
A linear logic semantics for object-oriented, deductive

and active databases

M.Bozzano G.Delzanno M.Martelli
DISI - Università di Genova,

Via Dodecaneso 35, I-16146 Genova, Italy
e-mail: bozzano@educ.disi.unige.it,

{giorgio,martelli}@disi.unige.it
phone: +39-10-3536727 (Martelli)

Abstract

Girard’s linear logic [18] provides powerful means for studying state transfor-
mations and resource consumption in computations within a completely logical
framework.

The starting point of this work is Forum [22, 23], a presentation of higher
order linear logic which is an abstract logic programming language[24], i.e., complete
with respect to uniform proofs (cut-free and goal-directed proofs). A subset of
Forum’s formulas which form the logic programming language Ehhf [11, 13], have
been isolated and proved to be well-suited to encode a notion of state into sequents
and proofs, to model state updates, and to provide constructs for parallel execution.

In this paper, we will show how it is possible, using the language Ehhf , to define
a clean and simple semantics for object-oriented, deductive and active databases in
a completely logical setting, that accounts for the various aspects of computation.
In order to do this, we will briefly describe the semantics of Chimera [9, 19], an
example of data model and language for DBMS which supports object-oriented,
deductive, and active database features.

Keywords: higher order linear logic, abstract logic programming language,
object-oriented, deductive and active databases.

1 Introduction

Linear logic [18] has acquired more and more importance in the last years, especially
in the context of logic programming. Among the reasons for this success, there is the
possibility of giving a natural encoding of notions such as state, events and resources, and
of modeling state updates and concurrent computations in a completely logical setting.
Linear logic, in fact, appears to be a logic of occurrences, in which a formula can be viewed
as either an unlimited resource or as a limited one (this corresponds to the difference
between unbounded and bounded context in sequent calculus); further, the possibility
of modeling state updates in a logical way allows to overcome various problems related
with traditional approaches (think about the primitives assert and retract in Prolog and
the various update languages in deductive databases). Various languages have been
developed; these include LO [1, 2, 3], ACL [21], Lolli [20], and Forum [22, 23]. Forum,
in particular, is a presentation of full linear logic which is complete with respect to
uniform proofs, i.e., cut-free and goal-directed ones. The language Ehhf represents an

1

attempt to isolate a subset of Forum’s connectives which is both rich enough to model
the notions reported above, and particularly simple to implement. A computation, in this
context, can be viewed as proof construction (this is the so called proof as computation
interpretation of linear logic).

In this paper we shall deal with applications of linear logic to databases. We will
show how linear logic can give an account for several notions such as object-oriented
data models (data can be naturally viewed as resources), deductive rules, and active rule
management; this will allow us both to give a clear and simple semantics for such kinds
of databases, and to define a rich programming language based on linear logic that can
be used in this context. The presence of the ..

...........
........
................................ connective in Ehhf makes it more suitable

than other languages (see for example [20] for an application of Lolli to databases) to
represent states and concurrent execution.

Current trends in database management systems (DBMS) include extensions to in-
corporate object modeling capabilities into deductive databases [4], or to incorporate
triggers and constraints into object-oriented DBMS (OODBMS) [16, 17], or to enhance
SQL with object-oriented capabilities [14]. A system, whose goal is specifically the inte-
gration of object-oriented, deductive and active capabilities has been developed as part
of the ESPRIT Project Idea [6, 7]. In this work we shall describe the data model of Idea,
called Chimera [9, 19, 8], and we shall give a semantics for it. We have chosen Chimera
because it is a meaningful example of the integration of different paradigms, and, though
not a commercial system, it is actually implemented.

It seems important here to base the semantics of such languages on a general purpose
logic (Linear Logic) instead of studying ad hoc logical system (i.e. transaction logics to
solve the problem of assigning a meaning to updates). Also, one of our future goals is to
study all these formalisms in order to understand if they can be seen as subsystems of
Linear Logic.

The interpretative approach sketched in this paper could also yield interesting results
from the point-of-view of the design of specification languages based on logic languages
like, for instance, Forum, and λProlog.

The rest of this paper is organized as follows: in section 2 we shall give a brief overview
of Ehhf , in section 3 we shall describe the main features of Chimera, and, finally, in section
4 we shall give a semantics for Chimera.

2 The language Ehhf

The linear logic language Ehhf [11, 13], standing for extended hereditary Harrop formulas,
is a generalization of the system F&O[12] which has been defined to model state-based
computations and in particular object-oriented aspects in Forum [22, 23].

For the sake of brevity, we shall not deal here with a formal proof theory (sequent
calculus) for Ehhf ; instead, we shall limit ourselves to an informal presentation of the
various rules. The reader can refer to [15] for a general presentation of sequent calculus,
and to [11] for a detailed proof theory for Ehhf .

The linear connectives considered in the language are ..
...........
........
................................ , &, −◦, ⇒, ∀τ for each type

τ , and the logical constants ⊤ and ⊥. The two implications are written also ◦− and
⇐, usually to denote the top level implication of program clauses. The class of Forum
formulas is restricted to two main classes, D- and G-formulas (D stands for definite
clauses and G for goals):

D ::= D & D | ∀x.D | H ◦−G | D ⇐ G | H.

G ::= G& G | G
..
...........
........
................................ G | ∀x.G | D −◦G | D ⇒ G | A | ⊥ | ⊤.

H ::= H1
..
...........
........
................................ H2 | Ar.

R ::= R & R | R
..
...........
........
................................ R | ∀x.R | ⊥ | Ar.

Here A represents a generic atomic formula, whereas Ar is a rigid atomic formula,
i.e., whose top-level functor symbol is a constant. R-formulas are used to match the final
result of a computation.

According to the proof as computation interpretation of linear logic, sequents repre-
sent the state of a computation. The left hand side of a sequent can be partitioned into
two parts (Γ and ∆) consisting of the multi sets of unbounded and bounded resources,
respectively; moreover, the right hand side of a sequent can be divided into two parts
(Ω and Θ) which contain, respectively, processes to be executed (goals) and atoms rep-
resenting the state of the computation (for instance a database state). Then sequents
assume the following form:

Γ;∆[Φ]→Σ Ω || Θ,

where Γ and ∆ are multi sets of D-formulas, Φ is an R-formula, Ω is a multi set of
G-formulas, and Θ is a multi set of atomic formulas.

The rules of Ehhf , defined in Appendix A, are divided into right rules (or search
rules) and left rules. Right rules define the behavior of the various connectives: ⊤ is
used to manage termination, ⊥ to encode a null statement, & to split a computation
into two branches which share the same resources, ∀ to encode a notion of hiding, ..

...........
........
................................ to

represent concurrent execution, ⇒ and −◦ to augment the resource context (respectively,
the unbounded and the bounded context). The left rules define backchaining over clauses
built with the connectives ⇐ and ◦−. The rule for ◦− is similar to Prolog rewriting,
except that multiple-headed clauses are supported; besides, a clause can be reusable
or not depending on which context it appears in. The rule for ⇐ allows to depart an
independent branch in an empty context (this is often useful to verify side conditions or
make auxiliary operations).

In section 4, we shall see how the behavior of linear connectives can be successfully
exploited to give a semantics for databases. For this purpose we will study the data
model Chimera since it enjoys many interesting features of database languages as we will
describe in the following section.

3 An overview of Chimera

The data model of Idea, called Chimera [8, 9, 19], is an object-oriented, deductive, active
data model in that: it provides all concepts commonly ascribed to object-oriented data
models (such as object identity, complex objects and user defined operations, classes,
inheritance); it provides capabilities for defining deductive rules (used to define views
and integrity constraints, to formulate queries, to specify methods, to compute derived
information); finally, it supports a powerful language for defining triggers. In this section
we shall briefly describe the main features of Chimera.

Objects and Values.
Chimera is a class based object oriented language for DBMS with multiple inheritance.

Objects are abstractions of real world entities, and are distinguished from each other by
means of unique object identifiers (OIDs). The state of an object can be viewed as a
collection of attributes (i.e., functions mapping an object to a uniquely defined value).
Objects can be manipulated by means of operations (or methods), which are guarded
procedures. An operation is defined by means of passive rules of the form Head ←
Body. Objects are divided into persistent and temporary ones, depending on whether
they survive a database session or not.

Classes.
The notion of class emphasizes the membership of objects in a common set of instances;
classes are defined, populated, and deleted explicitly. Class attributes are functions map-
ping an entire class to a unique value. Class operations manipulate an entire class rather
than individual instances (they can for example manipulate class attributes). Object
classes may be recursively specialized into subclasses, resulting in a taxonomic hierarchy
of arbitrary depth. A subclass inherits all attributes and operations from its super-classes,
but may redefine their implementation and add new ones.

Example 3.1 The real world entities ‘person’ and ‘employee’ can be modeled in Chimera
by the following definitions:

define object class person
attributes name: string(20)

income: integer
profession: string(10)

operations changeIncome (in Amount: integer)
c-attributes lifeExpectancy: integer
c-operations changeLifeExpectancy (in Delta: integer,

out NewValue: integer)
end

define object class employee
super-classes person
attributes emplNr: integer

mgr: employee
salary: integer

c-attributes maximumSalary: integer
end

Triggers.
Triggers or active rules are a means of introducing specific reactions to particular events
relevant to the database. Such events include database specific operations (queries and
updates), operation calls and constraint violations. The execution of reactions is subject
to conditions on the database state reached whenever an event is monitored; further,
triggers are prioritized. When one of the events of an active rule occurs, we say that
the active rule is triggered. At given points of time, active rule processing is started:
every triggered rule in considered and, if the condition associated with it is satisfied, the
reaction is executed. Triggers can be defined as either immediate or deferred, depending
on whether they are executed immediately or at the the end of the user transaction that
has caused the triggering.

Example 3.2 An example of trigger might be the following:

define trigger adjustSalary for employee
events create

modify (salary)
condition Self.salary > Self.mgr.salary
actions modify (employee.salary, Self, Self.mgr.salary)

end

Queries and Updates.
A query in Chimera consists of a formula F and a target list T . The formula F is
evaluated over the current state of the database, returning bindings for the variables in
T . Updates in Chimera support object creation and deletion, object migration from one
class to another, state change or change of persistence status of objects. Finally, Chimera
supports a conventional notion of transaction, with user-controlled commit and rollback
primitives.

Example 3.3 Typical queries in Chimera look like

select (X.name where employee(X), X.salary < 5000)

select (X.name,Y.brand where person(X), car(Y), Y.owner=X).

4 A linear logic semantics for Chimera

In this section we will show how the various features of Chimera can be modeled using the
language Ehhf . We shall not deal explicitly with deductive rules, as, of course, this kind
of rules are freely available in the context of a logical sequent calculus. All the details of
the presented work can be found in [5]. In the following, we shall use the notation ∀.F
to indicate the universal closure of a formula F over all its free variables, and we shall
write variables using identifiers in capital letters. The syntax of terms and formulas will
be based on simply typed λ-calculus [10] (o will indicate the type of formulas).

Introduction.
We have chosen to model the concurrent execution of multiple user transactions, each of
which has a sequential code. Therefore, the right hand side of sequents will contain an
encoding of transactions together with a representation of the database state, while the
left hand side will contain the unbounded resources, i.e. clauses, and the bounded ones,
i.e. methods (as we shall see, a method must be activated before it can be used). The
formulas we shall use in the following paragraphs for writing clauses have the general
form

C1 & . . . & Cq ⇒ A1
..
...........
........
................................ . . .

..
...........
........
................................ An ◦− B1

..
...........
........
................................ . . .

..
...........
........
................................ Bm.

The informal meaning of such a formula is that, provided the conditions C1 . . . Cq hold,
the objects A1 . . . An can be rewritten into B1 . . . Bm.

Representing computations.
We can think of a computation in a DBMS as the parallel execution of some user trans-
actions submitted to the system. A transaction can be modeled by the term

trans(code),

where code (the transaction’s code) can be represented as a sequence of statements using
the non-logical symbol ; : o→ o→ o (this technique is known as continuations passing).
Hence, sequents will assume the following form:

Γ;∆[Φ]→Σ trans(code1), . . . , trans(coden) || Θ,

where, as said in section 2, Θ is a representation of the database state. The termination
of a transaction can be managed by the following clause put in the unbounded context
of a sequent:

∀. trans(⊥) ◦− ⊥.

Object and class representation.
Let’s now see how a hierarchy of classes can be modeled in our system (for the sake of
simplicity, we shall limit ourselves to the case of single inheritance). We can represent
the information on classes by clauses (in the unbounded context) of the form

class(clname, attrs,meths, supclname, extattrs),

where attrs and meths represent the attributes and methods of the class clname, while
supclname is the superclass and extattrs are the attributes which clname adds to those
inherited from its superclass. The root class will be indicated as topclass.

The database state will be represented by means of a collection of object terms (ap-
pearing in the state part of a sequent) of the form

object(clname, id, state),

where id is the object identifier, and state is a record of attributes.

Method representation.
A collection of methods can be modeled by a term like λid. meth1& . . .&methn. A user
transaction can invoke the execution of a method sending a message to an object, with
a statement such as

send(id,message),

where message specifies the name of the method and possibly some parameters. We can
define the semantics of send by means of the following clause:

∀. class(clname,attrs,meths, supclname,extattrs) ⇒
trans(send(id,message);r)

..
...........
........
................................ object(clname, id, state) ◦−

((meths id) −◦ trans(call(id,message);r)
..
...........
........
................................ frozen(clname, id, state)).

In the above clause, a mechanism of object freezing is used in order to prevent an
object from responding to other method calls (this can be problematic because an object
can migrate during its lifetime). A send primitive is then turned into a call primitive,
which actually invokes method execution (the method code is activated in the bounded
context). A method has the following base format:

∀. trans(call(id,message); r)
..
...........
........
................................ frozen(clname, id, state) ◦−

trans(r′; r)
..
...........
........
................................ object(clname, id, state′)

where r′ represents a sequence of statements added to the ones already present in r,
and state′ is the result of updating the old state.

Example 4.1 We could represent the relation between the classes person and employee

(see example 3.1) by the clauses

class(person, [name, income, profession],meths, topclass, []).
class(employee, [name, income, profession, emplNr,mgr, salary],meths′, person,

[emplNr,mgr, salary]).

For instance, the method changeIncome of the class person should appear something
like

λid. ∀. set(state.income, income + Amount, state
′) ⇒

trans(call(id, changeIncome(Amount));r)
..
...........
........
................................ frozen(person, id, state) ◦−

trans(r)
..
...........
.......
................................. object(person, id, state

′).

An object of type person could be, for instance, a term such as

object(person, id, 〈name : Smith, income : 10000, profession : employee〉).

Object creation and deletion.
Object creation and deletion can be modeled by the following clauses (iddaemon repre-
sents a process, running in parallel with user transactions, that generates new identifiers
for objects, and implemented as a simple counter):

∀. class(clname,attrs,meths, supclname,extattrs) &
buildrec(attrs,values, state) ⇒
trans(create(clname,values, id);r)

..
...........
.......
................................. iddaemon(id) ◦−

trans(r)
..
...........
........
................................ object(clname, id, state)

..
...........
........
................................ iddaemon(s(id)).

∀. trans(delete(clname, id);r)
..
...........
........
................................ object(clname, id, state) ◦− trans(r).

Queries.
For the sake of simplicity, we shall limit ourselves to queries on a single class, which can
be written:

select(attrlist intolist l from clname where cond).

The informal meaning of this query is to select all the objects belonging to the class
clname which satisfy the condition cond, and to retrieve into the list l the values of the at-
tributes specified in attrlist. We will assume an auxiliary operation get(object.attr, value)
for retrieving the value of an attribute. The condition cond can be expressed in the fol-
lowing way:

λobj.λattrs.cond1 and λattrs.cond2,

where cond1 is an and conjunction of get predicates which retrieve the needed values
of the attributes, while cond2 is a condition over such values; attrs represents a tuple
of variables.

Example 4.2 The first query of the example 3.3 can be written like this:

select([name] intolist l from employee where

λobj.λs.get(obj.salary, S) and λs.(s < 5000)).

Triggers.
Triggers have the form

(name, events, condition, actions),

and can be associated to a class definition. The predicate class can be modified adding
a new parameter trlist which contains the list of triggers associated with the respective
class. We can add a parameter to a user transaction, which becomes

trans(code, activetr),

where activetr is the list of activated triggers (actually, their code). The following
rules manage trigger execution and transaction termination (we consider here deferred
triggers):

∀. trans(⊥, [t|l]) ◦− trans(t, l).

∀. trans(⊥, []) ◦− ⊥.

All the clauses for the primitives of the DBMS must then be modified in order to
take into account rule triggering. For instance, the clause for modify (the primitive for
attribute modification) now becomes something like

∀. set(state.attr,v, state
′) &

checktrigg(clname,modify(attr),t′) &
append(t,t′,t′′) ⇒
trans(modify(clname.attr, id,v);r,t)

..
...........
........
................................ object(clname, id, state) ◦−

trans(r,t′′)
..
...........
........
................................ object(clname, id, state

′).

A number of extensions for trigger management can be added with little effort; these
extensions include trigger inheritance, immediate triggers, and priority triggers.

Other extensions.
Here, we shall briefly sketch the implementation of other features of Chimera that, for rea-
son of space, we cannot discuss in details. Class attributes and methods can be managed
by means of object terms like

c object(clname, state,meths)

in the state part of a sequent; method representation and calling can be simplified
in this case. Views can be coded by means of clauses in the unbounded context of a
sequent (they can be treated as predefined queries). Operations over lists of elements
(which are very common in databases, and can be used to process query outputs) can be
implemented in a straightforward manner. The notions of persistent and temporary object
can be managed adding a new parameter lifetime to the terms representing objects, and
modifying the relevant rules. Multiple inheritance can be supported with little effort.
User transactions can be enriched with some notion of concurrency control, which can be
implemented using some form of locking protocol, and with commit-rollback primitives,

which can be implemented, as in real databases, with some kind of log file. Actually, the
meta-level behavior of an interpreter for Ehhf(through backtracking) already provides us
with some notion of ‘rollback’, to some extent.

5 Conclusions and future work

In this paper, we have presented a logical framework which allows to model various as-
pects of database management systems: state updates, queries, object-oriented features,
deductive rules, triggers, user transactions, and so on. Viewing a computation as a search
for uniform proofs provides us with a clear operational semantics, and, what’s more, the
logical aspects of the framework we have used give us a well-founded declarative seman-
tics.

The authors are persuaded that it would be very useful to build an effective imple-
mentation for the proof system presented here, so future work might include a λ-Prolog
implementation for it. Moreover, future activity could address the problem of defining
a general interpreter for the language Ehhf , which appears to be very promising in the
context of linear logic programming.

References

[1] J.M. Andreoli and R. Pareschi. Linear Objects: Logical Processes with Built-In In-
heritance. In D.H. Warren and P.Szeredi, editors, Proceedings of the 7th International
Conference on Logic Programming, pages 495–510. The MIT Press, Cambridge, MA,
1990.

[2] J.M. Andreoli and R. Pareschi. Communication as Fair Distribution of Knowledge.
In Proceedings of OOPSLA ’91, 1991.

[3] J.M. Andreoli and R. Pareschi. Linear Objects: Logical Processes with Built-In
Inheritance. New Generation Computing, 9:445–473, 1991.

[4] E. Bertino, G. Guerrini, and D. Montesi. Deductive Object Databases. In M. Tokoro
and R. Pareschi, editors, Proceedings of the 8th European Conference on Object-
Oriented Programming, volume 821 of Lecture Notes in Computer Science, pages
213–235, 1994.

[5] M. Bozzano. Deductive databases in linear logic, 1997.

[6] S. Ceri and P. Fraternali. Draft of the idea methodology. Technical report, ESPRIT
Rep.IDEA.DD.22P.001.02, 1994.

[7] S. Ceri and P. Fraternali. Designing Database Applications with Objects and Rules:
the IDEA Methodology. Addison Wesley, 1997.

[8] S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca. Active rule management in
Chimera. In J. Widom and S. Ceri, editors, Active Database Systems. Morgan
Kaufmann, 1994.

[9] S. Ceri and R. Manthey. Consolidated specification of Chimera. Technical report,
ESPRIT Rep.IDEA.DE.2P.006.01, November 1993.

[10] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56–68, 1940.

[11] G. Delzanno. Logic & Object-Oriented Programming in Linear Logic. PhD thesis,
Università of Pisa, Dipartimento di Informatica, December 1996.

[12] G. Delzanno and M. Martelli. Objects in Forum. In Proceedings of the International
Logic Programming Symposium, Portland, Oregon, pages 115–129. The MIT Press,
1995.

[13] G. Delzanno and M. Martelli. Proofs as computations. In Proceedings of the GULP
96, pages 115–129, 1995.

[14] L.J. Gallagher. Object SQL: Language Extensions for Object Data Management.
In Proceedings of the 1st International Conference on Information and Knowledge
Management (CIKM), Baltimore, Maryland, November 1992.

[15] J.H. Gallier. Logic for Computer Science. Harper and Row, 1986.

[16] N. Gehani and H. Jagadish. Ode as an Active Database: Constraints and Triggers.
In Proceedings of the 17th International Conference on Very Large Data Bases, pages
327–336, 1991.

[17] N. Gehani, H. Jagadish, and O. Shmueli. Event Specification in Active Object-
Oriented Databases. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 81–90, 1992.

[18] J.Y. Girard. Linear logic. Theoretical Computer Science, 50:1:1–102, 1987.

[19] G. Guerrini, E. Bertino, and R. Bal. A formal definition of the Chimera object-
oriented data model, 1995.

[20] J. Hodas and D. Miller. Logic Programming in a Fragment of Intuitionistic Linear
Logic. Information and Computation, 110(2):327–365, 1994.

[21] N. Kobayashi and A. Yonezawa. Asynchronous Communication Model based on Lin-
ear Logic. Formal Aspects of Computing, 7:113–149, 1995. Short version appeared in
Joint International Conference and Symposium on Logic Programming, Washington,
DC, November 1992, Workshop on Linear Logic and Logic Programming.

[22] D. Miller. A Multiple-Conclusion Meta-Logic. In Proceedings of the 1994 Symposium
on Logics in Computer Science, Paris, pages 272–281, 1994.

[23] D. Miller. Forum: A Multiple-Conclusion Specification Logic. Theoretical Computer
Science, 165(1):201–232, 1996.

[24] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform Proofs as a Founda-
tion for Logic Programming. Annals of Pure and Applied Logic, 51:125–157, 1991.

A Proof system

Search Rules

Γ;∆[Φ] →Σ ⊤,Ω || Θ
halt

Γ;∆[Φ] →Σ Ω || Θ

Γ;∆[Φ] →Σ ⊥,Ω || Θ
erase

Γ; ∆[Φ] →y:τ,Σ A[y/x],Ω || Θ

Γ; ∆[Φ] →Σ ∀τ x.A,Ω || Θ
hide (i)

Γ;∆[Φ] →Σ A1,Ω || Θ Γ;∆[Φ] →Σ A2, Ω || Θ

Γ;∆[Φ] →Σ A1&A2, Ω || Θ
and

Γ; ∆[Φ] →Σ A1, A2, Ω || Θ

Γ;∆[Φ] →Σ A1
...
.............
............................... A2,Ω || Θ

sync
B, Γ;∆[Φ] →Σ A, Ω || Θ

Γ;∆[Φ] →Σ B ⇒ A,Ω || Θ
augment

Γ; B, ∆[Φ] →Σ A,Ω || Θ

Γ;∆[Φ] →Σ B −◦ A,Ω || Θ
fire

Backchaining

Γ;Λ →Σ Ω || Ξ

Γ; ∆ →Σ Υ || Θ
bc (ii)

Verify

Γ; ∅ [Φ] →Σ ∅ || Θ
verify (iii)

Move

α ∈ ΠΣR
Γ; ∆ →Σ Ω || α, Θ

Γ;∆ →Σ α, Ω || Θ
move

Context Rule

Γ; ∅ [Φ′] →Σ G || ∅ Γ; Λ[Φ] →Σ Υ || Θ

Γ; ∆[Φ] →Σ Υ || Θ
empty (iv)

Given an H-formula H =..
...........
........
................................
i:1...n Ai, let H⋄ denote the multiset {A1, . . . , An}, and

〈D〉 the set of instances of a clause D with implications as top level connective (i.e.,
〈D&E〉 = 〈D〉 ∪ 〈E〉).

Definition A.1 (Subsystems) A collection of subsystems of Υ, a multiset of atomic
formulas, w.r.t. Γ and ∆, two multisets of D-formulas, is given by: the tuple (∆u, ∆b, ∆g),
if ∆u = {D1, . . . , Dm} ⊆ Γ, ∆b = {Dm+1, . . . , Dn} ⊆ ∆, Hi ◦− Bi ∈ 〈Di〉, i : 1 . . . n;
υ =

⊎
i:1...n H⋄

i ⊂ Υ, and, ∆g is the multiset {Bi | i : 1 . . . n}; the tuple (∆u, ∆b, ∅), if
∆u ⊎∆b ≡ {D}, the H-formula H ∈ 〈D〉, and υ ≡ H⋄ ≡ Υ.

Definition A.2 (Multi-application resolvent) Let (∆u, ∆b, ∆g) be a collection of
subsystems of Υ ⊎ Θ w.r.t. Γ and ∆. If ∆g 6= ∅, then a multi-application resolvent
of (Γ, ∆, Υ, Θ) is given by the tuple (Γ, Λ, Ω, Ξ) where Λ = ∆ \∆b, Ω = Υ \ υ, Ξ = Θ \ υ.
If ∆g = ∅, (Γ, Λ, Ω, Ξ) is a resolvent iff Λ = ∆ \∆b, Ω = Υ \ υ, and Ξ = Θ \ υ are all
empty.

A.1 Side conditions

The rules bc, verify, empty can be applied if and only if the right-hand side consists of
atomic formulas, indicated by Υ; in the rule move, ΠΣR

is a set of atomic state formulas.
The side condition (i) of the hide rule requires that y : τ is not present in the signature Σ;
(ii) requires (Γ, Λ, Ω, Ξ) to be a multi-application resolvent for (Γ, ∆, Υ, Θ) (if Λ, Ω and Ξ
are empty, the bc reduce to an axiom scheme); (iii) requires Σ : Φ;→ Θ to be provable in
Forum. Finally, (iv) requires that E ⇐ G ∈ 〈D〉, D ∈ ∆ and then Λ = (∆ \ {D})⊎{E},
or D ∈ Γ and then Λ = ∆ ⊎ {E}.

