
Verification and Performance Evaluation of AADL Models∗

Marco Bozzano, Alessandro Cimatti,
Marco Roveri,

Embedded Systems Group
Fondazione Bruno Kessler, Trento, Italy

{bozzano,cimatti,roveri}@fbk.eu

Joost-Pieter Katoen, Viet Yen Nguyen,
Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University, Aachen, Germany

{katoen,nguyen,noll}@cs.rwth-aachen.de

ABSTRACT
This paper reports on a model-based approach to system-
software co-engineering which is tailored to critical on-board
systems for the aerospace domain but is relevant to a much
wider class of dependable systems. Our main contribution is
a formal semantics for a greater part of standardised AADL,
the Architecture Analysis and Design Language, and its Er-
ror Model Annex. It covers nominal and degraded hard-
ware/software operations, hybrid (and timing) aspects as
well as probabilistic faults, their propagation and recovery.
The accompanying software toolset employs SAT-based and
symbolic model checking techniques and probabilistic vari-
ants thereof. The precise nature of these techniques together
with the formal semantics provide a trustworthy modelling
and analysis framework to support, among others, assess-
ment of functional correctness, evaluation of performance
measures and automated derivation of dynamic fault trees,
FMEA tables and observability requirements.

Categories and Subject Descriptors
B.6.3 [Design Aids]: Verification

General Terms
Design, Performance, Verification, Reliability

1. INTRODUCTION
The increasing complexity of safety-critical systems has driven
industry to develop system-level languages like AADL and
SysML, where the focus lies on capturing the overall system
design, especially the interaction between hardware and soft-
ware. An important paradigm here is the component-based
design. It helps mastering the overall complexity while in
addition allowing for reusability.

Safety-critical systems are also subject to hardware and
software faults. The adequate modelling of faults, their like-
lihood of occurrence and the way a system can recover from
faults are essential to a comprehensive system-level design of
safety-critical systems. Although several formal verification
approaches to component-based design have been recently
reported in the literature (see references in [2]), error han-
dling and modeling has received scant attention, if at all.

∗Funded by ESA/ESTEC under Contract 21171/07/NL/JD

Copyright is held by the author/owner(s).
ESEC-FSE’09, August 24–28, 2009, Amsterdam, The Netherlands.
ACM 978-1-60558-001-2/09/08.

Another shortcoming of many proposals is the lack of con-
nection to a notation that is used and understood by design
engineers. We propose the SLIM language in which we at-
tempt to overcome the problems of the previous proposals
by enriching a greater part of AADL and its Error Model
Annex (§2) with a formal semantics (§3) based on networks
of event-data automata.

The first version of the accompanying toolset has been
developed last year and is currently being extended. It ad-
dresses the issues of correctness, safety, and performability
through model checking. This toolset is being developed
in the context of the European Space Agency project COM-
PASS (Correctness, Modelling, and Performance of Aerospace
Systems) [1] and will be applied to several case studies by
a major industrial developer of aerospace systems. A com-
plete list of supported analyses and a sketch of the tool’s
architecture is described in §4.

In §5 we conclude this short paper on references to other
papers where more information about the SLIM modelling
language and the underlying techniques used by the toolset
is provided.

2. SYSTEM-LEVEL MODELLING
Akin to AADL, the SLIM language distinguishes between
nominal models and error models.

The nominal model describes the system under normal
operation. It is expressed as a set of nominal components
with their corresponding interactions. A nominal compo-
nent represents software or hardware. Sets of interacting
components can be grouped into a composite component.
This facility enables the modeler to manage the system’s
complexity through introducing component hierarchy. A
nominal component is further separated into a type and its
implementation. The type describes the interface, i.e., the
event and data ports, for interacting with other components.
Events are transmitted in a rendez-vous manner. Data ports
are typed (int, real, bool) and transmit data between
components. The implementation describes how these in-
teractions are performed by a finite state automaton.

The error model expresses how the system can fail, i.e.,
it models how faults may affect normal operation and may
lead to a degraded mode of operation. It is modelled as a
probabilistic finite state automaton. Transitions occur due to
spontaneous events which may be annotated with a rate
that indicates the expected number of occurrences per time
unit. This information is leveraged for performing proba-
bilistic analyses. Transitions can also occur because of error
propagations. Inwards error propagations cause a transition,

285



outwards error propagation are generated by following the
transition. These transitions are based on whether com-
ponents access a common bus, or whether they are in a
super-subcomponent relation. This implicit linking reflects
the oblivious and pervasive nature of error models.

As error models bear no relation with nominal models,
an error model does not influence the nominal model unless
they are linked through fault injection. A fault injection
consists of three parts: a state s in the error model, a vari-
able d in the nominal model, and the fault effect given as the
expression e. Semantically, the error and nominal model are
concurrently active. On entering error state s, the assign-
ment d := e is carried out, i.e., the variable is assigned with
the fault effect. Multiple fault injections between error mod-
els and nominal models are possible. The combined model,
i.e., the integration of the nominal models, error models, and
the fault injections, is called the extended model.

3. FORMAL SEMANTICS
The formal semantics provides the interpretation of SLIM
specifications in a precise and unambiguous manner. The
meaning of a nominal specification is defined on two levels,
distinguishing between the local behavior of an active com-
ponent and the interaction between active components via
ports, which is referred to as the global behaviour.

The local behaviour emerges from the product composition
of a nominal model and its corresponding error model. It is
formalised by an event-data automaton (EDA), which is a
tuple containing modes, initial mode, variables, default val-
uation of variables, mode invariants, events and transitions.
The semantics of a EDA is given by a labelled transition
system (LTS) where the states are configurations, i.e., pairs
of modes and valuations of variables. Transitions model the
passage of time, probabilistic events, updates to variables or
triggers of events.

The global behaviour is captured by a network of event-
data automata (NEDA). A NEDA tuple contains the EDAs,
an activation mapping describing when EDAs are active,
and the event/data connections between EDAs. Interaction
in a NEDA is highly dynamic as local transitions can cause
EDAs to become (in-)active and can change the topology of
event and data port connections.

The semantics of a NEDA is described by a LTS as well,
where the states are the product of configurations of ac-
tive EDAs. Transitions occur due to the passage of time
(and thereby affecting all the active EDAs), probabilistic
transitions due to an active error model, internal transitions
within active EDAs or communication between EDAs. This
LTS describes overall system behaviour and captures prob-
abilistic, discrete and continuous system evolution.

4. TOOLSET FOR FORMAL ANALYSES
We leverage NuSMV and MRMC to enable formal analyses
of SLIM models. NuSMV employs symbolic model checking
techniques and is known for coping with large transition sys-
tems. MRMC is a probabilistic model checker for Markov
chains and computes performability characteristics. The de-
sign engineer does not interact with these tools directly as
it requires extensive expertise in formal logics and low-level
modeling formalisms. Instead, fully automatic translators
from SLIM to (and between) the lower-level input formats
have been developed to abstract away these operational de-

tails. The first version of the toolset works as of April
2009 and it is currently being extended for the final ver-
sion. Therefore, we shall only sketch the possible analyses
supported by the final toolset.

The simulator generates a trace describing a single inter-
action scheme between components. Model checking tech-
niques can be employed to exhaustively verify a model against
a property, i.e, the formalised requirement. The probabilis-
tic counterparts of these compute probabilities. The prop-
erties are entered in a user-friendly manner via property
patterns; a collection of often-used templates with accom-
panying high-level descriptions. Translators shall transform
these templates to the underlying formal logics, like Linear
Temporal Logic and Continuous Stochastic Logic.

To facilitate the analysis of safety and dependability as-
pects, fault trees can be generated via FSAP, an extension of
NuSMV. Fault trees describe which faults could have caused
the system to enter a particular mode, which is called the
top-level event. If enough probabilistic information is given
in the SLIM model, it is also possible to compute the prob-
ability of the top-level event using MRMC by transforming
the fault tree to its underlying Markov chain. Failure Mode
and Effects Analysis (FMEA) tables can also be automat-
ically generated using FSAP as well. They describe which
modes may be entered when a fault occurs.

For complex systems that implement Fault Detection, Iden-
tification, and Recovery (FDIR) strategies, it is also im-
portant to verify their effectiveness. We plan to leverage
the above mentioned analyses for that. These analyses re-
quire the modelling of partial observability. The keyword
observable is reserved for this in SLIM and can be at-
tached to Boolean output data ports. A value change of
an observable port may be considered as a fault detection
means for a previously occurred fault. The observable at-
tributes can also be used for diagnosability analysis, which
concerns whether a component, regardless of its FDIR sys-
tem, has proper, or overly, outgoing Boolean data ports from
which a faulty state can be deduced.

5. CONCLUSIONS
This paper briefly sketched the SLIM modelling language,
whose semantics can be considered as a (first) formal inter-
pretation of AADL and its Error Model Annex. We cur-
rently are bringing our results to the AADL standardisation
body. The first version of the formal verification toolset that
supports SLIM specifications is working and it is currently
being extended. For more information, we refer to [2], where
an in-depth description of SLIM and its semantics are cov-
ered and [3], which comprehensively covers the COMPASS
project.

6. REFERENCES
[1] Website of the COMPASS Project

http://compass.informatik.rwth-aachen.de/
[2] M. Bozzano, A. Cimatti, M. Roveri, J.-P. Katoen, V.Y.

Nguyen, T. Noll, Codesign of Dependable Systems: A
Component-Based Modeling Language in 7th
MEMOCODE. IEEE Computer Society, 2009.

[3] M. Bozzano, A. Cimatti, J.-P. Katoen, V.Y. Nguyen,
T. Noll, M. Roveri, The COMPASS Approach:
Correctness, Modelling and Performability of Aerospace
Systems in 28th SAFECOMP. Springer, 2009.

286


