
Towards a Unifying View of Fault Propagation
Analyses and Notations?

Marco Bozzano1[0000−0002−4135−103X], Alessandro Cimatti[0000−0002−1315−6990],
Alberto Griggio[0000−0002−3311−0893], and Fajar Haifani[0000−0001−5139−4503]

Fondazione Bruno Kessler, Trento 38123, Italy

Abstract. The design of complex systems requires a careful consid-
eration of the possible hazards and failure conditions that may affect
system functions, possibly compromising system reliability and safety.
Complex systems must be able to detect components faults and isolate
them before they can propagate and cause system failures. To this aim,
Preliminary Safety Assessment analyzes failure conditions and allocate
safety requirements to components and subsystems, based on a candidate
system architecture. A modern way to conduct this analysis is via the
use of fault propagation models, i.e. formal representations linking the
occurrence of basic faults to their effects on other components and sub-
systems. Examples of such models include Timed Failure Propagation
Graphs (TFPG), Finite Degradation Models (FDM) and Propagation
Graphs over Finite Degradation Structures (PGFDS).
In this paper, we generalize previous models for fault propagation. We
define a general formalism, called Unifying Propagation Graphs (UPG)
which encompasses, and is strictly more expressive of, previous notations,
and we formally define its syntax and semantics. We discuss the integra-
tion of UPG into the xSAP safety analysis platform, and the generaliza-
tion of existing routines for fault propagation analysis to the complete
fragment of UPG. Finally, as a first contribution, we extend the existing
engine for computation of minimal cut sets of PGFDS to support interval
timings, and we experimentally evaluate its performance.

Keywords: Failure Propagation Analysis · TFPG · FDM · PGFDS ·

1 Introduction

The complexity of the functions carried out by modern engineering systems,
in many domains such as avionics, railways and automotive, is continuously
? This study was carried out within the Interconnected Nord-Est Innovation Ecosys-
tem (iNEST) and received funding from the European Union Next-GenerationEU
(PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) - MISSIONE 4
COMPONENTE 2, INVESTIMENTO 1.5 - D.D. 1058 23/06/2022, ECS00000043).
This manuscript reflects only the authors’ views and opinions, neither the European
Union nor the European Commission can be considered responsible for them.
We acknowledge the support of the MUR PNRR project FAIR - Future AI Research
(PE00000013), under the NRRP MUR program funded by the NextGenerationEU.

II Marco Bozzano, Alessandro Cimatti, Alberto Griggio, and Fajar Haifani

increasing, and demands a corresponding increase in the techniques to ensure
the correctness and safety of their design. Complex systems must be able to
detect and handle component faults, since their propagation may cause failures,
i.e. conditions whereby larger parts of the system are no longer able to perform
their intended function, possibly compromising system safety and creating risk
of damage, harm to humans or the environment.

Domain-specific standards [1,2,3] describe structured techniques to assess
the quality and robustness of system design. Typically, the design of complex
systems follows a pattern whereby a system and its functions are hierarchically
decomposed and allocated to subsystems and components. In particular, the
goal of safety assessment is to assess and quantify the reliability and safety of a
design architecture in presence of faults. In avionics, the process is initiated with
a Functional Hazard Assessment (FHA) that aims to identify failure conditions
and assess their severity and impact on system functions. Then, Preliminary
System Safety Assessment (PSSA) consists in the systematic evaluation of a
candidate system architecture, based on the results of FHA. PSSA links failure
conditions and effects to appropriate safety requirements and allocates them to
components. Finally, System Safety Assessment (SSA) validates the design by
systematically demonstrating that the allocated safety requirements are met.

PSSA and SSA are supported by several safety assessment techniques. PSSA
analyzes fault propagation paths. A formal approach to PSSA is based on ab-
stract propagation models, e.g. graph models where nodes represent (failures
of) system components or functions, and arcs represent propagation paths that
specify how the degradation of one component may lead to the degraded or failed
operation of another one. Recent models include formalisms such as Timed Fail-
ure Propagation Graphs (TFPG) [4,5,6], Finite Degradation Models (FDM) [7],
Propagation Graphs over Finite Degradation Structures (PGFDS) [8,9] (com-
pare Fig. 1). TFPG are a graph-based notation, whereby arcs may be decorated
with propagation timings and system modes (enabling the propagation). Nodes
without incoming edges are initial failures. Inner nodes extend Boolean conjunc-
tion and disjunction by considering system mode and timing constraints. FDM
is an equational notation based on variable flows, modeling the effects of compo-
nent degradation, based on Finite Degradation Structures (FDS) [10], modeling
degradation level beyond the pure Boolean case (e.g.©> and ‖ in Fig. 1). PGFDS
is a hypergraph-based notation built on top of FDS and extending FDM by ad-
mitting cycle. PGFDS relaxes the notion of operators into relations between
failure mode assignments.

SSA is based on classical techniques to identify links between faults and
undesired (system-level) events, a.k.a. feared events or top-level events (TLE).
Such techniques include Failure Mode and Effects Analysis (FMEA) and Fault
Tree Analysis (FTA). The latter is carried out top-down, from the TLE to the
basic faults, where former is done bottom-up. A notable problem for FTA is to
identify all the minimal combinations of faults that are possible explanation for
a feared event, a.k.a. Minimal Cut Sets (MCS).

Towards a Unifying View of Fault Propagation Analyses and Notations III

Fig. 1. Graphical representations: PGFDS (left), TFPG (center), FDM (right).

In this paper, we propose and design a novel and fully general formalism to
model failure propagation, called Unifying Propagation Graphs (UPG). UPG
provides a unifying view of failure propagation, in that it generalizes, and is
more expressive of, existing notations such as TFPG, FDM, and PGFDS.

This paper gives the following contributions. First, we define UPG as an
expressive and unifying formalism to model failure propagation. We formally
define its syntax and semantics, and we show that it is strictly more expressive
than TFPG, FDM and PGFDS.

Second, we design the integration of UPG into the xSAP [11,12], a state-of-
the-art platform for model-based safety assessment, which provides library-based
fault injection and automated model-based generation of safety artifacts such as
FMEA tables and FTs. Moreover, it supports TFPGs analysis and synthesis,
and TFPG validation w.r.t. to a behavioral (dynamical) model. We discuss the
extension of xSAP to model UPG and the integration of the existing PGFDS en-
gine of [8,9]. Together, the TFPG engine and the PGFDS engine enable solving
problems such as TFPG analysis and synthesis, MCS computation, and valida-
tion w.r.t. a behavioral model. The integration is ongoing, our goal is to target
the implementation of the existing routines for the complete fragment of UPG.

Third, as a first contribution, we solve a notable problem, namely we extend
the existing engine for MCS computation of PGFDS to support interval timings.
As in [8] we reduce the problem to symbolic search over a transition system,
using efficient techniques for satisfiability modulo theories. We experimentally
evaluate this extension on a set of benchmarks and show its effectiveness for the
generation of MCS.

The rest of this paper is structured as follows. In Section 2 we present some
preliminary notions. In Section 3 we present the syntax and semantics of UPG.
In Section 4 we discuss how to embed UPG into xSAP as an extended version of
TFPG. In Section 5 we discuss the extension of the [8] encoding with timings for
MCS generation. In Section 6 we discuss the experimental evaluation. Finally,
we draw some conclusions in Section 7.

Related Work Traditional formalisms for failure propagation include Failure
Propagation Transformation Notation (FPTN) [13] and Hip-HOps [14]. They
focus on the description of common fault types and patterns, and on the analy-

IV Marco Bozzano, Alessandro Cimatti, Alberto Griggio, and Fajar Haifani

sis and synthesis of fault propagation through a system’s architecture, however
the specification of propagation relations is less expressive than in UPG. 1

Timed Failure Propagation Graphs (TFPG) [4,5,6], constrain failure prop-
agations using time bounds and system modes, however they do not consider
levels of degradation, and they do not support cycles as in UPG. Moreover,
UPG can constrain system modes in a more expressive way than TFPG.

Finite Degradation Models (FDM) [10] is an equational notation based on
variable flows, modeling the effects of component degradation on top of Finite
Degradation Structures (FDS) [10], which model levels of degradation as dif-
ferent values of faults organized into a semi-lattice. UPG generalize FDM by
considering non-deterministic propagations, cycles and timings.

Propagation Graphs over FDS (PGFDS) [8,9] models failure propagation
using a generic canFail relationships, similarly to UPG, and are more expressive
than FDM, since they enable non-deterministic propagations and cycles. UPG
extend PGFDS by supporting timings and system modes, in a more expressive
way than TFPG.

UPG notation also includes as a sub-case artifacts produced by FTA, i.e.
Fault Trees, consisting in propagation trees rooted at a given TLE, and exten-
sions such as Component Fault Trees (CFT) which admit multiple roots.

Finally, [15] presents a formalism for failure propagation which enables mod-
eling sets of failure modes using a domain specific language. It is less expressive
than FDM, in that sets of failure modes cannot be related by degradation order.

2 Preliminaries

An interval I is a subset of real numbers contained between two points. As in
previous works on TFPG, in this paper, an interval is of the form (1) [d1, d2]
(closed interval), and (2) [d1,+∞] s.t. d1, d2 ∈ R≥0 and d1 ≤ d2. Note that in
xSAP, TFPG can have closed infinity interval [d1,+∞) and open infinity interval
[d1,+∞] but due to our focus on finite traces, we do not distinguish between
them and simply use [d1,+∞]. We denote INTV as the set of all such intervals.
We define min([d1, d2]) = d1 and max([d1, d2]) = d2.

A finite degradation structure (FM,≤,⊥) is a finite partial order with do-
main FM and bottom ⊥ ∈ FM . Every element is called a failure mode.

TFPG A TFPG [16,4,5,6], is a structure G = 〈F,D,E,M,ET,EM,DC〉 where
(i) F is a non-empty finite set of initial components; (ii) D is a non-empty
finite set of discrepancies s.t. D ∩ F = ∅; (iii)E ⊆ V × D is a non-empty set
of edges between the set of nodes V = F ∪ D and D; (iv) M is a non-empty
set of system modes; (v) ET : E → INTV associates every edge in E with an
interval; (vi) EM : E → 2M associates every edge in E with some M ′ ⊆ M ;
(vii) DC : D → {AND,OR} defines a type for discrepancies. A node in F can
become active at t = 0 by itself. An edge e is active at time t if and only if the
1 An exception is given by propagation patterns such as c � d ∨ e, however note that
for MCS computation this would generate the same results as c � d ∧ e.

Towards a Unifying View of Fault Propagation Analyses and Notations V

current (at ts) mode m satisfies m ∈ EM(e). For an OR node w and an edge
e = (v, w) ∈ E, once v and e become active at time tv, w may become active
at some time tw, where tw − tv ∈ ET (e), so long as e remains active from tv to
tw (i.e. no mode switch into some m′ 6∈ EM(e)). An AND node w may become
active at tw, when for all incoming edge (v, w), v may activate w at time tw: for
all (v, w), tw−tv ≥ min(ET ((v, w))) and there is v s.t. tw−tv ≤ max(ET (v, w)).

PGFDS Given a finite degradation structure D = (FM ,≤,⊥), a PGFDS [8,9]
overD is a tuple S = (J,C, canFail), where C is a finite set of system components,
J ⊆ C the components that can fail initially, canFail : C × FM → F is a map
from C × FM to can-fail formulas φ of atoms t1 ≤ t2 or t1 = t2 (with terms t1
and t2 built over variables C and constants from FM) or the usual compound
Boolean sentence φ1 ∨φ2, φ1 ∧φ2, or ¬φ. For the semantics, a (PGFDS) state is
a map C → FM and a propagation is a sequence of states s0 . . . sk s.t. s0(c) =
fm implies c ∈ J ; and si+1(c) = fm implies either (i) si(c) = fm or (ii)
si |= canFail(c, fm) (in which entailment for atoms are from the FDS D and
entailment for Boolean formulas is the usual one). ≤ for FDS is generalized on
states: s ≤ s′ iff for all c it holds that s(c) = fm and s′(c) = fm′ implies
fm ≤ fm′.

As we saw in the introduction, Fig. 1 shows alternative graphical representa-
tions used for differing formalisms. For PGFDS, it is possible to turn a can-fail
formula, e.g. canFail(G, fd), into DNF in which each disjunct is a source (a set
of failure assignment to components) {H = fu,E = fs}, for one of the hyper-
edges leading to the head G = fd. TFPG representation is immediate from the
definition. FDM [7] uses its flow variable definition where inner nodes are oper-
ators (where the domain is the failure modes of an FDS) generalizing Boolean
operators2. Note that, as we will discuss in Sect. 4, our proposed formalism can
be equivalently formulated as TFPG over FDS (at the price of introducing in-
termediate nodes for subformulas of canFail formulas), therefore a TFPG-like
graph representation is immediately possible.

3 Proposed formalism : Unifying Propagation Graph

3.1 Syntax and Semantics

Our syntactic formulation is based on PGFDS, where each combination of a
component and a failure mode is assigned a formula. A formula may represent
different states in a more compact manner. For the purpose of integrating TFPG,
we consider temporal and system mode restrictions as separate formula deco-
rations. As we will see later (Ex. 2), dealing with system modes and intervals
separately adds another dimension of expressivity.

Definition 1 (Unifying Propagation Graph). Given a finite degradation
structure D = (FM ,≤,⊥) and a finite set of system modes M , a unifying
2 It is noteworthy to mention here that FDM is the first formalism involving FDS, but
since we focus more on PGFDS and TFPG, interested reader may refer to [17,7].

VI Marco Bozzano, Alessandro Cimatti, Alberto Griggio, and Fajar Haifani

propagation graph (UPG) over D is a tuple S = (J,C, canFail), where C is a
finite set of system components, J ⊆ C the components that can fail initially,

canFail : C × FM → F

is a map from C ×FM to a can fail formula canFail(c, fm) over C as variables
with domain FM , where F is of the form

φ := | t1 ≤ t2|t1 = t2

| φ1 ∨ φ2 | φ1 ∧ φ2 | ¬φ
| Iφ |M ′φ

with terms t1 and t2 built over variables C and constants from FM ; I an interval;
and M ′ ⊆ M . Iφ and M ′φ are formulas with interval decoration and system
mode respectively. A state formula is a formula without interval decoration and
a path formula is a formula with interval decoration. 3

The formalisms we unify use different notions of semantics such as activation
time (TFPG), propagation graphs (PGFDS), formula evaluation (FDM). Here,
we picked trace-based semantics and, to accommodate system mode and interval
restriction, we bring the idea of super-dense semantics (in the context of hybrid
system, see, e.g. [18]) where we combine index and timestamps. As we will see
in Def. 2, we argue that this notion of semantics more closely describes the
intuition of our intended operational semantics. Another alternative worth noting
here is the transition system of timed automata from [19]. With this, it would
be cumbersome to deal with subformulas that are decorated conjunction and
disjunction with no explicit variables/states to be assigned.

A state is a tuple (i, µ,m, t) of an index in N, a map µ : C → FM , a
system mode m ∈ M and a real number t ≥ 0. A trace is a sequence of states
(0, µ0,m0, t0), . . . , (k, µk,mk, tk) with t0 = 0 and ti ≤ ti+1. A sub-trace of τ
is a contiguous subsequence of τ . τ l represents the prefix of τ of length l and
τ [l] = (l, µl,ml, tl) is the state at index l. For a UPG where system mode is
not relevant we may use the notation (µ, t). Two consecutive states corresponds
to either discrete steps or propagation steps. A discrete step4 is between two
states (i, µi,mi, ti).(i + 1, µi+1,mi+1, ti+1) s.t. ti = ti+1 and either mi 6= mi+1

or µi 6= µi+1 (but not both) while a propagation step is when ti < ti+1 but
mi = mi+1 and µi = µi+1. We assume fault-persistence for the failure modes,
i.e. failure mode assignments persist: for any trace, if µ(c) = fm (noted c 7→ fm
hereinafter) for fm 6= ⊥ in some state, then it must hold in all later states.

Definition 2 (Semantics: state/path).We define the semantics via state/path
satisfaction for the can-fail formulas5.

3 Note that, t1 ≤ t2 (or t1 ≥ t3) can be translated into =, but can be useful when we
later talk about monotonic UPG.

4 Following that system mode switches take no delay.
5 Note that state satisfaction is also path satisfaction.

Towards a Unifying View of Fault Propagation Analyses and Notations VII

State formula (without interval):

(j, µ,m, t) |= t1 ≤ t2 iff µ |= t1 ≤ t2
(j, µ,m, t) |= t1 = t2 iff µ |= t1 = t2

(j, µ,m, t) |= φ ∧ ψ iff (j, µ,m, t) |= φ and (j, µ,m, t) |= ψ

(j, µ,m, t) |= φ ∨ ψ iff (j, µ,m, t) |= φ or (j, µ,m, t) |= ψ

(j, µ,m, t) |= ¬φ iff (j, µ,m, t) 6|= φ

(j, µ,m, t) |=M ′φ iff (j, µ,m, t) |= φ and m ∈M ′

Path formula (must fail)6:

π |= φ ∧ ψ iff π |= φ and π |= ψ

π |= φ ∨ ψ iff π |= φ or π |= ψ

π |=M ′φ iff there is m ∈M ′ s.t.
π |= φ and m ∈M ′ is the system mode
from the last state of π

π |= Iφ iff there is j1, j2, s.t. j1 ≤ j2 ≤ len(π) and

tj2 − tj1 = max(I) and πj′ |= φ for all j1 ≤ j′ ≤ j2

path formula (can fail):

π |=cf Iφ iff either π |= Iφ or
there is j1, j2, s.t. j1 ≤ j2 = len(π) and

tj2 − tj1 ∈ I and πj′ |=cf φ for all j1 ≤ j′ ≤ j2
π |=cf φ iff π |= φ for other φ cases.

System mode restricts only the last state, due to it being able to arbitrarily
change. Interval decoration π |= Iφ has the ‘less than’ restriction j2 ≤ len(π)
to generalize fault persistence to formula. That is, once Iφ holds at some state,
then it will hold at all later states. This makes it easier to relate to the original
TFPG semantics for AND and OR discrepancies. Also, let us assume decorations
bind the formulas stronger than the operators ({m1}c1 = fm1 ∨ c2 = fm2 is
equivalent with ({m1}c1 = fm1) ∨ (c2 = fm2))

Definition 3 (Semantics: UPG trace). π = (0, µ0,m0, t0) . . . (k, µk,mk, tk)
is a trace of a UPG X = (J,C, canFail) iff for all c ∈ C and j ≥ 0

(i) (can fail) if µj(c) = fm 6= ⊥ but µj−1(c) = ⊥ then either

6 For monotonic systems, negated state formula can be turned into a positive formula,
but it may be used for a more concise formula (e.g. ¬c = ⊥). We examined path
formula and concluded that having negation means the introduction of a new kind
of (modal) operator. For lack of space, we do not discuss this further, and assume
that path formulas are without negation hereinafter.

VIII Marco Bozzano, Alessandro Cimatti, Alberto Griggio, and Fajar Haifani

– c ∈ J ,
– πj |=cf canFail(c, fm).

(ii) (must fail)

πj′ |=
∨

fm∈FM\{⊥}

canFail(c, fm)→ c = fm

for j′ the maximum index j ≤ j′ s.t. tj′ = tj

In the rest of this paper, we consider traces where there is some failure in the
first state π[0], otherwise the prefix without failures can be removed. For c ∈ J we
additionally assume j = 0 in Def. 3.(i), which is w.l.o.g. for cut set enumeration
purposes. Moreover, we rely on the notion of FDS monotonicity from PGFDS,
i.e. (i, µi,mi, ti) ≤ (i, µ′i,mi, ti) iff µ ≤ µ′i, and in some examples we use an
FDS called W2F ({⊥, fd, fu, fs},≤,⊥) (from [20]) s.t. ⊥ < fs, ⊥ < fd, fd <
fu where fs, fd, fu maybe resp. called failed-safe, fail-detected, and failed-
undetected. Finally, we say that a UPG is cyclic if there are two components
and failure modes c, c′ and fm, fm′ s.t. c = fm occurs (also transitively) in
canFail(c′, fm′) and vice versa.

Example 1 (Initial state, propagation step, and FDS-Monotonicity). With J =
{d1, d2}, we define a UPG with the following can fail formulas and one if its
traces.

canFail(c1, fu) = [5, 5]{m2}d2 ≥ fs
canFail(c2, fu) = [5, 5]{m1}d1 ≥ fd ∧

c1 ≥ fd

π =(0, {d1 7→ fd, d2 7→ fs},m2, 0)

(1, {d1 7→ fd, d2 7→ fs},m2, 5)

(2, {d1 7→ fd, d2 7→ fs, c1 7→ fu},m2, 5)

(3, {d1 7→ fd, d2 7→ fs, c1 7→ fu},m1, 5)

(4, {d1 7→ fd, d2 7→ fs, c1 7→ fu},m1, 10)

(5, {d1 7→ fd, d2 7→ fs, c1 7→ fu, c2 7→ fu},m1, 10)

This example illustrates some properties of the trace definition. First, the initial
fail d1 7→ fd happens in π[0] but started propagating in π[3] when the system
mode finally became m1. Second, the super dense semantics divides the trace
into three parts: π[0].π[1] and π[3].π[4] are propagation steps while the others
are discrete steps. Last, one can see that the UPG is FDS-monotonic due to
the use of ≥: once c1 7→ fu appears in some state (index 2), this state will also
satisfy c1 ≥ fd in canFail(c2, fu).

Interval If φ =M ′φ thenM ′ restricts the system mode only during propagation
and can change afterwards. Moreover, during the propagation, e.g. for [1, 2]c = f ,
failure propagation from a state with c 7→ f from time 0 can only be completed
at the earliest time 1 and have definitely completed at time 2. Mode switching
within the allowed system mode decoration e.g. [1, 2]{m1,m2}φ′ is possible. The
state of index j1 (compare Def. 2) represents the first state φ becomes true, j′

Towards a Unifying View of Fault Propagation Analyses and Notations IX

during a propagation, j2 the first time Iφ becomes true, and t > j2 the states
where faults are persistent but there is no more restriction on the system mode.
Notice that for I = ∅, Iφ is simply false by definition (π |=cf Iφ).

Example 2 (Basic Example: TFPG with formulas). The following are various
cases of decoration:

canFail(1)(c′, fm′) = [1, 2]{m1}c = fm

canFail(2)(c′, fm′) = [1, 2][0, 0]{m1}c = fm

canFail(3)(c′, fm′) = {m1}[1, 2]c = fm

canFail(4)(c′, fm′) = [1, 2](({m1}c1 = fm1) ∨ ({m2}c2 = fm2))

canFail(5)(c′, fm′) = [1, 1]({m1}[1, 1]({m2}[1, 1]{m1}c1 = fm1))

Here, (1) is the usual edge in TFPG, (2) shows an instantaneous propagation
in mode m1, followed by another propagation in any mode, (3) is a propagation
ending in system modem1, (4) enforces a similar propagation time for alternative
TFPG edges, and (5) shows a sequence of system mode changes where the failure
mode mapping in a state does not change.

Example 3 (Max delay). Given canFail(d, g) = [0, 5]{m}c = f , the following are
both accepted traces.

π =(0, {c 7→ f},m, 0).(1, {c 7→ f},m, 5).(2, c 7→ f, d 7→ g,m, 5).

(3, c 7→ f, d 7→ g,m′, 5)

π′ =(0, {c 7→ f},m, 0).(1, {c 7→ f},m, 5).(2, c 7→ f,m′, 5)

This example illustrates that at maximal delay, two cases can happen depending
on which discrete step (failure mode assignment or system mode switch) happens
first. In the first case, the propagation is finished then its system mode changes,
while in the second one, mode changes before the propagation is completed.

Interval Decoration Sequence An intermediate formula may have a satisfying
trace where in some consecutive states time passes, without any change in the
failure/system mode mapping, but they can be summed/partitioned.

Lemma 1 (Interval Sum/Partition). Given M ′φ, it holds that

[d1, d2]M
′[d′1, d

′
2]M

′φ iff [d1 + d′1, d2 + d′2]M
′φ

Example 4 (Summing/partitioning of temporal decoration). For

{m3}([1, 1]c1 = fm1 ∧ [0.5, 0.5]{m2}[0.5, 0.5]{m1}c2 = fm2),

notice that the following is still a trace of {m3}[1, 1]c1 = fm1 despite there are
states with timestamp 0.5 in between.

(0, {c1 7→ fm1, c2 7→ fm2},m1, 0).(1, {c1 7→ fm1, c2 7→ fm2},m1, 0.5)

(2, {c1 7→ fm1, c2 7→ fm2},m2, 0.5).(3, {c1 7→ fm1, c2 7→ fm2},m2, 1)

(4, {c1 7→ fm1, c2 7→ fm2},m3, 1)

X Marco Bozzano, Alessandro Cimatti, Alberto Griggio, and Fajar Haifani

System Mode Sequence For consecutive mode decoration, a satisfying trace must
also obey the order of the modes in the decorations. This can more specifically
expressed as the following lemma.

Lemma 2 (System Mode Sequence). M2M1φ is equivalent to M2 ∩M1φ

System modes in different conjuncts do not have to obey any ordering re-
striction, but (in conjunction with temporal restrictions) may influence when a
future failure can happen. An example is as follows.

Example 5 (Permutation by system mode). For the following

canFail(e2, g2) = [1, 1]e1 = g1

canFail(tle, f) = e2 = g2 ∧ c = f

canFail(e1, g1) = [1, 1]{m2}d2 = f2

canFail(c, f) = [1, 1]{m1}d1 = f1 ∧
[1, 1]{m2}d2 = f2

with J = {d1, d2}, we have the following trace (tle 7→ ⊥ and e2 7→ ⊥ are
omitted):

(0, {d1 7→ f1, d2 7→ f2, c 7→ ⊥, e1 7→ ⊥},m1, 0)

(1, {d1 7→ f1, d2 7→ f2, c 7→ ⊥, e1 7→ ⊥},m1, 1).(2, {d1 7→ f1, d2 7→ f2, c 7→ ⊥, e1 7→ ⊥},m2, 1)

(3, {d1 7→ f1, d2 7→ f2, c 7→ ⊥, e1 7→ ⊥},m2, 2).(4, {d1 7→ f1, d2 7→ f2, c 7→ f, e1 7→ ⊥},m2, 2)

(5, {d1 7→ f1, d2 7→ f2, c 7→ f, e1 7→ g1},m2, 2)

Here, e1 7→ g1 happens at timestamp 2. We can continue extending the trace,
to reach TLE at timestamp 3. However, if m2 holds between timestamp 0 and
1 and then m1 afterwards, e1 7→ g1 can then happen earlier at timestamp 1 and
thus also the TLE can be reached at timestamp 2.

UPG as a unifying formalism The following shows how UPG relates to PGFDS
and TFPG. Note that, if we also include other existing notions, UPG actually
unifies other safety analysis formalisms such as FDM, static fault trees, and
cyclic propagation graphs. We state the following relations (leaving the proofs
to the reader, for space reasons) while the others can be checked in the literature.

Lemma 3 (From restrictive UPG to PGFDS and TFPG). It holds that,

(i) there is a translation from a UPG X without interval decoration into a
PGFDS X ′ s.t. a trace of X can be projected to a trace of X ′; and

(ii) there is a translation from a negation-free Boolean UPG X into a TFPG X ′

s.t. for a trace of X, its activation time for every component corresponds to
a possible sequence of activation times for F of X ′.

4 Implementation: UPG in xSAP

For the practical contribution, we would like xSAP to support UPG. To this aim,
we extend TFPG with FDS, and show how to express UPG on top of this. A

Towards a Unifying View of Fault Propagation Analyses and Notations XI

practical consideration for this is that xSAP already supports TFPG and that
from theoretical side, by Lemma 3, Boolean UPG shares a close relationship
with TFPG. So, we need to accommodate FDS into TFPG. First, we simply
expand the definition of TFPG nodes to be some assignment of a failure mode
to a component. So the set of nodes V become F × FM] D × FM . Second,
conjunctions and disjunctions in UPG amount to discrepancies with an explicit
variable in D that will be assigned to true or false. We will now present its
formalization.

TFPG over FDS as a variant of UPG A TFPG G = 〈F,D,E,M,ET,EM,DC〉
over FDS S = 〈FMS ,≤S ,⊥S〉 is a structure where7: (i) F is a non-empty finite
set of initial components; (ii) D is a non-empty finite set of discrepancies s.t.
D ∩ F = ∅; (iii)E ⊆ V × (D × FM) is a non-empty set of edges between the
set of nodes V = (F × FM) ∪ (D × FM). For readability, we may write an
edge as 〈c, f〉 →E 〈c′, fm′〉; (iv) M is a non-empty set of system modes (v)
ET : E → INTV is a map that associates every edge in E with an interval; (vi)
EM : E → 2M is a map associating edges in E with a set of modes in M ; (vii)
DC : D → {AND,OR} is a map defining the discrepancy type.

For the semantics, we add the restriction that, for each component/discrepancy
d ∈ F]D, node (d, fm) can become active only for one fm ∈ FM .

We can translate a UPG into a TFPG over FDS by giving a unique label
to all occurrences of subformulas in canFail and make them a unique discrep-
ancy. For convenience we consider them without failure modes (and implicitly
treat them as if they have Boolean failure modes (failing/not failing)). From this
discrepancy and all of its subformulas, for intervals, if φ = Iφ′, then we make
an edge from the discrepancy label of φ′ into φ (the case for system mode is
similar). Two syntactically similar subformulas, e.g. canFail(c, f) = [0, 1]d =
f and canFail(c′, f ′) = [0, 1]d = f need different discrepancies. This is be-
cause from state (0, {d 7→ f}, 0), we can have (0, {d 7→ f}, 0).(1, {d 7→ f, c′ 7→
f ′}, 0.5)(2, {d 7→ f, c′ 7→ f ′, c 7→ f}, 1) which is not possible if the subformula
[0, 1]d = f is given a single label used for both c = f and c′ = f ′.

Fig. 2. UPG in TFPG-like graphical format

7 The changes from the usual TFPG are in (iii) and its semantics that would have to
accommodate FDS monotonicity.

XII Marco Bozzano, Alessandro Cimatti, Alberto Griggio, and Fajar Haifani

With this formalization, UPG can then alternatively take advantage of the
visual format of TFPG (compare example in Fig. 2). Rounded boxes are atomic
formulas, a circle is a disjunction, a box is a conjunction, a label on an edge is a
decoration on a formula represented by its source node. The edge labeling, the
potentially unlabeled discrepancies, and the nodes being from C × FM are the
primary difference w.r.t. the original TFPG.

xSAP-supported format We can easily extend the concrete syntax for TFPG in
xSAP to handle FDS (and hence UPG). E.g., we extend the existing format by
introducing the declaration of the list of failure modes of an FDS and their order,
whereas edge definition declares components and failure modes. For backward
compatibility, the declaration of a Boolean FDS may be omitted and in this case,
node and edge declarations contain only component names.

5 SMT-based approach for Safety Analysis

As another further contribution on the practical side, we demonstrate cut set
enumeration for UPG, by extending the SMT encoding from [8] with temporal
constraints. A cut set for some decoration-free canfail formula TLE potentially
with minimal-time mintt restriction and maximal-time restriction maxtt is an
initial state (at timestamp 0) for which there is a trace to a state τ s.t. τ |= TLE
at the earliest timestamp mintt and at the latest timestamp maxtt.

Definition 4 (SMT-Encoding of TFPG (With timing but no system
mode)). Given a TFPG X over an FDS S, its SMT encoding is defined as

ϕt
cs = ϕonce ∧ ϕinit ∧ ϕt

next ∧ ϕtle

where ϕonce =
∧

c=fm,c=fm′∈D
(
¬Fc,fm ∨ ¬Fc,fm′

)
is for unique mode assign-

ment; ϕinit =
∧

(c,fm)∈F (Ic,fm → Fc,fm) is for relating initial and propagation
failure;

ϕt
next = (

∧
(c,fm)∈D∩F

(
Fc,fm →

(
Ic,fm ∨ canFail tsmt(c, fm)

))
) ∧

(
∧

(c,fm)∈D\F

(
Fc,fm →

(
canFail tsmt(c, fm)

))
)

for propagation relation; and

canFail tsmt(c, fm) =



∨
e=〈d,fm′〉→E〈c,fm〉(Fd,fm ∧ od < oc ∧ //DC(c, fm) = OR

td + ptimedc = tc∧
min(ET (e)) ≤ ptimedc ≤ max(ET (e)))

∧
e=〈d,fm′〉→E〈c,fm〉(Fd,fm ∧ od < oc) ∧ //DC(c, fm) = AND

td + ptimedc = tc ∧min(ET (e)) ≤ ptimedc∧∨
e=〈d,fm′〉→E〈c,fm〉 ptimedc ≤ max(ET (e))

Towards a Unifying View of Fault Propagation Analyses and Notations XIII

The formula φtle can be seen as a canfail formula canFailtsmt(tle) ∧ mintt ≤
ttle ∧ ttle ≤ maxtt for a decoration-free formula canFail(tle).

FDS monotonicity is from [8]. We replace Fd,fm in canFail tsmt(c, fm) with∨
fm≤ ˆfm Fd, ˆfm . For the implementation generating only FDS-minimal cut-sets,

we remove φonce and replace Ic,fm in ϕt
next with

∧
fm′≤fm Ic,fm∧

∧
fm′ 6≤fm ¬Ic,fm.

Let us call the resulting encoding φFM,t
cs . With this, we generate subset-minimal

models w.r.t. I-vars Ic,fm assigned to true. We get a cut set from such a model
by collecting c 7→ fm s.t. fm is FDS-maximal among all fm′ s.t. Ic,fm′ 7→ true
in the subset-minimal model (we call this extraction modelToStateFM [8]). Its
correctness builds upon the fact that the temporal restriction in the encoding
already follows TFPG temporal restriction (see Sect. 2).

Theorem 1 (Cut set enumeration). Given UPG X and a top level event
TLE and its encoding φFM,t

cs , we have

cutset(X,TLE) ⊆ {modelToStateFM (µ)|µ |= φFM,t
cs }

They coincide for FDS-monotone UPG.

6 Experimental Evaluation

We intend to have the full UPG formalism supported in xSAP. As an initial
contribution, we extended the SMT-based encoding from [8] to accommodate
temporal constraints, and we design an experiment to evaluate how temporal
constraints affect performance.

Benchmarks and Experimental Setup We use cyclic benchmarks ladder and ra-
diator from [21]. The benchmarks have two types of components: modules and
voters. In order to focus and accentuate the effect of temporal restrictions, we
make the following simplification. We only use the ones with one voter, because
it was shown [21] that the cyclicity for two and three voters rendered the prob-
lems much more difficult and cycle handling is not our focus here. For FDS, we
add failure modes using the FDS with order ⊥ < L < H without randomization
and in such a way that the number of cut sets do not grow too large. We assign J
to only contain the modules and not voters. We randomize temporal decoration
between [0, 1] and [1, 2] only for modules in the can-fail formulas. The number
of components (representing the size of the benchmark instances) are multiple
of three in {3, . . . , 15}. For each instance, we try to generate cut sets that cause
the top level event within 2 time-span up to 40 time-span (in multiples of two).

Experimental Results Fig. 6 shows the runtime and the number of cut sets w.r.t.
the maximum TLE time. The main results are that (1) the runtime tends to
be small for small and large maximum TLE time, (2) increases as the number
of admissible cut sets (that can cause the given TLE within the time-bound)
increase, (3) decreases when the admissible cut sets are the same as all cut
sets (but may first have some increase when the max TLE time is tight). For

XIV Marco Bozzano, Alessandro Cimatti, Alberto Griggio, and Fajar Haifani

each of the number-of-component parameter, the number of all minimal cut
sets for ladder and radiator benchmarks are 12, 24 36, 48, and 60. For ladder
benchmark, they are found for the maximum TLE times of 2, 2, 4, 6, and 10,
while, for radiator benchmark, they are found for maximum TLE times of 2, 4,
6, 10, and 10.

Fig. 3. Experimental Results

7 Conclusion and Future Work

In this work, we have proposed a new formalism for failure propagation called
UPG, unifying and extending previous notations such as TFPG, FDM, PGFDS.
We have designed the integration of UPG into the xSAP safety analysis plat-
form, which will serve as an integrated platform for extended versions of the
existing analysis and synthesis routines available for TFPG and PGFDS. As a
first contribution in this direction, we have extended the encoding and the engine
of [8,9] for MCS computation to support propagation timings, and demonstrated
its performance on a set of benchmarks. We plan to make the integrated platform
available in time for demonstration at the conference.

As part of our future work, we are considering further extensions of UPG. In
particular, we want to investigate modeling aspects that are available in Dynamic
Fault Trees, e.g. dynamic gates, spares and more complex forms of dependencies.
Finally, we want to integrate probabilistic and observability aspects into UPG,
with applications in monitoring and diagnosis.

References

1. IEC. Railway applications - Specification and demonstration of reliability, avail-
ability, maintainability and safety (RAMS), 2002.

2. ISO. Road vehicles - Functional safety, 2011.
3. SAE. ARP4761A Guidelines and Methods for Conducting the Safety Assessment

Process on Civil Airborne Systems and Equipment, 2022.

Towards a Unifying View of Fault Propagation Analyses and Notations XV

4. Marco Bozzano, Alessandro Cimatti, Marco Gario, and Andrea Micheli. SMT-
based validation of timed failure propagation graphs. In Proc. AAAI, pages 3724–
3730. AAAI Press, 2015.

5. B. Bittner, M. Bozzano, A. Cimatti, and G. Zampedri. Automated verification
and tightening of failure propagation models. In Proceedings of the 30th AAAI
Conference on Artificial Intelligence (AAAI 2016), pages 907–913, 2016.

6. B. Bittner, M. Bozzano, and A. Cimatti. Automated Synthesis of Timed Failure
Propagation Graphs. In Proc. IJCAI, pages 972–978, 2016.

7. Liu Yang and Antoine Rauzy. FDS-ML: A new modeling formalism for probabilistic
risk and safety analyses. In Proc. IMBSA, volume 11842 of Lecture Notes in
Computer Science, pages 78–92. Springer, 2019.

8. Marco Bozzano, Alessandro Cimatti, Anthony Fernandes Pires, Alberto Griggio,
Martin Jonáš, and Greg Kimberly. Efficient SMT-Based Analysis of Failure Prop-
agation. In CAV, volume 12760 of LNCS, pages 209–230. Springer, 2021.

9. Marco Bozzano, Alessandro Cimatti, Alberto Griggio, Martin Jonás, and Greg
Kimberly. Analysis of cyclic fault propagation via ASP. In Proc. LPNMR, volume
13416 of Lecture Notes in Computer Science, pages 470–483. Springer, 2022.

10. Antoine Rauzy and Liu Yang. Finite degradation structures. FLAP, 6(6):1447–
1474, 2019.

11. Benjamin Bittner, Marco Bozzano, Roberto Cavada, Alessandro Cimatti, Marco
Gario, Alberto Griggio, Cristian Mattarei, Andrea Micheli, and Gianni Zampedri.
The xSAP safety analysis platform. In Proc. TACAS, volume 9636 of Lecture Notes
in Computer Science, pages 533–539. Springer, 2016.

12. M. Bozzano, A. Cimatti, M. Gario, D. Jones, and C. Mattarei. Model-based Safety
Assessment of a Triple Modular Generator with xSAP. Formal Aspects of Com-
puting, 33(2):251–295, 2021.

13. Peter Fenelon and John A. McDermid. An integrated tool set for software safety
analysis. J. Syst. Softw., 21(3):279–290, 1993.

14. Yiannis Papadopoulos and John A. McDermid. Hierarchically performed hazard
origin and propagation studies. In Proc. SAFECOMP, volume 1698 of Lecture
Notes in Computer Science, pages 139–152. Springer, 1999.

15. Kevin Delmas, Remi Delmas, and Claire Pagetti. SMT-based architecture mod-
elling for safety assessment. In 12th IEEE International Symposium on Industrial
Embedded Systems, SIES 2017, pages 1–8. IEEE, 2017.

16. Sherif Abdelwahed, Gabor Karsai, Nagabhushan Mahadevan, and Stanley C. Of-
sthun. Practical implementation of diagnosis systems using timed failure propaga-
tion graph models. IEEE Trans. Instrum. Meas., 58(2):240–247, 2009.

17. Liu Yang, Antoine Rauzy, and Cecilia Haskins. Finite Degradation Structures: a
Formal Framework to Support the Interface between MBSE and MBSA. In Proc.
ISSE, pages 1–6, Rome, Italy, 2018.

18. Zohar Manna and Amir Pnueli. Verifying hybrid systems. In Robert L. Grossman,
Anil Nerode, Anders P. Ravn, and Hans Rischel, editors, Hybrid Systems, volume
736 of Lecture Notes in Computer Science, pages 4–35. Springer, 1992.

19. Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools.
In Lectures on Concurrency and Petri Nets, Advances in Petri Nets, volume 3098
of LNCS, pages 87–124. Springer, 2003.

20. Antoine Rauzy. Mathematical foundations of minimal cutsets. IEEE Trans. Re-
liab., 50(4):389–396, 2001.

21. Marco Bozzano, Alessandro Cimatti, Alberto Griggio, and Martin Jonáš. Effi-
cient analysis of cyclic redundancy architectures via boolean fault propagation. In
TACAS, volume 13244 of LNCS, pages 273–291. Springer, 2022.

	Towards a Unifying View of Fault Propagation Analyses and Notations

