–102, 
2002.

[12] A. Cimatti, M. Pistore, M. Roveri, P. Traverso. 
Weak, strong, and strong cyclic planning via 
symbolic model checking. Artif. Intell. 147(1-2): 
35-84 (2003).

[13] A. Cimatti, M. Roveri, P. Bertoli. Conformant 
planning via symbolic model checking and 
heuristic search. Artif. Intell. 159(1-2): 127-206 
(2004).

[14] M. Pistore, P. Traverso. Planning as Model-
Checking for Extended Goals in Non-Deterministic 
Domains, In Proc. of the International Joint 
Conference on Artificial Intelligence (IJCAI-01), 
479-484, 2001.

[15] P. C. Attie, A. Arora, and E. A. Emerson. Synthesis 
of fault-tolerant concurrent programs. ACM 
Transactions on Programming Languages and 
Systems (TOPLAS). (A preliminary version of this 
paper appeared in Proceedings of the 17th ACM 
Symposium on Principles of Distributed Computing 
(PODC), 1998.), 26(1):125-185, 2004.

[16] A. Cimatti, M. Roveri, V .Schuppan, and A. 
Tchaltsev. Diagnostic Information for Realizability. 
In proc. VMCAI 2008, pages 52-67.

[17] S. Sohail and F. Somenzi. Safety First: A Two-
Stage Algorithm for LTL Games. In FMCAD, 
pages 77–84, 2009.

[18] B. Jobstmann and R. Bloem. Optimizations for 
LTL Synthesis. In FMCAD, pages 117–124, 2006.


