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aneso 3516146 Genova, ItalyAbstra
tIn this paper we investigate the relationship between Disjun
tive Logi
 Program-ming as de�ned in [13℄ and a subset of Linear Logi
, namely the fragment of Lin-Log [2℄ whi
h 
orresponds to Andreoli and Pares
hi's LO [3℄. We analyze the twolanguages both from a top-down, operational perspe
tive, and from a bottom-up,semanti
al one. From a proof-theoreti
al perspe
tive, we show that, modulo asimple mapping between 
lassi
al and linear 
onne
tives, LO 
an be viewed as asub-stru
tural fragment of DLP in whi
h the rule of 
ontra
tion is forbidden on theright-hand side of sequents. We also prove that LO is stri
tly more expressive thanDLP in the propositional 
ase. From a semanti
al perspe
tive, after re
alling thede�nition of a bottom-up �xpoint semanti
s for LO we have given in our previouswork [5℄, we show that DLP �xpoint semanti
s 
an be viewed as an abstra
tion ofthe 
orresponding LO semanti
s, de�ned over a suitable abstra
t domain. We provethat the abstra
tion is 
orre
t and 
omplete in the sense of [6,8℄. Finally, we showthat the previous property of the semanti
s is stri
tly related to proof-theoreti
alproperties of the 
lassi
al and linear logi
 fragments underlying DLP and LO.1 Introdu
tionDisjun
tive Logi
 Programming (DLP) [13℄ and Linear Logi
 Programming(LLP) [11℄ are among the more interesting extensions of the 
lassi
al theoryof Horn logi
, underlying languages like Prolog. The motivations behind theintrodu
tion of these two paradigms look quite di�erent. On the one hand,disjun
tive logi
 programming has been introdu
ed in order to represent un
er-tain beliefs. On the other hand, linear logi
 programming has been introdu
edin order to add state-based 
omputations to pure Prolog programs. A 
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Bozzano, Delzanno and Martellilook at their formal de�nition reveals however very interesting 
onne
tions.Let us fo
us on the linear logi
 programming language LO [3℄ (Linear Ob-je
ts), a fragment of LinLog [2℄ whi
h is perhaps the �rst proposal of `linear'extension of Prolog [11℄. Both DLP and LO programs extend Horn programsallowing 
lauses with multiple heads: in DLP, the head of a 
lause 
onsistsof a 
lassi
al disjun
tion of atomi
 formulas, whereas, in LO, it 
onsists ofa multipli
ative disjun
tion (see [9℄) of atomi
 formulas. The di�eren
es be-tween the meaning of 
lassi
al and linear 
onne
tives be
ome 
lear by lookingat the operational semanti
s of the two languages. In DLP, a resolution stepis extended so as to work over positive 
lauses (sets/disjun
tions of atoms).Impli
it 
ontra
tion steps are applied over the sele
ted 
lause. In 
ontrast,being in a sub-stru
tural logi
 in whi
h 
ontra
tion is forbidden, LO resolu-tion has the same e�e
t as multiset rewriting (applied to 
olle
tions of atomi
formulas).Based on this intuition, in this paper we will investigate the view of LOas a sub-stru
tural formulation of DLP, to formally 
ompare the strength andweakness of the two languages. As mathemati
al tools, we will use prooftheory and abstra
t interpretation. Proof theory allows us to 
ompare thetop-down semanti
s of the two paradigms working in a uniform setting (i.e.provability in a sequent 
al
ulus with or without stru
tural rules). Abstra
tinterpretation allows us to extend the 
omparison to the bottom-up evaluationof programs. More spe
i�
ally, by exhibiting a Galois 
onne
tion between thesemanti
 domains of DLP and LO, we will des
ribe the semanti
s of DLPprograms as an abstra
tion of the semanti
s of LO programs. Furthermore,using the theory of abstra
t interpretation and the 
on
ept of 
ompleteness[6,8℄ we will dis
uss the quality of the resulting abstra
tion. This step isbased on a new �xpoint semanti
s for LO we have de�ned in our re
ent work[4,5℄. Finally, we will dis
uss the relation between proof-theoreti
al properties(permutability of rules) and properties of the abstra
tion (
ompleteness).The view of DLP as an abstra
tion of LO is appealing for several reasons.First of all, it opens the possibility of using te
hniques developed for DLPfor the analysis of LO programs. Furthermore, it shows that the paradigmof DLP 
ould have unexpe
ted appli
ations as a framework to reason aboutproperties of Petri Nets, a well-known formalism for 
on
urrent 
omputations[10℄, as dis
ussed in [5℄.1.1 Plan of the paperAfter introdu
ing some preliminaries in Se
tion 2, in Se
tion 3 we re
all themain 
on
epts of disjun
tive logi
 programming, and we reformulate its oper-ational semanti
s in a sequent 
al
ulus 
ontext. In Se
tion 4 we introdu
e thelanguage LO, while in Se
tion 5 we 
ompare DLP and LO proof theories. InSe
tion 6 we study the relations between DLP and LO via abstra
t interpre-tation, and we dis
uss the properties of the resulting abstra
tion. In Se
tion2



Bozzano, Delzanno and Martelli7, we dis
uss the 
onne
tion between the notion of 
ompleteness in abstra
tinterpretation and proof theory. Finally, in Se
tion 8 we dis
uss 
on
lusionsand future work.2 PreliminariesIn this paper we will extensively use operations on multisets. We will 
onsidera �xed signature �, de�ning a �nite set of obje
t 
onstants, fun
tion symbolsand predi
ate symbols. The set of ground terms over � will be denoted T�,while the set of atoms over T� will be denoted A�. Multisets over A� will behereafter 
alled fa
ts, and symboli
ally noted as A;B; C; : : :. A multiset with(possibly dupli
ated) elements A1; : : : ; An 2 A� will be simply indi
ated asfA1; : : : ; Ang, overloading the usual notation for sets.A multiset A is uniquely determined by a map O

 : A� ! N su
h thatO

A(A) is the number of o

urren
es of A in A. Multisets are ordered a
-
ording to the multiset in
lusion relation 4 de�ned as follows: A 4 B if andonly if O

A(A) � O

B(A) for every A 2 A�. The empty multiset is denoted� and is su
h that O

�(A) = 0 for every A 2 A�, and � 4 A for any A. Themultiset union A;B (alternatively written A+B when `,' is ambiguous) is su
hthat O

A;B(A) = O

A(A) + O

B(A) for every A 2 A�. We also de�ne aspe
ial operation � to 
ompute the least upper bound of two multisets with re-spe
t to 4. Namely, A�B is su
h that O

A�B(A) = max(O

A(A); O

B(A))for every A 2 A�. Finally, we will use the notation An, where n is a naturalnumber, to indi
ate A+ : : :+A (n times).In the rest of the paper we will use �;�; : : : to denote multisets of possibly
ompound formulas. Given two multisets � and �, �;� indi
ates multisetunion, as before, and �; fGg is written simply �; G.Finally, let T : I ! I be an operator de�ned over a 
omplete latti
ehI;vi. We de�ne T "0= ;, where ; is the bottom element, T "k+1= T (T "k)for all k � 0, and T"!= F1k=0 T"k, where F is the least upper bound wrt. v.Furthermore, we use lfp(T ) to denote the least �xpoint of T .3 Disjun
tive Logi
 ProgrammingA disjun
tive logi
 program as de�ned in [13℄ is a �nite set of 
lausesA1 _ : : : _ An  B1 ^ : : : ^ Bm;where n � 1, m � 0, and Ai and Bi are atomi
 formulas. A disjun
tive goalis of the form  C1; : : : ; Cn, where Ci is a positive 
lause (i.e. a disjun
tionof atomi
 formulas) for i : 1; : : : ; n. To make the language symmetri
, in thispaper we will 
onsider extended 
lauses of the formA1 _ : : : _ An  C1 ^ : : : ^ Cm3
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ontaining positive 
lauses in the body. Following [13℄, we will deal with �rst-order programs by 
onsidering the set of ground instan
es of program 
lauses.Given a program P , we will use the notation Gnd(P ) to indi
ate the set ofground instan
es of 
lauses in P . Moreover, we will identify positive 
lauseswith sets of atoms.In order to de�ne the operational and denotational semanti
s of DLP, weneed the following de�nitions.De�nition 3.1 (Disjun
tive Herbrand Base) The disjun
tive Herbrandbase of a program P , for short DHBP , is the set of all positive 
lauses formedby an arbitrary number of distin
t ground atoms.De�nition 3.2 (Disjun
tive Interpretation) A subset I of the disjun
tiveHerbrand base DHBP is 
alled a disjun
tive Herbrand interpretation.De�nition 3.3 (Ground SLO-derivation) Let P be a DLP program. AnSLO-derivation of a ground goal G from P 
onsists of a sequen
e of goalsG0 = G;G1; : : : su
h that for all i � 0, Gi+1 is obtained from Gi = (C1; : : : ; Cm; : : : ; Ck) as follows:� C  D1 ^ : : : ^ Dq is a ground instan
e of a 
lause in P su
h that C is
ontained in Cm (the sele
ted 
lause);� Gi+1 is the goal  (C1; : : : ; Cm�1; D1 _ Cm; : : : ; Dq _ Cm; Cm+1; : : : ; Ck).Noti
e that when the body of the program 
lause is empty, Gi+1 is equalto  (C1; : : : ; Cm�1; Cm+1; : : : ; Ck).De�nition 3.4 (SLO-refutation) Let P be a DLP program. An SLO-refu-tation of a ground goal G from P is an SLO-derivation G0; G1; : : : ; Gk s.t. Gk
onsists of the empty 
lause only.As SLD-resolution for Horn programs, SLO-resolution gives us a pro
e-dural interpretation of DLP programs. The operational semanti
s is de�nedthen as follows:OdlpP = fC j C 2 DHBP ;  C has an SLO-refutation g:As for Horn programs, it is possible to de�ne a �xpoint semanti
s via thefollowing operator.De�nition 3.5 (T dlpP Operator) Given a DLP program P and I � DHBP ,T dlpP (I) = f C 0 [ C1 [ : : : [ Cn j C 0  D1 ^ : : : ^Dn 2 Gnd(P );Di [ Ci 2 I; i : 1; : : : ; n gNote that in the previous de�nition we have impli
itly 
onsidered positive
lauses as sets of atoms. The operator T dlpP is monotoni
 and 
ontinuous on thelatti
e of interpretations ordered wrt. set in
lusion. Based on this property,4
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s is de�ned as F dlpP = lfp(T dlpP ) = T dlpP "!. As shownin [13℄, the �xpoint semanti
s is 
omplete with respe
t to the operationalsemanti
s, i.e. for all C 2 OdlpP there exists C 0 2 F dlpP s.t. C 0 implies C. Notethat for two ground 
lauses C and C 0, C implies C 0 if and only if C � C 0.This suggests that interpretations 
an also be ordered wrt. subset in
lusionfor their elements, i.e., I v J if and only if for all A 2 I there exists B 2 Jsu
h that B � A (B implies A). In the rest of the paper we will 
onsider thelatter ordering.Example 3.6 Consider the disjun
tive program P = fr(a); p(X) _ q(X) r(X)g and the auxiliary predi
ate t. Then, DHBP = fr(a); p(a); q(a); t(a);p(a)_ r(a); p(a)_ q(a); p(a)_ q(a)_ r(a); : : :g. Furthermore, the goal G0 = (p(a)_ q(a)_ t(a)) has the refutation G0; G1 = (p(a)_ q(a)_ t(a)_r(a)); G2where G2 
onsists of the empty 
lause only. The �xpoint semanti
s of P isF dlpP = ffr(a)g; fp(a); q(a)gg. Note that fp(a); q(a)g is 
ontained in fp(a);q(a); t(a)g (i.e. p(a) _ q(a) implies p(a) _ q(a) _ t(a)).The de�nition of the T dlpP operator 
an be reformulated in su
h a way thatits input and output domains 
ontain multisets instead of sets of atoms (i.e.we 
an 
onsider interpretations whi
h are sets of multisets of atoms). In fa
t,we 
an always map a multiset to its underlying set, i.e. the set 
ontainingthe elements with multipli
ity greater than zero, and, vi
e versa, a set 
anbe viewed as a multiset in whi
h ea
h element has multipli
ity equal to one.A formulation based on multisets will make the 
omparison with the �xpointoperator for LO (see Se
tion 6) easier, as this latter is de�ned on that kind ofdomains. The disjun
tive Herbrand base and T dlpP operator de�nitions 
an bereformulated as follows (in the following we will always refer to these de�ni-tions).De�nition 3.7 (Disjun
tive Herbrand Base) The disjun
tive Herbrandbase of a program P , for short DHBP , is the set of all multisets formed by anarbitrary number of ground atoms, ea
h with multipli
ity at most one.De�nition 3.8 (�mapping) Let � be the following fun
tion on multisets ofatoms. Given a multiset A, �(A) is the multiset su
h that for every A 2 A�,O

�(A)(A) = 0 if O

A(A) = 0, O

�(A)(A) = 1 otherwise (i.e. we abstra
t amultiset with the 
orresponding set).We note in passing that � de�nition is related to the notion of smallestfa
tor of a 
lause given in [13℄.De�nition 3.9 (T dlpP Operator) Given a DLP program P and I � DHBP ,T dlpP (I) = f �(
C 0 + C1 + : : :+ Cn ) j C 0  D1 ^ : : : ^Dn 2 Gnd(P );
Di + Ci 2 I; i : 1; : : : ; n g5



Bozzano, Delzanno and MartelliP ) tt;� ttr P ) A1; : : : ; An;�P ) A1 _ : : : _An;� _rP ) C1; bH;A : : : P ) Cm; bH;AP ) bH;A b
with the proviso that H  C1 ^ : : : ^ Cm 2 Gnd(P )Fig. 1. A proof system for DLP.The notation b� in the previous de�nition is used to formally map positive
lauses (i.e. _-disjun
tions of atoms) to multisets of atoms (whereas in De�ni-tion 3.5 the mapping from 
lauses to sets of atoms was left impli
it). Withoutloss of generality, from now on we will make the further assumption that in
lauses like A1 _ : : : _ An  C1 ^ : : : ^ Cm, the Ai's are all distin
t and ea
hCj 
onsist of distin
t atoms. This will simplify the embedding of DLP 
lausesinto linear logi
 (see De�nition 5.1).3.1 A Proof System for DLPWe will now give a proof-theoreti
al presentation, based on sequent 
al
ulus,for DLP. Its formulation is dire
tly related to the de�nition of SLO-derivation(see De�nition 3.3). In order to simplify the 
omparison with LO, we introdu
ean expli
it 
onstant tt for true and we write unit 
lauses (i.e. with emptybody) with the syntax A1 _ : : : _ An  tt. The de�nitions given in theprevious se
tion 
an be adapted in a straightforward manner. The resultinglanguage 
an be des
ribed by the following grammar:H ::= A1 _ : : : _ AnD ::= H  G j D ^ DG ::= H1 ^ : : : ^ Hn j ttwhereAi is an atomi
 formula. A DLP program P is aD-
lause, whereas DLPgoals are represented (modulo ` ') as G-formulas. A proof system for DLPis presented in Figure 1 (again, we use the notation b� to map _-disjun
tionsof atoms to multisets). Here, in a sequent P ) �, it is understood that P isa DLP program and � is a set of goals. Besides, A denotes a set of atomi
formulas, while H denotes an H-formula.Without loss of generality, we have limited topmost goals to positive 
lausesonly (the exe
ution of a goal whi
h is a 
onjun
tion of 
lauses 
an be simu-lated by introdu
ing a �
titious atom and adding a 
lause to the program).The reader should 
onvin
e himself/herself that the system in Figure 1 
or-6



Bozzano, Delzanno and MartelliP ) tt;� ttr P ) A1; : : : ; An;�P ) A1 _ : : : _An;� _r P ) A;A;AP ) A;A 
trrP ) C1;A : : : P ) Cm;AP ) bH;A b
with the proviso that H  C1 ^ : : : ^ Cm 2 Gnd(P )Fig. 2. Modi�ed proof system for DLP.re
tly models SLO-provability. The state of a 
omputation, whi
h in DLP isrepresented by a 
onjun
tive goal C1; : : : ; Ck, in the 
ontext of sequent 
al-
ulus is represented by a derivation tree, whose frontier (open leaves) are thegoals still to be proved (C1; : : : ; Ck). Rule b
 models a ba
k
haining step, and
orresponds to a step of SLO-derivation; it 
an be applied only if the 
urrent
ontext 
onsists of atomi
 formulas only (indi
ated by A). Rule _r formalizesthe intuition that positive 
lauses are sets of atoms (i.e. it permits ex
hange onthe right-hand side of sequents). Clauses having the form a1 _ : : :_ an  ttplay the same role as unit 
lauses in DLP, in fa
t a ba
k
haining step over su
ha 
lause leads to su

ess independently of the 
urrent 
ontext A, as shown inthe following s
heme: P ) tt;A ttrP ) A1; : : : ; An;A b
provided A1 _ : : : _ An  tt 2 Gnd(P )This observation leads us to the following property, whi
h states that theweakening rule is admissible in DLP.Proposition 3.10 (Admissibility of the weakening rule in DLP) Givena DLP program P and two sets of goals � and �0 su
h that � � �0, if P ) �then P ) �0.Proof. By simple indu
tion on the stru
ture of DLP proofs. 2In order to make a 
omparison between DLP and LO, we will now presenta slight variation of the system in Figure 1. This new system 
an be provedequivalent to the previous one, and is dire
tly related to the system for LO wewill present in Se
tion 5. Here, the right-hand side of sequents is a multiset ofgoals, and the stru
tural rule of 
ontra
tion is expli
itly added. The systemis presented in Figure 2. Adding the rule of 
ontra
tion makes it possible aslight modi�
ation of the rule b
 in whi
h the atoms in the head of the relevantprogram 
lause are dis
harged in the upper sequents. The equivalen
e of thetwo systems 
an be proved by simple indu
tion on the stru
ture of derivations7



Bozzano, Delzanno and Martelliin the systems. The proof entails showing that the 
ontra
tion and weakeningrules are admissible in the �rst system. We have the following result.Proposition 3.11 Given a DLP program P and a goal G, there exists anSLO-refutation of G from P if and only if P ) G is provable in the systemof Figure 1 if and only if P ) G is provable in the system of Figure 2.Proof. (sket
h) For the sake of 
larity, let us distinguish between provabilityin the systems in Figure 1 and 2 using the notation )1 and )2, respe
tively.We also use the notation b
1 and b
2 for the respe
tive ba
k
haining rules. Theequivalen
e between SLO-refutations and )1 provability is by de�nition (seeDe�nitions 3.3 and 3.4). Note that the ex
hange rule (i.e. mapping betweenpositive 
lauses and sets of atoms) is impli
it in De�nition 3.3. Also, rule ttr
an be derived from De�nition 3.3 in the spe
ial 
ase of 
lauses with emptybody (i.e. unit 
lauses). The equivalen
e between )1 and )2 
an be provedby showing that 
trr and b
2 rules are admissible in the �rst system, and b
1is admissible in the se
ond one:� admissibility of 
trr in the �rst system follows from the fa
t that the setA;A;A is equal to A;A (in other words, 
ontra
tion is impli
it in the 
hoi
eof sets in sequent representation);� b
2 admissible in the �rst system: suppose H  C1 ^ : : : ^ Cm 2 Gnd(P );if P )1 C1;A; : : : ; P )1 Cm;A, then by Proposition 3.10 we get P )1C1; bH;A; : : : ; P )1 Cm; bH;A, therefore it follows that P )1 bH;A;� b
1 admissible in the se
ond system: suppose H  C1^: : :^Cm 2 Gnd(P );if P )2 C1; bH;A; : : : ; P )2 Cm; bH;A, then P )2 bH; bH;A; it follows thatP )2; bH;A by applying 
trr to every element in bH. 2As a 
orollary, given a positive 
lause C = A1 _ : : : _ An we have thatP ) C is provable if and only if there exists C 0 2 F dlpP su
h that C 0 � C.4 The Linear Logi
 Programming Language LOLinear logi
 [9℄ 
an be viewed as a re�nement of 
lassi
al logi
 where the useof weakening and 
ontra
tion is allowed only for formulas within the s
ope ofspe
ial modalities (the exponentials `!' and `?'). This way, formulas (withoutmodalities) 
an be viewed as `resour
es' that 
an be used only a limited numberof times in a proof. Among the possible appli
ations, linear logi
 turned out tobe the natural foundation for extensions of logi
 programming with a notionof state (in this setting, a 
olle
tion of bounded-use formulas) [11℄.LO [3℄ is a logi
 programming language based on linear logi
. Its math-emati
al foundations lie on a proof-theoreti
al presentation of a fragment oflinear logi
 
alled LinLog [2℄, and 
omprising the linear 
onne
tives Æ� (linearimpli
ation), & (additive 
onjun
tion), ............................................................................................... (multipli
ative disjun
tion), and the
onstant > (additive identity). In the propositional 
ase LO 
onsists of the8



Bozzano, Delzanno and MartelliP ` >;� >r P ` G1; G2;�P ` G1 ............................................................................................... G2;� ............................................................................................... r P ` G1;� P ` G2;�P ` G1&G2;� & rP ` G;AP ` bH;A b
with the proviso that H Æ�G 2 Gnd(P )Fig. 3. A proof system for LOfollowing 
lass of formulas:D ::= A1 ............................................................................................... : : : ............................................................................................... An Æ� G j D & DG ::= G ............................................................................................... G j G & G j A j >Here A1; : : : ;An and A range over propositional symbols from a �xed signa-ture �. G-formulas 
orrespond to goals to be evaluated in a given program.D-formulas 
orrespond to multiple-headed program 
lauses. An LO programis a D-formula. Let P be the program C1& : : : &Cn. The exe
ution of amultiset of G-formulas G1; : : : ; Gk in P 
orresponds to a goal-driven proof forthe two-sided LO sequent P ` G1; : : : ; Gk:The LO sequent P ` G1; : : : ; Gk is an abbreviation for the following two-sidedlinear logi
 sequent: !C1; : : : ; !Cn ! G1; : : : ; Gk:The formula !F on the left-hand side of a sequent indi
ates that F 
an be usedin a proof an arbitrary number of times. This implies that an LO Program
an also be viewed as a set of reusable 
lauses. A

ording to this view, the op-erational semanti
s of LO is given via the uniform (goal-driven) proof systemde�ned in Figure 3. In Figure 3, P is a set of impli
ational 
lauses, A denotesa multiset of atomi
 formulas, whereas � denotes a multiset of G-formulas.A sequent is provable if all bran
hes of its proof tree terminate with instan
esof the >r axiom. The proof system of Figure 3 is a spe
ialization of moregeneral uniform proof systems for linear logi
 like Andreoli's fo
using proofs[2℄ and Forum [12℄. The rule b
 denotes a ba
k
haining (resolution) step. Notethat we have overloaded the b� notation (whi
h in De�nition 3.9 was used tomap _-disjun
tions of atoms into multisets) to indi
ate the mapping of ............................................................................................... -disjun
tions of atoms into multisets. Also note that b
 
an be exe
uted onlyif the right-hand side of the 
urrent LO sequent 
onsists of atomi
 formulas.Thus, LO 
lauses behave like multiset rewriting rules.LO 
lauses having the form a1 ............................................................................................... : : : ............................................................................................... an Æ�> play the same role as theunit 
lauses of DLP programs. In fa
t, a ba
k
haining step over su
h a 
lause9
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ess independently of the 
urrent 
ontext A, exa
tly as in DLP:P ` >;A >rP ` A1; : : : ; An;A b
provided A1 ............................................................................................... : : : ............................................................................................... An Æ� > 2 Gnd(P )An analogous result to that of Proposition 3.10 holds. Thus, LO 
an be viewedas an aÆne fragment of linear logi
. Note that weakening and 
ontra
tionare both admissible on the left-hand side (i.e. on the program part) of LOsequents.Proposition 4.1 (Admissibility of the weakening rule in LO) Givenan LO program P and two multisets of goals � and �0 su
h that � 4 �0, ifP ` � then P ` �0.Proof. By simple indu
tion on the stru
ture of LO proofs. 2Example 4.2 Let P be the LO program 
onsisting of the 
lauses1: a Æ� b ............................................................................................... 
2: b Æ� (d ............................................................................................... e)& f3: 
 ............................................................................................... d Æ� >4: e ............................................................................................... e Æ� b ............................................................................................... 
5: 
 ............................................................................................... f Æ� >and 
onsider an initial goal e; e. A proof for this goal is shown in Figure 4,where we have denoted by b
(i) the appli
ation of the ba
k
haining rule over
lause number i of P . The proof pro
eeds as follows. Using 
lause 4., to provee; e we have to prove b ............................................................................................... 
, whi
h, by LO ............................................................................................... r rule, redu
es to prove b; 
. At thispoint we 
an ba
k
hain over 
lause 2., and we get the new goal (d ............................................................................................... e)& f; 
.By applying & r rule, we get two separate goals d ............................................................................................... e; 
 and f; 
. The �rst,after a redu
tion via ............................................................................................... r rule, is provable by means of 
lause (axiom) 3., whilethe latter is provable dire
tly by 
lause (axiom) 5. Note that > su

eeds ina non-empty 
ontext (i.e. 
ontaining e) in the left bran
h. A similar proofshows that the goal a is also provable from P .5 A Proof-Theoreti
al Perspe
tive: from DLP to LOLet us now go ba
k to disjun
tive logi
 programming. In Se
tion 3, we haveshown that the operational (top-down) semanti
s of DLP 
an be presented interms of a proof system with an expli
it 
ontra
tion rule. Furthermore, theweakening rule is admissible in DLP. A natural question arises: what happens10



Bozzano, Delzanno and MartelliP ` e;> >rP ` d; e; 
 b
(3)P ` d ............................................................................................... e; 
 ............................................................................................... r P ` > >rP ` f; 
 b
(5)P ` (d ............................................................................................... e)& f; 
 & rP ` b; 
 b
(2)P ` b ............................................................................................... 
 ............................................................................................... rP ` e; e b
(4)Fig. 4. An LO proof for the goal e; e in the program of Example 4.2if we forbid the use of the stru
tural rules in DLP? Is the resulting languagerelated to the extension of LP based on linear logi
? We will answer thesequestions in two steps. We will �rst embed DLP into linear logi
 by means ofthe following mapping.De�nition 5.1 (d�e mapping) The mapping d�e from DLP formulas intolinear logi
 (LO) formulas is de�ned by indu
tion on the stru
ture of DLPformulas as follows: dF _Ge = dF e ............................................................................................... dGe; dF ^Ge = dF e& dGe; dF  Ge =dF e Æ� dGe; dtte = >:Based on this mapping, the grammar for D- and G-formulas 
an be rewrit-ten as follows: H ::= A1 ............................................................................................... : : : ............................................................................................... AnD ::= H Æ� G j D & DG ::= H1& : : : & Hn j >where Ai is an atomi
 formula. By de�nition of DLP program, the imageof d�e returns a 
lass of LO programs where both the head and the disjun
tsin the body have no repeated o

urren
es of the same atom, Synta
ti
ally,the resulting language is a proper subset of the language LO [3℄ presented inSe
tion 4, where, in addition to the previous formulas, the 
onne
tives ............................................................................................... and& 
an be arbitrarily nested within LO goals.It remains to analyze the relation between the operational semanti
s of thetwo languages. The operational semanti
s of LO spe
ialized to the fragmentunder 
onsideration is given via the proof system de�ned in Figure 5, whereA denotes a multiset of atomi
 formulas, H denotes an H-formula, and theright-hand side of sequents is a multiset of goals. The proof system of Figure5 is a spe
ialization of the proof system of Figure 3. As before, the b
 rule
an be exe
uted only if the right-hand side of the 
urrent LO sequent 
onsistsof atomi
 formulas, and a sequent is provable if all bran
hes of its proof tree11



Bozzano, Delzanno and MartelliP ` >;� >r P ` A1; : : : ; An;�P ` A1 ............................................................................................... : : : ............................................................................................... An;� ............................................................................................... rP ` C1;A : : : P ` Cm;AP ` bH;A b
with the proviso that H Æ� C1& : : : &Cm 2 Gnd(P )Fig. 5. A spe
ialized proof system for a fragment of LOterminate with instan
es of the >r axiom.The 
omparison between DLP and LO proof systems is now straightfor-ward. By looking at the system for DLP in Figure 2 and at the one for LO inFigure 5, we 
an see that, modulo a dire
t en
oding of 
lassi
al 
onne
tivesinto linear ones, DLP is obtained from LO by adding the stru
tural rule of
ontra
tion. Equivalently, LO 
an be viewed as a sub-stru
tural logi
 of DLPin whi
h 
ontra
tion is forbidden. We note that the weakening rule, on the
ontrary, is allowed both in DLP and in LO. By denoting with `
 the prov-ability in the language LO augmented with a 
ontra
tion rule analogous tothat of Figure 2, and with `LL provability in linear logi
, we 
an then statethe following proposition. Note that the the exponentials ! and ? in the lastsequent are needed to augment linear logi
 provability with both weakeningand 
ontra
tion (on both sides of the sequent).Proposition 5.2 Given a DLP program P , P ) G is provable in DLP if andonly if dP e `
 dGe is provable in LO, if and only if !dP e `LL?dGe is provablein LL.5.1 A Comparison between Propositional DLP and LOAs a 
onsequen
e of the proof-theoreti
al analysis 
arried out so far, we nowpresent some simple results 
on
erning the propositional fragments of DLPand LO. These results state that in the propositional 
ase LO is stri
tly moreexpressive than DLP.Proposition 5.3 There exists no translation j � j from the 
lasses of proposi-tional LO programs and goals into those of propositional DLP, whi
h preservesprovability, i.e. su
h that for any P and G, P ` G is provable if and only ifjP j)jG j is provable.Proof. (sket
h) In the propositional 
ase the set of logi
ally distin
t 
lausesis �nite (i.e. a _ a � a et
.). So is the disjun
tive Herbrand base. Let us
onsider the in�nite sequen
e of LO goals a, a ............................................................................................... a, a ............................................................................................... a ............................................................................................... a, et
. Fromthe observation above, there exists n > m su
h that ja ............................................................................................... : : : (n-times) : : : ............................................................................................... a jis logi
ally equivalent (in DLP) to j a ............................................................................................... : : : (m-times) : : : ............................................................................................... a j. It remains toexhibit a program P that distinguishes the two goals in LO. We de�ne P as12



Bozzano, Delzanno and Martellia ............................................................................................... : : :n-times : : : ............................................................................................... a >. Clearly, the �rst goal is provable from P in LO,while the latter is not. Whatever translation jP j of P we give we will obtainthat either the translations (that 
oin
ide) of both goals are provable in DLPor they are both non-provable. 2On the other hand, the translation from DLP to LO is straightforward.We have the following proposition.Proposition 5.4 There exists a translation j � j from the 
lasses of proposi-tional DLP programs and goals into those of propositional LO, whi
h preservesprovability, i.e. su
h that for any P and G, P ) G is provable if and only ifjP j`jG j is provable.Proof. It is suÆ
ient to take jG j = dGe, and jP j = dP e [ P
tr, where dP eis the program obtained by taking the d�e translation (see De�nition 5.1) ofevery 
lause in P , and P
tr is the �nite set of 
lauses aiÆ�ai ............................................................................................... ai, one for everypropositional symbol ai in the language. These 
lauses give a dire
t en
odingof 
ontra
tion. 26 A Semanti
-based ComparisonIn our re
ent work [4,5℄, we have shown that LO programs are amenable ofa �xpoint semanti
s that 
hara
terizes the set of provable LO goals. As the
orresponding semanti
s for Horn and disjun
tive programs, in the proposi-tional 
ase the �xpoint semanti
s for LO 
an be 
omputed in a �nite numberof steps. The �xpoint semanti
s of LO allows us to investigate in more depththe relationship between LO and DLP. For this purpose, we 
an employ themathemati
al tools provided by abstra
t interpretation [6℄, and in parti
ularthe notion of 
ompleteness that 
an be used to estimate the pre
ision of anabstra
tion.Informally, the 
omparison between LO and DLP �xpoint semanti
s isbased on the abstra
tion that maps multisets into sets of atomi
 formulas(positive 
lauses). This abstra
tion indu
es a Galois 
onne
tion between thesemanti
 domains of DLP and LO. We prove that the �xpoint semanti
s ofthe translation of an LO program in DLP is a 
orre
t abstra
tion of the�xpoint semanti
s of the original LO program. Furthermore, we show thatthis abstra
tion is not fully 
omplete with respe
t to LO semanti
s. In a fully
omplete abstra
tion the result of interleaving the appli
ation of the abstra
t�xpoint operator with the abstra
tion � 
oin
ides with the abstra
tion ofthe 
on
rete �xpoint operator. For a 
omplete abstra
tion, a similar relationholds for �xpoints, i.e., the �xpoint of the abstra
t operator 
oin
ides withthe abstra
tion of the �xpoint of the 
on
rete one. We will show that thisweaker property of 
ompleteness holds for the abstra
tion for the entire 
lassof LO programs, thus extending the result presented in [5℄, whi
h was limitedto the 
lass of LO programs without 
onjun
tion in the body.13



Bozzano, Delzanno and MartelliLet us start by giving some de�nitions used to introdu
e the �xpoint se-manti
s for LO (a detailed presentation 
an be found in [5℄).De�nition 6.1 (LO Herbrand base) The Herbrand base HBP of a propo-sitional LO program P over � is the set of all multisets of ground atoms overA�.The previous de�nition is the same as De�nition 3.7, the only di�eren
ebeing that elements are not required to have multipli
ity at most one. Given amultiset A, we denote by [[A℄℄ the upward 
losure of A, i.e. fB j A 4 Bg (e.g.[[fa; bg℄℄ = ffa; bg; fa; a; bg; fa; b; bg; fa; b; 
g; : : :g). The following de�nitionformalizes the intuition that interpretations are always impli
itly 
onsideredupward-
losed sets. Interpretations whose upward 
losures are equal are there-fore 
onsidered equivalent. This is justi�ed by Prop. 4.1 (admissibility of theweakening rule).De�nition 6.2 (LO Herbrand interpretation) The latti
e hI;vi of LOHerbrand interpretations is de�ned as follows:� I = P(HBP )= ' where I ' J if and only if [[I℄℄ = [[J ℄℄;� [I℄' v [J ℄' if and only if for all B 2 I there exists A 2 J su
h that A 4 B;� the bottom element is the empty set ;, the top element is the '-equivalen
e
lass of the singleton f�g (�=empty multiset, � 4 A for any A 2 HBP );� the least upper bound I t J is the '-equivalen
e 
lass of I [ J .The equivalen
e ' allows us to reason modulo redundan
ies. For instan
e,any A is redundant in f�;Ag, whi
h, in fa
t, is equivalent to f�g. For ease ofnotation, in the rest of the paper we will identify an interpretation I with its
lass [I℄'. The de�nition for the �xpoint T loP operator, for the sub
lass of LOprograms we are 
onsidering in this paper (i.e. without nesting of 
onne
tives),
an be spe
ialized as follows:De�nition 6.3 (T loP operator) Given an LO program P and an interpreta-tion I, the operator T loP is de�ned as follows:T loP (I) = f bH + (C1 � : : : � Cn) j H Æ�D1& : : : &Dn 2 Gnd(P );8i : 1; : : : ; n; 
Di + Ci 2 Ig [ f bH j H Æ� > 2 PgThis de�nition is similar to De�nition 3.9. Here, we have two di�er-ent operations whi
h are both modeled by multiset union in De�nition 3.9:multiset union (+) and least upper bound of multisets (�). For instan
e,fa; bg + fb; 
g = fa; b; b; 
g, while fa; bg � fb; 
g = fa; b; 
g. Noti
e how-ever that the two operations are equivalent under � (see De�nition 3.8), i.e.�(A+ B) = �(A � B). Also note that the 
ase for unit 
lauses is left impli
itin De�nition 3.9.It 
an be proved that the operator T loP is monotoni
 and 
ontinuous over14



Bozzano, Delzanno and Martellithe latti
e of Herbrand interpretations (ordered wrt. v). Thus, the �xpointsemanti
s of an LO program P 
an be de�ned asF loP = !Gi=0T loP "i :The relation between operational semanti
s and �xpoint semanti
s 
an bestated as follows.Proposition 6.4 (Completeness [5℄) Let P be an LO program and A 2HBP , then P ` A is provable if and only if there exists A0 2 F loP s.t. A0 4 A.Example 6.5 Consider the LO program P = fr(a) Æ� >; p(X) ............................................................................................... p(X) ...............................................................................................q(X)Æ�r(X)g and the auxiliary predi
ate t. Then, the Herbrand base HBP isde�ned as follows ffr(a)g; fp(a)g; fq(a)g; ft(a)g; fp(a); r(a)g; fp(a); p(a); r(a)g; : : : g. The LO sequent P ` p(a); p(a); q(a); t(a) is provable in LO. In fa
t,by applying a ba
k
haining step we obtain the sequent P ` r(a); t(a). Now,we 
an apply the fa
t r(a) Æ� > and we obtain an instan
e of the axiom >r.The �xpoint semanti
s of P is as follows F loP = ffr(a)g; fp(a); p(a); q(a)gg.Note that fp(a); p(a); q(a)g 4 fp(a); p(a); q(a); t(a)g.We note that, as proved in [5℄, the �xpoint semanti
s of a propositionalLO program 
an be 
omputed in �nitely many steps. Though the Herbrandbase is always in�nite (it 
ontains all possible multisets over A�, therefore it isin�nite even if A� is �nite), this property is ensured by the well-quasi orderingof the latti
e of Herbrand interpretations [5℄.In the following, we will use the previous semanti
s and the frameworkof abstra
t interpretation to give an alternative, bottom-up a

ount, of therelation between DLP and LO. First of all, we will give a brief summary ofsome notions related to the theory of abstra
t interpretation.6.1 Abstra
t InterpretationAbstra
t Interpretation [6,7℄ is a 
lassi
al framework for semanti
s approxima-tion whi
h is used for the 
onstru
tion of semanti
s-based program analysisalgorithms. Given a semanti
s and an abstra
tion of the language 
onstru
torsand standard data, abstra
t interpretation determines an abstra
t represen-tation of the language whi
h is, by 
onstru
tion, sound with respe
t to thestandard semanti
s. This new representation enables the 
al
ulation of theabstra
t semanti
s in �nite time, although it implies some loss of pre
ision.We re
all here some key 
on
epts in abstra
t interpretation, whi
h the reader
an �nd in [6,7,8℄.Given a 
on
rete semanti
s hC; TP i, spe
i�ed by a 
on
rete domain (
om-plete latti
e) C and a (monotone) �xpoint operator TP : C ! C, the abstra
tsemanti
s 
an be spe
i�ed by an abstra
t domain A and an abstra
t �xpointoperator T#P . In this 
ontext, program semanti
s is given by lfp(TP ), and15



Bozzano, Delzanno and Martelliits abstra
tion is lfp(T#P ). The 
on
rete and abstra
t semanti
s S = hC; TP iand S# = hA; T#P i are related by a Galois 
onne
tion h�;C;A; 
i, where� : C ! A and 
 : A! C are 
alled abstra
tion and 
on
retization fun
tions,respe
tively.S# is 
alled a sound abstra
tion of S if for all P , �(lfp(TP )) �A lfp(T#P ).This 
ondition is implied by the strongest property of full soundness, whi
h re-quires that �ÆTP �A T#P Æ�. The notions of 
ompleteness and full 
ompletenessare dual with respe
t to those of soundness. Namely, S# is a (fully) 
ompleteabstra
tion of S if for all P , (T#P Æ� �A �ÆTP ) lfp(T#P ) �A �(lfp(TP )). Often,the notion of 
ompleteness is assumed to in
lude soundness (i.e. we impose'=' in the previous equations). It is well-known[7℄ that the abstra
t domainA indu
es a best 
orre
t approximation of TP , whi
h is given by � Æ TP Æ 
,and that it is possible to de�ne a (fully) 
omplete abstra
t operator T#P if andonly if the best 
orre
t approximation is (fully) 
omplete. It 
an be provedthat for a �xed 
on
rete semanti
s, (full) 
ompleteness of an abstra
t inter-pretation only depends on the 
hoi
e of the abstra
t domain. The problemof a
hieving a (fully) 
omplete abstra
t interpretation starting from a 
orre
tone, by either re�ning or simplifying the abstra
t domain, is studied in [8℄.We 
on
lude by observing that an equivalent presentation of abstra
t in-terpretation is based on 
losure operators[7℄, i.e. fun
tions from a 
on
rete do-main C to itself whi
h are monotone, idempotent and extensive. This approa
hprovides independen
e from spe
i�
 representations of abstra
t domain's ob-je
ts (the abstra
t domain is given by the image, i.e. the set of �xpoints, ofthe 
losure operator).We are now in the position of 
onne
ting the LO (
on
rete) semanti
s withthe DLP (abstra
t) semanti
s.6.2 DLP as an Abstra
tion of LOWe will de�ne the abstra
t interpretation by resorting to 
losure operators.A

ording to this view, we 
an de�ne the abstra
t interpretation as a 
losureoperator on the latti
e I, the domain of LO interpretations of De�nition 6.2.In fa
t, we 
an 
onsider disjun
tive interpretations as the sub
lass of I 
om-prising all sets in I (i.e. all multisets in I with element multipli
ity at mostone). In other words, the 
lass of disjun
tive interpretations is an abstra
tdomain for I. We re
all that in I the ordering of interpretations is de�ned asfollows: I v J if and only if for all B 2 I there exists A 2 J su
h that A isa submultiset of B (i.e., for disjun
tive interpretations, A � B). We give thefollowing de�nitions.De�nition 6.6 (Abstra
t Interpretation from LO to DLP) The ab-stra
t interpretation is de�ned by the 
losure operator � : I ! I su
h thatfor every I 2 I, �(I) = f�(A) j A 2 Ig.Note that we have overloaded the operator � of De�nition 3.8 to indi
ate16



Bozzano, Delzanno and Martelliits extension to interpretations.De�nition 6.7 (Abstra
t semanti
s) The abstra
t �xpoint semanti
s isgiven by lfp(T#P ), where the abstra
t �xpoint operator T#P is de�ned as (� ÆT loP ).A

ording to [7℄, � Æ T loP is the best 
orre
t approximation of the 
on
rete�xpoint operator T loP , for the �xed abstra
tion �. The abstra
tion � trans-forms multisets into sets by forgetting multiple o

urren
es of atoms. The T#Poperator is indeed the T dlpP operator for disjun
tive logi
 programs of De�ni-tion 3.9 (we de�ned it over domains 
ontaining multisets for this purpose). Inother words, T dlpP input domain 
orresponds to the abstra
t domain whi
h isgiven by the set of �xpoints, i.e. the image, of the 
losure operator �. Theoperations � (least upper bound of multisets) and + (multiset union) used inthe de�nition of T loP are inter
hangeable, as already noted before, be
ause ofthe subsequent appli
ation of the operator �, and both 
orrespond to multisetunion in the de�nition of T dlpP . Also, the 
ase for unit 
lauses is left impli
itin the de�nition of T dlpP . We have the following results.Proposition 6.8 (DLP is an abstra
tion of LO) Given a DLP programP and a disjun
tive interpretation I, T dlpP (I) = T#dP e(I).Proof. By de�nitions. 2Proposition 6.9 (DLP is a sound abstra
tion of LO) For every LOprogram P , the abstra
t semanti
s is a fully sound abstra
tion of the 
on
retesemanti
s, that is, for every interpretation I, �(T loP (I)) v T#P (�(I)):Proof. As T#P = �ÆT loP and I v �(I), the proposition follows by monotoni
ityof T#P . 2The previous result implies soundness, i.e. �(lfp(T loP )) v lfp(T#P ). Thestrong property of full 
ompleteness does not hold for the abstra
tion. To seewhy, take as a 
ounterexample the single 
lause aÆ� b and the interpretation Iwith the single multiset fb; bg. Then, �(T loP (I)) = ffa; bgg, T#P (�(I)) = ffagg,and T#P (�(I)) 6v �(T loP (I)).In [5℄ we have proved a preliminary result, namely that the abstra
tionis 
omplete for the sub
lass of LO programs whose 
lauses 
ontain at mostone 
onjun
t in the body (i.e. 
onjun
tion is forbidden). This sub
lass isparti
ularly interesting, as dis
ussed in [5℄ and brie
y mentioned in Se
tion7.2, be
ause it 
an be used to en
ode Petri Nets. We address now the problemof proving 
ompleteness of the abstra
tion for the entire 
lass of LO programs(we remind the reader that we are a
tually 
onsidering the sub
lass of LOprograms 
orresponding to DLP programs as de�ned in [13℄, i.e. withoutnesting of 
onne
tives). We will give an indire
t proof of this fa
t based onthe 
onne
tion between the notion of 
ompleteness and proof theory. Theproof will be presented in Se
tion 7.1.17



Bozzano, Delzanno and MartelliP ) tt;� ttr P ) A;A;AP ) A;A 
trrP ) 
C1;A : : : P )dCm;AP ) bH;A b
with the proviso that H  C1 ^ : : : ^ Cm 2 Gnd(P )Fig. 6. An equivalent proof system for DLP.7 A Proof-Theoreti
al A

ount of CompletenessIn this se
tion we dis
uss the relations between the notion of 
ompleteness ofthe abstra
tion and the proof-theoreti
 notion of permutability of rules, thus
reating a bridge between Se
tions 3.1 and 5, on the one hand, and Se
tion6.2, on the other hand.First of all, let us reformulate the proof system for DLP presented inFigure 2. The new system is presented in Figure 6. Here, we have dire
tlyplugged the rule _r inside the ba
k
haining rule. The resulting system 
anbe easily proved equivalent in the following sense: a disjun
tion of atomsA1_: : :_An is provable in the �rst system if and only if the multiset A1; : : : ; Anis provable in the se
ond. This new proof system 
orresponds more dire
tly tothe formulation of the T loP operator. In parti
ular, if we 
onsider the systemwhi
h 
omprises only rules ttr and b
 in Figure 6 (i.e. without 
ontra
tion)we get, modulo the usual mapping between 
lassi
al and linear 
onne
tives, aproof system for LO. Moreover, the � step in the de�nition of the T dlpP operatoris the analogous of the 
ontra
tion rule in the proof system in Figure 6 (to bepre
ise, � 
orresponds to multiple appli
ations of 
trr).To 
omplete the 
ir
le, let us now 
onsider the property of 
ompleteness,i.e. �(lfp(T loP )) = lfp(� ÆT loP ). The �rst expression, �(lfp(T loP )), represents theabstra
tion of the set of goals whi
h 
an be proved from the proof system forLO (without 
ontra
tion), i.e. the set of goals whi
h 
an be proved using therule of 
ontra
tion only at the root of the proof tree. The se
ond expression,lfp(� Æ T loP ), represents the set of goals whi
h 
an be proved by freely usingthe 
ontra
tion rule (to be pre
ise, an appli
ation of b
 is followed by everypossible appli
ation of 
trr). Thus, in this view, we have that 
ompleteness ofthe abstra
tion is equivalent to the following proof-theoreti
 property:By restri
ting the set of proofs in the system in Figure 6 to those in whi
hthe 
ontra
tion rule is applied only at the root of the proof tree, the set oftheorems (provable multisets) of the system does not 
hange.In other words, 
ompleteness implies that 
trr and b
 are permutable, in thesense that if an appli
ation of 
trr o

urs above an appli
ation of b
, it ispossible to �nd a di�erent proof in whi
h 
ontra
tion is pushed down, below18
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ation of b
.7.1 An indire
t proof of 
ompleteness of the abstra
tionWe now present a proof of 
ompleteness of the abstra
tion based on the proof-theoreti
 property of rule permutability dis
ussed above. In parti
ular, wewill show an e�e
tive algorithm whi
h, given a proof for a multiset A in thesystem of Figure 6 as input, builds a proof of the same multiset in whi
h the
ontra
tion rule is applied only at the root of the proof tree. For illustrativepurposes, we will keep the dis
ussion about the algorithm somewhat informal,but a 
ompletely formal presentation 
an be derived in a straightforward wayfrom our des
ription. First of all, let us 
onsider a �xed program P and ageneri
 proof for a multiset A in the system in Figure 6. Ex
ept for theleaves, whi
h are instan
es of the axiom s
heme ttr, the proof tree is builtusing only b
 and 
trr steps. The algorithm operates by re
ursively pushingdown appli
ations of the 
ontra
tion rule starting from the top and going downto the root. To be pre
ise, the algorithm operates on bun
hes of 
ontra
tions,i.e. on groups of 
onse
utive appli
ations of the 
ontra
tion rule. In parti
ular,given a proof, we 
an isolate an appli
ation of b
 s.t.:� at least one of its departing bran
hes 
ontains an appli
ation of 
trr (oth-erwise, we have �nished);� for every departing bran
h, either it does not 
ontain any appli
ation of
trr, or it is of the form �....P ) �0P ) � 
trr�where 
trr� represents a bun
h of 
ontra
tions and � does not 
ontain anyappli
ation of 
trr.In other words, the algorithm sele
ts for redu
tion an appli
ation of b
 whi
hhas the form �1....P ) �01P ) �1 
trrp1 ....: : : �m....P ) �0mP ) �m 
trrpmP ) � b
where 
trrpi represents a bun
h of pi 
ontra
tions, all pi's (but one) 
an bepossibly null, and �1,. . . ,�m do not 
ontain 
trr. The result of an appli
ationof a single step of the algorithm is to push down the bun
hes of 
ontra
tions19
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heme, transforming that proof fragment in the following:
�01.... : : : �0m....P ) �0 b
P ) � 
trrp

where the natural number p is related to p1,. . . ,pm, and �01,. . . ,�0m do not
ontain 
trr.Now, before showing how the single step operates, let us 
larify that thisis suÆ
ient in order to prove that all 
ontra
tions 
an be pushed down tothe root. In other words, we must show an indu
tive measure on proofswhi
h guarantees that the re
ursive appli
ation of a redu
tion step is wellfounded. There is a very simple indu
tion measure whi
h 
an be used for thispurpose. Namely, given a proof �, let us 
all redu
ible the appli
ations of b
whi
h are pre
eded in the proof tree by at least an appli
ation of 
trr (i.e.there is a path from a leaf to that appli
ation of b
 whi
h in
ludes at leastone appli
ation of 
trr) and redu
ed the remaining appli
ations of b
. Theindu
tion measure is simply given by the number of redu
ible appli
ationsof b
 in the proof tree. After every step, this number de
reases by one. Infa
t, it is 
lear that the b
 appli
ation involved in the step was redu
ible (byhypothesis) and it is redu
ed afterwards (for the hypothesis on �01,. . . ,�0m).Furthermore, it is also 
lear that the other appli
ations of b
 in the tree arenot a�e
ted (in parti
ular, an appli
ation of b
 whi
h was redu
ed is stillredu
ed). Note that the proof fragments �01,. . . ,�0m in general 
an be mu
hbigger than �1,. . . ,�m, but this is harmless be
ause they do not 
ontain any
trr appli
ation. The 
laim that all 
trr appli
ations 
an be pushed down tothe root then follows from the following fa
ts: i) it is always possible to 
hoosean o

urren
e of b
 for redu
tion, satisfying the requirements des
ribed before,as soon as the proof tree 
ontains redu
ible o

urren
es of b
; ii) after everystep, the number of redu
ible appli
ations of b
 de
reases; iii) if the number ofredu
ible appli
ations of b
 in a proof tree be
omes 0, then all 
trr appli
ationsare grouped in a bun
h at the root of the proof tree.Let us now des
ribe how a single step of the algorithm works. Let us
onsider a redu
ible appli
ation of b
 satisfying the requirements des
ribedbefore, and let H  C1 ^ : : : ^ Cm 2 Gnd(P ) be the relevant instan
e ofprogram 
lause. The fragment of proof tree involved in the transformation20



Bozzano, Delzanno and Martellihas the following form:�1....P ) �01P ) 
C1;A 
trrp1 ....: : : �m....P ) �0mP ) 
Cm;A 
trrpmP ) bH;A b
For simpli
ity of illustration, let us assume for the moment that all 
trr appli-
ations in this fragment are performed over atoms in 
C1,. . . ,
Cm. Contra
tionsover the 
ontext A are mu
h simpler to address, as we will des
ribe later on.Now, we 
an safely assume that our proof fragment has the form�1....P ) 
C1n1;AP ) 
C1;A 
trrp1 ....: : :
�m....P ) 
Cmnm ;AP ) 
Cm;A 
trrpmP ) bH;A b
where pi is given by ni�1 times the 
ardinality of the multiset bCi. That is, weare assuming that ni�1 appli
ations of 
trr are performed over every elementof bCi. This is possible be
ause, if we take ni�1 to be the maximum number ofappli
ations of 
trr whi
h are performed over a single element in bCi, then theoriginal �0i will be a submultiset of bCini ;A, and, thanks to Proposition 4.1, if�0i is provable in LO than bCini ;A is provable as well (note that LO 
orrespondsto the system in Figure 6 without 
ontra
tion). Now, the transformed proofwill have the following form (we show only a small fragment):.... b
P )dC12; bHz�2;A : : : .... b
P ) 
C1;dCm; bHz�2;AP ) 
C1; bHz�1;A b
 : : : .... b
P )dCm; bHz�1;AP ) bHz;A b
P ) bH;A 
trrqThe idea is to perform q appli
ations of 
trr below the relevant b
, where qis given by z � 1 times the 
ardinality of bH, and we 
hoose z to be n1 + n2 +: : :+nm�m+1. The goal bHz;A 
ontains z o

urren
es of bH, therefore, afterperforming one step of ba
k
haining, we will get m departing bran
hes whi
h
ontain z�1 o

urren
es of bH. We 
an re
ursively apply ba
k
haining (alwaysusing the original program 
lause) on ea
h of the sub-bran
hes, until all z21
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urren
es of bH have been 
onsumed. What we get is a (partial) proof treemade only of b
 appli
ations; this proof tree has depth z and every node hasexa
tly m 
hildren. Now, let us 
onsider the leaves of this (partial) proof tree.One single leaf is on a path leading to P ) bHz;A, and at every step one of theo

urren
es of bH is rewritten in one multiset taken from
C1,. . . ,
Cm. Therefore,the leaf will 
ontain a 
ombination of z multisets taken from 
C1,. . . ,
Cm. Now,if the leaf 
ontains at least n1 o

urren
es of the multiset 
C1, we have �nished.In fa
t, this means that 
C1n1;A is a submultiset of the leaf, and, by thehypothesis on �1 and Proposition 4.1, this implies that there exists a proof �01for the leaf whi
h does not 
ontain 
ontra
tions. If the leaf 
ontains less thann1 o

urren
es of 
C1, then it will 
ontain at least z � (n1 � 1) = n2 + : : : +nm�m+2 o

urren
es of multisets taken from 
C2,. . . ,
Cm. We 
an repeat thesame kind of reasoning (formally, the proof is by indu
tion on m), and the lastalternative will be that the leaf 
ontains at least nm�m+m = nm o

urren
esof the multiset 
Cm, from whi
h we 
an 
on
lude. The same reasoning 
an berepeated for every leaf, thus we 
an 
omplete the partial proof tree using onlyb
 and ttr rules.Finally, we note that 
ontra
tions performed over the multiset A whi
his not dire
tly involved in the ba
k
haining step are even simpler to address.In fa
t, A is simply passed un
hanged to every sub-bran
h, therefore we 
antransfer these 
ontra
tion steps below the original b
 appli
ation. It is suÆ-
ient to perform, for every element in A, as many 
trr steps as the maximumnumber of su
h steps performed over that element, where the maximum istaken among the original m bun
hes of 
ontra
tions.On the basis of the above dis
ussion and of the 
onne
tion between LOand DLP provability and the proof system in Figure 6, we 
an then state thefollowing lemma.Lemma 7.1 A multiset A is provable in DLP if and only if there exists amultiset A0 s.t. A0 is provable in LO and A = �(A0).The result of 
ompleteness of the abstra
tion then easily follows.Proposition 7.2 (DLP is a 
omplete abstra
tion of LO) Let P be anLO program. Then lfp(T#P ) v �(lfp(T loP )).Proof. Given A 2 lfp(T#P ), by Lemma 7.1 there exists A0 provable in LOs.t. A = �(A0). As A0 provable in LO, by Proposition 6.4 there exists A00 2lfp(T loP ) s.t. A00 4 A0. Then, �(A00) 2 �(lfp(T loP )) and �(A00) 4 �(A0) = A. 2We 
on
lude the se
tion with a brief dis
ussion about the appli
ation ofLO and DLP to Petri Nets.7.2 LO, Petri Nets, and DLPAs shown in [5℄, the 
lass of propositional LO programs with one 
onjun
t inthe body is equivalent to Petri Nets. In fa
t, a multiset rewriting rule 
an be22
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ribe the e�e
t of �ring a Petri Net transition. For instan
e, the
lause a ............................................................................................... b ............................................................................................... b Æ� 
 ............................................................................................... 
 
an be interpreted as the Petri Net transi-tion that removes one token from pla
e a, two tokens from pla
e b, and addstwo tokens to pla
e 
. As a 
onsequen
e, a (possibly in�nite) exe
ution of arestri
ted LO program denotes an exe
ution of the 
orresponding Petri Net.The initial goal 
an be viewed as the initial marking of the Petri Net, whilethe set of axioms 
an be used to impli
itly give a des
ription of the rea
hablestates. As a 
onsequen
e of the admissibility of weakening (Proposition 4.1),an axiom represents an in�nite, upward-
losed set of markings. As a 
onse-quen
e, provability in LO 
an be used to axiomatize 
overability problems ofPetri Nets. What does 
overability mean? Let us �rst re
all the followingnotions. Given two markings ~m and ~n, ~m 
overs ~n if and only if, for everypla
e, the number of tokens in ~m is greater or equal than the number of to-kens in ~n. The 
overability problem for a Petri Net N is formulated as follows:given the initial marking ~m0 and a marking ~n, is there a marking ~m rea
hablefrom ~m0 that 
overs ~n? Let P be the LO program that represents the PetriNet N , and let A0 and A the multisets that represent ~m0 and ~n, respe
tively.The 
overability problem for N , ~m0 and ~n 
an be formulated as the followingLO provability question: is there A0 4 A0 su
h that A0 is provable in theprogram P enri
hed with the 
lause H Æ� >, where H = A1 ............................................................................................... : : : ............................................................................................... An forA = fA1; : : : ; Ang? This problem 
an be solved via the bottom-up 
omputa-tion of all logi
al 
onsequen
es of P [ fH Æ� >g. Coverability problems arestri
tly related to veri�
ation of safety properties of 
on
urrent systems ex-pressed as Petri Nets (see e.g. [1℄). In fa
t, in many pra
ti
al examples unsafestates 
an be represented as upward-
losed sets (e.g. the set of states wherethere are at least two pro
esses in the 
riti
al se
tion are the typi
al bad statesof a mutual ex
lusion algorithm). In all these situations, the veri�
ation of the
orresponding safety property 
an thus be redu
ed to the dual of a 
overabilityproblem for the minimal violations. More spe
i�
ally, this kind of problems
an be solved by 
omputing the set of prede
essors Pre�(U) of the unsafestates, i.e., the set of logi
al 
onsequen
es obtained by expressing U as an LOaxiom. The results of Se
tion 6.2 show that the �xpoint semanti
s of DLP
an be used to approximate Pre�(U). Completeness implies that all proper-ties that are preserved by the abstra
tion 
an be 
he
ked equivalently overthe 
on
rete and the abstra
t domain. In our setting the kind of propertiesthat satisfy this requirement 
an be informally 
hara
terized as at-least-oneproperties (e.g. the set of markings whi
h 
ontain at least one token in a givenpla
e).8 Con
lusions and Future WorkIn this paper we have used operational (proof-theoreti
al) and de
larative (�x-point semanti
) tools to 
ompare the paradigm of DLP with the paradigm oflinear logi
 programming (more spe
i�
ally, the language LO). The 
ompari-23
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tion that maps multisets into sets of atomi
 formulas(positive 
lauses). This abstra
tion indu
es a Galois 
onne
tion between thesemanti
 domains of DLP and LO. The abstra
tion is not fully 
omplete. Ina fully 
omplete abstra
tion the result of interleaving the appli
ation of theabstra
t �xpoint operator with the abstra
tion � 
oin
ides with the abstra
-tion of the 
on
rete �xpoint operator. For a 
omplete abstra
tion, a similarrelation holds for �xpoints, i.e., the �xpoint of the abstra
t operator 
oin
ideswith the abstra
tion of the �xpoint of the 
on
rete one. In proof-theoreti
alterms, the abstra
tion 
orresponds to allowing unlimited use of 
ontra
tionin the proof system for LO. In this view, we have shown that the property of
ompleteness implies that 
ontra
tion steps permute with the other inferen
erules, in the sense that given a proof for a goal G it is always possible to �ndan alternative proof for G in whi
h the 
ontra
tion steps are performed onlyat the root of the proof tree.We think that our study 
an help in getting a new insight into the relationsbetween provability in fragments of 
lassi
al and linear logi
, on the one hand,and into the relations between top-down and bottom-up semanti
s, on theother hand. We hope that our resear
h will also give rise to new ideas for theanalysis of LO programs. As an example, it 
ould be interesting to study weaknotions of negation for LO that are based on the negation of DLP. Also, wehave mentioned another possible appli
ation of DLP operational and �xpointsemanti
s, namely Petri Nets analysis. Finally, there is still some on-goingwork 
on
erning the relation between DLP and LO in the setting of abstra
tinterpretation. In parti
ular, we are studying a dire
t proof of 
ompletenessof the abstra
tion and its relationship with the indire
t proof presented inthis paper. Also, formally studying the 
omplexity of the transformationbetween generi
 DLP proofs and restri
ted DLP proofs (as shown in the proofof 
ompleteness) 
ould be worth in order to quantify the gain obtained byproving properties on the abstra
t domain rather than on the 
on
rete one.9 A
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