Two formal methodologies of Model-Based Safety
Assessment for Fault Tree Analysis

Track 3: Product reliability assessment and management of 2023 7th International Conference on System Reliability and Safety (ICSRS)

Isabella Lanzani
Department of Electronics,
Information and Bioengineering (DEIB)
Politecnico di Milano
Italy, Milano
isabella.lanzani @polimi.it

Alessandro Cimatti
Fondazione Bruno Kessler
Povo, Trento, Italy
cimatti @fbk.eu

Abstract—During the design of safety-critical systems, the
automatic estimation of the reliability of a proposed architecture
could be a valuable asset. In the aerospace sector, according
to ARP4754A [17] and ARP4761 [16] standards, the design
development process must be performed in parallel with the
safety assessment process. The practical reason is that an
architecture that does not comply with safety requirements
must be modified accordingly as soon as possible. This paper
illustrates two existing techniques that can enable the automatic
generate fault tree evaluations from an architectural model. A
discussion over their advantages and their possible industrial
implementation is provided, alongside a practical case study.

Index Terms—Safety analysis, FTA, MBSA, AltaRica, xSAP

ACRONYMS
AHRS Attitude and Heading Reference System
CCA Common Cause Analysis
CMA Common Mode Analysis
FCS Flight Control System
FEM Failure Effect Modelling
FHA Functional Hazard Analysis
FLM Failure Logic Modelling

FMEA Failure Modes and Effects Analysis
FTA Fault Tree Analysis
MBSA Model-Based Safety Analysis

MCC Most Critical Condition

MCSs Minimal Cut Sets

PSSA Preliminary System Safety Assessment
SSA System Safety Assessment

TLE Top Level Event

Leonardo Helicopters, as part of PNRR n°352

Riccardo Scattolini
Department of Electronics,
Information and Bioengineering (DEIB)
Politecnico di Milano

riccardo.scattolini @polimi.it

Marco Bozzano
Fondazione Bruno Kessler
Povo, Trento, Italy
bozzano @fbk.eu

Enrico Zio
Energy department
Politecnico di Milano
Milan, Italy
MINES Paris-PSL
Centre de Recherche sur les
Risques et les Crises (CRC)
Sophia Antipolis, France
enrico.zio@polimi.it

Italy, Milano

Stefano Tonetta
Fondazione Bruno Kessler
Povo, Trento, Italy
tonettas @fbk.cu

I. INTRODUCTION - SAFETY IN AVIONICS

The world of avionics is full of necessary complexities
(e.g. redundancy, mitigation, detection...) due to the high risk
of application. Strict standards regulate and limit this risk,
guided by the classic safety criterion ‘the higher the risk, the
lower the probability of occurrence’. The ARP4761 [16] is
the current pillar of this standardisation process: it regulates
the type of assessment accepted by certification agencies and
formally explains how to guarantee the safety of the system.

Following the well-known V-cycle (Figure 1), a safety
process begins with Functional Hazard Analysis (FHA) and
continues with Preliminary System Safety Assessment (PSSA)
and System Safety Assessment (SSA), which constitute the
two cores of verification and validation, respectively. The
safety process starts with an initial assessment at the aircraft
level, which lays the foundation for the specifications that the
final product must have. In this paper, the focus will be on
the system level, for the safety evaluation at Flight Control
System (FCS) level.

FHA consists in the tabular examination of the system func-
tions to identify fault conditions and classify them according
to their severity. This is the beginning of the overall safety as-
sessment process. The PSSA and SSA have a similar structure
and the main difference between them is the objective.

The PSSA is a systematic evaluation of a proposed archi-
tecture and its implementation, based primarily on the severity
of the failures defined in FHA. PSSA must determine the

System Requirements and
Objectives

Aircraft FHA

Certification

FE&P
Aircraft FTA

FE&P

Aircraft Integration Cross-check

System Integration Cross-check

1
|
|
|
|
|

Derived Safety |
Requirements

Fig. 1: Safety Process V-cycle

safety requirements for all elements of the architecture. It
is intended to “guide the design” and is an iterative process
that begins early in the system design process. This is the
time when protection mechanisms and architectural attributes
are considered and implemented, so its results are extremely
important (e.g. in dialogue with suppliers).

On the other hand, the objective of SSA is to demonstrate
that all relevant safety objectives have been achieved, validat-
ing the results of PSSA. The SSA is a detailed examination
of the safety-relevant aspects of the system: once completed,
it verifies that the system is ready to be certified.

Both SSA and PSSA are based on Fault Tree Analysis
(FTA) (ARP5761 considers other methods instead of FTA, but
this is the most widely used method). The FTA is a top-down
analysis with the objective of calculating the probability of a
given system failure condition, called top-event, by analysing
the combination of component failures, called basic-events,
that contribute to its occurrence. The ultimate goal is to
demonstrate compliance with severity requirements. However,
FTA is nothing more than an (intelligent) reinterpretation of
the safety-focused system architecture, and this work moves
in the direction of reducing the waste of time, labour and error
generation that manual calculation of FTA generates.

This article will compare two formal methods for auto-
matic fault tree calculation. The comparison will highlight
their characteristics in order to propose a formal process
that encompasses both methodologies within the safety V-
cycle. Furthermore, using a case study, an explanation of the
semantics and behaviour of the two tools is proposed.

In the remainder of the paper a classification of current
Model-Based Safety Analysis (MBSA) techniques is presented
in Section II, with a focus on two existing methods (AltaRica
and xSAP). In Section III, the case study is explained. In
Section 1V, the two strategies considered are analysed and,
finally, in Section V, conclusions and consideration over
possible future works are drawn.

II. MBSA

The term MBSA refers to all those approaches that, by using
a model to determine the reliability properties of the system,
aid safety assessments. There is a kind of misuse of this term

which, for the sake of clarity, is limited here to formal methods
that create models translatable into a FTA. However, there is
not a strict topological equivalence between such models and
FTA, since models could be much more detailed (e.g. they
could take into consideration dynamic aspects of the system
that FTA does not consider).

A classification of the different MBSA techniques was made
in 2011 by Lisagor and Kelly [9] and has since then been
reffered to in numerous articles [5] [6].

It divides the methodologies by model provenance and
semantics of component dependencies.

The model at the centre of MBSA is divided between two
extremes: the design model and an autonomous safety model
built for the purpose. The first extreme ensures greater con-
sistency with the design model. Furthermore, the development
and safety processes can share common modelling environ-
ment, languages and tools. The second extreme allows for a
thorough representation of unintended dependencies between
components that the Nominal Model does not consider. Hybrid
models contain features of both methods: they start from the
architecture of the design model, but instruct safety engineers
to characterise the behaviour of individual components for
safety assessment purposes.

The second distinction involves Failure Logic Modelling
(FLM) and Failure Effect Modelling (FEM). In FLM, com-
ponents exchange only failure modes: they propagate failure
information expressed via Boolean or string-like constructs
(e.g. “no pressure supplied” for a pump that fails to pressurise
a downstream water flow). Models using these constructs can
easily be driven to create an FTA. The main disadvantage of
this approach is the difficulty in reusing the components for
a different contexts. The components are characterised with
respect to an implicit design intent. A more realistic repre-
sentation of components is the FEM, in which components
exchange abstract flows of ’real’ physical entities (e.g. mass
or energy). Fault information is more descriptive than the
previous Boolean type labelling and reuse of components is
possible. A major disadvantage is that for FTA computation,
more complex algorithms are needed. There is also a hybrid
category in this classification axis wherein intentional interac-
tions are modelled with FEM, while unintentional ones with
FLM.

The article focuses on two different methodologies for
calculating FTA: AltaRica and xSAP. In Figure 2, they
are represented according to the previously mentioned two-
dimensional classification. AltaRica allows both hybrid and
FEM semantics.

ENGINEERING SEMANTICS OF COMPONENTS REUSE

|

Hybrid

FEM
approaches

FLM

AltaRica AltaRica

Dedicated safety
model

I 1] (2]

XSAP

.

Extension from
design model

)

Fig. 2: Classification of the considered techniques

Both methodologies originated from aerospace projects and
are therefore particularly suitable for solving problems specific
to this sector (e.g. common cause failures).

In the paper cited above [9], it is argued that the PSSA could
be performed from positions labelled 1 or 2 (Figure 2) and,
thus, AltaRica fulfils the specific requirements of the PSSA.

It is shown [8] that model checking techniques can be used
in the verification phases, producing good results in aiding the
SSA process phase.

As will be explained in Section V, since xSAP is able to
replicate an AltaRica model, a proposed workflow with these
two tools can cover the entire V safety cycle.

A. AltaRica

AltaRica is a safety modelling language first proposed in
1999 by Point and Rauzy. Since then, it has undergone a series
of modifications up to the latest version we considered in this
work, AltaRica3.0.

AltaRica is a high-level modelling language dedicated to
probabilistic safety analyses. Prior to any evaluation, models
are ‘flattened’ and their semantics are represented in terms of
systems of protected transitions, to generalise classical safety
formalisms, like reliability block diagrams or Markov chains
[11]. In AltaRica, components are characterised by events,
state variables and flow variables: a transition between states
is triggered by events, whereas flow variables are calculated
from the current state.

An example of an AltaRica language specification for
a sensor Attitude and Heading Reference System (AHRS)
is shown in Figure 3. In this, the Object Oriented prone
specification, that allows the definition of hierarchical and
reusable components, is evident. “Class LossErrCom” contains
the skeleton of all components that could fail in the event
of a loss or erroneous event. Following the same criterion,
any class defined in this way can be instantiated several times
in the system definition. Looking at the language, the “Class
AHR” instantiates the state variable s, and the flow variables
valid and date, and initialises them. The events loss and err
are defined, together with their probability. In the ‘transition’
instruction, their triggering changes the state of the system.
Given this state scenario, the ‘assertion’ instruction uniquely

class LossErrComp

(INiIt=WORKING) ;

parameter Real Lambda=(1);

parameter Real Lambda2=(1);

event loss (delay=exponential (Lambda)) ;
event =rr (delay=exponential (LambdaZ)) ;

State =

transition
loss : s==WORKING -> s:=F_LOSS;
err : s==WORKING -> s:=F_ERR;
end
class RHRS

Boolean sen_valid (reset=false) ;
Real sen_data (reset=0.0) ;
Real In (reset=0.0);
extends LossErrComp (Lambda =1.16e-5, Lambda2 =1.13e-7);
assertion
sen_vwvalid := if(s!=F_ross) then true else false;
sen_data := if (s==WORKING) then In else 6;:
end

Fig. 3: AltaRica block for AHRS inertial sensor

defines the changes of the flow variables with respect to the
state. The finite state automaton of the component AHRS are
depicted in Figure 4. After the model has been flattened, it

AHRS init

valid=true
data=TrueData

err loss
.H valid=true .E valid=falee
data=TrueData

data=erronecus
value (6) or Erroneous

Fig. 4: State transition formalism for AHRS

can be compiled as a Boolean equation in the .opsa format
(Open Probabilistic Safety Analyst, an ‘ad hoc’ format by
Rauzy [12]), which can be read by many fault tree compilers,
such as Arbre Analyst [3].

B. xSAP

The xSAP safety analysis platform provides several func-
tionalities for finite and infinite state synchronous transition
systems. In particular it supports the definition of failure modes
based on customisable libraries, an automatic model extension
system, the generation of safety analysis artifacts and their
probabilistic evaluation. The analysis performed by this tool
is logically equivalent to an exhaustive search through the
activation of all possible permutations of failure modes. The
permutations that lead to the satisfaction of the fault condition
expression are reported as Minimal Cut Sets (MCSs).

xSAP is used in the following workflow [1]:

Nominal Behaviour Modelling The Nominal Modelde-
scribes the behaviour of a given system when everything works

as expected (no faults). The model is written in the SMV
language [7].

Model Extension Model extension is performed to enrich
the Nominal Modelwith the specification of possible faults
that may influence the system behaviour. The result, the
extended Nominal Modelwith the defect behaviour, is called
the Extended Model. The model extension can be performed
manually or automatically. In the second scenario, the one used
in this work, the model extension is performed automatically
by xSAP. Similar to the nominal model, the Extended Model
is written in the SMV language.

Safety Evaluation The objective of safety evaluation is to
assess the robustness of a given system in the presence of
faults. Safety assessment of critical systems is typically per-
formed in parallel with system design to ensure that the system
meets the safety requirements necessary for its deployment
and use. Key techniques in this area are FTA, Failure Modes
and Effects Analysis (FMEA) and Common Cause Analysis
(CCA).

The most important aspect of xSAP is the implementation
of a family of routines for such analyses, based on state-of-the-
art model checking techniques. These include algorithms based
on BDD, SAT and SMT. Using these routines, it is possible to
validate the actual behaviour of the system as well as create ad-
hoc counterexamples for both nominal and Extended Models
of the system. The models created increase the complexity and
representativeness of the system itself.

Considering the same model example AHRS, the nominal
and its failure effect instructions are shown in Figure 5, for
the Nominal Model and Figure 6 for the Failure Extension
Instructions.

MODULE AHRS (d_env)

VAR
d_AHRS : real;
: boolean:
t(d AHRS) := 0;
=zt (d_AHRS) := d env;
(v_AHRS) := TRUE;
next (v_AHRS) := v_AHRS;

Fig. 5: xSAP module for AHRS, from Nominal Model

EXTENSION OF MODULE AHRS
SLICE sensor loss AFFECTS v_AHRS WITH

MODE AHRS loss{l.l6e-5} : Permanent Inverted(
data input << v_AHRS,
data wvarout >> v_AHRS,
event failure);-- >> fev AHRS loss);

SLICE sensor err AFFECTS d AHRS WITH

MODE AHRS err{l.l13e-7} : Permanent ErroneousByValue/(
data input << d_AHRS,
data varout >> d AHRS,
event failure);-- >> fev_ AHRS err);

Fig. 6: Failure Extension Instruction for AHRS

The fault specification contains two required fault models,
one for fault effects and the other for fault dynamics. Fault
Effects specifies how the affected part of the system model
changes due to the presence of the faults, whereas Fault
Dynamics specifies how the presence of the fault changes over
time (e.g. if it is a permanent fault or if it can be repaired).
In the example, Fault Effects for loss is “Inverted” (where
the valid signal boolean is forced from 1 to 0 to simulate
sensor loss) and for erroneous is “ErroneousByValue” (where
the data signal real is forced to a value other than the defined
value). For both faults the dynamic fault is set to ‘Permanent’
(to indicate that it is a non-repairable fault). The fault construct
is hierarchical: each module can have many slices, which show
the variables subject to the defined faults, and each slice can
have multiple modes, which describe how a specific fault mode
affects the defined variable. Probabilistic indicators are also
represented in the mode definition.

There is a strong difference with respect to AltaRica for
fault conditions that by their nature do not produce a prede-
fined output, such as ErroneousByValue. In xSAP, the effect
of the fault, due to the capabilities of the model checker, can
result in any one of an infinite number of (erroneous) values.
In AltaRica this multiplicity of values cannot be expressed,
as the flow variables are set to a specific value following the
‘assignment’ code segment.

III. SYSTEM AND MODEL

The case study considers the safety-relevant aspects of
an avionic voter for AHRS inertial data, in the architecture
depicted in Figure 7.

RS

"

FLIGHT CONTROL COMPUTER

Fig. 7: Voter Schematic

An attempt was made to realistically represent the hardware
components, in order to show how, due to the inherent modular
nature of MBSA, it is possible to save time in the calculation
of safety constructs.

This case study, although simple, is defined to contain
the main peculiarities of the aerospace sector, in particular
redundancies and fault detection algorithms.

The voter strategy consists, firstly, in discarding the AHRS
signals whose valid is zero, then in comparing the remaining
data in order to evaluate a coherent value from the sensor
measurements. Consistency is achieved if two measures sig-
nals show the same numerical value. Both valid and data
signals, are transmitted to the voter via busses connected to

the FCS through the ports of an I/O interface (called C1).
Similarly, the battery that powers the FCS is connected to a
port of another I/O interface (called C2). Of course, these ports
are not the only signals entering the FCS, but they are the ones
relevant to the case at hand.

Software specifications are irrelevant in this type of analysis:
software flaws are present in the FTA only as random internal
flaws, unrelated to the specific algorithm that they implement.
Safety-critical software undergoes a completely different cer-
tification procedure, and the curious reader is referred to the
analysis of DALSs and the process described in the standards
Do178 [14] and DO245 [13].

In order to focus on hardware component, this case study
does not contain random software failures (so it is assumed
that the voter logic is completely reliable). The components
that can fail are depicted in Figure 7 and listed in the following
table 1. The certificate authority states its safety requirements
in terms of “Probability of Failure per Flight Hour” [16], as
indicated in Table I by F'H.

Component | Instance Basic Events

Identifier Fault Typed Failure rate [FH]

AHRS a Loss of AHRS 1.16e-05

Erroneous of AHRS 1.13e-07

Power PS Loss of power 5.33e-07

Bus B Loss of (valid) channel 1.82e-07

/0 P Loss of port 2.61e-5

Interface C Loss of interface 4.56e-7

TABLE I: List of Faults

a) Modelling assumptions: Busses and I/O interfaces
only fail in the event of a ‘loss’, which is realistically justified
by the ARINC429 [4] protocol, the worldwide aerospace
industry standard. In this protocol, transmitted and received
signals strictly follow bit-code rules and any corrupted signal
is detected by the receiver-end due to the rule violation.
Furthermore, when detected, the protocol provides a specific
bit indicator for the incorrect state, here represented in the
valid fault signal (set to O in case of loss). To model this
safety-relevant feature, in both languages, the data and valid
signals have been separated into a Boolean and a real variable,
respectively, allowing for a more intuitive representation.

A note can be made about the ‘interface loss’ fault: it is
defined as the simultaneous loss of all ports connected to that
I/O interface: it is modelled as a common cause fault that
simultaneously triggers the loss faults of all affected ports.
Figure 8 shows the semantics of this specific common cause. In
AltaRica, common causes are defined in the ‘System’ (main)
block, which calls all component events that are triggered by
it. In xSAP, there is a specific function in the fault instruction
file to describe common causes.

b) Top Level Events: The first Top Level Event (TLE)
considered for this case study is the loss of inertial data:

Loss of voter := —wvoter_valid
The loss represents a fault condition of which the system
is aware: this is done according to two-out-of-three logic

AltaRica (inside "System" block)

parameter Real Lambda = 9e-9;

event cC_IOl (delay=exponential (Lambda)) ;
transition
CC_IOl: !Cl.P2.loss & !Cl.P4.loss &!Cl.P6.loss;

xSAP (inside failure extension instructions)
COMMON CARUSES

CAUSE CC_IOl{1.5e-9

MODULE Vport
FOR INSTANCES InterfaceInertial.P[246]
MODE port_loss.Vport_ loss WITHIN ;

Fig. 8: Common Cause declaration for AltaRica and xSAP

(signals are only compared when their validity is set to true,
and discarded otherwise), and only when the comparison is
sufficiently consistent, the voter_valid signal set to TRUE
and the inertial data entrusted to the FCS. Whatever set of
faults triggers this condition, the system reacts to this fault by
warning the crew.
FErroneous of voter := voter_valid A
voter_data # TrueData
The top erroneous event is more subtle: it implies that every-
thing works normally for the system. This particular failure
only occurs when several signals fail in an erroneous top event
while showing the exact same numerical value (with valid set
to true). The severity associated to this second TLE is greater
than the previous one. voter_valid is defined as follows:
voter_valid :=1if(C2.P.Out == PowerOn and

(P or Sy or Sy or S3))
then true else false
voter_data previously defined is composed by a Primary (P)
and the three Secondaries (S, S2, S3): these instances indicate
the three favourable possible outcomes of the comparison.
P = ((C1.P2.0ut and C1.P4.0ut and C1.P6.0ut)
and (C1.P1.0ut = C1.P3.0ut or
C1.P1.0ut = C1.P5.0ut or C1.P3.0ut = C1.P5.0ut))
S1 = (C1.P2.0ut and C1.P4.0ut and
C1.P6.0ut = false) and C1.P1.0ut = C1.P3.0ut)
Sy = (C1.P2.0ut and C1.P6.0ut and
C1.P4.0ut = false) and C1.P1.0ut = C1.P5.0ut)
S3 = ((C1.P4.0ut and C1.P6.0ut and
C1.P2.0ut = false) and C1.P3.0ut = C1.P5.0ut))
The voter_data signal exiting the voter is defined as follows:
voter_data :=
if (C2.P and C1.P1.0ut = C1.P3.0ut) then C1.P1.0ut
if (C2.P and C1.P3.0ut = C1.P5.0ut) then C1.P3.0ut
if (C2.P and C1.P1.0ut = C1.P3.0ut) then C1.P1.0ut
if Sp then C1.P1.0ut
if So then C'1.P1.0ut
if S3 then C3.P1.0ut else NaN

Note that internal checks and detection logic should not use

the ‘RealData’ signal, relying only on internal information
(e.g. cross-references), whereas the higher event definition
(e.g. erroneous) may do so.

IV. COMPARATIVE ANALYSIS

In this Section, a comparative analysis over the two formal
methods is proposed. The criteria for this comparison are:
numerical results, ease of modelling, and the goodness of
the tree structures produced, the validation capabilities over
both the model and the artifacts, and lastly, the computational
demand. Final considerations are proposed at the end of the
Section.

A. Numerical Results

Given the previously defined model we can analyze the
artifacts obtained by the two tools. The comparison for the
first TLE, the loss, is straightforward if we consider only
loss failures, and the resultant probability is the same from
both models: 9.93797. In this scenario, both tools produce the
MCSs represented in Table II. The case become more complex

N° | Order | Probability [FH] Components

1 1 5.33=7 PS.loss

2 1 4.56=7 cC_Io1

3 2 6.81—10 C1.P2.]oss C1.P6.loss
4 2 6.81—10 C1.P2.Joss C1.P4.loss
5 2 6.81~10 C1.P4.]oss C1.P6.loss
6 2 3.03710 C1.P4.]loss al.loss
7 2 3.03710 C1.P6.1oss al.loss
8 2 3.03710 C1.P2.loss a2.loss
9 2 3.03710 C1.P2.loss a3.loss
10 2 3.03710 C1.P6.loss a2.loss
11 2 3.03710 C1.P4.loss a3.loss
12 2 1.34—10 al.loss a2.loss

13 2 1.34—10 al.loss a3.loss

14 2 1.34—10 a2.loss a3.loss

15 2 4.75712 B2.loss C1.P4.loss
16 2 4.75712 B2.loss C1.P6.loss
17 2 4.75712 B4.loss C1.P2.loss
18 2 4.75712 B6.loss C1.P2.loss
19 2 475712 B4.loss C1.P6.loss
20 2 475712 B6.loss C1.P4.loss
21 2 211712 B4.loss al.loss

22 2 211712 B6.loss al.loss

23 2 211712 B2.loss a2.loss

24 2 211712 B2.loss a3.loss

25 2 211712 B6.loss a2.loss

26 2 211712 B4.loss a3.loss

27 2 3.31 14 B2.loss B4.loss
28 2 3.31~ 14 B2.loss B6.loss
29 2 3.31 14 B4.loss B6.loss

TABLE II: Minimal Cut Sets for loss TLE

when adding the erroneous basic event of AHRS compo-
nents (second row of Table I). Recalling previous boolean
expressions, voter’s loss can also result from the numerical
comparison of erroneous signals. This can be produced from
the same xSAP model without any additional effort, just by
adding the failure instruction ErroneousByValue discussed in
Section II-B. AltaRica, instead, requires the user to explicit
the numerical flow variable in case of erroneous (referring to
Figure 3, where assertion imposes data variable from AHRS

to be equal to 6 outside the nominal state). In this way, by
nesting the same AHRS component in the main, two erroneous
faults will displace the same output value and the loss will
not be reported: it is necessary to modify the model (e.g.
by creating two models, where one avoids the use of nested
components to represented this particular case).

The Figure 9, depicts the TLE described by “Erroneous of
voter” TLE, previously defined, as shown by the xSAP fault
tree viewer.

][

P=1130007 P- 1130007 P-150007 P- 1130007 P= 110007 P-ige

Fig. 9: xSAP - FTA for erroneous of inertial data

In xSAP, the value of the failed variable (in this case, the
erroneous inertial sensor) is not defined numerically: it is
the model checker algorithm underlying the construction of
the tree that automatically finds that equal pairs of erroneous
values recreate the top event (as expected). The calculation for
this case led to 48 MCSs of order 2 and 2 of order 1. Using
the same functionality as the model checker, it is possible
to demonstrate this and create a numerical simulation that
reproduces this behaviour (e.g. the first and second sensors fail
by producing an erroneous inertial data of -1). xXSAP decides
itself which (erroneous) numerical values to inject to obtain the
fault condition: in the case of a loss it presentes two different
numerical values, in the case of an erroneous two identical
fault values. Modeling something similar in AltaRica is more
difficult if we want to maintain the same model for both TLE.
A practical suggestion is to create different AltaRica models
of the same plant, to highlight the correct fault combinations
for each TLE.

B. Modelling

Modelling in AltaRica is intuitive: the language is explained
in the AltaRica Association’s manuals [18]. Going into more
detail, structural operations allow for an optimal use of the
object oriented classes [10]:

o Composition allows the creation of hierarchies of nested
components

o Inheritance extends elements of one class into another
class (used in Figure 3, with command extends)

e Aggregation incorporates blocks and objects to make
them belong to different branches of a hierarchical model

xSAP only maintain the first of the previous operations.
Moreover, modelling the Nominal Model could be challeng-
ing, due to the explicit FEM semantics of the components.
The fault instructions, on the other hand, are rather simple
and adding faults to the model is intuitive. The libraries allow
a detailed description of failure events (e.g. conditional failures

allow the creation of specific situations based on the state
of the system). The Extended Model created in this way is
more realistic (as highlighted in the previous section IV-A). It
depends on the objective of the study whether the added-value
behind this characterisation is effective.

C. Tree generated

The goodness of the representation of fault trees is discussed
as an indicator of performance: one might assume that the
probabilistic results, which can be extracted from any tree
representation, are at the heart of the assessment, while others
force the argument on its readability, usually out of industrial
pragmatism. Since the two tools are able to produce equivalent
trees, but different in their graphical form, the focus of this
Section should be in which one is producing the greater added-
value from its representation.

AltaRica automatically generates an .opsa file [12], that can
be transformed into a graphical fault tree (with, for example,
Arbre Analyst [3]). This tree recalls the nomenclature of the
model architecture, so it can be used to check model im-
plementation. Unfortunately, as the complexity of the system
increases, using the automatically generated tree to check
the validity of the model becomes rather difficult. In the
example provided, readingTLE for loss was straightforward,
since the algorithms recalled the definition of primary and
secondaries mid variables. However, FTA erroneous was much
more difficult to read.

The solution in xSAP is a fault tree already optimised to
show MCSs. Therefore, it is quite easy to read but it is almost
impossible to use it to validate the model. In xSAP, graphical
representation of the tree can be visualized using .py scripts
provided in the XSAP platform.

The appreciation of one FTA structure over the other is
goal-oriented.

D. Validation of the model

Since the probabilistic results are calculated automatically,
the problem of validating the model and assessing its correct-
ness is crucial. In AltaRica, this is possible both from the tree
itself (although it is rather difficult) and from the interactive
simulator. The latter shows how a series of user-selected events
change the system variables and whether or not they reach the
main event. This is a useful tool, but complex models may
be rather difficult to evaluate with this tool, given the large
number of combinations of events to be checked manually.

Validation in xSAP is performed using the functionality of
the model checker: firstly, the software automatically checks
whether the defined main event can be obtained from the
Nominal Model itself (the main event is in fact a malfunction
that cannot occur if the system behaves normally). Further-
more, the user can validate both the Nominal Model and the
Extended Model, testing the expected behaviour with CLT and
LTL expressions. Thus, in xSAP it is possible to validate
the properties and requirements of both models using the
model checker functionality. It can be a long procedure, and
results are intrinsically dependent on the performed tests. Two

examples of this are here provided:
LTLSPEC A = F(X C1.P2.0ut = FALSE
— woter_valid = FALSE In this case, the model
checker is able to create a counterexample (showing that this
expression is not an invariant of the system) confirming that
the loss of a channel is not sufficient to produce a loss.
LTLSPEC B := F(X (C1.P2.0ut = FALSE &
C1.P6. = FALSE)
— voter_valid = FALSE

In this other case, instead, the model checker found no
counterexample for this scenario, showing that the loss of two
channels results in the loss TLE.

E. Validation of the FTA

Validating the correctness of the FTA means discussing
how to prove that the artifacts are indeed representative of
the model. Indeed, this is a difficult topic: without using
external software, it is not possible to guarantee that the
internal computational steps are correct. It is an open point
for both tools and, for now, validation of FTA can only be
done manually from both artifacts.

It can be worth mentioning that xXSAP can use the model
checker’s calculation capability to provide proofs of its cor-
rectness. In particular, it automatically creates an inductive
invariant expression to evaluate that if all MCSs are blocked,
it is impossible to reach TLE. This supports the creation of
artifacts with respect to the model.

F. Performance Evaluation

Analysing the tools and their use, some conclusions can be
drawn. Firstly, it can be observed that the proposed approaches
are quite similar to each other. In fact, the AltaRica and
xSAP results show many similarities in their operation: the
description of components, the Boolean definition of the top
event, the possibility of reusing components and a similar
semantic language. To understand which is the best way to
use them in the security process, an evaluation of their per-
formance was carried out. The performance indices used are:
Expressiveness, ease of modelling, goodness of representation
FTA and validation capability.

Criteria AltaRica xSAP
Expressiveness Medium High
Easiness in modelling High Medium
FTA goodness Architecture related Readable
Model validation capabilities | Low High

TABLE III: Performance Criteria Evaluation

The main comment between on tools is an obvious trade-
off between expressiveness and ease of modelling. AltaRica
is generally more intuitive, but more constrained: this is a
consequence of the rigid semantics of flow and state variables.
It can, nevertheless, be used to produce reliability indicators
for some specific cases in order to guide the design process (as
suggested by ARP standards). Altarica finds its best use in the
PSSA phase: the security requirements that can significantly

alter the architecture are limited and the possibility of building
a model for each would quickly yield appreciable results.

Instead, model checking analyses, such as the one produced
by xSAP, could truly help the verification phase of the safety
process (SSA). The creation of a unique model, extended with
all the relevant failure modes, could be used for an exhaustive
numerical evaluation over the effects of those failure injections
in the system, ensuring to consider all the specific numerical
values that contribute to the current TLE.

Moreover, due to the similarities between the two languages,
it has been shown that it is possible to translate an AltaRica
model into an extended version of the xSAP model checker
[2]. This translation step is not (yet) automatic, but could be
implemented in future work.

By invoking the Safety Process standard, the validation and
verification aspects can be bridged: a formal process between
these two tools, with AltaRica for the first part and, when
the architecture has been finalised, XSAP for the second can
certainly be instantiated.

V. CONCLUSIONS AND FUTURE WORK

The increasing complexity of today’s systems shows that
the manual production of reliability artifacts is becoming more
and more prohibitive and formal techniques such as the ones
represented here are going to become mandatory at some
point. SAE International addressed this issue and promised
a new release of the standard ARP4761, the ARP4761A [15],
in order to allow for MBSA techniques to be implemented in
industrial practice.

There are many promising directions for future work. Inves-
tigating ways to increase complexity of application and not
escalating computational effort is one of them. And in this
same direction, how more complex cases could be addressed
with formal methods. Another direction to take in this field is
to study the problem of synthesis for diagnosability, i.e. finding
subsets of the available sensors that are sufficient to guarantee
diagnosability and possibly minimise a cost function.

From a more industrial point of view, future work could
involve several avenues. Firstly, it can be said that neither
AltaRica nor xSAP guarantee a readable fault tree, and the
possibility of improving algorithms in this respect is an open
research topic. Certification is a critical element that must be
considered in the avionics sector: the software that produces
official results for the certifying body must itself be certified.
Today, this is not the case for either AltaRica or xSAP.
Another practical aspect that both tools could consider is
the integrability of trees with tree viewers actually used in
industrial practice (e.g. Isograph).

ACKNOWLEDGMENT

We would like to warmly thank Michel Batteux, of the
AltaRica Association, who provided useful comments that
improved the quality of this work.

[1

—

[2

—

[3

=

[4]
[5]

[6]

[7]
[8]

[9

—

[10]

(11]

[12]
[13]

[14]

[15]

[16]
[17]

[18]

REFERENCES

Marco Bozzano, Alessandro Cimatti, Marco Gario, David Jones, and
Cristian Mattarei. Model-based safety assessment of a triple modular
generator with xSAP. Formal Aspects of Computing, 33, 2021. Pub-
lisher: Springer.

Marco Bozzano, Alessandro Cimatti, Oleg Lisagor, Cristian Mattarei,
Sergio Mover, Marco Roveri, and Stefano Tonetta. Safety assessment
of AltaRica models via symbolic model checking. Science of Computer
Programming, 98, 2015.

Emmanuel Clement. Arbre Analyste website.
analyste.fr/en.html. [Online; accessed 3-Juy-2023].
Condor Engineering. ARINC protocol Tutorial Manual. 2010.

Simon Gradel, Benedikt Aigner, and Eike Stumpf. Model-based safety
assessment for conceptual aircraft systems design. CEAS Aeronautical
Journal, 2022. Publisher: Springer.

Sohag Kabir. An overview of fault tree analysis and its application in
model based dependability analysis. Expert Systems with Applications,
77, July 2017.

FBK Fondazione Bruno Kessler. The SMV specification language.
https://musmv.fbk.eu/NuSMV/papers/sttt; / html /node7.html.

Rahul Krishnan and Shamsnaz Virani Bhada. Integrated System Design
and Safety Framework for Model-Based Safety Assessment. IEEE
Access, 10, 2022.

Oleg Lisagor, Tim Kelly, and Ru Niu. Model-based safety assessment:
Review of the discipline and its challenges. In The Proceedings of 2011
9th International Conference on Reliability, Maintainability and Safety.
IEEE, 2011.

Tatiana Prosvirnova. AltaRica 3.0: a Model-Based approach for Safety
Analyses. 2014.

Tatiana Prosvirnova, Michel Batteux, Pierre-Antoine Brameret, Abraham
Cherfi, Thomas Friedlhuber, Jean-Marc Roussel, and Antoine Rauzy.
The AltaRica 3.0 project for model-based safety assessment. IFAC
proceedings volumes, 46(22), 2013. Publisher: Elsevier.

Antoine Rauzy. XFTA An Open-PSA Fault Tree Engine. 2012.

RTCA. DO-254/ED-80: Design Assurance for Airborne Electronic
Hardware. 2000.

RTCA. DO-178C/ED-12C: Software Considerations in Airborne Sys-
tems and Equipment Certification. 2012.

SAE. ARP4761A: Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and Equipment .
https://www.sae.org/standards/content/arp4761a/. [Not yet released].
SAE. ARP 4761: Guidelines and Methods for Conducting the Safety
Assessment Process on Civil Airborne Systems and Equipment. 1996.
SAE. ARP 4754A: Guidelines for Development of Civil Aircraft and
Systems. 2010.

Tatiana Prosvirnova, Michel Batteux, and Antoine Rauzy. AltaRica 3.0
Language Specification. 2020.

https://www.arbre-

