
COMPASTA: Extending TASTE with formal
design and verification functionality?

Alberto Bombardelli, Marco Bozzano, Roberto Cavada, Alessandro Cimatti,
Alberto Griggio, Massimo Nazaria, Edoardo Nicolodi, and Stefano Tonetta

Fondazione Bruno Kessler, Via Sommarive 18, 38123 Trento, Italy
{abombardelli,bozzano,cavada,cimatti,griggio,mnazaria,enicolodi,tonettas}@fbk.eu

Abstract. TASTE is a development environment dedicated to embed-
ded, real-time systems, developed under the initiative of the European
Space Agency. It consists of various tools, such as graphical editors, code
generators and visualizers, which support model-based design of embed-
ded systems, automatic code generation, deployment and simulation.
TASTE currently lacks a comprehensive support for performing early
verification and assessment of the design models.
The goal of the COMPASTA study is to integrate the formal verification
capabilities of COMPASS into TASTE. COMPASS is a tool for model-
based System-SW Co-Engineering developed in a series of ESA studies,
offering formal design and verification capabilities, such as requirements
analysis, contract-based design, functional verification and safety assess-
ment, fault detection and identification analysis. COMPASTA will de-
liver a full end-to-end coherent tool chain, based on TASTE, covering
system design, HW/SW implementation, deployment and testing.

1 Introduction

TASTE [5, 11, 12] is a design and development environment dedicated to em-
bedded, real-time systems, which has been actively developed by the European
Space Agency (ESA) since 2008. It consists of various tools such as graphical ed-
itors, visualizers and code generators that support the development of embedded
systems within a MBSE (Model Based Systems Engineering) approach. TASTE
is based on the following technologies and languages: AADL (Architectural Anal-
ysis and Design Language) for architectural modeling, ASN.1 for data modelling
and SDL (Specification and Description Language) for behavioral specification.
TASTE has been adopted as a glue technology and for system deployment in
several projects, both in aerospace and in other domains, e.g. [9, 1, 6, 10].

The standard modeling workflow in TASTE includes: the definition of data
models using ASN.1; the definition of the functional logical architecture using
an Interface View description in AADL; the definition of the behavior of each
functional block, e.g. in SDL; the definition of the physical architecture using
a Deployment View description in AADL. The physical architecture binds the

? Work funded by ESA/ESTEC under Contract No. 4000133700/21/NL/GLC/kk.



2 A. Bombardelli et al.

Fig. 1: Functionality of the integrated TASTE+COMPASS toolset.

functional blocks and logical connections to the HW nodes and devices, to enable
code generation and building for the target platforms.

COMPASS [2–4] is a tool for System-SW Co-Engineering developed in a se-
ries of ESA studies from 2008 to 2016. It is based on a dialect of AADL and
provides a full set of formal techniques, based on model checking, such as require-
ments analysis, fault injection, property verification, safety assessment, fault de-
tection and identification analysis. It is based on the concept of model extension,
i.e., the automatic injection of user-specified faults into a nominal model. The
extended model is internally converted into a symbolic model amenable to formal
verification, whereas properties are translated into temporal logic. COMPASS
uses the ocra tool for contract-based design [8], the nuXmv model checker [7]
and the xSAP safety analysis platform [13] as back-ends.

The COMPASTA project is an ongoing study funded by the European Space
Agency (ESA) that started in April 2021. By integrating the COMPASS func-
tionality into TASTE, COMPASTA will deliver a comprehensive, end-to-end
tool chain dedicated to the design and development of embedded systems, cov-
ering system design, HW/SW implementation, deployment and testing. This
integration will bridge the gap between the architectural level design and the
system implementation and deployment, harmonizing the functionality of both
tools into a coherent tool chain.

2 The COMPASTA Approach

The integration of COMPASS into TASTE aims to harmonize the models and
input languages provided by COMPASS (SLIM, an extension of AADL) with the
ones available in TASTE (in particular, AADL and SDL) for the specification of
system architecture, component behavior and interaction, system implementa-
tion and deployment. Fig. 1 illustrates the functionality of the integrated toolset,



COMPASTA: Extending TASTE 3

Development
phase

COMPASS functionality TASTE functionality

Requirements
specification

Specification of properties and require-
ments
Requirements analysis

Architectural
design

Contract-based design and refinement

Specification of system architecture
(AADL)

Specification of system architecture
(AADL)

Behavioral spec-
ification

Specification of the behavior of HW
components (AADL/SLIM)

Specification of the behavior of SW com-
ponents (SDL or other languages)

Formal verification of functional behav-
ior
Specification of HW faults
Fault injection/ Model extension
Formal verification of functional behav-
ior (in presence of faults)
Safety and dependability assessment
(FTA, FMEA)
Fault Detection, Identification and Re-
covery (FDIR)

Deployment
specification

Specification of the deployment on the
target HW
Code generation

Trace validation for testing Testing of the implementation

Table 1: A comparative view of COMPASS and TASTE functionality.

allocated to the different development phases. The COMPASS functionality is
complementary with respect to the one available in TASTE. A comparative view
is given in Table 1. In particular, COMPASS adds the following capabilities:

– Specify and validate a set of requirements specified in a formal language.
– Use contract-based design to design the system architecture.
– Model the HW components of the system and their functional behavior,

using SLIM (an extension of AADL) to specify state machines.
– Model HW faults and automatically inject them into the system model.
– Perform formal verification, safety and dependability assessment.
– Re-execute and validate a trace generate by TASTE testing in the formal

model, generating a compatible execution of the HW.

The existing functionality of TASTE, on the other hand, is used to specify the
behavior of SW components, their deployment on the target HW, their imple-
mentation (via code generation) and to test the final implementation.

The technical objectives of the COMPASTA project include the definition of
an extension of the AADL language that is compliant, both syntactically and
semantically, with the subset available in TASTE, and enables the specifica-
tions and analyses made available by COMPASS (in particular, specification of
contracts, properties, faults, and of the behavior of HW components). Semanti-
cally, the semantics of the SLIM language from COMPASS needs to be adapted
to match the different possibilities available in TASTE (synchronous and asyn-
chronous communication, buffered communication). Finally, COMPASTA re-
quires the design of a translator from AADL/SLIM and SDL input languages
into the languages supported by the back-ends, and the integration of the back-
ends themselves (ocra, nuXmv and xSAP [8, 7, 13]) into TASTE.



4 A. Bombardelli et al.

Fig. 2: A power system example.

Fig. 3: Sample code in SDL (left) and SLIM (right) for FDIR 1 and Switch 1.

3 An Illustrative Example

We exemplify the COMPASTA workflow using the example in Fig. 2, modeled
in the TASTE interface view. It contains both SW (the FDIR components)
and HW (batteries, generators, sensors). Two (redundant) generators feed two
(redundant) batteries, feeding two sensors. In case of a fault of a generator or
battery, two switches can reconfigure the power lines, to exclude the broken item.
The desired behavior of the circuit is to guarantee powering of the sensors.

The FDIR components can be modeled in TASTE using SDL. Fig 3 (left)
shows an excerpt of the code for FDIR 1. It periodically reads the input volt-
ages of the two generators and, in case one of them is under a given threshold,
it sends a command to the Switch component to change from primary mode to
a secondary mode. Modeling of the HW requires the COMPASTA extension,



COMPASTA: Extending TASTE 5

which uses the SLIM language. Fig 3 (right) shows some sample code specifying
the behavior of the Switch 1 component. In particular, it models a state machine
where transitions correspond to possible reconfigurations (from primary mode
to a secondary mode). The input models (in AADL/SLIM and SDL) are then
translated into the language supported by the back-ends (SMV). Data ports and
connections with different semantics are used to connect HW and SW, i.e. ports
with periodic (cyclic) activation for SW, ports with synchronous communication
(to model HW data read by SW) and ports with asynchronous (buffered) com-
munication (to model commands sent from SW to HW). COMPASTA defines
the semantics of the different forms of communication, the scheduling constraints
of SW and HW components, and their encoding into SMV.

Contract-based design can be used to design and validate the system archi-
tecture. Contracts (as pairs assumption/guarantee) may be associated to compo-
nents, e.g., a contract for a battery can have an assumption always(voltage in

>= 10) and a guarantee always(voltage out >= 10). An example of system-
level contract is one with an assumption true and a guarantee always(one valid)

(at least one sensor has a valid output). The system-level contract can be

Fig. 4: An example Fault Tree.

validated against the
component-level ones.
Moreover, component-
level contracts can
be checked against
an implementation of
the respective compo-
nent. Model checking
can be used to ver-
ify functional proper-
ties, e.g., “Globally,
it is always the case
that sensor1.valid

and sensor2.valid

holds”, i.e. the out-
puts of both sensors are always valid. Fault definitions can be picked from
a library, and automatically injected, e.g., a fault injection for the bat-
tery is specified as the following record: [Description => "stuck-at-zero";

Fault Model => StuckAt; Fault Dynamics => Permanent; Probability =>

1.e-7; Input => voltage out; Varout => voltage out; ParameterList =>

([Name => Term; Value => "0"])], modeling a permanent “stuck-at-zero”
fault of the voltage out signal of the battery. The extended model is gener-
ated automatically as part of the translation process. xSAP can generate safety
artifacts such as Fault Trees and FMEA tables; Fig. 4 show an example fault
tree. Once the formal validation of the model has been completed, the TASTE
workflow can be used to specify the implementation of the SW components. We
briefly sketch this workflow. First, the HW block is replaced by a “HW block
I/O” component, which represents the SW layer realizing the communication



6 A. Bombardelli et al.

between SW and HW in the final implementation. Then, the deployment of the
SW components (binding of the SW to the target HW platform(s)) is specified.
TASTE can be used to generate the executable code for the target platform(s)
and to test the implementation. Finally, COMPASTA offers the possibility to
execute a trace, generated by TASTE, on the formal model (including the HW).

4 Conclusions

COMPASTA aims to extend the TASTE toolset with formal verification and as-
sessment functionality, creating a digital continuity from the architectural func-
tional design and system-level safety analysis to the deployment of the embedded
software, using the MBSE paradigm. We think that this integration will signifi-
cantly foster the adoption of the TASTE and COMPASS toolsets. In the intended
workflow, system, safety, and software engineers work on the same models in an
iterative process supported by various analyses that increase the confidence in
the internal and external consistency of the system.

The COMPASTA project started in April 2021 and will be completed by the
end of 2022. A first prototype of the integrated tool chain will be released in the
first half of 2022, in time for a demonstration at the IMBSA conference.

References

1. ADE: Autonomous Decision Making in Very Long Traverses, https://www.

h2020-ade.eu
2. Bozzano, M., Bruintjes, H., Cimatti, A., Katoen, J.P., Noll, T., Tonetta, S.: COM-

PASS 3.0. In: Proc. TACAS 2019 (2019)
3. Bozzano, M., Cimatti, A., Katoen, J.P., Katsaros, P., Mokos, K., Nguyen, V.,

Noll, T., Postma, B., Roveri, M.: Spacecraft Early Design Validation using Formal
Methods. Reliability Engineering & System Safety 132, 20–35 (2014)

4. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V., Noll, T., Roveri, M.: Safety,
Dependability and Performance Analysis of Extended AADL Models. Computer
Journal 54(5), 754–775 (2011)

5. Hugues, J., Pautet, L., Zalila, B., Dissaux, P., Perrotin, M.: Using AADL to build
critical real-time systems: Experiments in the IST-ASSERT project. In: Proc.
ERTS (2008)

6. MOSAR: Modular Spacecraft Assembly and Reconfiguration, https://www.

h2020-mosar.eu
7. nuXmv web page (2021), https://nuxmv.fbk.eu
8. ocra web page (2021), https://ocra.fbk.eu
9. PERASPERA, a PSA activity under the Horizon 2020 Space ”COMPET-4-2014:

Space Robotics Technologies” Work Programme (Grant Agreement 640026)
10. R. Cavada and A. Cimatti and L. Crema, and M. Roccabruna and S. Tonetta:

Model-Based Design of an Energy-System Embedded Controller Using Taste. In:
Proc. FM 2016. LNCS, vol. 9995, pp. 741–747 (2016)

11. TASTE web page, https://taste.tools/
12. Qualifiable code generation backend for TASTE, ESA Contract No.

4000118510/16/NL/CBi
13. xSAP web page (2021), https://xsap.fbk.eu


