An Integrated Process for FDIR Design in
Aerospace

Benjamin Bittner!, Marco Bozzano!, Alessandro Cimatti!, Regis De Ferluc?,
Marco Gario', Andrea Guiotto?, and Yuri Yushtein?

! Fondazione Bruno Kessler, Trento, Italy
2 Thales Alenia Space, France
3 Thales Alenia Space, Italy
* BEuropean Space Agency (ESA), ESTEC, Noordwijk - The Netherlands

Abstract. The correct operation of complex critical systems increas-
ingly relies on the ability to detect and recover from faults. The design
of Fault Detection, Isolation and Recovery (FDIR) sub-systems is highly
challenging, due to the complexity of the underlying system, the num-
ber of faults to be considered and their dynamics. Existing industrial
practices for FDIR are often based on ad-hoc solutions, that are con-
ceived and developed late in the design process, and do not consider the
software- and system-level RAMS analyses data (e.g., FTA and FMEA).
In this paper we propose the FAME process: a novel, model-based, in-
tegrated process for FDIR design, that addresses the shortcomings of
existing practices. This process aims at enabling a consistent and timely
FDIR conception, development, verification and validation. The process
is supported by the FAME environment, a model-based toolset that en-
compasses a wide range of formal analyses, and supports the FDIR de-
sign by providing functionality to define mission and FDIR requirements,
fault propagation modeling, and automated synthesis of FDIR models.
The FAME process and environment have been developed within an
ESA-funded study, and have been thoroughly evaluated by the indus-
trial partners on a case study derived from the ExoMars project.

1 Introduction

The design of critical systems in aerospace is a very complex and highly chal-
lenging task, as it requires assembling heterogeneous components, implemented
either in hardware or in software, and taking into account their interactions.
Moreover, safety- and mission-critical systems have to obey several sorts of func-
tional and non-functional requirements, including (real-)time constraints, safety
and dependability requirements. The correct operation of such systems increas-
ingly relies on the ability to detect and recover from faults. The design of Fault
Detection, Isolation and Recovery (FDIR) sub-systems is highly challenging, due
to the complexity of the systems to be controlled, the number of faults and failure
combinations to be considered, their effects and interactions.

Currently, there is no defined FDIR development process for aerospace co-
herently addressing the full FDIR lifecycle, and including the corresponding

verification and validation perspective. Current approaches are poorly phased:
no dedicated approach to FDIR development exists, which can be employed
starting from the early system development phases, and is able to take into ac-
count the design and RAMS data from both software and system perspective.
Existing practices are often based on ad-hoc solutions, that are conceived and
developed late in the design process. In particular, results of Software and Sys-
tem (Hardware) RAMS activities (e.g., FTA and FMEA), become available late
in the process, leading to late initiation of the FDIR development, which has a
detrimental effect on the eventual FDIR maturity.

Furthermore, no underlying, unifying model for various fault identification
methods is available, making it difficult to ensure that the FDIR design is com-
plete. There is a conflict between the bottom-up and top-down approaches:
FMEA (bottom-up) can not be completed until system design has sufficient lev-
els of details, whereas FTA (top-down) does not guarantee that every possible
component failure mode which contributes to system failure has been consid-
ered. Finally, FDIR complexity limits the possibility to effectively determine the
propagation of failures in terms of time.

To address these shortcomings, we propose a novel and comprehensive pro-
cess for FDIR design, called the FAME process. This process aims at enabling
a consistent and timely FDIR conception, development, verification and valida-
tion. It enables the specification and analysis of failure propagation using fault
propagation models, the possibility to specify a set of relevant and decompos-
able requirements for FDIR, and to model, or synthesize, FDIR components that
comply with the requirements. Finally, it enables verification of the effectiveness
of FDIR. The FAME process is supported by a model-based toolset for FDIR
development and verification: the FAME environment. The process and environ-
ment have been thoroughly evaluated by the industrial partners on a case study
derived from the ExoMars project.

This work has been carried out as a response to an invitation to tender of
the European Space Agency on the topic of FDIR development and verification.
This study builds upon the previous COMPASS study [8I4], whose goal was
to develop a comprehensive methodology and toolset for model-based develop-
ment and verification of aerospace systems, supporting verification capabilities
ranging from requirements analysis to functional verification, safety assessment,
performability evaluation, diagnosis and diagnosability.

The paper is structured as follows. In Sect. [2| we present the FAME process,
and in Sect. [3] we discuss tool support. In Sect. [d] we present the evaluation on
the case study. In Sect. [§] and Sect. [6] we discuss related work and conclude.

2 The FAME Process

The proposed FDIR design process is schematically illustrated in Fig. [This
picture shows the input and outputs of the activities, and illustrates how the
“classical” design process can be improved, and supported, using formal tech-
nologies. The main novelties provided by the formal environment are:

Mission and System

Mission
Requirements

Operation
Characteristics

Ground Control
Characteristics

Constraints

| FDIR architecture
Ll

Analysis of User
definition

Requirements

RAMSE
specificatio

FDIR implementation , V&V

Partitioning/allocation SLIM model SLIM error
FDIR objectives and strategies for design
FDIR TFP M sp ecification and
specification validation
h 4
FDI specification
FDIR design Synthesis of Diagnoser
—— :
— FR specification
FDIR
definiti
slinon v FR properties
Synthesis of Recovery

. Classical approach Formal technologies

Fig. 1: Process Overview

— Formal modeling of both nominal and error models (i.e., taking into account
faulty behaviors) in SLIM [9] (System-Level Integrated Modeling Language
—a variant of AADL).

— Formal verification and validation capabilities, including RAMS analysis
(e.g., Fault Tree Analysis, FMEA) carried out on the formal model.

— Modeling of fault propagation using so-called TFPM (Timed Failure Prop-
agation Models).

— Formal definition of requirements for FDIR.

— Automatic synthesis of fault detection and fault recovery components (en-
coded in SLIM), starting from the TFPM and the FDIR requirements.

In this view, formal modeling and synthesis of FDIR is carried out in parallel
with the classical process. The FAME process is technology independent, there-
fore, SLIM models could be replaced with other formal models, if available. Fig.

describes the process.

Fig. 2: FAME Process

FAME Process
/ N ~
/ <<Activity>> \ <<Activity>>
Analyze User Requirements | Define Partition Allocation
/ - N/ ~
, Act - - .
« Define RAMS and « Define Partitioning Allocation Desig? ctivity>> . Iem:rﬁc;l:\g);; -
Autonomy requirements «Define FDIR Architecture P
FDIR « Define detailed «Implement FDIR
*Build Mission . Engineer Y, FDIR
Phase/Spacecraft b — Implementation «Validate and verify
Operational Mode matrix e <<Activity>>)) at Unit Level
Perform Timed Fault Progagation + Define Derailed i
System Analysis SW Specification « Validate and vertfy
Engineer . at Subsystem level
— * Specify TFPM dafety « Define Detailed
*Analyze TFPM Engineer SDB Specification | | «Validate and verify
- — at System level
/ <<Activity>> N
Define FDIR Objectives and SW-
Strategies Engineer Testing
/ Engineer
« Define FDIR Objectivgs ™~ /
« Define FDIR Strategieis H
FDIR H
\ % Engineer / i
/ . ' i i
‘K /‘ AN = FSS !\ Y ' Y '
{SRR> R < E)/\ = SRS SIS ™ <CDR> < QR >
N\ = SOFDIR ™ = SOBICD \\CDB N N\

2 SOFDIR FDIR Analysis = Unit Test N Subsystem E:Software
= FOs Report Test = Hardware
= Fss Report _ System
= TFPM Analysis Report =SRS = Test

=SOBICD Report
Phase B Phase C Phase D

The process is instantiated onto the ECSS standards [I5]. In particular, it
makes reference to lifecycle phases B, C, D, milestones such as SRR (System
Requirements Review), PDR (Preliminary Design Review), CDR (Critical De-
sign Review) and QR (Qualification Review), and to artifacts such as SOFDIR
(System Operations and FDIR Requirements), FOS (FDIR Objectives Specifi-
cation), FSS (FDIR Strategies Specification) and so on. The process is composed
of the following steps:

Analyze User Requirements The purpose of this activity is the collection

and the analysis of all the user requirements that impact the design of FDIR.
The requirements are analyzed to derive the FDIR objectives, and define
their impact on the spacecraft design from system level down to unit level.
The output of this activity is a document, containing the specification of
the spacecraft FDIR operational concept. It starts at the beginning of Sys-
tem Phase B and terminates before System SRR. This activity includes the
following tasks: Define RAMS and Autonomy requirements (identification
of critical functions and redundancy schemes, classification of failures into
failure levels, identification of FDIR levels, identification of pre-existing com-
ponents to be re-used, definition of fail-safe and fail-operational strategies),
and Build Mission Phase/Spacecraft Operational Mode matrix (identifica-
tion of spacecraft modes, FDIR modes, and their association).

Define Partitioning/Allocation In this step, RAMS and Autonomy Require-
ments are allocated per Mission Phase/Spacecraft Operational Mode. More-
over, the spacecraft FDIR architecture is modeled, including all the involved
sub-systems (e.g., avionics, payload), taking into account the distribution of
the FDIR functionalities. FDIR components can be distributed, hierarchical
or a combination of both, thus providing enough flexibility to cover a wide
range of architectural solutions. The output of this activity is the FDIR
Analysis, describing the reference FDIR architecture and RAMS and Au-
tonomy Requirements allocated per Mission Phase/Spacecraft Operational
Mode. This activity starts after System SRR and terminates at System PDR.
It includes the following tasks: Define Partitioning/allocation (definition of
FDIR approach and autonomy concepts along different mission phases/op-
erational modes) and Define Architecture (identification of functional de-
composition, sub-system HW/SW partitioning, sub-system functions and
redundancy, integration of pre-existing FDIR functionalities, definition of
FDIR levels, FDIR catalogue, perform FDIR analysis for each failure).

Perform Timed Fault Propagation Analysis In this step, a fault propaga-
tion is specified using a TFPM (Time Failure Propagation Model). Inputs to
this activity are the results of RAMS analyses, such as fault trees and FMEA
tables, and of Hazard Analysis. This activity starts at SRR and terminates
at PDR. It includes the following tasks: Specify TFPM (taking into account
the definition of the fault propagation model, starting from mission and
system requirements, RAMS and hazard analysis, and specification of the
observability information) and Analyze TFPM (whose goal is to check the
correctness/completeness of the TFPM with respect to the system model,
and analyze the suitability of the TFPM as a model for diagnosability, taking
into account its observability characteristics).

Define FDIR Objectives and Strategies The goal of this step is to spec-
ify FDIR Objectives (at system-level) and FDIR Strategies (at sub-system
level), starting from RAMS and Autonomy Requirements, and exploiting the
previous results on FDIR and fault propagation analysis. This activity starts
after System SRR and terminates at System PDR (it can be done in parallel
with the previous activity). It includes: Define FDIR Objectives (including
the definition of objectives, such as required behavior in presence of failures)
and Define FDIR Strategies (representing the FDIR functional steps to be
performed, given the fault observation and the objective).

Design This step is concerned with the design of the various FDIR sub-systems,
and the corresponding software and data base, on the basis of the FDIR, Ref-
erence Architecture. This activity starts at System PDR and terminates at
Sub-System CDR. It includes: Define detailed FDIR, implementation (identi-
fication of parameters to be monitored, ranges, isolation and reconfiguration
actions), Define Detailed SW Specification (analyze the suitability of the
available PUS services, and extend them as needed with new functionali-
ties) and Define Detailed Spacecraft Data Base (SDB) specification (insert
monitoring information, define the recovery actions, and the link between
monitoring and recovery actions).

[Phase

[Tool Functionality

[Rationale

|

Analyze User Requirements

System Modeling & Fault
Extension

Formal system modeling — nominal and
faulty behavior (in SLIM); automatic
model extension

Formal Analyses

Derive requirements on FDIR design (in-
put for following phases)

Mission Modeling

Definition of mission, phases, and space-
craft configurations

Define Partitioning/Alloca-
tion

System Modeling

Modeling of context, scope, and FDIR ar-
chitecture

Formal Analyses

Derive and collect FDIR requirements

Define FDIR Objectives and
Strategies

FDIR Requirements Model-
ing

Modeling of FDIR objectives and strate-
gies, definition of pre-existing compo-
nents to be re-used, and FDIR hierarchy

Perform Time Fault Propa-
gation Analysis

Formal Analyses

Derive information on causality and fault
propagation (input for TFPG modeling)

TFPG Modeling

TFPG modeling, editing, viewing

TFPG Analyses

TFPG behavioral validation, TFPG ef-
fectiveness validation, TFPG synthesis

Design

FDIR Modeling/Synthesis

Formal modeling and automatic synthe-
sis of FDIR

Formal Analyses

FDIR effectiveness verification

Implement FDIR, V&V

Contract-based testing

Support for automatic generation of test
suites

Table 1: Tool support for FAME process

Implement FDIR, V&V The last step is concerned with the implementation
of FDIR in hardware and/or software, and its verification and validation
with respect to the specifications. This activity starts at Sub-System PDR
and terminates at System QR. It includes the following tasks: Implement
FDIR and Validate and verify (this is typically carried out using a testing
campaign, and repeated for Unit level, sub-system level and system level).

3 Tool Support

The FAME process is supported by a tool — called the FAME environment.
Table [1] schematically illustrates tool support for the different process phases.
Each phase of the FAME process is mapped with one or more tool functionalities
— for each functionality, an explanation of its purpose is provided (the contract-
based testing functionality is listed in italics, as it is part of future work).

The FAME environment is built on top of COMPASS [8], a framework for
model-based design and verification, that provides several verification capabili-
ties, including simulation, property verification, RAMS analysis (FTA, FMEA),
diagnosability and FDIR analysis. The tool is freely distributed within the ESA
member states. In the rest of this section, we briefly describe the capabilities that
are specific of the FAME process, and in particular we focus on the underlying
technological solutions. We refer to [5I16] for more details.

Mission and FDIR Specifications FAME provides the possibility to spec-
ify the Mission Phase/Spacecraft Operational Mode matrix, including informa-
tion on phases, operational modes, and spacecraft configurations. Phase/mode

e UL S P, [0.1001{#.5«»@[5,10}{&5»

Syspuap

0,1]{P, S>

@

Fig.3: An example of a TFPG

pairs can be tracked by FDIR to contextualize its strategies. FDIR requirements
may be linked to specific phase/mode combinations, and they include the specifi-
cation of spacecraft configurations as recovery targets, the specification of alarms
that need to be fired, and the integration of existing FDIR components.

Fault Propagation Analysis Timed Failure Propagation Graphs (TFPGs)
are used to model temporal interactions of failures and their effects [I]. TF-
PGs model how failures propagate, affecting various monitored and unmonitored
properties, and are thus an abstract view of the underlying system. An example
is shown in Fig. 8] A TFPG consists of basic failure events, discrepancy nodes
representing off-nominal system properties, and edges connecting these nodes,
representing possible propagation paths. The edges are constrained by system
modes (they are enabled only in those modes). Finally, edges contain lower and
upper time bounds for the failure propagations. FAME supports loading, syn-
tactic verification, displaying, editing of TFPGs, and definition of nodes using
basic expressions over system variables (to interpret the behaviors of the sys-
tem in terms of the TFPG). FAME allows checking whether the system exhibits
failure propagations that are not captured by the TFPG (behavioral validation),
namely that all links between discrepancies and timing information are correct.
If wrong values are present, a counter-example is produced to guide the user in
the refinement process. If no counter-example is found, the analysis guarantees
that the timing values are correctly specified. The tool also allows checking the
TFPG adequacy as a model for diagnosis, using diagnosability analysis [12]. This
is called (diagnosability) effectiveness validation. This analysis enables the iden-
tification of the failure modes that are not diagnosable. Finally, a (prototype)
function based on FTA is available which enables the automatic derivation from
the system model of a basic TFPG without precise timing and mode information.

FDIR Synthesis The FAME environment supports fully automated synthe-
sis of diagnosis (FD) and recovery (FR) components, starting from an extended
SLIM model, a TFPG, an FDIR specification, and an optional sampling rate. FD
synthesis [7] creates a diagnoser that generates a set of alarms for each specified
failure, by monitoring the available sensors. The FR model can be synthesized

using conformant planning [I3]; it provides for each specified alarm and phase/-
mode pair a recovery plan, i.e., a sequence of actions that guarantee to achieve
the target under any circumstance. After synthesis, the FD and FR components
are connected (in such a way that a generated alarm triggers the corresponding
recovery plan) and combined with the original SLIM nominal model.

4 Case Study

The evaluation of the FAME process and environment was performed by Thales
Alenia Space on a sub-set of the Trace Gas Orbiter (TGO) of the ExoMars
project. The ESA ExoMars system will be launched in 2016 and will arrive
at Mars approximately 9 months later in 2016. It is composed of a spacecraft
that will carry an Entry and Descent Module (EDM) demonstrator. During the
transit from Earth to Mars, the TGO will carry and provide power and other
services to the EDM. The release of the EDM will take place prior to the critical
Mars Orbit Insertion (MOI) manoeuvre by the TGO. After capture by Mars
gravitation field, the TGO will orbit around Mars and provide support to the
EDM. Once the EDM surface operations are completed, the TGO will start a
science data acquisition phase. Near the end of this phase, the 2018 mission
should arrive at Mars so that the emphasis may shift to the Rover support.

The case study was chosen since it provides an opportunity for evaluating all
the aspects of the approach. In particular, it presents a complexity level that is
representative of the classical complexity level in this domain. An FDIR design
for the ExoMars TGO has already been developed, although the design has
not yet been completely frozen. This provides the opportunity of comparing the
results obtained with the FAME process with the existing results and, at the
same time, provide feedback to the ExoMars team on the FDIR design.

The ExoMars mission can be divided into several mission phases, but in our
case study we only consider the Mars Orbit Insertion (MOI). In this phase,
several operational modes are used, including nominal modes (Routine - ROUT),
safe modes (SAFE_1, SAFE_2) or degraded modes (Manouver in critical conditions
- MAN_C) used by the FDIR when reconfiguration is required. The main functional
chain considered during the case study is the Guidance, Navigation and Control
(GNC) function which encompasses sensors, control software, and actuators. The
goal of this sub-system is to maintain the correct spacecraft attitude. The faults
that were considered are those related to the units that can lead to the main
feared event considered in this study: the loss of spacecraft attitude.

4.1 Evaluation Criteria

In order to evaluate the FAME process and environment, we defined a set of
questions, that are intended to evaluate the process, the technological choices
and the prototype environment independently.

Process Is the process suitable for an industrial project, and coherent with
the applicable standards, and the project lifecycle? What are its benefits with

Item |[Fault Failure Detect Method |Local Effect System Effect
IMU_001|Sensor signal is EXT Continuous self-|No measure is
too low reset of IMU sent
IMU_002|Sensor output EXT None Biased output
is biased from sensor
channel
IMU_003|Sensor output INT Loss of RLG|Erroneous output
is erroneous dither control from sensor chan-
nel

Fig. 4: FMECA Table

respect to the current industrial process? Are there any blocking points, issues,
or concerns which could limit its application? Was any insight gained from mod-
eling and specifying the requirements in a more formal way? How do the results
obtained with FAME compare with the results obtained by the ExoMars team?
Technology Is TFPG formalism suitable for handling space domain FDIR
issues? Can all relevant constraints be expressed in the modeling language?
Environment Is the FAME environment suitable for industrial needs ? Is
the GUI efficient? Does the prototype help in modeling the FDIR-related aspects
of the system? Did the synthesized TFPG resemble the manually designed one?

4.2 FAME Process Applied to the Case Study

We used the system architectural and behavioral information, and information
concerning the mission phases and operational modes, as inputs to model the
nominal system. Modeling was done in the SLIM [J] language.

Feared Event Analysis and FMECA The first activity for safety analysis
is the Feared Event Analysis. We are interested in the feared events coming from
the units realizing the acquisition of the spacecraft attitude: the Inertial Man-
agement Units (IMU). We consider three possible failure modes: No measure,
Biased measure and Erroneous measures. The only failure mode that is not diag-
nosable is biased measure, while absence of measure and erroneous measures are
detectable either by rate control, or by cross-checking with other readings. Using
documentation and FMECA from IMU equipment supplier, the IMU FMECA
Items are analyzed and those having impact on the system are selected. Others
are discarded with justification. Fig. [] gives a selection of three FMECA items
of the IMU equipment. We can see that the local and system effects can be
matched with the failure modes identified in the previous feared event analysis.

Error model and Fault injection Using the FMECA information, the
system can be enriched with faulty behaviors. Thus, an error model is defined
for the IMU component; the FMECA items are translated to error events, the
failure modes are translated to error states, and the local / system effects are
used to define the fault injections [TO/S].

Failure Propagation Modeling Sub-sets of system failures have been con-
sidered in order to simplify the analysis, e.g., in cold redundancy the failures of
nominal equipment are analyzed independently of the failures of the redundant
equipment. We start by considering the IMU equipment: in any mission phase
where this unit is used, the failures propagate into the system (at this stage no

10

FDIR prevents the propagation), and impact the spacecraft attitude, leading to
the feared event we are interested in: loss of the spacecraft attitude. This fault
propagation is modeled in the SLIM model by implementing for each function
the effect on its outputs given erroneous input values. Since fault propagation
may not be immediate, it is important to consider timing information. Function
implementations therefore introduce delays in this propagation. Given the nom-
inal SLIM model, the error models and the fault injections, and based on the
consolidated failure propagation analysis performed using the TFPG, we can
perform fault tree analysis for the case study - the results are as expected.

Analysis and Specification of FDIR user requirements For our case
study, a set of requirements coming from the ExoMars TGO project are analyzed
to produce FDIR objectives, strategies, and specifications — that are in turn
provided to the FAME environment. The complete FDIR specification for the
case study defines one alarm for each of the selected faults (Fig. [4) and for
each of the IMUs, thus providing a total of 6 alarms in the specification. Each
alarm is associated with a recovery requirement for each possible phase and
mode combination. In total, this provides us with 24 recovery requirements, 12
for each IMU unit — the nominal one (IMU1) and the redundant one (IMU2).

Timed Fault Propagation Graph Modeling Instead of building a global
TFPG that would cover all failures of the system for all modes, the approach
we adopted is to build several TFPGs covering the failures of respectively the
nominal and the redundant IMU. With the current FAME environment only
one TFPG is taken into account for the FDIR specification and the FD and
FR synthesis. Therefore, independent FD and FR blocks are obtained for the
two equipment units, leading to a decentralized FDIR. From the SLIM model
enhanced with timing aspects and the error model, the TFPG model for IMU;
failures is defined manually or synthesized using the toolset. The modeled TFPG
is shown in Fig. [p| On this TFPG we can see the three failure modes of the
nominal IMU equipment propagating in the system. On the propagation path,
discrepancies are induced; some of them are observable, whereas some are not.
Associations between discrepancies modes and system model define the relation
between nodes in the TFPG and the original system. The TFPG is validated
using behavioral and effectiveness validation analysis provided by the tool, ver-
ifying that the diagnosability of the system is well captured in the TFPG.

Fault Detection and Recovery Synthesis The fault detection synthesis is
run based on the fault detection specification. The result is an FD SLIM module
that encodes a finite state machine with 2413 states. The fault recovery synthesis
is run based on the fault recovery specification, only considering IMU;. The
result is an FR SLIM module with recoveries (6 recoveries out of 9 are found).
The missing recoveries identify situations in which there is no strategy that can
guarantee the recovery (note that it might be possible to find strategies that
would work under certain circumstances, however the tool focuses on finding
solutions that always work).

FDIR verification In order to verify the resulting FDIR, both the SLIM
system model extended with fault injections and the synthesized SLIM FDIR

11

‘a '\ ‘a ‘\
! D001 m 0203 [veasure | 0.2}
1 MeasureNone ; None Non
' ' IMU1 one

Measure
Bias
IMU1

Execute
Erroneous

Bias

L1000
o DO

i
:
! MeasureErr
i
'

Fig.5: Case study TFPG

components have to be loaded into the COMPASS toolset for performing FDIR
analysis (Fault Detection verification and Fault reconfiguration verification). As
the synthesized FD model has numerous states, a lot of memory is required to
load it in the toolset, which may require a powerful machine. The FD compo-
nent is hard to verify by looking at the synthesized SLIM file, whereas the FR
components can be checked easily in order to understand the content of the
reconfiguration sequences.

4.3 FAME prototype toolset evaluation

The case study allowed us to evaluate the FAME prototype environment, and
to provide some answers for our evaluation criteria, as discussed below.
Process We believe that the FAME process is suitable for an industrial
project, and coherent with the applicable standards and project lifecycle. This
is particularly true when dealing with single failure tolerant systems, since the
analysis of fault propagation is performed in isolation for each failure or group
of failures. If multiple failure tolerance is required, this approach should be con-
solidated to find the best way to analyze the failure combinations. Projects can
benefit from FAME in the initial phases where FDIR is not yet defined. Time
spent for analysis of mission requirements can be reduced by using FAME tool.
The FAME process can be inserted easily in the current industrial process, pro-
vided that the users receive training on TFPGs. The synthesized SLIM models
can be used as a starting point to implement HW and SW. Moreover, compared
with the current industrial process, FAME permits to rely on early analysis of
the robustness of the system and early design of FDIR. Formal modeling also
allows to clarify the design, and to consider the system as a whole. Formaliza-
tion is desired in order to prevent (mis-)interpretation, and forces the definition

12

of clear requirements. Traditionally, time in failure propagation is often a ma-
jor concern; the FAME process takes a step towards simplifying this type of
analysis. Compared to the ExoMars project, the FDIR specification was similar
to the real one; moreover, fault propagation analysis was not addressed at the
same level, and FAME produced richer results. Fault Detection and Reconfigu-
ration cannot be compared with the real project results, since they represent a
completely novel approach relying on synthesis and time aware diagnosers.

Technology SLIM enables a good characterization of the system; however,
adding external constraints might be required in order to perform efficient model
analysis (e.g., FR synthesis). The TFPG formalism seems to be adequate to
handle the description of failure propagation during the FDIR design. Although
the timing information for transitions is well understood, the mode information
is not yet well understood from the user perspective. This has to be investigated
further, in order to understand how this piece of information be exploited to
model TFPGs per each failure (or sub-set thereof). This “mode” information
will certainly be useful when dealing with TFPG combination. Unfortunately,
the application of the FAME process to the industrial world may be limited by
the state-space explosion when introducing time on complex models. This might
impact the possibility of performing certain analyses or the automated synthesis
process. It would be important to explore existing techniques from the formal
methods community (e.g., contract-based design [I1]) to deal with this problem.

Environment The prototype environment is able to support the FAME
process. Moreover, the structure of the synthesized TFPG was exactly the same
as the one designed manually. Some limitations should be addressed in order to
simplify the application of the process. The TFPG editing capabilities of the pro-
totype FAME environment could be improved. The environment provides both
textual editing and graphical view. Unfortunately, both methods are not user-
friendly when dealing with big graphs. The environment provides little support
to the traceability of requirements; this however could help improve the design
cycle. Finally, another possible limitation could come from the incompatibility
of formalisms used by the eco-system of tooling already in-use in the space do-
main. For instance, TAS uses an in-house modeling tool (Melody Advance) to
model the system from early stages of the development process to later stages.
Modeling is a time- and cost-consuming activity, hence a project can not afford
to develop several models of the same system in different languages. It is rec-
ommended that SLIM models used in the FAME process are not created from
scratch, but derived from existing models of the system. This is partly achievable,
and a connection with Melody Advance seems possible.

5 Related Work

There are several previous works on model-based formal verification and failure
analysis. The TOPCASED project [4] provides a toolchain that translates AADL
and its Behavior Annex into Fiacre, and from Fiacre into timed Petri nets, which
can be then model checked using the TINA toolbox. In [I9], the authors present

13

an ontology-based transformation of AADL models into the Altarica formal lan-
guage; they can detect lack of model elements and semantically inconsistent
parts of the system, but timed or hybrid extensions remain out of scope. An-
other AADL-based tool is ADeS [2] for simulation of system architectures. In
[18], the authors present a framework for model based safety analysis, that covers
both probabilistic and qualitative analysis; transformations into state-of-the-art
model checkers, including PRISM and NuSMV, are available. Finally the FAME
tool is based on the SLIM variant of AADL, however similar technologies are
also available for the NuSMV family of languages [20121].

[I7] contains an interesting account of different notations for evaluating com-
ponent-based systems and failure propagation, namely FPTNs, HiP-HOPS, CFTs
and SEFTs. While TFPGs contain explicit temporal information, such as non-
deterministic propagation timings and dependency on system modes, other mod-
els (e.g., SEFTs) enable the definition of probabilistically distributed delays,
they provide FTA-like notation using temporal gates, and they can be evaluated
quantitatively. A more detailed comparison will be done as part of future work.

As regards the FDIR modeling and process, in [3] the authors explore a
few alternatives for modeling and verification of FDIR sub-components, using
languages such as Altarica, SCADE, SLIM and the COMPASS tool; the FAME
process and tool address some of the questions the authors raise, and also provide
fault propagation analysis. Finally, [6] analyzes some of the issues for the devel-
opment and validation of FDIR; FDIR functions, mechanisms and are expressed
in AADL models and verified using the Uppaal model checker.

6 Conclusions and Future Work

In this paper we have presented a novel, model-based, dedicated process for
FDIR development, verification and validation in aerospace. This process allows
for a consistent and timely FDIR conception, development, verification and val-
idation. The process is based on formal model-based approaches that enforce a
high level of rigor and consistency; it can be integrated with the system and soft-
ware development lifecycle, and it enables to effectively use the available mission
and system requirements and the RAMS analysis data. The process has been
successfully evaluated within an industrial setting.

As part of our future work, we will consider the extension of our frame-
work in a few directions. In particular, we will investigate the specification of
FDIR requirements, and synthesis of FDIR, in presence of decentralized or dis-
tributed architectures, where coordination is needed between different FDIR
sub-components. In this context, FDIR decomposition can be driven by notions
such as scope, context, and level of authority of FDIR. In the same area, we will
explore the possibility to decompose, possibly hierarchically, the specification of
fault propagation using multiple failure propagation models.

14

References

1.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.
21.

S. Abdelwahed, G. Karsai, N. Mahadevan, and S.C. Ofsthun. Practical implemen-
tation of diagnosis systems using timed failure propagation graph models. Instru-
mentation and Measurement, IEEE Transactions on, 58(2):240-247, 20009.

ADeS, a simulator for AADL. http://www.axlog.fr/aadl/ades_en.htmll

E. Bensana, X. Pucel, and C. Seguin. Improving FDIR of Spacecraft Systems with
Advanced Tools and Concepts. In Proc. ERTS, 2014.

B. Berthomieu, J.P. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gaufillet, F. Lang,
F. Vernadat, et al. Fiacre: An Intermediate Language for Model Verification in the
TOPCASED Environment. In Proc. ERTS, 2008.

. B. Bittner, M. Bozzano, A. Cimatti, R. de Ferluc, M. Gario, A. Guiotto, and

Y. Yushtein. FAME: A Model-Based Environment for FDIR Design in Aerospace.
2014. In Proc. IMBSA 2014.

J.-P. Blanquart and P. Valadeau. Model-based FDIR development and validation.
In Proc. MBSAW, 2011.

M. Bozzano, A. Cimatti, M. Gario, and S. Tonetta. A formal framework for the
specification, verification and synthesis of diagnosers. In Workshops at the Twenty-
Seventh AAAI Conference on Artificial Intelligence, 2013.

M. Bozzano, A. Cimatti, J.-P. Katoen, V.Y. Nguyen, T. Noll, and M. Roveri.
Safety, dependability, and performance analysis of extended AADL models. The
Computer Journal, doi: 10.1093/com, March 2010.

M. Bozzano, A. Cimatti, V. Y. Nguyen, T. Noll, J.-P. Katoen, and M. Roveri.
Codesign of Dependable Systems: A Component-Based Modeling Language. In
Proc. MEMOCODE ’09., 2009.

M. Bozzano and A. Villafiorita. The FSAP/NuSMV-SA Safety Analysis Platform.
Software Tools for Technology Transfer, 9(1):5-24, 2007.

A. Cimatti, M. Dorigatti, and S. Tonetta. OCRA: A tool for checking the refine-
ment of temporal contracts. In ASE, pages 702-705, 2013.

A. Cimatti, C. Pecheur, and R. Cavada. Formal Verification of Diagnosability via
Symbolic Model Checking. In Proc. IJCAI pages 363-369. Morgan Kaufmann,
2003.

A. Cimatti, M. Roveri, and P. Bertoli. Conformant planning via symbolic model
checking and heuristic search. Artificial Intelligence, 159(1):127-206, 2004.

The COMPASS Project. http://compass.informatik.rwth-aachen.de|
European Cooperation for Space Standardization. European cooperation for space
standardization web site. Available at http://www.ecss.nl/\

The FAME Project. http://es.fbk.eu/projects/famel

L. Grunske, B. Kaiser, and Y. Papadopoulos. Model-Driven Safety Evaluation
with State-Event-Based Component Failure Annotations. In Proc. CBSE, pages
33-48, 2005.

M. Giidemann and F. Ortmeier. A Framework for Qualitative and Quantitative
Formal Model-Based Safety Analysis. In Proc. HASE, pages 132-141, 2010.

K. Mokos, G. Meditskos, P. Katsaros, N. Bassiliades, and V. Vasiliades. Ontology-
Based Model Driven Engineering for Safety Verification. In Proc. SEAA, pages 47
-54. IEEE, 2010.

The nuXmv model checker. https://nuxmv.fbk.eu.

The XSAP safety analysis platform. https://es.fbk.eu/tools/xsap.

http://www.axlog.fr/aadl/ades_en.html
http://compass.informatik.rwth-aachen.de
http://www.ecss.nl/
http://es.fbk.eu/projects/fame
https://nuxmv.fbk.eu
https://es.fbk.eu/tools/xsap

	An Integrated Process for FDIR Design in Aerospace
	Introduction
	The FAME Process
	Tool Support
	Case Study
	Evaluation Criteria
	FAME Process Applied to the Case Study
	FAME prototype toolset evaluation

	Related Work
	Conclusions and Future Work

