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Abstract

The aim of this thesis is to investigate the problem of verification for concurrent systems.
In particular, a major problem in verification is that of validating systems, e.g. protocols,
which are parametric, in the sense that the number of entities taking part in a given run is
not fixed a priori. Typically, such kind of systems are also infinite-state, in that they use
data structures containing possibly unbounded data values.

In this thesis we tackle the problem of verification using a logical approach. In particular,
the leading thread of this work will be a specification language based on a fragment of
Girard’s linear logic, which we will show to have direct connections with classical formalisms
like high-level nets or rewriting. By combining the power of logical connectives with the
flexibility of rewriting, we are able to nicely model local and global transitions, and to
elegantly express new data generation. Reasoning on heterogeneous domains can also be
achieved via specialized constraint solvers.

We show how this language can be used both for the specification and the analysis of para-
metric systems. In particular, we present a verification procedure which resembles classical
symbolic model checking algorithms for infinite-state systems, and is well-suited to study
system properties like safety, e.g. mutual exclusion. Technically, our verification procedure
uses a fixpoint computation strategy which is based on a new bottom-up semantics for a
fragment of linear logic. We illustrate our methodology presenting different examples com-
ing from concurrency theory, like a parameterized version of the ticket mutual-exclusion
protocol, and from security, like authentication protocols.
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Chapter 1

Introduction

The contribution of this thesis is twofold. First of all, we present a specification language,
based on a fragment of Girard’s linear logic, which is suitable for the specification of con-
current systems, and is closely related to well-known formalisms like Petri nets, high-level
Petri nets or rewriting systems. The core of the language provides logical primitives to
express, e.g., communication by rendezvous, broadcast, and fresh name generation, and
can be extended with specialized constraint solvers to reason on different data domains.
Furthermore, we enrich this language with a novel computational model based on an alter-
native bottom-up semantics for linear logic programs, which we show to have applications
for the verification of parameterized and infinite-state systems.

We have obtained some original results, both theoretical and practical. From the theo-
retical side, we have isolated fragments of first order linear logic for which provability is
decidable. From the practical side, we have derived an automated verification procedure for
an interesting class of safety properties, and some novel results concerning the validation
of parameterized systems.

1.1 Motivations

In recent years several attempts have been made in order to develop tools for the automated
verification of concurrent and distributed systems. Specifically, one of the more challenging
research areas is related to the verification of parameterized systems. By parameterized
system, we mean any collection of an arbitrary but finite number of components interacting
via synchronous or asynchronous communication. Examples of parameterized systems
naturally arise in different areas of computer science like, e.g., operating systems, network
computing, or web applications. For instance, communication and authentication protocols
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are a key ingredient for applications involving remote access or e-commerce.

Very often, most of these applications are highly critical. They must comply with a num-
ber of security requirements, and therefore their design and implementation is always dif-
ficult and error-prone. As a meaningful example, we could mention the case of Needham-
Schroeder authentication protocol [NS78], an apparently very simple protocol which only
recently (seventeen years after its publication) has been shown to be flawed [Low95]. For
these reasons, the availability of possibly automatic tools for the formal specification and
analysis of such kind of systems seems to be indispensable.

Some interesting results have been obtained for the verification of the class of parameterized
systems with finite-state components [ACJT96, FS01, PRZ01, APR+01]. In many practical
cases, verification problems for this kind of systems can be reduced to problems on Petri
nets, by applying a counting abstraction that simply forgets local data while keeping track
of the number of processes in a given state. The original properties can then be verified
on the resulting model by means of reachability procedures [GS92, EN98, EFM99, Del00].
However, very often such kind of systems are also infinite-state, in that they use data struc-
tures containing possibly unbounded data values. Some more results have been obtained
for the verification of classes of infinite-state systems consisting of a fixed number of com-
ponents with possibly unbounded data. As an example, in [BGP97, Del00, DP99, Fri99],
constraints are used to symbolically represent and manipulate infinite collections of states.
The new frontier seems therefore to be the verification of systems which are both parametric
and infinite-state.

1.2 Contribution of the Thesis

In this thesis we will present a uniform logical environment for the specification and anal-
ysis of concurrent systems. In particular, we will isolate a fragment of Girard’s linear
logic [Gir87] corresponding to the language LO as defined in [AP91b] and some extensions
of its. We will show that this language has close connections with classical formalisms in
concurrency theory like (coloured) Petri nets or multiset rewriting systems over atomic for-
mulas. Our work has in fact been inspired by the multiset-rewriting-like logic described in
[CDL+99]. The core of the language provides logical primitives to express local communi-
cation and synchronization between processes, and to implement broadcast communication.
Furthermore, universal quantification can be used as an elegant way to express fresh name
generation.

Building upon previous works for verification of parameterized systems [AJ98, Del00, FS01,
AJ01b], we will study a backward verification procedure, resembling usual symbolic model
checking algorithms, which can be used to validate systems specified in our language. This
procedure works by computing the backward reachability set of a given system starting

11



from a symbolic representation of the set states violating the property under consideration.

To exemplify, consider the simple Petri net [Rei85] drawn below, which represents a
semaphore enforcing mutual exclusion for accessing an ideal (shared) resource. We have K

Enter

use lockedidle

Leave

unlocked

K

Figure 1.1: A simple Petri net representing a semaphore

processes (we have drawn three of them in Figure 1.1), represented by tokens, i.e., black
spots, which can be in state idle or use (i.e., using the resource). The semaphore is in
turn represented by a token which can assume one of the two values locked and unlocked.
Initially all processes are idle and the semaphore is unlocked. A configuration of the system
is a multiset, for instance the initial configuration drawn in Figure 1.1 is represented by the
multiset {idle, idle, idle, unlocked}. A process can get control of the resource (transition
Enter) by locking the semaphore, provided the semaphore is currently unlocked. A process
can release the resource (transition Leave) by unlocking the semaphore. These transitions
can be encoded in linear logic as the following two program clauses (let P be the resulting
program):

Enter: idle ............................................
...........
........
................................ unlocked ◦− use ............................................

...........
........
................................ locked

Leave: use ............................................
...........
........
................................ locked ◦− idle ............................................

...........
........
................................ unlocked

The connective ............................................
...........
........
................................ (multiplicative linear disjunction) acts as a multiset constructor, whereas

◦− (reversed linear implication) can be viewed as a rewriting operator (i.e., the left-hand
side can be rewritten into the right-hand side). For instance, the first clause can transform
the initial configuration into {idle, idle, use, locked}.
Suppose we want to formally verify that the above property of mutual exclusion holds.
Our verification strategy works as follows. The set of states violating the mutual exclusion
property are exactly those in which there are at least two processes using the resource.
Therefore we can symbolically represent them by the multiset {use, use} (note that, in the
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general case with K initially idle processes, this is a symbolic representation for an infinite
set of system configurations). From a logical point of view, this is the counterpart of the
linear logic axiom

Unsafe: use ............................................
...........
........
................................ use ◦− ⊤

which, intuitively, states that any configuration containing at least two tokens use is prov-
able, according to the following proof scheme

P ⊢ ⊤,∆
⊤r

P ⊢ use, use,∆
Unsafe

where ∆ is any multiset of tokens.

In order to verify if an unsafe configuration is reachable, we can compute the predecessor
operator. If a process is in state use, necessarily it must have got access to the resource
by executing the transition Enter, and the semaphore must have been unlocked (also,
the semaphore must be currently locked). The corresponding set of predecessor states
is given by {use, idle, unlocked}. The concept of reachability between Petri net configu-
rations is the counterpart of the notion of provability in linear logic. For example, the
following proof states that the configuration {use, idle, unlocked} is backward reachable
from {use, use, locked}:

P ⊢ ⊤, locked
⊤r

P ⊢ use, use, locked
Unsafe

P ⊢ use, idle, unlocked
Enter

Note that the configuration {use, use, locked} is unsafe, i.e., violates mutual exclusion.
The above proof shows that the configuration {use, idle, unlocked} is also unsafe.

Using a similar kind of reasoning, we can compute the reflexive and transitive closure of
the predecessor operator, which yields the following (symbolic representations of) states:

{use, use} {use, idle, unlocked} {idle, unlocked, idle, unlocked}

None of the above states is a legal initial configuration of the system (remember that we
require all processes to be initially idle, furthermore we allow only one unlocked token).
In other words, any legal initial configuration will never lead to a configuration violating
mutual exclusion. The property of mutual exclusion is therefore verified. From a logical
point of view, computing the closure of the predecessor operator amounts to computing
the fixpoint of a suitable operator.

This simple idea, illustrated for a specification given via a Petri net, in this thesis will be
extended in order to reason about systems which can be parametric in several dimensions.
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For instance, we can extend the above specification in order to allow more than one re-
source. An atomic formula sem(x, locked) or sem(x, unlocked) can be used to represent a
semaphore for a resource named x. We can then verify mutual exclusion for any number
of resources. We can also verify more complex protocols, which are infinite-state even
for fixed values of the parameters. Our approach therefore provides a methodology to lift
traditional verification techniques for Petri nets to more complex specification languages
like coloured Petri nets [Jen97].

From a logical viewpoint, the verification procedure sketched above is the counterpart of
a new, alternative, bottom-up semantics for a fragment of linear logic. The advantages of
using a backward reachability procedure, as opposed to a forward one, are clearly advocated
in [FS01, AJ01b]. In particular, computability results rely on the possibility of finding a
finite representation for infinite set of states which are upward-closed. This can be done
by specifying the minimality requirements that a given state should satisfy (remember the
previous example, in which the multiset {use, use} represents every configuration with at
least two processes in state use). The resulting specification methodology turns out to
be well-suited to specify an interesting class of safety properties (e.g. mutual exclusion in
concurrency theory, confidentiality in authentication) for parameterized and open systems.
From a logical perspective, this backward verification procedure relies on a symbolic eval-
uation of first-order programs based on unification, and makes use of suitable subsumption
checks in order to relieve the state-explosion problem. In addition, techniques based on
static analysis of programs provide further criteria to prune the search space.

Our framework has been intentionally designed as a modular (as opposed to monolithic)
system. In fact, we have decided to leave the logical substratum, which basically consists
of a multiset rewriting formalism, reasonably simple. The core of the system can then
be enriched in different ways. For instance, reasoning on specialized and heterogeneous
domains can be carried out by interfacing the system with different constraint systems,
as in traditional constraint programming [JM94]. This solution is clearly more flexible,
because the knowledge and reasoning capabilities which are specific of every particular
domain can be delegated to specialized constraint solvers. In this way, we have been able
to specify and analyze protocols which are both parametric and infinite-state (e.g. using
integer-valued data variables).

As a result of our analysis, we have also obtained some results concerning decidability of
the provability relation for some fragments of first-order linear logic (with or without con-
straints). From the verification viewpoint, these results are the counterpart of verification
problems which, consequently, can be shown to be decidable. We have used these results as
a termination guarantee for our verification procedure based on backward reachability. As
an example, we have been able to analyze and validate, to our knowledge for the first time,
a parameterized version of a classical mutual-exclusion protocol called the ticket protocol.
It is remarkable that this protocol is both parametric and also infinite-state, in that it is
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specified using integer variables which can get arbitrary values (even for a formulation of
the protocol with a fixed number of processes, e.g. with two processes). Another interesting
application field concerns authentication protocols. We will show that our methodology can
be used either to find attacks or to verify correctness of security protocols. Our verification
procedure, based on backward reachability, can automatically find attacks following com-
plex patterns, like parallel attacks, without encoding any prior knowledge about the kind
of attacks to look for.

Finally, we must mention that, from a logical standpoint, our work follows the established
tradition of fixpoint, bottom-up semantics for (constraint) logic programs [Llo87, JM94,
GDL95]. In particular, we have characterized the analogous of the so-called C-semantics
[FLMP93, BGLM94], originally defined for Horn clause logic, for a subset of first-order lin-
ear logic including universal quantification in goals. As a side result, we have also obtained
a non ground semantics for Horn programs enriched with universal quantification in goals.
We believe that our work could also have an impact on the field of linear logic program-
ming. This line of research can be carried on by considering either more complex linear
logic languages [And92, HM94, Mil96, DM01], or more complex observational semantics,
like the S-semantics of [FLMP93, BGLM94].

1.3 Plan of the Thesis

Broadly speaking, the thesis is divided into two parts. The first one presents the logical
background for the rest of the thesis, and discusses the relationship between linear logic and
classical alternative formalisms for the specification of concurrent systems, like (coloured)
Petri nets and multiset rewriting systems.

The second part includes the original contribution of this thesis. Its core is structured as
a collection of four chapters dealing with a different fragment or extension of the language
LO [AP91b]. Every chapter deals with the definition of the bottom-up semantics for the
corresponding fragment of linear logic, contains all the relevant proofs, and terminates with
some examples. The four fragments or extensions of LO which we will be analyzed are:
propositional LO; an extension of LO with the constant 1 and the ⊗ connective in goals,
called LO1; a first-order formulation of LO with constraints, called LO(C); and finally a
first-order formulation of LO admitting universal quantification over goals, called LO∀.

As a general guideline, we have included formal proofs and results stating correctness and
completeness of the bottom-up semantics for each of the four different fragments mentioned
above, even though some overlap may arise. For instance, the bottom-up semantics for
propositional LO can be seen as an instance of the bottom-up semantics for LO∀ programs.
However, the semantics for propositional programs can be greatly simplified, and it also
enjoys computability results which do not extend, in general, to the first-order case. We
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also believe that the relevant proofs, which are much simpler in the propositional case, can
help the reader to better understand the extensions presented in the following chapters.
We have therefore chosen to include them in the corresponding chapter.

A more detailed description of the structure of the thesis is given below.

1.3.1 Structure of the Thesis

We describe below how the thesis is concretely structured. Some chapters are based or
extend previously published works. For the convenience of the reader, a list of the relevant
papers is given at the end of this section.

First of all, in Chapter 2 we give some preliminaries and introduce some notations needed
in the rest of the thesis.

The purpose of Part I is to present some background on linear logic and to substantiate our
view of linear logic as a unifying view of concurrency. Specifically, this part is structured as
follows. First of all, we introduce the basic concepts pertaining to linear logic in Chapter
3. In particular, we present in more detail the language LO and some proper extensions
of its. In Chapter 4 we discuss the relationship between linear logic, and in particular
the language LO, and other formalisms for the specification of concurrent systems, namely
Petri nets, multiset rewriting systems over atomic formulas, and broadcast protocols. In
Chapter 5 we extend the previous ideas by considering first-order linear logic theories and
relating them to extensions of Petri nets, like coloured Petri nets, and first-order multiset
rewriting systems.

Part II contains the original contribution of this thesis. In Chapter 6, first of all we
discuss the backward verification approach which we follow in this thesis, we explain the
connection with bottom-up semantics of linear logic programs, and we present a general the-
ory which can be used to prove termination (decidability) results. Chapter 7 deals with
the propositional fragment of LO. The chapter is based on [BDM00, BDM01b, BDM02],
and contains some simple examples illustrating our methodology. Chapter 8 considers
the language LO1, an (apparently) simple extension of propositional LO which, however,
has the effect of breaking the decidability property of the provability relation which holds
instead for propositional LO. At the end of the chapter we show how broadcast primi-
tives can be simulated in this logical fragment. The chapter extends previous results in
[BDM00, BDM02]. In Chapter 9 we consider the language LO(C), i.e., LO enriched with
constraints. The analysis of the so-called ticket protocol, which we mentioned in Section
1.2, is included in this chapter. Some preliminary results concerning the contents of this
chapter appeared in [BDM01a, BD02]. Finally, in Chapter 10, we extend the previous
results to the fragment LO∀, a first-order formulation of LO with universal quantification
over goals. We present as example the analysis of a test-and-lock mutual exclusion proto-
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col. Chapter 11 presents some applications in the field of security, in particular it deals
with the specification and analysis of authentication protocols, and should be considered
as the logical prosecution of Chapter 10. Some preliminary results concerning the contents
of this chapter have been presented in [Boz01].

Finally, we draw some conclusions in Chapter 12.
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Chapter 2

Preliminaries

In this chapter we introduce some notions and terminology which will be used throughout
the thesis.

2.1 Functions and Orders

We will use the notation f : A→ B to denote a (total) function from the set A to the set
B. N will denote the set of natural numbers, whereas N0 will stand for N\{0}, and Z will
denote the set of integer numbers. A binary relation 6 on a set A is said to be a quasi-
order (or preorder) if it is reflexive and transitive. The pair (A,6) is called a preset. If
in addition 6 is symmetric, it is an equivalence relation, while if it is antisymmetric it is a
partial order and (A,6) is called a poset. Given a poset (A,6), an element a ∈ A is an
upper [lower] bound of a subset X ⊆ A iff x 6 a [a 6 x] for all x ∈ X. The least upper
bound (l.u.b.) of X, if it exists, is an upper bound of X which is minimum w.r.t. to 6

among the set of upper bounds of X. Similarly, the greatest lower bound (g.l.b.) is
defined as the maximum among the lower bounds of X. A chain is a function C : N→ A
such that C(i) 6 C(i + 1) for all i ∈ N. A poset A is called a complete lattice iff least
upper bounds and greatest lower bounds exist for every (non empty) subset of A.

Given a complete lattice A with partial ordering 6, l.u.b.
⊔

, and least element ⊥, a
function f : A→ A is said to be monotonic iff a 6 b implies f(a) 6 f(b) for all a, b ∈ A;
f is continuous iff for every chain C : N→ A we have that f(

⊔
C) =

⊔
(f(C)), where it is

meant that
⊔
C stands for

⊔
i∈N

C(i) and f(C) is the chain such that f(C)(i) = f(C(i)) for
every i ∈ N. A fixpoint for a function f : A→ A is any element x ∈ A such that f(x) = x.
By Knaster-Tarski fixpoint theorem [Llo87], the set of fixpoints of any monotonic function
f : A→ A on a complete lattice A is a non empty complete lattice, and therefore f admits
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a least fixpoint, denoted lfp(f), and a greatest fixpoint, denoted gfp(f). If in addition
f is continuous, it holds that lfp(f) = f↑ω, where for k ∈ N, f↑k and f↑ω are defined as
follows: f↑0= ⊥, f↑k+1= f(f↑k) for all k ≥ 0, and f↑ω=

⊔
k∈N

f↑k.

2.2 Multisets

Throughout the thesis, we will extensively use the concept of multiset (or bag). Intu-
itively, a multiset extends the notion of set by allowing multiple occurrences of the same
element. Formally, a multiset with elements in D is a function M : D → N. If d ∈ D
andM is a multiset on D, we say that d ∈ M if and only if M(d) > 0. For convenience,
we will often use the notation for sets (allowing duplicated elements) to indicate multisets,
when no ambiguity arises from the context. For instance, {a, a, b}, where a, b ∈ D, will
denote the multisetM such thatM(a) = 2,M(b) = 1, andM(d) = 0 for all d ∈ D\{a, b}.
Sometimes we will simply write a, a, b for {a, a, b}. Finally, given a set D, MS(D) will
denote the set of multisets with elements in D. We define the following operations on
multisets.

Definition 2.1 (Operations on Multisets) Let D be a set, M1,M2 ∈ MS(D), and
n ∈ N.

i. ǫ is s.t. ǫ(d) = 0 for all d ∈ D (empty multiset);

ii. (M1 +M2)(d) =M1(d) +M2(d) for all d ∈ D (union);

iii. (M1\M2)(d) = max{0,M1(d)−M2(d)} for all d ∈ D (difference);

iv. (M1 ∩M2)(d) = min{M1(d),M2(d)} for all d ∈ D (intersection);

v. (n · M)(d) = nM(d) for all d ∈ D (scalar product);

vi. M1 6=M2 iff there exists d ∈ D s.t. M1(d) 6=M2(d) (comparison);

vii. M1 4M2 iff M1(d) ≤M2(d) for all d ∈ D (inclusion);

viii. (M1•M2)(d) = max{M1(d),M2(d)} for all d ∈ D (merge);

ix. |M1| = Σd∈DM1(d) (cardinality).

We will use the summation notation
∑

i ∈ IMi to denote the union of a family of multisets
Mi, with i ∈ I, I being a finite set. It turns out that (MS(D),4) has the structure of a
lattice (the lattice is complete provided a greatest element is added). In particular, merge
and intersection are, respectively, the least upper bound and the greatest lower bound
operators with respect to multiset inclusion 4.
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2.3 Signatures and Algebras

In the following we will often need signatures to keep trace of constant, function, and
possibly predicate symbols (in this case we will say “signature with predicates”) used in
programs. We always assume the sets of constant, function, and predicate symbols to be
mutually disjoint.

Given a signature Σ, we take for granted the definitions of Σ-algebra and term algebra
over Σ. A term is said to be ground if it does not contain variables. Given a denumerable
set of variable symbols V (usually noted x, y, z, . . . ), we denote by T V

Σ the set of non
ground terms over Σ and V, while TΣ denotes the set of ground terms over Σ. We use the
notation t[s/x] to indicate the capture-free substitution of the term s for the variable x ∈ V
in a term t. We extend this notation to t[s/x], where s and x are, respectively, a vector of
terms and a vector of variables, with the same number of components. Finally, we denote
by AV

Σ (AΣ) the set of non ground (ground) atoms over Σ.

In Chapter 10 we will need to augment signatures with newly created constants, called
eigenvariables. We will use the compact notation Σ, c to denote the augmentation of Σ by
c.

2.4 Substitutions and Multiset Unifiers

We inherit the usual concept of substitution (mapping from variables to terms) from
traditional logic programming. We will always consider a denumerable set of variables V,
and substitutions will be usually noted θ, σ, τ , . . . . We will use the notation [x 7→ t, . . .],
where x is a variable and t is a term, to denote substitution bindings, with nil denoting
the empty substitution. The application of a substitution θ to F , where F is a generic
expression (e.g. a formula, a term, . . . ) will be denoted by Fθ. A substitution θ is said
to be grounding for F if Fθ is ground, in this case Fθ is called a ground instance of
F . Composition of two substitutions θ and σ will be denoted θ ◦ σ, e.g. F (θ ◦ σ) stands
for (Fθ)σ. We will indicate the domain of a substitution θ by Dom(θ), and will say “θ
defined on a signature Σ” meaning that θ can only map variables in Dom(θ) to terms in
T V

Σ . Substitutions are ordered with respect to the ordering ≤ defined in this way: θ ≤ τ
if and only if there exists a substitution σ s.t. τ = θ ◦ σ. If θ ≤ τ , θ is said to be more
general than τ ; if θ ≤ τ and τ ≤ θ, θ and τ are said to be equivalent. Finally, FV (F ),
for an expression F , will denote the set of free variables of F , and θ|W , where W ⊆ V, will
denote the restriction of θ to Dom(θ) ∩W .

We will need the notion of most general unifier (m.g.u.). The definition of most general
unifier is somewhat delicate. In particular, different classes of substitutions (e.g. idempo-
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tent substitutions) have been considered for defining most general unifiers. We refer the
reader to [Ede85, LMM88, Pal90] for a discussion. Most general unifiers form a complete
lattice with respect to the ordering ≤, provided a greatest element is added. For our pur-
poses, we do not choose a particular class of most general unifiers, we only require the
operation of least upper bound of two substitutions w.r.t ≤ to be defined and effective.
The least upper bound of θ1 and θ2 (see [Pal90] for its definition) will be used in Chapter
10 and indicated θ1 ↑ θ2. We assume ↑ to be commutative and associative.

Example 2.2 Let us consider a signature with a constant symbol a and a function symbol
f . Let V be a denumerable set of variables, and u, v, w, . . . ∈ V. Let θ1 = [x 7→ u, y 7→
f(u′)], θ2 = [x 7→ v, y 7→ f(a)], and θ3 = [x 7→ f(w), y 7→ z]. Then we have that θ1 ≤ θ2,
θ1,θ3 and θ2,θ3 are not comparable w.r.t. ≤, and, modulo renaming, θ1 ↑ θ2 ↑ θ3 = [x 7→
f(x′), y 7→ f(a)]. 2

Multiset Unifiers. We need to lift the definition of most general unifier from expres-
sions to multisets of expressions. Namely, given two multisets A = {a1, . . . , an} and
B = {b1, . . . , bn} (note that |A| = |B|), we define a most general unifier of A and B,
written m.g.u.(A,B), to be the most general unifier (defined in the usual way) of the two
vectors of expressions 〈a1, . . . , an〉 and 〈bi1 , . . . , bin〉, where {i1, . . . , in} is a permutation of
{1, . . . , n}. Depending on the choice of the permutation, in general there will be more than
one way to unify two given multisets (the resulting class of m.g.u. in general will include
unifiers which are not equivalent). We will use the notation θ = m.g.u.(A,B) to denote
any unifier which is non deterministically picked from the set of most general unifiers of A
and B.

Example 2.3 Let us consider a signature with a constant symbol a, a function symbol f
and a predicate symbol p. Let V be a a denumerable set of variables, and v, w, x, . . . ∈ V.
Let A = {p(x, x), p(f(y), y)} and B = {p(v, a), p(w, z)}. The multisets A and B can
be unified in two different ways. By unifying p(x, x) with p(v, a) and p(f(y), y) with
p(w, z), we get, modulo renaming, the m.g.u. θ1 = [x 7→ a, v 7→ a, w 7→ f(y), z 7→ y].
By switching the order of atom unifications, we get instead, again modulo renaming, the
m.g.u. θ2 = [w 7→ x, z 7→ x, v 7→ f(a), y 7→ a]. As it can be readily verified, neither
θ1 ≤ θ2 nor θ2 ≤ θ1 hold. We also have that Aθ1 = Bθ1 = {p(a, a), p(f(y), y)}, while
Aθ2 = Bθ2 = {p(x, x), p(f(a), a)}. 2

2.5 Basics of Logic Programming

We recall here some basic notions in Logic Programming (see for instance [Llo87, Apt90]).
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Syntax. A (positive or negative) literal is an atom or the negation of an atom. A
clause is a disjunction of literals, the set of positive literals is called the head and the set
of negative literals the body. Clauses with at most one positive literal are called Horn
clauses, a clause with exactly one positive literal is called program clause or definite
clause, and usually noted H ← B1, . . . , Bn, where H is the head and B1, . . . , Bn the body
literals (stripped of the negation symbol). A definite clause with empty body is called
unit clause, whereas a Horn clause with empty head is called goal or negative clause.
A logic program is a finite and non empty set of program clauses.

Semantics. Given a program P over a signature Σ, with non empty set of constants,
the Herbrand universe of P is the set of all ground terms over Σ, while the Herbrand
base of P is the set of ground atoms over Σ. By Herbrand interpretation we mean an
interpretation for P such that its domain is the Herbrand universe, constants are assigned
to themselves, and every n-ary function symbol f is assigned to the function mapping
any sequence of terms t1, . . . , tn to f(t1, . . . , tn). A Herbrand interpretation is uniquely
determined by a subset of the Herbrand base fixing the interpretation of predicate symbols.

A logic program P can be equipped with three kinds of semantics:

- operational semantics, usually given via the notion of SLD-resolution (see [Llo87,
Apt90]) or via a suitable proof-system;

- model-theoretic semantics, defined via the notion of satisfiability of a program
w.r.t. a given (Herbrand) interpretation;

- fixpoint semantics, given by the least fixpoint of a suitable immediate conse-
quence operator, usually denoted TP .

A suitable notion of equivalence between the three different kinds of semantics can be
proved [Llo87, Apt90]. In the rest of the thesis, we will be mainly interested in the fixpoint
semantics. The TP operator maps Herbrand interpretations (i.e., subsets of the Herbrand
base) to Herbrand interpretations, and is defined as follows: H ∈ TP (I) if and only if
H ← B1, . . . , Bn is a ground instance of a clause in P , and B1, . . . , Bn ∈ I. TP can proved
to be monotonic and continuous, therefore it admits a least fixpoint lfp(TP ) = TP↑ω, which
coincides with the least Herbrand model of P .

We conclude by mentioning that the above scheme can be extended in order to take into
consideration more refined notions of observables [FLMP93, BGLM94]. In particular, the
so-called C-semantics formalizes the notion of non-ground success set of a logic program,
whereas the so-called S-semantics correspond to the computed answer substitution seman-
tics. The C-semantics is defined by considering the non-ground Herbrand base (i.e., the
set of non-ground atoms over a signature Σ) and the corresponding notion of non-ground
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Herbrand interpretation. The operational semantics is defined as the set of non-ground
atoms which have an SLD-refutation with empty answer substitution (see [Llo87, Apt90]).
An extended TP operator can be defined, which, as usual, turns out to be monotonic and
continuous, therefore admitting a least fixpoint lfp(TP ) = TP↑ω.
In Chapter 10 we will extend the C-semantics of [FLMP93, BGLM94] to a subset of linear
logic programs.
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Part I

Linear Logic as a Unifying View of
Concurrency
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Chapter 3

Linear Logic

Linear logic [Gir87] has been introduced as a resource-oriented refinement of classical logic.
Intuitively, the idea is to constrain the number of times a given assumption (resource
occurrence) can be used inside a deduction for a given goal formula. This peculiar resource
management together with the possibility of naturally modeling the notion of state, make
linear logic an appealing formalism to reason about concurrent and dynamically changing
systems.

After giving a very brief summary of some aspects related to linear logic and linear logic
programming in Section 3.1, in Section 3.2 we will focus on the language LO [AP91b] and
some of its extensions, which will be the leading thread of the present thesis work.

3.1 Full Linear Logic

In classical logic one usually thinks about the construction of a proof as the process of
finding a logical deduction for a goal starting from a given set of assumptions. In linear
logic one may think of assumptions as multisets of resources, each of which can be used just
once. This view of assumptions imposes a shift in the concept of proof as well. Building
a proof in linear logic is the process of finding a deduction which transforms all the given
assumptions (and only them) into something else (the conclusion). This view of proof
construction is related to the notion of causal implication. To exemplify, a reaction in
chemistry is a typical example of a process that can be naturally modeled in linear logic
(everybody knows that reactions must be correctly balanced).

Another feature which is intrinsic to linear logic is the possibility of modeling concurrent
executions (e.g. chemical reactions which happen simultaneously). This is witnessed by
several papers relating linear logic with different formalisms for concurrency, e.g. [EW90,
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Table 3.1: The set of linear logic connectives

ALPT93, Mil92, Cer94, Laf95, CDKS00]. For instance, in [Mil92] a translation of π-calculus
into linear logic is presented. The translation yields a proof system in linear logic whose
provability relation is the counterpart of the π-calculus reduction relation, and can be used,
e.g., to prove structural equivalence of π-calculus agent expressions.

Linear logic can be considered as the endpoint of a proof-theoretical investigation of sub-
systems of classical logic. In particular, the analysis involves the so called structural rules,
i.e., exchange, weakening and contraction. In fact, the weakening and contraction rules are
not compatible with the notion of resource sketched above: the weakening rule allows one
to ignore a given assumption, while the contraction rule is responsible for duplication of
assumptions. Removing the structural rules of weakening and contraction from classical
sequent calculus has the unavoidable consequence of splitting the set of classical connec-
tives into two different classes, called additive and multiplicative. In the usual sequent
calculus presentation, additive and multiplicative connectives differ with respect to con-
text management (context sharing vs. context splitting, respectively). While in classical
logic both presentations, additive and multiplicative, are provably equivalent, the removal
of structural rules makes them not equivalent anymore.

Although removing the structural rules seems to be unavoidable in this setting, it would
be unreasonable to remove them altogether. In other words, a way to recover the power
of classical logic is necessary. To this aim, two further connectives, the so-called exponen-
tials, one dual with the other, are introduced. Intuitively, every formula preceded by an
exponential behaves like the corresponding classical one (e.g. an hypothesis can be used
any number of times or not used at all in a proof). This mechanism re-introduces classical
connectives in a controlled way. A summary of linear logic connectives is presented in
Table 3.1. We note that it is also possible to define a linear negation (denoted ·⊥ in the

following), which turns out to be involutive (i.e., (F⊥)
⊥

= F ) and constructive at the same
time.

In Figure 3.1 we present an example of a sequent system for full linear logic. It is an
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⊢ Θ : F,F⊥
id

⊢ Θ : Γ, F ⊢ Θ : ∆, F⊥

⊢ Θ : Γ,∆
cut

⊢ Θ, F : Γ, F

⊢ Θ, F : Γ
abs

⊢ Θ : Γ

⊢ Θ : Γ,⊥
⊥

⊢ Θ : Γ, F,G

⊢ Θ : Γ, F
............................................
...........
........
................................ G

............................................
...........
........
................................

⊢ Θ, F : Γ

⊢ Θ : Γ, ?F
?

⊢ Θ : 1
1

⊢ Θ : Γ, F ⊢ Θ : ∆, G

⊢ Θ : Γ,∆, F ⊗G
⊗ ⊢ Θ : F

⊢ Θ : !F
!

⊢ Θ : Γ,⊤
⊤

⊢ Θ : Γ, F ⊢ Θ : Γ, G

⊢ Θ : Γ, F & G
&

⊢ Θ : Γ, F [c/x]

⊢ Θ : Γ,∀x.F
∀

⊢ Θ : Γ, F

⊢ Θ : Γ, F ⊕G
⊕l

⊢ Θ : Γ, G

⊢ Θ : Γ, F ⊕G
⊕r

⊢ Θ : Γ, F [t/x]

⊢ Θ : Γ,∃x.F
∃

Figure 3.1: A one-sided, dyadic proof system for full linear logic

example of one-sided sequent system (two-sided versions are possible [Tro92]). It is also a
dyadic sequent system, according to the terminology of [And92]. In fact, sequents of the
form ⊢ Θ : Γ are divided into two parts Θ and Γ, which are multisets of formulas. Θ is the
so-called unbounded part, while Γ is the bounded part. In other words, formulas in Θ must
be implicitly considered as exponentiated (i.e., preceded by ?) and thus can be reused any
number of times, while formulas in Γ must be used exactly once. The different behaviour
of multiplicative rules w.r.t. additive rules (i.e., context splitting vs. context sharing)
should be evident. For instance, the reader can compare the different context management
in rules ⊗ and & . In rule ∀, c stands for a new constant, while in rule ∃, t stands for an
arbitrary term. The rules for implications are missing but can be recovered by means of
logical equivalences like F −◦ G ≡ F⊥ ............................................

...........
........
................................ G.

3.1.1 Programming in Linear Logic

In recent years a number of fragments of linear logic have been proposed as a logical
foundation for extensions of logic programming. Several new programming or specification
languages, like LO [AP91b] (see Section 3.2), LinLog [And92], ACL [KY95], Lolli [HM94],
Lygon [HP94], Forum [Mil96] and Ehhf [DM01] (a subset of Forum) have been proposed with
the aim of enriching traditional logic programming languages with a well-founded notion
of state and with aspects of concurrency. For instance, LO has been applied to model
coordination languages [And96], Forum has been used for specifying the sequential and
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pipelined operational semantics of the DLX machine [Chi95], and Ehhf to model object-
oriented and deductive databases [BDM97], multi-agent systems [BDM+99], and object
calculi [BDLM00].

Further research efforts have tried to incorporate linear logic within logical frameworks. A
logical framework can be seen as a meta-language for specifying and reasoning about differ-
ent formalisms represented as deductive systems, such as various logics, natural deduction
inference systems and sequent calculi, programming languages, abstract machines, and so
on. In [MMP96, McD97], the authors present a logical framework based on extensions
of linear logic and intuitionistic logic incorporating a notion of definition and induction
on natural numbers. Such framework has been applied, for instance, to prove simulation
and bisimulation judgments in abstract transition systems, and properties such as subject
reduction and determinacy of evaluation in the language PCF. A different approach is the
one followed in [Pfe01], where a logical framework is presented, based on a constructive
type theory incorporating dependent types, according to the so-called judgments-as-types
representation. These ideas have been incorporated in the system Twelf [PS99] and ex-
ploited to prove, for instance, various properties in the area of Mini-ML, natural deduction
and category theory. A linear logical extension is considered in [CP02].

The operational semantics of linear logic languages is usually given via a sequent-calculi
presentation of the corresponding fragment of linear logic. Special classes of proofs have
been studied in order to limit the non-determinism intrinsic in the process of proof con-
struction. In particular, the focusing proofs of [And92] and the uniform proofs of [Mil96]
allow one to consider cut-free and goal-driven proof systems that are still complete with
respect to provability in linear logic.

The key issue underlying the notion of goal-driven provability is the concept of synchronous
and asynchronous connectives [And92]. Asynchronous connectives (⊥, ............................................

...........
.......
................................. , ?, ⊤, & , ∀)

require no choice from the proof search procedure, and only introduce don’t care non-
determinism, while synchronous connectives (1, ⊗, !, 0, ⊕, ∃) require the search procedure
to make a committed choice and introduce don’t know non-determinism. Specifically, the
focusing proofs of [And92] have the following features:

• if the current goal contains some asynchronous formulas, they are immediately de-
composed: any of them can be immediately and randomly selected as the principal
formula for decomposition;

• if the current goal contains only synchronous formulas, one of them must be selected
non deterministically for processing, but as soon as this choice is made, the proof can
focus on it, i.e., it can strip all layers of synchronous connectives from it.

The above restrictions on the proof search procedure induce a proof normalization which
does not affect completeness of the provability relation. In order to enforce this behaviour
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of the proof search procedure, a variant of the proof system of Figure 3.1 based on focusing
proofs (called triadic) is presented in [And92].

When dealing with specific languages based on linear logic, the focusing proofs of [And92]
can be furtherly refined and tailored to the particular logical fragment under consideration.
For instance, focusing proofs have a simple and direct computational interpretation for the
fragment called LinLog, presented in [And92]. LinLog is based on a subset of linear logic
for which a sound mapping from full linear logic, preserving focusing proofs, exists. LinLog
formulas extend the syntax of definite clauses and goals of traditional Horn logic, by allow-
ing clauses with multiple atoms (connected by ............................................

...........
........
................................ ) in the head, and goals built over a subset

of linear connectives. The computational interpretation of LinLog is particularly suited
for concurrency and object-oriented programming (program clauses are called methods in
[And92]).

In this thesis, we will focus our attention on a fragment of LinLog called LO [AP91b]. The
reason we selected LO is that we were looking for a relatively simple linear logic language
with a focusing-proof presentation, state-based computations and aspects of concurrency.
As we will demonstrate in Chapter 4, LO programs are at least as expressive as Petri nets
or multiset rewriting systems over atomic formulas. In practice, LO has been successfully
applied to model, e.g., concurrent object-oriented languages [AP91b], and coordination
languages based on the Linda model [And96]. In this thesis we will show that LO, en-
riched with a computational model based on bottom-up evaluation, can provide a valuable
environment for the specification and validation of protocols.

For more details on the material of this section, we refer the reader to [Gir87, Tro92, CD97]
for an introduction to linear logic, [MNPS91] and [Mil96] for a discussion on, respectively,
uniform proofs in intuitionistic and in linear logic, and [And92] for the related concept of
focusing proofs and for LinLog. Some background material on classical logic and sequent
calculus can be found in [Gal86]. In the next section we present the language LO.

3.2 The Language LO

LO [AP91b] is a logic programming language based on a fragment of LinLog [And92].
Its mathematical foundations lie on a proof-theoretical presentation of a fragment of linear
logic defined over the linear connectives −◦ (linear implication, we use the reversed notation
H ◦− G for G −◦ H), & (additive conjunction), ............................................

...........
........
................................ (multiplicative disjunction), and the

constant ⊤ (additive identity). In this section we present the proof-theoretical semantics
of LO, which corresponds to the usual top-down operational semantics for traditional logic
programming languages like Prolog. For the sake of precision, we present a slight extension
of LO by admitting the constant ⊥ in goals and clause heads. Following [AP91b], we give
these definitions.
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Definition 3.1 (Atomic Formulas) Let Σ be a signature with predicates including a set
of constant and function symbols L and a set of predicate symbols P, and let V be a
denumerable set of variables. An atomic formula over Σ and V has the form p(t1, . . . , tn)
(with n ≥ 0), where p ∈ P and t1, . . . , tn are (non ground) terms in T V

Σ .

We are now ready to define G-formulas, which correspond to goals to be evaluated in a
given program.

Definition 3.2 (Goal Formulas) Let Σ be a signature with predicates and V a denumer-
able set of variables. The class of G-formulas (goal formulas) over Σ and V is defined by
the following grammar

G ::= G ............................................
...........
.......
................................. G | G & G | A | ⊤ | ⊥

where A stands for an atomic formula over Σ and V. A multiset of goal formulas will be
called a context hereafter.

The following definitions introduce D-formulas, which correspond to multiple-headed pro-
gram clauses.

Definition 3.3 (Head Formulas) Let Σ be a signature with predicates and V a denu-
merable set of variables. The class of H-formulas (head formulas) over Σ and V is defined
by the following grammar

H ::= A ............................................
...........
........
................................ . . . .

...........................................
...........
........
................................ A | ⊥

where A stands for an atomic formula over Σ and V.

Definition 3.4 (Clauses and Programs) Let Σ be a signature with predicates and V a
denumerable set of variables. The class of D-formulas (program clauses) over Σ and V is
defined by the following grammar

D ::= ∀ (H ◦− G) | D & D

where H and G are, respectively, a head formula and a goal formula over Σ and V, and
∀ (H ◦− G) stands for ∀x1 . . . xk. (H ◦− G), with {x1, . . . , xk} = FV (H ◦−G). An LO
program over Σ and V is a D-formula over Σ and V.

For the sake of simplicity, in the following we usually omit universal quantifiers in program
clauses, i.e., we consider free variables as being implicitly universally quantified.

Definition 3.5 (LO Sequents) Let Σ be a signature with predicates and V a denumerable
set of variables. An LO sequent has the form P ⊢ G1, . . . , Gk, where P = D1 & . . . &Dn

is an LO program and G1, . . . , Gk is a context, i.e., a multiset of goals, over Σ and V.
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Remark 3.6 Given an LO program P = D1 & . . . &Dn, in the rest of the thesis we often
find it convenient to view P as the set of clauses D1, . . . , Dn. Formally, this is justified by
the logical equivalence between !(D1 & . . . &Dn) and !D1 ⊗ . . .⊗!Dn.

According to remark 3.6, the left-hand side of an LO sequent can be seen as the set of clauses
D1, . . .Dn, while the right-hand side is a multiset of goals. Structural rules (exchange,
weakening and contraction) are allowed on the left-hand side, while on the right-hand side
only the rule of exchange is allowed (for the fragment under consideration, it turns out
that the rule of weakening is admissible, as stated in Proposition 3.9, while contraction is
forbidden). The LO sequent P ⊢ G1, . . . , Gk stands for the following one-sided linear logic
sequent (see Figure 3.1):

⊢ D1
⊥, . . . , Dn

⊥ : G1, . . . , Gk.

We remind that the formulas on the left of ‘:’ can be used in a proof an arbitrary number
of times. In other words, an LO program can also be viewed as a set of reusable clauses.

We now define provability in LO.

Definition 3.7 (Ground Instances) Let Σ be a signature with predicates and V a denu-
merable set of variables. Given an LO program P over Σ and V, the set of ground instances
of P , denoted Gnd(P ), is defined as follows:

Gnd(P ) = {(H ◦−G) θ | ∀ (H ◦−G) ∈ P and θ is a grounding substitution for H ◦−G}

The execution of a multiset of G-formulas G1, . . . , Gk in P corresponds to a goal-driven
proof for the two-sided LO sequent P ⊢ G1, . . . , Gk. According to this view, the operational
semantics of LO is given via the uniform (focusing) proof system presented in Figure 3.2,
where P is a set of clauses, A is a multiset of atomic formulas, and ∆ is a multiset of G-
formulas. We have used the notation Ĥ, where H is a linear disjunction of atomic formulas
a1

............................................
...........
........
................................ . . . .

...........................................
...........
........
................................ an, to denote the multiset a1, . . . , an (by convention, ⊥̂ = ǫ, where ǫ is the empty

multiset).

Definition 3.8 (LO provability) Let Σ be a signature with predicates and V a denu-
merable set of variables. Given an LO program P and a goal G, over Σ and V, we say
that G is provable from P if there exists a proof tree, built over the proof system of Figure
3.2, with root P ⊢ G, and such that every branch is terminated with an instance of the ⊤r
axiom.

The concept of uniformity applied to LO requires that the right rules ⊤r,............................................................................................... r, & r,⊥r have
priority over bc, i.e., bc is applied only when the right-hand side of a sequent is a multiset
of atomic formulas (as suggested by the notation A in Figure 3.2). The proof system of
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P ⊢ ⊤,∆
⊤r

P ⊢ G1, G2,∆

P ⊢ G1
............................................
...........
.......
................................. G2,∆

............................................
...........
........
................................
r

P ⊢ G1,∆ P ⊢ G2,∆

P ⊢ G1 &G2,∆
& r

P ⊢ ∆

P ⊢ ⊥,∆
⊥r

P ⊢ G,A

P ⊢ Ĥ,A
bc (H ◦−G ∈ Gnd(P ))

Figure 3.2: A proof system for LO

Figure 3.2 is a specialization of more general uniform proof systems for linear logic like An-
dreoli’s focusing proofs [And92] and Forum [Mil96]. Rule bc is analogous to a backchaining
(resolution) step in traditional logic programming languages. Note that according to the
concept of resolution explained above, bc can be executed only if the right-hand side of
the current LO sequent consists of atomic formulas. As an instance of rule bc, we get the
following proof fragment, which deals with the case of clauses with empty head:

....
P ⊢ A, G
P ⊢ A bc

provided ⊥ ◦−G ∈ Gnd(P )

Given that clauses with empty head are always applicable in atomic contexts, the degree of
non-determinism they introduce in proof search is usually considered unacceptable [Mil96]
and in particular they are forbidden in the original presentation of LO [AP91b]. However,
the computational model we are interested in, i.e., bottom-up evaluation, does not suffer
this drawback. Clauses with empty head often allow more flexible specifications (see for
instance Chapter 11).

LO clauses having the form H ◦− ⊤ play the same role as axioms (i.e., unit clauses) for
Horn programs. In fact, when a backchaining step over such a clause is possible, we get a
successful (branch of) computation, independently of the current context A, as shown in
the following proof scheme:

P ⊢ ⊤,A
⊤r

P ⊢ Ĥ,A
bc

provided H ◦− ⊤ ∈ Gnd(P )

This observation is formally stated in the following proposition (we recall that 4 is the
multiset inclusion relation).
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P ⊢ e,⊤
⊤r

P ⊢ d, e, c bc(3)

P ⊢ d ............................................
...........
.......
................................. e, c

............................................
...........
.......
.................................
r

P ⊢ ⊤
⊤r

P ⊢ f, c bc(5)

P ⊢ (d ............................................
...........
........
................................ e) & f, c

& r

P ⊢ b, c bc(2)

P ⊢ b ............................................
...........
........
................................ c

............................................
..........
........
.................................
r

P ⊢ e, e bc(4)

P ⊢ ⊤
⊤r

P ⊢ q(b) bc(2)
P ⊢ ⊤

⊤r

P ⊢ r(a) bc(3)

P ⊢ q(b) & r(a)
& r

P ⊢ p(a) bc(1)

Figure 3.3: Examples of LO proofs

Proposition 3.9 (Admissibility of the Weakening Rule) Given an LO program P
and two multisets of goals ∆,∆′ such that ∆ 4 ∆′, if P ⊢ ∆ then P ⊢ ∆′.

Proof By simple induction on the structure of LO proofs. 2

Admissibility of the weakening rule makes LO an affine fragment of linear logic [Kop95].
Note that all structural rules are admissible on the left hand side (i.e., on the program
part) of LO sequents.

Example 3.10 Let P be the (propositional) LO program consisting of the clauses

1. a ◦− b ............................................
...........
........
................................ c

2. b ◦− (d ............................................
...........
........
................................ e) & f

3. c ............................................
...........
.......
................................. d ◦− ⊤

4. e ............................................
...........
........
................................ e ◦− b ............................................

...........
........
................................ c

5. c ............................................
...........
........
................................ f ◦− ⊤

where a, b, c, d, e, f are propositional symbols, and consider an initial goal e, e. A proof
for this goal is shown on the left-hand side of Figure 3.3, where we have denoted by bc(i)

the application of the backchaining rule over clause number i of P . The proof proceeds
as follows. Using clause 4, to prove e, e we have to prove b ............................................

...........
........
................................ c, which, by LO ............................................

...........
........
................................
r rule,

reduces to prove b, c. At this point we can backchain over clause 2, and we get the new
goal (d ............................................

...........
........
................................ e) & f, c. By applying & r rule, we get two separate goals d ............................................

...........
........
................................ e, c and f, c. The

first, after a reduction via ............................................
...........
.......
.................................
r rule, is provable by means of clause (axiom) 3, while the latter

is provable directly by clause (axiom) 5. Note that ⊤ succeeds in a non-empty context
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P ⊢1 ⊤,∆
⊤r

P ⊢1 G1, G2,∆

P ⊢1 G1
............................................
...........
........
................................ G2,∆

............................................
...........
........
................................
r

P ⊢1 G1,∆ P ⊢1 G2,∆

P ⊢1 G1 & G2,∆
& r

P ⊢1 ∆

P ⊢1 ⊥,∆
⊥r

P ⊢1 1
1r

P ⊢1 G1,∆1 P ⊢1 G2,∆2

P ⊢1 G1 ⊗G2,∆1,∆2

⊗r
P ⊢1 G,A

P ⊢1 Ĥ,A
bc (H ◦−G ∈ Gnd(P ))

Figure 3.4: A proof system for LO1

(i.e., containing e) in the left branch. A similar proof shows that the goal a is also provable
from P . By Proposition 3.9, provability of e, e and a implies provability of any multiset of
goals e, e,∆ and a,∆, for every multiset of goals ∆. 2

Example 3.11 Let P be the following (first-order) LO program (variables are considered
externally quantified in clauses)

1. p(x) ◦− q(y) & r(x)

2. q(b) ◦− ⊤
3. r(a) ◦− ⊤

where p, q, r are predicate symbols, a, b are constant symbols, and x, y are variables. A
proof for the goal p(a) is given on the right-hand side of Figure 3.3. Backchaining on clause
1 is carried out by considering its ground instance p(a) ◦− q(b) & r(a). 2

3.3 Extensions of LO

As shown in [And92], the logical fragment underlying the language LO can be extended in
order to take into consideration more powerful programming constructs. In this section we
will present two different extensions of LO, which will be discussed later on. Specifically,
in Section 3.3.1 we present the language LO enriched with the constant 1 and the multi-
plicative conjunction ⊗ (see also Chapter 8), and in Section 3.3.2 we present the language
LO enriched with universal quantification over goals (see also Chapter 10).

3.3.1 LO with 1 and ⊗

In this section we consider an extension of LO where goal formulas range over the G-
formulas of Section 3.2, the multiplicative conjunction ⊗ and the constant 1, according to
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the following grammar:

E ::= E ............................................
...........
.......
................................. E | E & E | A | ⊤ | ⊥

G ::= E | G ⊗ G | 1

H ::= A ............................................
...........
........
................................ . . . .

...........................................
...........
........
................................ A | ⊥

D ::= ∀ (H ◦− G) | D & D

The class E stands for elementary goals, and it is introduced in order to prevent occurrences
of the synchronous connective ⊗ to appear inside the scope of synchronous connectives (.

...........................................
...........
........
................................

and &). As shown in [And92], this is necessary in order to preserve the restriction of the
backchaining rule to atomic contexts.

In particular, in this fragment we admit clauses of the form H ◦−1. We name this language
LO1, and use the notation P ⊢1 ∆ for LO1 sequents. A proof system for LO1 is presented
in Figure 3.4. It is obtained from the proof system of Figure 3.2 by adding a rule for ⊗
and a rule for the constant 1. The meaning of the new kind of clauses H ◦− 1 is given by
the following inference scheme:

P ⊢1 1
1r

P ⊢1 Ĥ
bc

provided H ◦− 1 ∈ Gnd(P )

Note that there cannot be other resources in the right-hand side of the lower sequent
except for Ĥ. In other words, the head of the clause must match the current context
exactly in order for rule bc to be fired. Thus, in contrast with ⊤, the constant 1 intuitively
introduces the possibility of counting resources. As a result, the monotonicity property
stated in Proposition 3.9, i.e., admissibility of the weakening rule, does not hold anymore
for the fragment LO1 .

Example 3.12 Let us consider the following LO1 program P :

1. a ............................................
...........
........
................................ transf ◦− b ............................................

...........
........
................................ transf

2. transf ◦− ⊥& check

3. check ............................................
...........
........
................................ b ◦− check

4. check ............................................
...........
........
................................ c ◦− check

5. check ◦− 1

A proof for the goal a, a, c, transf is given on the left-hand side of Figure 3.5, where, for
simplicity, we have incorporated applications of the ............................................

...........
........
................................
r, & r and ⊥r rules into backchaining

steps. As we will see in Chapter 4, LO programs can be used to encode Petri nets. Accord-
ing to this view, every propositional symbol like a, b, c denotes one place, and occurrences
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...

P ⊢1 b, b, c

P ⊢1 1
1r

P ⊢1 check
bc(5)

P ⊢1 c, check
bc(4)

P ⊢1 b, c, check
bc(3)

P ⊢1 b, b, c, check
bc(3)

P ⊢1 b, b, c, transf
bc(2)

P ⊢1 b, a, c, transf
bc(1)

P ⊢1 a, a, c, transf
bc(1)

P ⊢1 1
1r

P ⊢1 a, b
bc(2)

P ⊢1 ⊤
⊤r

P ⊢1 c, c
bc(1)

P ⊢1 a⊗ c, b, c
⊗r

P ⊢1 b, b, c
bc(3)

Figure 3.5: Examples of LO1 proof

of symbols denote tokens in the corresponding place. In this view, the above program can
be seen as specifying an operation transf which transfers all tokens in place a to place b.
The first clause specifies the transfer of a single token from a to b, and it is supposed to
be used as many times as the number of initial tokens in a. The second clause starts an
auxiliary branch of the computation which checks that all tokens have been moved to b.
Note that using 1 in clause 5 ensures that the check cannot succeed if there are tokens left
in a. 2

Example 3.13 Let us consider the following LO1 program P :

1. c ............................................
...........
........
................................ c ◦− ⊤

2. a ............................................
...........
.......
................................. b ◦− 1

3. b ◦− a⊗ c
A proof for the goal b, b, c is given on the right-hand side of Figure 3.5. 2

3.3.2 LO with Universal Quantification

In this section we consider an extension of LO where the G-formulas of Section 3.2 are
enriched with universal quantification, according to the following grammar:

G ::= G ............................................
...........
.......
................................. G | G & G | ∀x.G | A | ⊤ | ⊥

H ::= A ............................................
...........
.......
................................. . . . .

...........................................
...........
.......
................................. A | ⊥

D ::= ∀ (H ◦− G) | D & D

36



P ⊢Σ⊤,∆
⊤r

P ⊢ΣG1, G2,∆

P ⊢ΣG1
............................................
...........
........
................................ G2,∆

............................................
..........
........
.................................
r

P ⊢ΣG1,∆ P ⊢ΣG2,∆

P ⊢ΣG1 &G2,∆
& r

P ⊢Σ ∆

P ⊢Σ⊥,∆
⊥r

P ⊢Σ,cG[c/x],∆

P ⊢Σ ∀x.G,∆
∀r (c 6∈ Σ)

P ⊢ΣG,A

P ⊢Σ Ĥ,A
bc (H ◦−G ∈ Gnd(P ))

Figure 3.6: A proof system for LO∀

This extension is inspired by multiset rewriting with universal quantification [CDL+99] (see
Section 5.4). The resulting language will be called LO∀.

We now reformulate the proof-theoretical semantics of Section 3.2. A proof system for
LO∀ can be directly obtained by slightly modifying the proof system presented in Figure
3.2. Specifically, we need to make signatures explicit and add a rule for the universal
quantifier. The resulting proof system is shown in Figure 3.6. Now, sequents assume the
form P ⊢Σ ∆, where P is a program (as usual, a set of reusable clauses), ∆ is a multiset of
goals, and Σ is a signature. The signature Σ contains at least the constant, function, and
predicate symbols of program P , and can dynamically grow thanks to rule ∀r. The idea is
that all formulas on the right-hand side of a sequent are implicitly assumed to range over
Σ, i.e., only the symbols declared in Σ can appear in formulas.

Rule ∀r is responsible for signature augmentation. Every time rule ∀r is fired, a new
constant c is added to the current signature, and the resulting goal is proved in the new
signature. This behaviour is standard in logic programming languages [MNPS91]. Rule bc

denotes a backchaining (resolution) step (as usual Ĥ is the multiset consisting of the atoms

in the disjunction H , with ⊥̂ = ǫ). According to the usual concept of uniformity, bc can
be executed only if the right-hand side of the current sequent consists of atomic formulas.
Rules ⊤r, ............................................

...........
........
................................
r, & r and ⊥r are the same as in standard LO.

We can formulate the following proposition, which is analogous to Proposition 3.9.

Proposition 3.14 (Admissibility of the Weakening Rule) Given a program P , a
signature Σ, and two multisets of goals ∆,∆′ such that ∆ 4 ∆′, if P ⊢Σ ∆ then P ⊢Σ ∆′.

Proof By simple induction on the structure of proofs. 2

Example 3.15 Let Σ be a signature with a constant symbol a, a function symbol f and
predicate symbols p, q, r, s. Let V be a denumerable set of variables, and u, v, w, . . . ∈ V.

37



P ⊢Σ,c⊤
⊤r

P ⊢Σ,c p(f(c)), q(f(c))
bc(4)

P ⊢Σ,c⊤
⊤r

P ⊢Σ,c p(f(c)), q(f(c))
bc(4)

P ⊢Σ,c p(f(c)), r(c)
bc(1)

P ⊢Σ,c p(f(c)), q(f(c)) & r(c)
& r

P ⊢Σ,c p(f(c))
bc(3)

P ⊢Σ ∀x.p(f(x))
∀r

P ⊢Σ s(a)
bc(2)

Figure 3.7: An example of LO∀ proof

Let P be the program
1. r(w) ◦− q(f(w))

2. s(z) ◦− ∀x.p(f(x))

3. ⊥ ◦− q(u) & r(v)

4. p(x) ............................................
...........
........
................................ q(x) ◦− ⊤

The goal s(a) is provable from P . The corresponding proof is shown in Figure 3.7. Note
that the notion of ground instance is now relative to the current signature. For instance,
backchaining over clause 3 is possible because the corresponding signature contains the
constant c (generated one level below by the ∀r rule), and therefore ⊥ ◦− q(f(c)) & r(c) is
a valid instance of clause 3. 2

Note. Subject of Part II of this thesis will be the definition of an alternative semantics
for LO, based on bottom-up evaluation, and the investigation of the connection between
provability in linear logic and verification (model checking). In particular, we will con-
sider the fragment corresponding to propositional LO in Chapter 7, its extension with the
constant 1 and the connective ⊗ (called LO1) in Chapter 8, a formulation of LO with
constraints (called LO(C)) in Chapter 9, and a first-order formulation of LO with universal
quantification (called LO∀) in Chapter 10. In this thesis, we follow the original formulation
of the language LO, as given for instance in [AP91b]. We remark that papers like [AP91a]
rely on a more complex computational interpretation for LO involving broadcast commu-
nication. In the following, we will use the name LO and its variations as a convenient
shorthand to indicate the fragment of linear logic this language is based on, even though
the correspondence between the semantics we are interested in and the actual language
may be questionable.
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—————————————————————————————–

Summary of the Chapter. In this chapter we have briefly illustrated the main
ideas underlying linear logic. We have presented in more detail the language LO,
its definition and a proof-theoretical, sequent-style, semantics for it. A bottom-up
semantics for different fragments of LO will be the subject of Part II.

In the next chapter we will demonstrate the potentialities of linear logic for specifying

concurrent systems, by discussing its relationship with well-known formalisms like

rewriting systems and Petri nets.

—————————————————————————————–
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Chapter 4

LO, Multiset Rewriting and Petri
Nets

Petri nets [Rei85] and their extensions [Jen97] have proved to be a powerful formalism
for the specification and validation of concurrent systems. In this chapter, we give a brief
overview of Petri nets and we discuss their relationship with linear logic and specifically
with the language LO of Section 3.2. In order to study this connection, we first present the
theory of multiset rewriting systems, which can be used to give an alternative definition
for Petri nets. After showing the connection between Petri nets and multiset rewriting
systems, we show how the latter can be translated into LO theories. We conclude the
chapter discussing an extension of Petri nets, namely Petri nets with transfer arcs.

4.1 Multiset Rewriting over Atomic Formulas

As discussed in [Cer94], multisets and multiset rewriting systems can be used to give
an alternative definition for the static and dynamic aspects of Petri nets. For the sake of
precision, in the following we will deal with multiset rewriting systems over atomic formulas
as defined in [Cer94], as opposed to general rewriting systems [Mes92, DP01] or AC theories
[RV95]. The definition is as follows.

Definition 4.1 (Multiset Rewriting Systems over Atomic Formulas) Let S be a
finite set (alphabet). A multiset rewrite rule µ over S is a pair, written µ1 −→ µ2,
where µ1 and µ2 are two multisets over S called the antecedent and the consequent of
µ, respectively. A multiset rewriting system over S is a set R of multiset rewrite rules
over S.
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Definition 4.2 (Configuration) Let R be a multiset rewriting system over S. A config-
uration is a multiset M over S.

Given a configuration M, a rewrite rule can fire at M provided the corresponding an-
tecedent is contained inM. Firing is accomplished by substituting the consequent for the
antecedent inM, thus getting a new multisetM′. This is formally stated in the following
definition.

Definition 4.3 (Firing) Let R be a multiset rewriting system over S,M a multiset over
S, and µ = µ1 −→ µ2 ∈ R a rule.

i. We say that µ is M-enabled if µ1 4M;

ii. if µ is M-enabled, a multiset M′ is the result of firing µ at M, written M ⊲µM′,
if M′ = (M\µ1) + µ2; we write M ⊲M′ if M ⊲µM′ for some µ, and we use ⊲∗

to denote the reflexive and transitive closure of ⊲ .

The semantics of multiset rewriting systems is formalized by the following notion of reach-
ability set.

Definition 4.4 (Reachability Set) Let R be a multiset rewriting system over S. Given
a multiset MI over S, called initial configuration, we define the reachability set of
R, denoted Reach(R), as follows: Reach(R) = {M | MI ⊲

∗M}.

In the next section we will present the theory of Petri nets. The mutual relations between
Petri nets, multiset rewriting systems and linear logic theories will be discussed in Section
4.3.

4.2 Place/Transition Nets

In the following we shall be interested mainly in Petri nets with infinite place capacities.
This is not a serious limitation, however, as arbitrary Petri nets can be encoded into Petri
nets with infinite place capacities by means of the well-known operation of complementation
[Rei85].

The traditional definition of Petri net (with infinite place capacities) is as follows.

Definition 4.5 (P/T Nets) A P/T net is a tuple N = 〈P, T, A,W 〉, where
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i. P and T are two finite and disjoint sets, whose elements are called, respectively,
places and transitions;

ii. A ⊆ (P × T ) ∪ (T × P ) is a set of arcs, defined by a binary relation called the flow
relation;

iii. W : A→ N0 is the weight function.

Definition 4.6 (Preset and Postset) Given a Petri net N = 〈P, T, A,W 〉 and t ∈ T ,
we define ·t = {p ∈ P | (p, t) ∈ A} and t· = {p ∈ P | (t, p) ∈ A}. We call ·t and t·,
respectively, the preset and postset of the transition t.

Definition 4.7 (Marking) A marking for a Petri net N = 〈P, T, A,W 〉 is a multiset
over P , i.e., a mappingM : P → N.

Petri nets can be conveniently represented as labelled graphs, as in the producer/consumer
example in Figure 4.1 (see also Section 4.2.1). In the graphical representation, places are
drawn as circles, while transitions are drawn as squares. The flow relation is represented
by arcs connecting places and transitions. Every arc is labelled with its own weight; labels
with weight 1 are usually omitted for simplicity. Markings are represented by drawing as
many tokens (i.e., black spots) into places, as the corresponding multiplicity. According
to the token metaphor, firing of a transition t causes tokens flow from places in ·t to
places in t·, according to the weight of the corresponding arcs. A transition t can only
fire if enough tokens are present in the places in ·t. This is formalized by the following
definition.

Definition 4.8 (Firing) Let N = 〈P, T, A,W 〉 be a Petri net, t ∈ T a transition, andM
a marking for N .

i. We say that t is M-enabled iff M(p) ≥ W (p, t) for all p ∈ ·t;
ii. if t isM-enabled, a markingM′ is the result of firing t atM, written M[t〉M′, iff

for all p ∈ P

M′(p) =





M(p)−W (p, t) iff p ∈ ·t\t·
M(p) +W (t, p) iff p ∈ t·\·t
M(p)−W (p, t) +W (t, p) iff p ∈ ·t ∩ t·
M(p) otherwise

we write M[〉M′ if M[t〉M′ for some t, and we use [∗〉 to denote the reflexive and
transitive closure of [〉.
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Produce

Release

Acquire

Consume

2

releasing

producing

buffer

free

2

acquiring

consuming

Figure 4.1: A producer/consumer net

Similarly to multiset rewriting systems, we can give the following definition for the reach-
ability set.

Definition 4.9 (Reachability Set) Let N = 〈P, T, A,W 〉 be a Petri net. Given a mark-
ingMI for N , called the initial marking, we define the reachability set of N , denoted
Reach(N), as follows: Reach(N) = {M | MI [∗〉M}.

4.2.1 A Producer/Consumer Example

A simple example representing a producer/consumer net, with initial marking, is shown
in Figure 4.1. The producer, represented by the left cycle, produces and releases one item
at a time and puts it in a buffer. The buffer has a limited capacity of five items. This is
enforced by representing the buffer by means of two places: place buffer contains the items
released and not yet consumed, while place free represents the available positions in the
buffer. The consumer, represented by the right cycle, acquires and consumes two items at
a time, as specified by the label 2 on the arcs from buffer to Acquire and from Acquire to
free.

Formally, the set of places is given by P = {releasing, producing, buffer, free, acquiring,
consuming}, and the set of transitions by T = {Produce,Release,Acquire,Consume}. The
set of arcs includes for instance (Produce, releasing), (releasing,Release), and so on. Ev-
ery arc has weight 1 except for the arcs (buffer,Acquire) and (Acquire, free) which have
weight 2. The preset of Release is given by {releasing, free}, while its postset is given by
{producing, buffer}. In Figure 4.1, the following initial marking

MI = {releasing, buffer, buffer, buffer, free, free, acquiring}
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is drawn, i.e., we haveMI(releasing) = 1,MI(producing) = 0,MI(buffer) = 3,MI(free)
= 2, MI(acquiring) = 1, MI(consuming) = 0. We can conveniently use the following
vector notation: 〈1, 0, 3, 2, 1, 0〉, where each position represents the number of tokens in
each place, ordered as above.

The following transitions are MI-enabled in Figure 4.1: Release and Acquire. By firing
the transition Release, we get that MI [Release〉M′, with M′ given by 〈0, 1, 4, 1, 1, 0〉,
according to the above vector notation. Similarly, by firing transition Acquire we get
MI [Acquire〉M′′, with M′′ given by 〈1, 0, 1, 4, 0, 1〉. As a further example, we can fire
transition Consume inM′′ and getM′′[Consume〉M′′′, withM′′′ given by 〈1, 0, 1, 4, 1, 0〉.
Transition Acquire is notM′′′-enabled, because only one item is available in the buffer.

4.2.2 Place Invariants

The notion of place invariant is useful to perform a static analysis of a Petri net. For
instance, given a Petri net N with set of places P , one can be interested in finding subsets
of places S ⊆ P such that their joint total token count does not change whatever transition
may fire. This is a typical example of a property which can be statically proved by means
of the place invariant analysis. Place invariants can be used to study properties of Petri
nets like liveness or boundedness [Rei85].

In order to introduce the concept of place invariant, we first discuss a linear algebra rep-
resentation for Petri nets.

Definition 4.10 (Matrix Representation) Let N = 〈P, T, A,W 〉 be a Petri net.

i. Given a transition t ∈ T , we define the vector t as follows:

t(p) =





W (t, p) iff p ∈ t·\·t
−W (p, t) iff p ∈ ·t\t·
W (t, p)−W (p, t) iff p ∈ ·t ∩ t·
0 otherwise

ii. we define the matrix N : P × T → Z as follows: N(p, t) = t(p).

Note that the above matrix representation is unambiguous (i.e., different Petri nets have
different representations) only if we assume ·t ∩ t· = ∅ for every t ∈ T . Every marking of
a Petri net can also be represented as a vector, as shown in Section 4.2.1. Let M denote
the vector corresponding to the multiset M, i.e., M(p) = M(p) for every p ∈ P . The
following result holds.
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Produce Release Acquire Consume

releasing 1 −1 0 0

producing −1 1 0 0

buffer 0 1 −2 0

free 0 −1 2 0

acquiring 0 0 −1 1

consuming 0 0 1 −1

MI

1

0

3

2

1

0

Figure 4.2: Matrix and initial marking representation

Proposition 4.11 Let N = 〈P, T, A,W 〉 be a Petri net, t ∈ T a transition, and M, M′

two markings for N . If t is M-enabled, then M[t〉M′ iff M′ =M+ t.

Proof By definitions. 2

Example 4.12 Consider the producer/consumer Petri net in Figure 4.1. The correspond-
ing matrix and initial marking vector are shown in Figure 4.2. The initial marking MI

is given by the vector 〈1, 0, 3, 2, 1, 0〉, and the vector corresponding to transition Release
is 〈−1, 1, 1,−1, 0, 0〉. As Release is MI-enabled and 〈1, 0, 3, 2, 1, 0〉 + 〈−1, 1, 1,−1, 0, 0〉 =
〈0, 1, 4, 1, 1, 0〉, we have thatMI [Release〉M,M corresponding to the vector 〈0, 1, 4, 1, 1, 0〉.

2

We have the following definition for place invariants. In the following, let NT denote
the transpose of matrix N and iT the transpose of vector i, let ∗ be the matrix-vector or
vector-vector product, and 0 a null vector.

Definition 4.13 (Place Invariants) Let N = 〈P, T, A,W 〉 be a Petri net. A place vector
i : P → Z is called a place invariant of N iff NT ∗ i = 0.

Place invariants are defined as solutions x of the linear algebraic system of equations
NT ∗ x = 0. Let Reach(N) be the set {M | M ∈ Reach(N)}. Place invariants have the
following property.

Proposition 4.14 (Properties of Place Invariants [STC98]) Let N = 〈P, T, A,W 〉
be a Petri net, and MI an initial marking for N . If i is a place invariant of N , then
Reach(N) ⊆ {x | iT ∗ x = iT ∗MI}.
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Intuitively, reachable markings must satisfy the equation iT ∗ x = iT ∗MI for every place
invariant i. In other words, place invariants provide us with an over-approximation of the
set of reachable markings of a given Petri net. As a special case, solutions i with elements
in {0, 1} are characteristic vectors of sets of places with constant token count. We also
have the following result.

Proposition 4.15 Let N = 〈P, T, A,W 〉 be a Petri net, i1 and i2 two place invariants of
N , and let z ∈ Z. Then i1 + i2 and z · i1 are also place invariants of N .

Proof By definition. 2

Tools for automatically computing place invariants are available. For instance, specialized
libraries for invariant computation are available with GreatSPN [CFGR95].

Example 4.16 Let us consider the producer/consumer net of Figure 4.1 again. The cor-
responding matrix is shown in Figure 4.2. Let x = 〈x1, . . . x6〉, x1, . . . , x6 corresponding to
places releasing, . . . , consuming in the order of Figure 4.2. Now, the associated algebraic
system is 




x1 − x2 = 0
−x1 + x2 + x3 − x4 = 0
−2x3 + 2x4 − x5 + x6 = 0
x5 − x6 = 0

which reduces to





x1 = x2

x3 = x4

x5 = x6

Every place vector satisfying the above equations is a place invariant. For instance, the
vectors 〈1, 1, 0, 0, 0, 0〉, 〈0, 0, 1, 1, 0, 0〉, and 〈0, 0, 0, 0, 1, 1〉 are place invariants. Being char-
acteristic vectors, we have that the total token count of the corresponding places is al-
ways constant and equals the initial marking count. Therefore we have proved the fol-
lowing properties: for every reachable marking M, M(releasing) +M(producing) = 1,
M(buffer) +M(free) = 5, andM(acquiring) +M(consuming) = 1. It follows, e.g., that
M(buffer) ≤ 5 (the buffer cannot contain more than five elements), M(releasing) ≤ 1,
and so on. According to Proposition 4.15, every linear combination of the above place
vectors is still a place invariant. For instance, 〈1, 1, 1, 1, 1, 1〉 is a place invariant, i.e., the
total number of tokens in the net of Figure 4.1 is constant. 2

In Part II, we will often use place invariants to optimize the performance of our verification
tool (see Appendix A).

4.3 From Petri Nets to Linear Logic

After the informal discussion in the previous section, the existence of a connection between
multiset rewriting systems and Petri nets should be evident. In fact, markings are exactly
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multisets of places, whereas transitions can be seen as multiset rewrite rules, in accordance
to the token metaphor. The following definitions make this connection explicit.

Definition 4.17 (Petri Nets as Multiset Rewriting Systems) Given a Petri net N
= 〈P, T, A,W 〉, we define the multiset rewriting system R(N) over P as follows:

R(N) = {
∑

p ∈ ·t
W (p, t) · p −→

∑

p ∈ t·
W (t, p) · p | t ∈ T}

We remind thatW (p, t)·p denotes the scalar product between W (p, t) ∈ N and the singleton
multiset {p}.
The following proposition states soundness and completeness of the Petri nets translation
into multiset rewriting systems. The proof can be found in [Cer94].

Proposition 4.18 Let N = 〈P, T, A,W 〉 be a Petri net andM,M′ ∈MS(P ) two mark-
ings over P . Then M[∗〉M′ in N if and only if M ⊲∗M′ in R(N).

After giving a translation from Petri nets to multiset rewriting systems, we now show how
multiset rewriting systems can be specified in linear logic, and in particular in the language
LO presented in Section 3.2. As a result, we also get a translation of Petri Nets into linear
logic.

Definition 4.19 (Multiset Rewriting Systems as LO Theories) Let R be a multi-
set rewriting system over a set S. We define the LO theory P(R) over the signature
Σ = S, as follows:

P(R) = {H ◦−G | Ĥ −→ Ĝ ∈ R}

We recall that, given a ............................................
...........
........
................................ -disjunction of atomic formulas F = a1

............................................
...........
........
................................ . . . ............................................

...........
........
................................ an, F̂ stands for

a1, . . . , an, while ⊥̂ stands for the empty multiset ǫ.

Soundness and completeness of the above translation is stated in the following proposition.
We omit the proof, which is a slight variation of the one presented in [Cer94] (see also
[Cer95]) and can be developed using the same methodology.

Proposition 4.20 (Reachability as Provability in Propositional LO) Let R be a
multiset rewriting system over a set S, M,M′ ∈MS(S) two multisets over S, and H, G

the (possibly empty) ............................................
...........
........
................................ -disjunctions of atomic formulas such that Ĥ = M′ and Ĝ = M.

Then M ⊲∗M′ in R if and only if P(R), H ◦− 1 ⊢1 G.
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P,D ⊢ 1
1r

P,D ⊢ releasing, buffer, buffer, free, free, free, consuming
bc(D)

P,D ⊢ releasing, buffer, buffer, buffer, buffer, free, acquiring
bc(3)

P,D ⊢ producing, buffer, buffer, buffer, buffer, free, acquiring
bc(1)

P,D ⊢ releasing, buffer, buffer, buffer, free, free, acquiring
bc(2)

Figure 4.3: Reachability as provability in propositional LO

Example 4.21 Let us consider the Petri net for the producer/consumer example (see
Figure 4.1). Its translation yields the following multiset rewriting system (one rule for
each transition in T = {Produce,Release,Acquire,Consume}, respectively):

{producing} −→ {releasing}
{releasing, free} −→ {producing, buffer}
{buffer, buffer, acquiring} −→ {free, free, consuming}
{consuming} −→ {acquiring}

which corresponds to the following LO program P :

1. producing ◦− releasing
2. releasing ............................................

...........
........
................................ free ◦− producing ............................................

...........
........
................................ buffer

3. buffer ............................................
...........
........
................................ buffer ............................................

...........
........
................................ acquiring ◦− free ............................................

...........
........
................................ free ............................................

...........
........
................................ consuming

4. consuming ◦− acquiring
By firing, in the following order, the transitions Release, Produce, and Acquire, we have
thatMI [∗〉M, whereMI is the initial marking drawn in Figure 4.1, andM is the marking
corresponding to the vector 〈1, 0, 2, 3, 0, 1〉 (according to the notation of Section 4.2.1). Let
D be the following LO1 clause:

releasing ............................................
...........
........
................................ buffer ............................................

...........
........
................................ buffer ............................................

...........
........
................................ free ............................................

...........
........
................................ free ............................................

...........
........
................................ free ............................................

...........
........
................................ consuming ◦− 1

Figure 4.3 (where applications of the ............................................
...........
........
................................
r rules have been incorporated into backchaining

steps, labelled as usual) shows the LO1 proof corresponding to MI [∗〉M, according to
Proposition 4.20. 2

4.4 Petri Nets with Transfer Arcs

We conclude this chapter by discussing an extension of Petri nets, namely Petri nets with
transfer arcs. After presenting an example, we will discuss the connection with the so-
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Read req

reading idle writing

End read

End write

Write req

Figure 4.4: A readers/writers net

called broadcast protocol model [EN98]. We will give a definition and a formal semantics
for broadcast protocols. We will go back to this topic in Chapter 8. In particular, in Section
8.4 we will discuss the connection between the broadcast protocol model and linear logic.

4.4.1 A Readers/Writers Example

Figure 4.4 shows a net representing a set of (identical) processes which compete for a shared
resource (e.g. a memory location). Processes can be reading or writing the resource, or
otherwise be idle (correspondingly, we have the places reading, writing, and idle). In Figure
4.4, we have drawn an initial marking in which we have three reading processes and two
idle ones.

Processes are allowed to concurrently read the given resource, while writing must be ex-
clusive (only one write operation and no read ones at a time). This constraint is enforced
by using an invalidation strategy which works as follows. Every time a read request is
sent (transition Read req), the requesting process is granted the read access after all the
writing processes (in this case at most one) are moved from writing to idle. In a similar
way, a write request (transition Write req) necessitates moving all processes currently in
state reading or writing to state idle. Two further transitions, End read and End write, are
straightforward, and allow a reading or writing process to go back to state idle. In Figure
4.4 we have drawn ordinary Petri net arcs in the usual way, while dotted lines (which come
in pairs) represent transfer arcs. For instance, the pair of dotted lines from reading to
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Write req and from Write req to idle represent the transfer of all processes in state reading
to state idle which is performed upon receivement of a write request. Intuitively, the effect
of a transfer arc is to move all tokens in a given place to another place. Transfer arcs do
not affect enabling of the corresponding transition.

There is a strong connection between Petri nets with transfer arcs and broadcast protocols.
In the next section we will present the definition of broadcast protocol and we will make
the ideas presented above more precise by showing a formal semantics for this latter model.

4.4.2 Broadcast Protocols

Broadcast protocols [EN98, EFM99] are systems composed of a finite but arbitrarily large
set of identical processes, which can communicate by rendezvous (a message is exchanged
between two processes) or broadcast (a process sends a message to all the other processes).
Typical examples of systems which can be modeled as broadcast protocols are bus-based
hardware protocols, e.g. cache coherence protocols.

Definition 4.22 (Broadcast Protocol) A broadcast protocol is a triple B = 〈S, L,R〉,
where

i. S is a finite set of states;

ii. L is a finite set of labels, defined in the following way. Given three finite and
mutually disjoint sets Σl, Σr and Σb, L is the union of Σl (the set of local labels), two
sets (Σr × {?}) and (Σr × {!}) (the sets of input and output rendezvous labels), and
two sets (Σb × {??}) and (Σb × {!!}) (the sets of input and output broadcast labels).
We will write ΣL for Σl ∪Σr ∪Σb, and we will shorten (a, ?) to a?, and similarly for
the other labels;

iii. R ⊆ S×L× S is a set of transitions. A transition (s, l, s′) will be written s
l−→ s′.

R must satisfy the following property: for every a ∈ Σb and state s ∈ S, there exists

a state s′ ∈ S such that s
a??−→ s′.

Intuitively, the last condition on the set of transitions guarantees that every process is
always willing to receive a broadcasted message. For the sake of simplicity, we will make
two further assumptions on the set L: for each state s and label a??, there is exactly one

state s′ such that s
a??−→ s′ (determinism); each label of the form a, a? a! and a!! appears

in exactly one transition.

Example 4.23 The readers/writers net presented in Figure 4.4 can be translated into the
broadcast protocol model, as shown in Figure 4.5 (where we have not drawn the initial
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reading writing

idle

Read req??

Write req!!

Write req??

End read

Read req??
Write req??

Read req!!

Read req??

End write

Write req??

Figure 4.5: A readers/writers broadcast protocol

marking). The are three states, reading, writing and idle, as usual. A process willing
to read broadcasts an (output) message Read req!! to all the other processes. Upon
receivement of the correspondent input message Read req??, processes currently reading
remain in state reading, while writing processes become idle. The transition for a write
request is similar, with the difference that both reading and writing processes go to state
idle. Transitions End read and End write are described by local labels, and their meaning
is similar to ordinary Petri net transitions. No rendezvous transitions are needed in this
example. 2

We now present the semantics of broadcast protocols.

Definition 4.24 (Configuration) A configuration for a broadcast protocol B = 〈S, L,R〉
is a multiset over S, i.e., a mapping C : S → N.

The notion of configuration is analogous to that of marking for Petri nets. Suppose S =
{s1, . . . , sn}. Then, a configuration C can be equivalently seen as a vector 〈c1, . . . , cn〉,
where ci = C(si) (the multiplicity of si in C) indicates how many processes are in state si
[EFM99].

Definition 4.25 (Firing) Let B = 〈S, L,R〉 be a broadcast protocol, S = (s1, . . . , sn),
a ∈ ΣL, and C a configuration for B. We say that C′ is the result of firing a at C, written
C a−→ C′, iff
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i. si
a−→ sj ∈ R, with C(si) > 0, and C′ = (C\{si}) + {sj};

ii. si
a!−→ sj ∈ R and sk

a?−→ sl ∈ R, with C(si) > 0 and C(sk) > 0, and C′ =
(C\{si, sk}) + {sj, sl};

iii. si
a!!−→ sj ∈ R, with C(si) > 0, and C′ can be computed from C in the following three

steps:
C1 = C\{si}
C2(sk) =

∑

{sl | sl

a??−→ sk}

C1(sl) (for k : 1, . . . , n)

C′ = C2 + {sj}

The first two cases in the previous definition are for local and rendezvous transitions, and
similar to ordinary Petri net transitions. The last case is for broadcast communication.
Intuitively, the sending process leaves si, all other processes receive the broadcast and move
to their destinations, and finally the sending process reaches sj . This is similar to a Petri
net transition having pairs of transfer arcs for all places and in addition an ordinary pair
of arcs, connecting si and sj , for the sending process. From a graphical point of view,
note that in Figure 4.4 pairs of transfer arcs which are self loops (e.g. corresponding to
the arc Read req?? for the state reading in Figure 4.5) are omitted. It should be evident
that broadcast protocols can be seen as a special case of Petri nets with transfer arcs. The
semantics of these latter nets can be given similarly.

Example 4.26 Consider the readers/writers net in Figure 4.5 and the configuration C,
corresponding to the initial marking of Figure 4.4, with 3 readers and 2 idle processes,
i.e., C(reading) = 3, C(writing) = 0, C(idle) = 2. Using the vector notation, C is given

by 〈3, 0, 2〉. Then C Read req−→ C′, with C′ given by 〈4, 0, 1〉; C′ Write req−→ C′′, with C′′ given by

〈0, 1, 4〉; C′′ End write−→ C′′′, with C′′′ given by 〈0, 0, 5〉. 2

—————————————————————————————–

Summary of the Chapter. In this chapter we have introduced the theories of

multiset rewriting systems over atomic formulas and Petri nets, we have discussed

their definition and semantics. We have analyzed the mutual relations between linear

logic, multiset rewriting systems and Petri nets. We have illustrated the main ideas

of this connection by means of classical examples, like producers/consumers and

readers/writers. We have also mentioned the broadcast protocol model. In the next

chapter we will carry on the discussion by analyzing the relations between first-order

linear logic theories, first-order rewriting systems and coloured Petri nets.

—————————————————————————————–
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Chapter 5

First-Order LO, First-Order Multiset
Rewriting and Coloured Petri Nets

According to the token metaphor discussed in Chapter 4, Petri nets dynamics can be
described by means of tokens flowing from places to places. While the tokens considered
so far are just black spots, i.e., indistinguishable from one another, a natural extension
is to allow tokens to carry values, like in the so-called theory of Coloured Petri Nets
(CP-nets for short) [Jen97]. The logical counterpart of CP-nets is to consider multiset
rewriting over first-order atoms, and first-order LO theories, as opposed to propositional
ones. In this chapter we summarize the basic concepts pertaining to CP-nets and we discuss
their relationship with multiset rewriting over first-order atoms and first-order linear logic
theories. We conclude by showing how enriching logic theories with universal quantification
can provide a way to generate new values.

5.1 Multiset Rewriting Systems over First-Order A-

tomic Formulas

The theory of multiset rewriting systems presented in Section 4.1 can be extended in a
straightforward way, by considering a set of rules built over first-order atomic formulas,
and their ground instances. Given a denumerable set of variables V and a signature Σ
including a set of constant and function symbols and a set of predicate symbols, atomic
formulas have the form p(t1, . . . , tn), where p is a predicate symbol and ti are terms in T V

Σ ,
for i : 1, . . . , n.

Definition 5.1 (Multiset Rewriting Systems over First-Order Atoms) Let Σ be a
signature with predicates and V a denumerable set of variables. A multiset rewrite
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rule µ over Σ and V is a pair, written µ1 −→ µ2, where µ1 and µ2 are two multisets of
(non ground) atomic formulas in AV

Σ, called the antecedent and the consequent of µ,
respectively. A multiset rewriting system over Σ and V is a set R of multiset rewrite
rules over Σ and V.

The dynamic behaviour of a multiset rewriting system over first-order atomic formulas can
be described by considering the ground instances of the set of its rewrite rules. Given a
signature Σ, a possible way to achieve this is to consider a Σ-algebra DΣ to provide a set of
values (domain) and to evaluate the function and constant symbols in Σ. By analogy with
Herbrand models for logic programs, in the following we assume that values are provided
by TΣ, i.e., the ground term algebra over Σ. Therefore, values are simply ground terms.
The set of ground instances of a rule µ are obtained as applications of the rule itself with
an evaluation σ, mapping variables in µ to terms in TΣ. We denote by µσ this application.

Definition 5.2 (Configuration) Let R be a multiset rewriting system over Σ and V. A
configuration is a multiset M of ground atomic formulas in AΣ.

Given a configurationM, a rewrite rule can fire atM (modulo an evaluation σ) provided
the corresponding antecedent is contained in M. Firing is accomplished by substituting
the consequent for the antecedent inM, thus getting a new multisetM′. This is formally
stated in the following definition.

Definition 5.3 (Firing) Let R be a multiset rewriting system over Σ and V, M a con-
figuration, µ = µ1 −→ µ2 ∈ R a rule, and σ an evaluation for the variables in µ.

i. We say that µ is M-enabled with σ if µ1σ 4M;

ii. if µ isM-enabled with σ, a multisetM′ is the result of firing µ atM with σ, written
M ⊲µ,σM′, if M′ = (M\µ1σ) + µ2σ; we write M ⊲M′ if M ⊲µ,σM′ for some µ
and σ, and we use ⊲∗ to denote the reflexive and transitive closure of ⊲ .

The usual notion of reachability set can be extended as follows.

Definition 5.4 (Reachability Set) Let R be a multiset rewriting system over Σ and V.
Given a multiset of values MI, called initial configuration, we define the reachability
set of R, denoted Reach(R), as follows: Reach(R) = {M | MI ⊲

∗M}.

In the next section we will present the theory of coloured Petri nets. The mutual relations
between coloured Petri nets, multiset rewriting systems over first-order atoms and first-
order linear logic theories will be discussed in Section 5.3.
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5.2 CP-nets

A (simplified) definition for Coloured Petri Nets (CP-nets) [Jen97] is as follows.

Definition 5.5 (CP-Nets) A CP-net is a tuple N = 〈S, P, T, A, C,E〉 where

i. S is a set of types (i.e., domains enriched with operations defined over them);

ii. P and T are two finite and disjoint sets, whose elements are called, respectively,
places and transitions;

iii. A ⊆ (P × T ) ∪ (T × P ) is a set of arcs, defined by a binary relation called the flow
relation;

iv. C : P → S is a function called the color function, which associates every place with
a type;

v. E is a function defined from A into expressions, called the arc expression function,
which associates every arc with a multiset of expressions. Expressions must be of the
correct type, i.e., if a = (p, t) or a = (t, p) then E(a) must have the type of multisets
with elements of type C(p).

By analogy with first-order multiset rewriting theories, the definition of S can be given
by means of a (multi-sorted) algebra, defined over a signature Σ including constant and
function symbols. In this case, arcs may be labelled with multisets of expressions in T V

Σ ,
i.e., the term algebra over Σ and a set of variables V.

For convenience, in the following definition we overload the notations for presets and post-
sets used for ordinary Petri nets.

Definition 5.6 (Preset and Postset) Given a CP-net N = 〈S, P, T, A, C,E〉 and t ∈
T , we define ·t = {p ∈ P | (p, t) ∈ A} and t· = {p ∈ P | (t, p) ∈ A}. We call ·t and t·,
respectively, the preset and postset of the transition t.

We now give the definition of binding and marking. The notion of binding is the counterpart
of the notion of substitution for free variables in first-order logic.

Definition 5.7 (Bindings and Markings) Let N = 〈S, P, T, A, C,E〉 be a CP-net.

i. A binding for a transition t ∈ T is a function mapping variables in t (i.e., variables
in E(a), with a = (p, t) or a = (t, p) for some place p) to elements in S;
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ii. a token element is a pair (p, c), where p ∈ P and c ∈ C(p);

iii. a binding element is a pair (t, b), where t ∈ T and b is a binding for t;

iv. a marking is a multiset of token elements.

Given a binding b and an expression F , in the following we will use the notation F<b>
to denote the application of b to F . To exemplify, suppose a CP-net is defined by means
of a Σ-algebra DΣ and F is a term in T V

Σ . In this case, F <b> is the evaluation of F
obtained by evaluating variables in F according to b, and constant and function symbols
according to DΣ. For instance, if we choose DΣ to be the ground term algebra TΣ, b must
map variables to ground terms, and F <b> is the usual term evaluation (i.e., constant
and function symbols are evaluated to themselves). Evaluation can be straightforwardly
extended to multisets of expressions. Finally, we will use the notationM(p), where M is
a marking and p a place, to denote the multiset C over C(p) given by C(c) =M(p, c), for
every c ∈ C(p).

Similarly to Petri nets, CP-nets can be represented as labelled graphs. An example is
shown in Figure 5.1 (see also Section 5.2.1). As usually, places are drawn as circles and
transitions as squares. Every arc a is labelled with the multiset of expressions E(a). Note
that the multiset E(a) extends the weight function of traditional Petri nets. In fact, in
Petri nets there is only one kind of token, and we can see the weight function as giving
the multiplicity of this token in the corresponding multiset. Markings can be represented
by drawing as many tokens, i.e., elements in S, inside the corresponding place. The token
metaphor can be extended to CP-nets. Firing of a transition is accomplished by first
binding the free variables specified over the arcs of the transition itself to elements in S,
thus getting a binding element, and then by letting elements flow from places to places,
provided the binding element is enabled. We have the following definition.

Definition 5.8 (Firing) Let N = 〈S, P, T, A, C,E〉 be a CP-net, (t, b) a binding element,
and M a marking for N .

i. We say that (t, b) is M-enabled iff E(p, t)<b>4M(p) for all p ∈ ·t.
ii. if (t, b) is M-enabled, a marking M′ is the result of firing (t, b) at M, written
M[t, b〉M′, iff for all p ∈ P

M′(p) =





M(p)\E(p, t)<b> iff p ∈ ·t\t·
M(p) + E(t, p)<b> iff p ∈ t·\·t
(M(p)\E(p, t)<b>) + E(t, p)<b> iff p ∈ ·t ∩ t·
M(p) otherwise

we writeM[〉M′ ifM[t, b〉M′ for some t and b, and we use [∗〉 to denote the reflexive
and transitive closure of [〉.
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Figure 5.1: The dining philosophers net

The usual notion of reachability set can be extended as follows.

Definition 5.9 (Reachability Set) Let N = 〈S, P, T, A, C,E〉 be a CP-net. Given a
marking MI for N , called the initial marking, we define the reachability set of N ,
denoted Reach(N), as follows: Reach(N) = {M | MI [∗〉M}.

5.2.1 An Example: the Dining Philosophers

In Figure 5.1 we show a net representing the well-known dining philosophers problem. We
have a set of n philosophers sitting around a (round) table and alternating periods in which
they think to periods in which they eat. Each philosopher has a dish of spaghetti in front
of him/her and two forks lie on each side of the dish (every fork is in common between
two neighbouring dishes). A philosopher wishing to eat needs to take both forks, the one
to the right and the one to the left of his/her dish. If either fork has already been taken,
a philosopher must wait until both forks are available. Once he/she has finished eating, a
philosopher puts the forks back onto the table and starts thinking again.

In Figure 5.1, we show an example for n = 5 philosophers, named pi, i : 0, . . . , 4. The forks
are named fi, i : 0, . . . , 4, fi being the fork to the left of philosopher pi, and f(i+1 mod 5)

the fork to the right. The set of places is P = {thinking, forks, eating}, containing,
respectively, the set of thinking philosophers, the set of available forks, and the set of
eating philosophers. We have two distinct types, namely a type Sp for philosophers and a
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type Sf for forks. The functions l and r map philosophers to the respective left and right
fork, as defined above. The transition Get forks moves a philosopher x from thinking to
eating, provided his/her forks l(x) and r(x) are available. The transition Put forks moves
a philosopher x from eating to thinking, releasing forks l(x) and r(x).

Initially, all philosophers are thinking and all forks are on the table. In Figure 5.1 the
following marking is shown:

M = {(thinking, p1), (thinking, p3), (thinking, p4), (forks, f4), (eating, p0), (eating, p2)},

i.e., we have that M(thinking) = {p1, p3, p4}, M(forks) = {f4}, and M(eating) =
{p0, p2}. Let b1 be the binding such that b1(x) = p0. The binding element (Put forks, b1) is
enabled in M. We have that M[Put forks, b1〉M′, where M′(thinking) = {p0, p1, p3, p4},
M′(forks) = {f0, f1, f4}, and M′(eating) = {p2}. As the reader can verify, the transi-
tion Get forks is not enabled in M for any binding b, because only one fork is available
(at most two philosophers can eat at the same time). As another example, let b2 be
the binding such that b2(x) = p4. The binding element (Get forks, b2) is enabled in M′,
and M′[Get forks, b2〉M′′, where M′′(thinking) = {p0, p1, p3}, M′′(forks) = {f1}, and
M′′(eating) = {p2, p4}.

5.3 From CP-nets to Linear Logic

In this section we will discuss the connections between CP-nets, first-order multiset rewrit-
ing and first-order linear logic theories. Basically, we can use the same ingredients as in
Section 4.3, where we formally stated a similar connection between ordinary Petri nets,
rewriting and propositional linear logic theories. However, the correspondence between
CP-nets as defined in [Jen97] and first-order multiset rewriting (or linear logic theories)
is not perfect. In particular, our linear logic theories as presented so far are untyped
(though a type theory could certainly be introduced), and furthermore in [Jen97] CP-nets
are provided with a rich ML-like language for defining operations on type values. For these
reasons, and having in mind the purpose of the present thesis work, we will feel free to
keep the tone of this discussion somewhat informal. In particular, we will demonstrate
the connection between CP-nets and multiset rewriting over first-order atoms by directly
showing the encoding of the dining philosophers example of Section 5.2.1.

Example 5.10 Consider the dining philosopher CP-net of Figure 5.1. The idea is to take
the set of places as the set of predicate symbols of the corresponding theory. We have three
places which we can encode by means of the predicate symbols thinking, forks and eating.
We need at least two function symbols l and r to encode the left and right fork functions,
and we can also use two further term constructors p and f to simulate the two types for
philosophers and forks, respectively. We can use natural numbers to encode philosopher
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indices. To exemplify, the terms p(0), . . . , p(n) will denote the set of n philosophers, and
f(0), . . . , f(n) the set of forks. The initial marking presented in Figure 5.1 corresponds to
the following multiset:

M = {thinking(p(1)), thinking(p(3)), thinking(p(4)), forks(f(4)), eating(p(0)), eating(p(2))}.

The transition Get forks can be encoded by means of the following rewrite rule, where x
is a variable:

{thinking(p(x)), forks(l(p(x))), forks(r(p(x)))} −→ {eating(p(x))}
and, similarly, the following rewrite rule encodes the transition Put forks:

{eating(p(x))} −→ {thinking(p(x)), forks(l(p(x))), forks(r(p(x)))}
Now, we need to define rules to implement the l and r functions, e.g. using the following
encoding :

{forks(l(p(x)))} −→ {forks(f(x))}
{forks(r(p(x)))} −→ {forks(f(x+ 1 mod n))}
{forks(f(x))} −→ {forks(l(p(x)))}
{forks(f(x+ 1 mod n))} −→ {forks(r(p(x)))}

where the mod operator is defined via a suitable arithmetic theory. A simple alternative
is to consider a set of rules, one for each possible value of x, as suggested in Figure 5.1 (in
this case the set of values is finite). In general, we need to enrich our rewriting theory with
clauses for all the operations defined in the original CP-net. 2

The connection between multiset rewriting systems over first-order atomic formulas and
first-order LO theories can be stated by analogy with the propositional case of Section 4.3.

Definition 5.11 (First-Order Multiset Rewriting Systems as LO Theories) Let
R be a multiset rewriting system over Σ and V. We define the LO theory P(R) (over
Σ and V), as follows:

P(R) = {∀ (H ◦−G) | Ĥ −→ Ĝ ∈ R}

As usual, the notation ∀ (H ◦−G) stands for the universal quantification of clause H ◦−G
over its free variables, whereas ̂a1

............................................
...........
........
................................ . . . .

...........................................
...........
........
................................ an stands for a1, . . . , an, with ⊥̂ = ǫ. An analogous

soundness and completeness result holds.

Proposition 5.12 (Reachability as Provability in First-Order LO) Let R be a
multiset rewriting system over Σ and V, M,M′ ∈ MS(AΣ) two configurations, and H,

G the (possibly empty) ............................................
...........
........
................................ -disjunctions of ground atomic formulas such that Ĥ = M′ and

Ĝ =M. Then M ⊲∗M′ in R if and only if P(R), H ◦− 1 ⊢1 G.
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P,D ⊢ 1
1r

P,D ⊢ thinking(p(0), p(1), p(3)), forks(f(1)), eating(p(2), p(4))
bc(D)

P,D ⊢ thinking(p(0), p(1), p(3), p(4)), forks(r(p(4)), f(1), l(p(4))), eating(p(2))
bc(1)

P,D ⊢ thinking(p(0), p(1), p(3), p(4)), forks(f(0), f(1), l(p(4))), eating(p(2))
bc(6)

P,D ⊢ thinking(p(0), p(1), p(3), p(4)), forks(f(0), f(1), f(4)), eating(p(2))
bc(5)

P,D ⊢ thinking(p(0), p(1), p(3), p(4)), forks(f(0), r(p(0)), f(4)), eating(p(2))
bc(4)

P,D ⊢ thinking(p(0), p(1), p(3), p(4)), forks(l(p(0)), r(p(0)), f(4)), eating(p(2))
bc(3)

P,D ⊢ thinking(p(1), p(3), p(4)), forks(f(4)), eating(p(0), p(2))
bc(2)

Figure 5.2: Reachability as provability in first-order LO

Example 5.13 We can collect the multiset rewriting rules of Example 5.10 into the fol-
lowing first-order LO program P (where x is implicitly universally quantified):

1. thinking(p(x)) ............................................
...........
........
................................ forks(l(p(x))) ............................................

...........
........
................................ forks(r(p(x))) ◦− eating(p(x))

2. eating(p(x)) ◦− thinking(p(x)) ............................................
...........
........
................................ forks(l(p(x))) ............................................

...........
........
................................ forks(r(p(x)))

3. forks(l(p(x))) ◦− forks(f(x))

4. forks(r(p(x))) ◦− forks(f(x+ 1 mod n))

5. forks(f(x)) ◦− forks(l(p(x)))

6. forks(f(x+ 1 mod n)) ◦− forks(r(p(x)))

Let D be the following LO1 clause:

thinking(p(0))
............................................
...........
........
................................ thinking(p(1))

............................................
...........
........
................................ thinking(p(3))

............................................
...........
........
................................ forks(f(1))

............................................
...........
........
................................ eating(p(2))

............................................
...........
........
................................ eating(p(4))◦−1.

The derivation corresponding to firing M[Put forks, b1〉M′[Get forks, b2〉M′′ of Section
5.2.1 (according to Proposition 5.12) is shown in Figure 5.2. We have used the fol-
lowing convention: a formula like thinking(p1, . . . , pn) is a shorthand for the multiset
thinking(p1), . . . , thinking(pn), and similarly for forks(. . .) and eating(. . .). As usual, ap-
plications of the ............................................

...........
........
................................
r rules have been incorporated into backchaining steps. 2
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5.4 Multiset Rewriting with Universal Quantification

We conclude this chapter by discussing an extension of first-order multiset rewriting with
universal quantification. In the proof as computation interpretation of logic programs,
universal quantification is a logical operator which provides a way to generate new values.
From a logical perspective, this view of universal quantification is based on its proof-
theoretical semantics in intuitionistic (and also linear) logic [MNPS91]. We will define first-
order multiset rewriting with universal quantification taking inspiration from [CDL+99],
where a similar logic fragment, called MSR, is defined. In [CDL+99], MSR is used for the
specification and analysis of security protocols, a topic we will discuss in Chapter 11.

Given the direct relationship between (first-order) multiset rewriting and (first-order) linear
logic (in particular the fragment LO, as shown in Section 4.3), it should be evident that
multiset rewriting with universal quantification is the counterpart of LO with universal
quantification (see Section 3.3.2). As an aside, we remark that in [CDL+99] the logic MSR
is compared to a fragment of linear logic which turns out to be dual with respect to ours,
and therefore existential quantification is used in place of universal quantification.

The following definitions extend those presented in Section 5.1. As new values (constants)
can be generated, multiset rewriting systems are defined on dynamically growing signa-
tures, which we must keep trace of. Given a signature (with predicates) Σ and a set of new
constants C (not appearing in Σ), we will use the notation Σ ∪ C to denote the addition
of the constants in C to the set of constants in Σ.

Definition 5.14 (Quantified Multiset Rewriting Systems) Let Σ be a signature
with predicates and V a denumerable set of variables. A quantified multiset rewrite
rule µ over Σ and V is a pair, written µ1 −→ ∀x.µ2, where µ1 and µ2 are two multisets
of (non ground) atomic formulas in AV

Σ, called the antecedent and the consequent of
µ, respectively, and x is a vector of variables 〈x1, . . . , xk〉, with xi ∈ V for i : 1, . . . , k. A
quantified multiset rewriting system is a set R of multiset rewrite rules over Σ and
V.

The dynamic behaviour of a quantified multiset rewriting system can be described by
considering the ground instances of the set of its rewrite rules, which can be obtained as
explained in the following. First of all, note that the notion of instance (evaluation of terms
to base values) is relative to the current signature, i.e., if the signature is augmented with
a new constant c, we must provide a new value to evaluate c. By analogy with Section 5.1,
given a signature Σ1 we assume that the set of values are provided by TΣ1

, i.e., the ground
term algebra over Σ1. We need to extend the notion of configuration as follows.

Definition 5.15 (Configuration) Let R be a quantified multiset rewriting system over
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Σ and V. A configuration is a pair, written 〈M,Σ1〉, where Σ1 is a signature such that
Σ ⊆ Σ1 and M ∈MS(TΣ1

) is a multiset of terms.

Instantiation of a rule works as follows. Given a rule µ = µ1 −→ ∀x.µ2, with x =
〈x1, . . . , xk〉, and a configuration 〈M,Σ1〉, we first substitute new constants c1, . . . , ck (not
appearing in Σ1) for the bound variables x. We then substitute values (terms in TΣ1

)
for the free variables in µ. Firing will yield a new configuration 〈M′,Σ2〉, with Σ2 =
Σ1 ∪ {c1, . . . , ck}. Given an evaluation σ of the free variables in µ, we denote by µσ the
application of σ to µ. As explained above, the notion of evaluation is relative to a signature.
We have the following definition.

Definition 5.16 (Firing) Let R be a quantified multiset rewriting system over Σ and V,
〈M,Σ1〉 a configuration, µ = µ1 −→ ∀x.µ2 ∈ R a rule, with x = 〈x1, . . . , xk〉, and σ an
evaluation mapping free variables in µ to terms in TΣ1

.

i. We say that µ is 〈M,Σ1〉-enabled with σ if µ1σ 4M;

ii. if µ is 〈M,Σ1〉-enabled with σ, a multiset 〈M′,Σ2〉 is the result of firing µ at 〈M,Σ1〉
with σ, written 〈M,Σ1〉 ⊲µ,σ 〈M′,Σ2〉, if c = 〈c1, . . . , ck〉 is a vector of new constants
(not appearing in Σ1), Σ2 = Σ1 ∪ {c1, . . . , ck}, andM′ = (M\µ1σ) + (µ2[c/x])σ; we
write 〈M,Σ1〉 ⊲ 〈M′,Σ2〉 if 〈M,Σ1〉 ⊲µ,σ 〈M′,Σ2〉 for some µ and σ, and we use ⊲∗

to denote the reflexive and transitive closure of ⊲ .

Example 5.17 Let Σ be a signature with two constant symbols a and b, one function
symbol f and two predicate symbols p, q. Let V be a denumerable set of variables and
w, x, y ∈ V. Let µ be the rule

{p(x), q(f(y))} −→ ∀w.{p(f(x)), q(y), q(w)}

and M = {p(f(a)), p(b), q(f(b))}. Then we can fire rule µ at 〈M,Σ〉 with the evaluation
σ s.t. σ(x) = σ(y) = b. Let c be a new constant, and Σ1 = Σ ∪ {c}. Then we get
〈M,Σ〉 ⊲µ,σ 〈M′,Σ1〉, where M′ = {p(f(a)), p(f(b)), q(b), q(c)}. 2

The connection between first-order multiset rewriting systems and first-order LO theories
can be extended to quantified multiset rewriting systems and LO∀ theories, as follows.

Definition 5.18 (Quantified Multiset Rewriting Systems as LO∀ Theories) Let
R be a quantified multiset rewriting system over Σ and V. We define the LO∀ theory
P(R) (over Σ and V), as follows:

P(R) = {∀ (H ◦− ∀x.G) | Ĥ −→ ∀x.Ĝ ∈ R}
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P,D ⊢Σ,c 1
1r

P,D ⊢Σ c p(f(a)), p(f(b)), q(b), q(c)
bc(D)

P,D ⊢Σ p(f(a)), p(b), q(f(b))
bc(1)

Figure 5.3: Reachability as provability in LO∀

A soundness and completeness result holds. Note that, in order to state the following
proposition, we need to consider provability in LO∀ augmented with the rule 1r (see Sec-
tions 3.3.1 and 3.3.2).

Proposition 5.19 (Reachability as Provability in LO∀) Let R be a quantified multi-
set rewriting system over Σ and V, C1 and C2 two configurations such that C1 = 〈M,Σ1〉
and C2 = 〈M′,Σ2〉, and H,G the (possibly empty) ............................................

...........
........
................................ -disjunctions of ground atomic formu-

las such that Ĥ =M′ and Ĝ =M. Then C1 ⊲
∗C2 in R if and only if P(R), H ◦− 1 ⊢Σ1

G.

Example 5.20 Let Σ be the signature of Example 5.17. The LO∀ program P correspond-
ing to the rule given in Example 5.17 consists of the following clause:

1. p(x) ............................................
...........
.......
................................. q(f(y)) ◦− ∀w.(p(f(x)) ............................................

...........
.......
................................. q(y) ............................................

...........
.......
................................. q(w))

Let D be the clause p(f(a)) ............................................
...........
........
................................ p(f(b)) ............................................

...........
........
................................ q(b) ............................................

...........
........
................................ q(c) ◦− 1. The derivation corresponding to

〈M,Σ〉 ⊲µ,σ 〈M′,Σ1〉 (see Example 5.17), with the usual conventions, is shown in Figure
5.3. 2

Finally, the usual notion of reachability set can be extended as follows.

Definition 5.21 (Reachability Set) Let R be a quantified multiset rewriting system
over Σ and V. Given a configuration 〈MI ,Σ〉, called initial configuration, we define the
reachability set of R, denoted Reach(R), as follows: Reach(R) = {〈M,Σ1〉 | 〈MI ,Σ〉 ⊲∗
〈M,Σ1〉}.

—————————————————————————————–

Summary of the Chapter. In this chapter we have presented the theories of mul-
tiset rewriting over first-order atomic formulas and coloured Petri nets, an extension
of the Petri net model in which tokens can carry along values. We have illustrated
the connection between these formalisms and first-order linear logic theories. We
have also formulated the results for an extension of multiset rewriting systems with
universal quantification, and the corresponding fragment LO∀.
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After substantiating our view of linear logic as a formalism for concurrency in Part

I, subject of Part II will now be the definition of a bottom-up semantics for linear

logic programs, which will be used as a tool for model checking of parameterized and

infinite-state systems. First of all, in the next chapter we will explain in detail our

approach to verification and the connection with linear logic semantics.

—————————————————————————————–
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Part II

Model Checking for Linear Logic
Specifications
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Chapter 6

A Backward Approach to Model
Checking

In Part I we have presented the basics of linear logic, specifically the language LO [AP91b]
and some proper extensions, and we have analyzed the mutual relations between linear
logic and different formalisms for the specification of concurrent systems, like Petri nets
and multiset rewriting systems. This chapter is intended to provide the connection between
linear logic and the problem of verification for parameterized concurrent systems, which
is the focal point of this thesis work. Verification can be performed via an algorithmic
procedure which is based on a backward evaluation strategy [ACJT96] and has strong
similarities with symbolic model checking techniques [KMM+97b]. The purpose of this
chapter is to formally motivate this approach and to discuss its applicability.

In the case of ordinary Petri nets, the verification algorithm proposed in [ACJT96] has a
counterpart in the so-called Karp and Miller’s coverability graph computation [KM69]. The
contribution of this thesis will be to extend this view towards richer specification languages,
like LO. In particular, propositional LO contains a subset which can be used to encode
Petri nets, as demonstrated in Section 4.3. Furthermore, in Section 5.3 we have shown that
first-order formulations of LO have a direct connection with high-level extensions of nets,
like coloured Petri nets. In the following chapters, we will discuss a verification procedure
for specifications written in different fragments of linear logic, which we will apply to solve
problems in application domains like concurrency theory or security protocols. We will
also isolate interesting fragments for which termination of the verification procedure is
guaranteed.

This chapter is structured as follows. We first present the problem of verification using a
rather general formulation on transition systems. In particular, we focus on reachability
problems. Then, we describe a backward verification procedure and the class of problems
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this procedure is able to solve. We discuss the requirements which are needed to ensure
effectiveness and a general theory providing sufficient conditions for termination. We clarify
the connection between the verification procedure and bottom-up semantics of linear logic.
Much of the background material for this chapter is a partial and free re-elaboration of
[FS01, AJ01b].

6.1 Transition Systems and Verification

We can formulate the problem of verification for arbitrary transition systems. We need the
following definitions.

Definition 6.1 (Transition System) A transition system is a pair T = 〈S,R〉, where S
is a set of states and R ⊆ S × S is a set of transitions. A transition (s, s′) is usually
noted s −→ s′, and the reflexive and transitive closure of the −→ relation is denoted
−→∗ . If s1 −→∗ s2, we say that there is an execution trace from state s1 to state s2.

A transition system may have additional structure like, e.g., labels on transitions or initial
states. As an example, the operational semantics of Petri nets, multiset rewriting systems
and broadcast protocols (see Chapters 4 and 5) induces a transition system. For instance,
the firing relation of Petri nets is clearly an example of transition relation on markings.

Definition 6.2 (Predecessor and Successor) Given a transition system T = 〈S,R〉,
and W ⊆ S, we define the predecessor and successor operators, respectively, as follows:
Pre(W ) = {s ∈ S | s −→ w, w ∈ W} and Post(W ) = {s ∈ S | w −→ s, w ∈ W}. We
denote the reflexive and transitive closure of Pre and Post by Pre∗ and Post∗.

We now discuss the concept of system verification, with particular emphasis on problems
involving the notion of reachability. Informally, reachability properties can be described as
follows. We are given a set of initial states and a set of final states of a given (transition)
system T , and the problem is to verify whether some final state can be reached with
an execution trace starting from an initial state. Verification of safety properties is a
typical example of problem which falls into this class. Safety problems can be described
in temporal logic [MP95] as follows. Given a property ϕ, verifying whether ϕ holds for
every reachable state amounts to checking whether AGϕ (always globally ϕ) holds. The
previous expression is logically equivalent to ¬EF¬ϕ (not exists finally not ϕ), therefore
the problem is equivalent to verifying whether EFψ holds, where ψ represents the negation
of the safety property under consideration. To exemplify, we may want to verify whether
an undesired state (e.g., in concurrency theory, a state in which a deadlock or a violation
of mutual exclusion occur) is reachable starting from a valid initial configuration.
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Definition 6.3 (Reachability Problem) Let T = 〈S,R〉 be a transition system, and
s1, s2 ∈ S two states. We say that s2 is reachable from s1 if s1 −→∗ s2. Given a set
I ⊆ S of initial states and a set F ⊆ S of final states, the reachability problem consists in
determining if i −→∗ f for some i ∈ I and f ∈ F .

Different approaches can be used to tackle the reachability problem. An approach which
is suitable for automation is to systematically and exhaustively search for all execution
traces from some initial state to some final state. Clearly, the number of execution traces
in general can be infinite, therefore the problem of termination must be addressed. A
distinction can be made depending on the search strategy. Classical examples of strategies
include forward and backward search. Mixed strategies are also possible [Hol88]. In the
forward approach, the search starts from the set of initial states, while in the backward
approach the search starts from the set of final states. This is explained by the following
proposition.

Proposition 6.4 (Forward and Backward Search) Let T = 〈S,R〉 be a transition
system, I ⊆ S a set of initial states and F ⊆ S a set of final states. Then the reach-
ability problem amounts to checking whether Post∗(I) ∩ F 6= ∅ (forward search), or,
equivalently, whether Pre∗(F ) ∩ I 6= ∅ (backward search).

Proof Immediate by definitions. 2

The previous proposition suggests a way to solve the reachability problem. In the case
of forward search, the idea is to compute the Post∗ operator as transitive closure of the
Post operator, starting from the set I. Similarly, backward search works by computing
Pre∗ as transitive closure of Pre, starting from F . At this level, the forward and backward
search strategies are perfectly symmetrical. Let us fix, e.g., a backward search strategy.
Intuitively, the idea is to start from F and generate, in a breadth-first search style, the set
of states from which a state in F can be reached, using an iterative procedure. At the
first step, we compute the set of states from which a state in F can be reached with an
execution trace of length one or zero. In general, at step j we compute the set of states
from which F can be reached with an execution trace of length at most j. If the procedure
converges, i.e., the sets computed at steps j and j + 1 coincide, one checks whether the
intersection with the set of initial states I is empty or not.

This (very abstract) verification procedure is described in Figure 6.1. Clearly, at least
two important issues must be addressed. First, the sets computed at each step in general
are infinite. Therefore, in order for the procedure to work, we need a symbolic way (i.e.,
an assertional language) to represent infinite sets of states, and we need a version of the
Pre operator working on symbolic sets of states. In this way, we will be guaranteed that
the computation of each step of the verification procedure is effective. Second, we need
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Procedure Reachability

input T = (S,R): a transition system
I: a set of initial states; F : a set of final states

output Pre∗(F ) ∩ I = ∅
begin

W := F ; V := ∅
while W 6⊆ V do

if W ∩ I 6= ∅ then return reachable
else V := W

W := W ∪ Pre(W )
endif

endwhile

return unrechable
end

Figure 6.1: An abstract verification procedure for reachability

(sufficient) conditions ensuring termination of the verification procedure. The first issue
will be addressed in Section 6.1.1, where we introduce the notion of structured transition
system, while the problem of termination will be discussed in Section 6.2.

6.1.1 Structured Transition Systems

In order to refine the abstract verification procedure for solving the reachability problem of
Figure 6.1, in this section we discuss transition systems which satisfy additional hypotheses.
In particular, we consider transition systems with additional structure, namely an ordering
relation, on the set of states. We have the following definition.

Definition 6.5 (Structured Transition System) A structured transition system is a
tuple T = 〈S,R,6〉, where 〈S,R〉 is a transition system and 6 is a quasi-order on S.

We remind that a quasi-order is a reflexive and transitive binary relation.

Example 6.6 A multiset rewriting system (see Section 4.1) clearly induces a transition
system in which states are multisets over a set S. It also induces a structured transition
system where the quasi-order is given by the sub-multiset relation 4. Thanks to the results
of Section 4.3, Petri nets are equivalent to multiset rewriting systems and therefore can be
seen in turn as structured transition systems. 2
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Figure 6.2: Illustrating the covering problem: a Petri net for mutual exclusion

Now, an interesting instance of the reachability problem of Section 6.1 is the following,
which goes under the name of covering problem, and consists in determining if starting
from a state s it is possible to cover t, i.e., to reach a state t′ such that t 6 t′.

Definition 6.7 (Covering Problem) Let T = 〈S,R,6〉 be a structured transition sys-
tem. Given a set I ⊆ S of initial states and a set F ⊆ S of final states, the covering
problem consists in determining if there exist i ∈ I, f ∈ F , and f ′ ∈ S, such that i −→∗ f ′

and f 6 f ′.

The covering problem is sometimes referred to as control-state reachability problem [FS01].
The covering problem is particularly meaningful because many safety problems in concur-
rency theory, e.g. mutual exclusion, can be described in this way.

Example 6.8 Let us consider the Petri net in Figure 6.2, representing a monitor for a
parameterized system with two mutually exclusive critical sections, cs1 and cs2. The Petri
net is parametric in the number of processes. Initially, we have K processes in place
waiting, one token in lock1 and one token in lock2. In other words, the initial marking,
drawn in Figure 6.2, is MI = K · {waiting} + {lock1, lock2}. A process wishing to enter
cs1 (transition Enter1) must test for the presence of processes in cs2 using lock2, and locks
cs1 using lock1. Transition Enter2 is specular. Processes leave the critical section using
transitions Leave1 and Leave2. Mutual exclusion requires that at most one process can be
executing inside either critical section at the same time, and that the two critical sections
are mutually exclusive. Accordingly, a marking violating mutual exclusion has the form
{cs1, cs1} +M, {cs1, cs2} +M, or {cs2, cs2} +M, where M is any marking. In other
words, a configuration is unsafe if there are at least two processes accessing one of the two
critical sections at the same time. Therefore, mutual exclusion is violated if there exists
a valid initial state from which it is possible to cover a state having the form {cs1, cs1},
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{cs1, cs2}, or {cs2, cs2}. Verifying the problem of mutual exclusion amounts to solving a
covering problem in which the set of initial states are the legal initial states of the system
under consideration, whereas the set of final states are the configurations representing, so
to say, the minimality violations of the property of mutual exclusion, i.e., the unsafe states.

2

As the notion of rewriting in transition systems is symmetrical, in principle it would be
possible to reverse the role of initial and final states in Definition 6.7. However, as the
previous example suggests, the formulation of the covering problem given in Definition 6.7
is quite natural. In fact, if we think about final states as the set of unsafe states of a given
system, Example 6.8 suggests that any state covering an unsafe one is still unsafe. This
is not true, generally speaking, for the set of initial states of a system. For instance, the
configuration MI + {cs1, cs1} in Example 6.8 is not a legal initial state, even though it
coversMI , which is indeed a legal initial state. In other words, we can say that the set of
final (unsafe) states is upward-closed (meaning that s unsafe and s 6 s′ implies s′ unsafe)
while the set of initial states is not upward-closed.

We can now give a justification of our choice of a backward search strategy with respect
to a forward one. In fact, according to Proposition 6.4, using a backward search strategy
amounts to an iterative computation of the set of reachable states, starting from the set of
final states. The idea is to exploit the upward-closure property of the set of unsafe states,
find a suitable symbolic representation and use them as the set of final states of Definition
6.7. For instance, Example 6.8 suggests that multisets of the form {cs1, cs1} can be used
to symbolically represent the infinite set of states given by {cs1, cs1}+M. The resulting
computation is completely independent of the set of initial states. We remark that the
property of upward-closure is also crucial for reasoning about parametric systems, i.e.,
systems in which the number of components (e.g. the number K of processes in Example
6.8) is not fixed a priori. Verification of parametric systems is one of the goals of the
present thesis work.

In the following we will try to make the above intuitions more formal. We first give the
following definitions.

Definition 6.9 (Upward-closure) Let 6 be a quasi-order on S. Then a set W ⊆ S is
said to be upward-closed if w ∈ W and w 6 w′ implies w′ ∈ W . Given w ∈ S, we define
the upward-closure of w, written w⇑, as the set {s ∈ S | w 6 s}. Similarly, for a subset
W ∈ S we define W ⇑ = {s ∈ S | w 6 s, w ∈ W}. An upward closed set is also called an
ideal, and W ⇑ is called the ideal generated by W .

From the previous definition, it follows that a set W ⊆ S is upward-closed if and only if
W = W ⇑.
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Definition 6.10 (Basis) Let 6 be a quasi-order on S, and W ⊆ S. A basis for W is a

set W such that W = W
⇑
.

The notions of upward-closed set and basis are the main ingredients of the symbolic version
of the verification procedure for reachability we aim at. In particular, we are interested
in finite bases. A finite basis W can in fact be used as a symbolic representation for the

(generally infinite) set of states W
⇑
. Now, let us make the assumption that the set of

states from which the computation begins (i.e., the set of final states F of Definition 6.7) is
upward-closed, and that we can find a finite basis for it. In order for the symbolic algorithm
to work, we need to ensure that the sets computed at every iteration of the algorithm in
Figure 6.1 are still upward-closed, and therefore they are in turn representable by means of
finite bases. For this purpose, we introduce the following notion of compatibility between
the transition relation and the quasi-order relation of a structured transition system.

Definition 6.11 (Upward Compatibility) Let T = 〈S,R,6〉 be a structured transition
system. We say that 6 is (upward) compatible with −→ if for all s1, s2, t1 ∈ S, if s1 6 t1
and s1 −→ s2, there exists t2 ∈ S such that t1 −→ t2 and s2 6 t2.

The above notion is usually called strict upward compatibility. The definition could be
weakened by requiring that t1 −→∗ t2 instead of t1 −→ t2, as done in [FS01]. The following
result (see [FS01] for the proof) holds.

Proposition 6.12 Let T = 〈S,R,6〉 be a structured transition system with upward com-
patibility, and W ⊆ S. If W is upward-closed, then Pre(W ) is upward-closed.

We need one more assumption to ensure effectiveness of the Pre∗ computation, namely
the effective pred-basis property.

Definition 6.13 (Effective Pred-Basis) Let T = 〈S,R,6〉 be a structured transition
system with upward compatibility. We say that T has an effective pred-basis if there exists
an algorithm accepting any state s ∈ S and computing a finite basis of Pre(s⇑), denoted
pb(s). We extend this notation to a set of states W ⊆ S as follows: pb(W ) =

⋃
w∈W pb(w).

We have the following proposition, whose proof can be found in [FS01].

Proposition 6.14 ([FS01]) Let T = 〈S,R,6〉 be a structured transition system with
upward compatibility and the effective pred-basis property, and F ⊆ S. Given a finite basis
F b for F , define a sequence K0, K1, . . . of sets as follows: K0 = F b and Kn+1 = Kn∪pb(Kn)

for n ∈ N. Then (
⋃∞
i=0Ki)

⇑
= Pre∗(F ).
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Procedure Covering

input T = (S,R,6): a transition system
I: a set of initial states
F : a finite basis for the set of final states

output Pre∗(F ) ∩ I = ∅
begin

W := F ; V := ∅
while W 6= ∅ do

choose w ∈W ; W := W \{w}
if w⇑ ∩ I 6= ∅ then return reachable

else if 6 ∃w′ ∈ V : w⇑ ⊆ w′⇑ then

V := V ∪ {w}
W := W ∪ pb(w)

endif

endwhile

return unreachable
end

Figure 6.3: A verification procedure for covering

We are now ready to describe a refined version of the reachability algorithm for the covering
problem, based on Proposition 6.14, which is shown in Figure 6.3. Under the hypotheses
of upward compatibility and effective pred-basis property, this algorithm is effective, in the
sense that any iteration of the while loop can be computed effectively. For the sake of
precision, we need some assumptions more. Namely, we assume that 6 is decidable, the
test w⇑∩ I 6= ∅ and the test w⇑ ⊆ w′⇑ (insertion test) are computable for any states w, w′.
Termination in general is not guaranteed (the algorithm could loop forever). In Section
6.2 we will discuss sufficient conditions ensuring termination.

6.1.2 Symbolic Verification

In Section 6.1.1 we have discussed the theoretical foundation of our approach for verification
of parameterized systems. Its effectiveness relies on structured transition systems (i.e.,
endowed with a notion of upward-closed set), and on the ability to compute finite bases of
sets of predecessors of any upward-closed set. We will see some instances of this general
scheme in chapters 7 through 10. The approach taken there slightly differs from the general
scheme presented in this chapter. We summarize below some points which should help the
reader to better understand the connection.

• A verification problem, formalized as a covering problem for a given structured tran-
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sition system T = 〈S,R,6〉 (with upward compatibility), is given;

• verification is performed by choosing a suitable symbolic notation for (upward-closed)
infinite sets of states (a constraint system in the terminology of [AJ01b]). The sym-
bolic notation exploits the upward-closure property of the sets to represent, but, as
a difference with Section 6.1.1, symbolic elements need not be elements of S. The
connection is provided by a denotation operator, usually noted [[·]], which maps a set
of symbolic elements to the corresponding (upward-closed) set in S;

• the finite pred-basis operator (denoted pb(·) in Figure 6.3) is implemented through
a symbolic version of the predecessor operator, let it be Pre, which takes as input
the symbolic representation of a set V and computes the symbolic representation of
the set Pre(V ). The following property must hold for the symbolic operator to be
correct: [[Pre(W )]] = Pre([[W ]]);

• the insertion test of Figure 6.3 now becomes [[w]] ⊆ [[w′]]. It is implemented through a
subsumption operator, usually noted ⊑, such that w ⊑ w′ implies [[w]] ⊆ [[w′]] 1. The
operator is typically extended to sets of symbolic elements as follows (i.e., pointwise):
W ⊑W ′ iff for every w ∈W there exists w′ ∈W ′ s.t. w ⊑ w′.

We conclude this section by discussing two different techniques that can sometimes be use-
ful either to enforce termination or to accelerate convergence of the verification procedure
of Figure 6.3. In Appendix A we discuss further how these techniques can be integrated
into an automatic verification tool.

6.1.2.1 Invariant Strengthening

Suppose we have to solve a reachability problem, I and F being the sets of initial and final
states, respectively, of a given transition system, and let us call the problem unsatisfiable
in case it is not possible to find an execution trace from a state in I to a state in F . Now,
the idea of invariant strengthening is to transform the original problem by considering a
larger set of final states F ′. This technique is perfectly sound, as stated in the following
proposition.

Proposition 6.15 Let T = 〈S,R〉 be a transition system and I, F, F ′ ⊆ S. If the reacha-
bility problem for I and F ′ is unsatisfiable and F ⊆ F ′, then the reachability problem for I
and F is unsatisfiable.

Proof Immediate by definition. 2

1Note that our ⊑ operator corresponds to the ⊒ operator of [AJ01b]. Here and in the following chapters
we prefer to follow the classical logic programming convention
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In general, the reverse implication in the above theorem does not hold, i.e., finding an
execution trace from I to F ′ does not guarantee that an execution trace from I to F exists.
Using a parallel with temporal logic specifications, a property AGϕ can be transformed,
by invariant strengthening, into a property AG(ϕ ∧ ψ). Intuitively, the formula ψ should
represent an invariant which is known to hold in all reachable states. Otherwise said, the
expression ¬EF¬ϕ can be transformed into ¬EF (¬ϕ ∨ ¬ψ), i.e., we can enlarge the set
of final (unsafe) states with a formula ¬ψ which does not hold in any reachable state. We
can refine the above proposition as follows.

Proposition 6.16 Let T = 〈S,R〉 be a transition system and I, F, F ′ ⊆ S. Suppose
F ⊆ F ′ and Post∗(I) ∩ (F ′ \F ) = ∅. Then the reachability problem for I and F ′ is
unsatisfiable if and only if the reachability problem for I and F is unsatisfiable.

Proof By definitions. 2

We conclude this section by illustrating another technique which is similar to invariant
strengthening. The idea is to dynamically enlarge the search space of the algorithm for
backward verification. Suppose we have an abstraction α mapping sets of states into sets
of states, and such that W ⊆ α(W ) for every set of states W . Then, at every iteration
we can substitute α(Pre(W )) for Pre(W ). Intuitively, this technique is perfectly sound
for the same reasons invariant strengthening is. We will use this strategy in Chapter 9
for validating specifications written in LO enriched with constraints. In that case, the ab-
straction α works by relaxing constraints. Let us define the following modified predecessor
operator.

Definition 6.17 Let T = 〈S,R〉 be a transition system, and I, F ⊆ S. Consider the
reachability problem for I and F , and a function α : P(S) → P(S). Then we define the
operator Preα as follows: Preα(W ) = α(Pre(W )) for every W ⊆ S.

Correctness of the abstraction technique is stated in the following proposition.

Proposition 6.18 Let T = 〈S,R〉 be a transition system, and I, F ⊆ S. Consider the
reachability problem for I and F , and a function α : P(S) → P(S) such that W ⊆ α(W )
for every W ⊆ S. If Pre∗α(F ) ∩ I = ∅, then Pre∗(F ) ∩ I = ∅.

Proof By definitions. 2
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6.1.2.2 Pruning

The technique of pruning is, so to say, complementary with respect to the methodology of
dynamic abstraction illustrated above. The idea is to dynamically cut the search space of
the algorithm for backward verification. Suppose we have computed an over-approximation
H of the reachability set. At every iteration, we can intersect the set of reachable states
computed so far with the set H . Intuitively, states not in H are not reachable from
the set of initial states, therefore computing their set of predecessors is completely useless.
Consequently, states not inH can always be discarded. Let us define the following modified
predecessor operator.

Definition 6.19 Let T = 〈S,R〉 be a transition system, and I, F,H ⊆ S. Consider the
reachability problem for I and F , and suppose Post∗(I) ⊆ H. Then we define the operator
PreH as follows: PreH(W ) = Pre(W ) ∩H for every W ⊆ S.

Correctness of the pruning technique is stated in the following proposition.

Proposition 6.20 Let T = 〈S,R〉 be a transition system, and I, F,H ⊆ S. Consider the
reachability problem for I and F , and suppose Post∗(I) ⊆ H. Then Pre∗(F ) ∩ I = ∅ if
and only if Pre∗H(F ) ∩ I = ∅.

Proof By definitions. 2

6.2 Ensuring Termination

In this section we discuss some sufficient conditions which ensure termination of the verifi-
cation procedure of Figure 6.3. In particular, the theoretical foundation is provided by the
theory of well- and better-quasi-orderings [Mil85], presented in Section 6.2.1, which gives
rise to the notion of well-structured transition system [FS01], presented in Section 6.2.2.

6.2.1 The Theory of Well-Quasi-Orderings

In the following we summarize some basic definitions and results on the theory of well- and
better-quasi-orderings (see for instance [Hig52, Mil85, AN00]).

We remind that a quasi-order 6 on a set A is a binary relation over A which is reflexive
and transitive. In the following it will be denoted (A,6).
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Definition 6.21 (Well-Quasi-Ordering) A quasi-order (A,6) is a well-quasi-ordering
(wqo) if for each infinite sequence a0 a1 a2 . . . of elements in A there exist indices i < j
such that ai 6 aj.

Examples of wqos are the identity relation on a finite set or the 6 relation on natural
numbers (but not on integers).

The following propositions state the key results involving wqos and upward-closed sets.

Proposition 6.22 ([Hig52]) Let (A,6) be a wqo, and X ⊆ A. If X is upward-closed,
then it has a finite basis.

Proposition 6.23 Let (A,6) be a wqo. Then every infinite sequence I0 ⊆ I1 ⊆ I2 ⊆ . . .
of upward-closed sets, with Ii ⊆ A for every i ∈ N, eventually stabilizes, i.e., there exists
k ∈ N such that Ik = Ik+1 = Ik+2 = . . ..

The notion of better-quasi-ordering (bqo) implies that of wqo, i.e., any bqo is a wqo.
For the sake of simplicity, we will not present the formal definition of bqo, which can be
found in [Mil85]. According to the following proposition, an entire hierarchy of bqos (and
therefore of wqos) can be built starting from known ones.

In what follows, let n̂ denote the set {1, . . . , n}, for n ∈ N. A multiset over A can be

represented as a mapping w : |̂w| → A, where |w| is its cardinality. Similarly, a string over

A can be represented as a mapping w : |̂w| → A, where |w| is its length.

Proposition 6.24 (Properties of Better-Quasi-Orderings)

i. Each bqo is a wqo;

ii. If A is a finite set, then (A,=) is a bqo;

iii. let (A,6) be a bqo, and let MS(A) denote the set of finite multisets over A. Then,
(MS(A),6B) is a bqo, where 6B is the quasi-order on MS(A) defined as follows:

w 6B w′ iff there exists an injection h : |̂w| → |̂w′| such that w(j) 6 w′(h(j)) for
1 6 j 6 |w|;

iv. let (A,6) be a bqo, and let A∗ denote the set of finite strings over A. Then, (A∗,6∗)
is a bqo, where 6∗ is the quasi-order on A∗ defined in the following way: w 6∗ w′

iff there exists a strictly monotone (meaning that j1 < j2 iff h(j1) < h(j2)) injection

h : |̂w| → |̂w′| such that w(j) 6 w′(h(j)) for 1 6 j 6 |w|;
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v. let (A,6) be a bqo. Then, (P(A),⊒) is a bqo, where P(A) is the power set of A and
⊒ is the pointwise ordering defined as follows: given X, Y ⊆ A, X ⊒ Y iff for every
y ∈ Y there exists x ∈ X s.t. x 6 y 2.

The reader can verify that the ordering 6B of property iii coincides with the sub-multiset
relation 4 (see Definition 2.1) when 6 is interpreted as equality on a finite set A, so that
for instance (MS(A),4) is a wqo. This result goes under the name of Dickson’s Lemma:

Proposition 6.25 (Dickson’s Lemma [Dic13]) Let A1,A2, . . . be an infinite sequence
of multisets over the finite set A. Then there exist two indices i and j such that i < j and
Ai 4 Aj.

We note that properties ii, iii, and iv of Proposition 6.24 also hold for wqos. On the
contrary, property v is the distinguished feature of bqos w.r.t. wqos, i.e., in general (A,6)
being a wqo does not imply that (P(A),⊒) is a wqo (see Rado’s counterexample in [AN00]).
The proof of property v can be found in [Mar99].

Remark 6.26 Consider a wqo (A,6) and the following ordering ⊒s on P(A): given
X, Y ⊆ A, X ⊒s Y iff for every x ∈ X there exists y ∈ Y s.t. x 6 y. Then (P(A),⊒s)
is a wqo. This conclusion follows by property iii of Proposition 6.24 (which can be re-
formulated for sets instead of multisets) and by observing that the existence of an injection
between X, Y ⊆ A, satisfying the hypotheses of property iii, implies X ⊒s Y . We remark,
however, that (P(A),⊒s) being a wqo does not imply that (P(A),⊒) (defined in property
v of Proposition 6.24) is a wqo: the ordering relations ⊒s and ⊒ are not comparable, as
the reader can verify.

6.2.2 Well-Structured Transition Systems

Building on the concept of well-quasi-ordering of Section 6.2.1, we can now extend the
definition of structured transition system as follows.

Definition 6.27 (Well-Structured Transition System [FS01]) A well-structured
transition system is a structured transition system T = 〈S,R,6〉 with upward compatibility,
and such that (S,6) is a well-quasi-ordering.

We have the following result.

2See note on page 74
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reachability problems linear logic semantics

transition system proof system

state sequent

transition rule instance

final state

{
single
upward-closed

axiom

{
with 1
with ⊤

reachability provability

Pre operator TP operator

Pre∗ operator lfp(TP )

Table 6.1: A parallel between reachability problems and linear logic semantics

Proposition 6.28 ([FS01]) Let T = 〈S,R,6〉 be a well-structured transition system with
the effective pred-basis property and decidable 6. Then it is possible to compute a finite
basis of Pre∗(F ) for any upward-closed set F ⊆ S given via a finite basis. It follows that
the covering problem is decidable for T .

The proof of the previous proposition, which can be found in [FS01], is carried out by
showing that the sequence K0, K1, . . . of Proposition 6.14 stabilizes for a given m ∈ N,
thanks to the well-quasi-ordering property of 6.

Proposition 6.28 and the theory of well-quasi-orderings of Section 6.2.1 therefore provide
sufficient conditions for the termination of the algorithm for the covering problem presented
in Figure 6.3. We will see some applications in the following chapters. For instance,
termination of the bottom-up evaluation procedure for propositional LO, presented in
Chapter 7, is a consequence of Dickson’s lemma 6.25.

6.3 Verification in Linear Logic

In this section we will explain, very informally, the connection between the reachability
and covering problems presented in this chapter and provability in linear logic. This should
help the reader to better understand the following chapters.

We present in Table 6.1 a succinct and suggestive view of this connection. The main idea
underlying the connection is that a proof system, like the sequent systems presented in
Chapter 3, can be seen as a transition system. In this view, reachability between con-
figurations amounts to provability of a given goal from a given axiom. Axioms represent
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final states, and the set of logical consequences of the axioms correspond to the backward
reachability set, i.e., the set of states which are backward reachable from the set of final
states. Computing the closure Pre∗ of the predecessor operator, starting from the set of
final states, corresponds to evaluating the bottom-up semantics of a linear logic program.
Evaluation of the bottom-up semantics is carried out starting from the axioms and itera-
tively accumulating provable goals, exactly like computation of Pre∗ starts from the set of
final (unsafe) states and accumulates reachable states. A single state can be represented
by an LO1 axiom like H ◦− 1 (see Section 3.3.1), whereas the notion of upward-closed set
of states has a counterpart in LO axioms of the form H ◦−⊤ (see Section 3.2). In fact, we
remind that in LO (without 1) provable goals are upward-closed, according to Proposition
3.9 (admissibility of the weakening rule). The counterpart of the Pre operator is a classical
TP -like fixpoint operator for logic programs [Llo87].

6.4 Related Work

In this section we briefly discuss some related work. As mentioned at the beginning of this
chapter, part of the material presented here is freely taken from [FS01, AJ01b].

In [FS01], Finkel and Schnoebelen build upon previous works like [Fin87, ACJT96] and
present a general theory for well-structured transition systems. They discuss a number of
verification problems, among which the covering problem we have presented in this chapter,
the inevitability problem and the boundedness problem. They divide resolution methods
into set-saturation methods (like the one for the covering problem presented here) and tree-
saturation methods, and they discuss related conditions for decidability and effectiveness.
Finally, they show examples of well-structured transition systems from the fields of Petri
nets, rewriting systems, process algebras, and finite state machines. In [AJ01b], Abdulla
and Jonsson discuss strategies for solving the covering problem, which can be seen as an
instance of the general scheme of [FS01]. They use the theory of well-quasi-orderings and
show how to build an hierarchy of wqos. They focus on symbolic verification methods and
show examples of different constraint systems.

The general framework of [FS01, AJ01b] has been applied to solving a number of problems
for infinite-state systems. Among them, networks of timed processes [AJ98, AN01], broad-
cast protocols [EFM99, DEP99], cache coherence protocols [Del00], and protocols using
communication over unbounded channels [AJ01a]. A discussion on the use of better-quasi-
orderings and their advantage over well-quasi-orderings for verification of infinite-state
systems can be found in [AN00].

—————————————————————————————–

Summary of the Chapter. In this chapter we have discussed the theoretical
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foundation of a symbolic verification algorithm which can be considered the core of
the present thesis work. The algorithm implements a backward-style model checking
verification procedure for solving reachability problems in transition systems and it
is particularly suitable to solve the so-called covering problem. We have explained
why backward reachability is more convenient than forward reachability.

Following the general scheme presented in this chapter, in the following chapters we

will discuss bottom-up semantics for different fragments of linear logic programs. In

particular, in chapters 7 through 9 we will discuss bottom-up evaluation for proposi-

tional LO program, with or without the constant 1, first-order LO programs, and LO

programs with constraints. For propositional LO programs, we will be able to prove

termination using the well-quasi-ordering theory discussed in this chapter. We will

exemplify the backward-style approach solving different problems taken, e.g., from

concurrency theory or security protocols.

—————————————————————————————–
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Chapter 7

Bottom-Up Evaluation of
Propositional LO Programs

The proof-theoretical semantics of LO we have seen in Chapter 3 corresponds to the top-
down operational semantics based on resolution for traditional logic programming lan-
guages like Prolog. We are now interested in finding a suitable definition of bottom-up
semantics that can be used as an alternative operational semantics for LO. More precisely,
given an LO program P we would like to define a procedure to compute all goal formulas G
such that G is provable from P . This procedure should enjoy the usual properties of classi-
cal bottom-up semantics, in particular its definition should be based on an effective fixpoint
operator (i.e., at least every single step must be finitely computable), and it should be goal-
independent. As usual in Logic Programming, goal independence is achieved by searching
for proofs starting from the axioms (the unit clauses of Section 3.2) and accumulating goals
which can be proved by applying program clauses to the current interpretation.

In this chapter we fist deal with a propositional formulation of LO comprising the logical
connectives ............................................

...........
.......
................................. , −◦, & and ⊤. As proved in Section 4.3, there is a natural translation of

Petri nets into this logical fragment. In particular, a Petri net transition corresponds to
an LO clause, and firing of a transition corresponds to backchaining over a given clause.
In this view, the bottom-up semantics for propositional LO which we will discuss in this
chapter gives us an algorithmic procedure to compute the (backward) reachability set of
a given Petri net (it can be seen as an alternative to the Karp and Miller’s coverability
graph construction [KM69]). Now, as explained in Chapter 6 (see in particular Section
6.3), the connection with the problem of verification is as follows. If we look at the set of
axioms of a given LO program P as specifying the set of unsafe (final) configurations of
a given system (e.g. markings in the case of Petri nets), then computing the bottom-up
semantics of an LO program amounts to computing the (backward) reachability set of the
system. In this view, the immediate consequence operator (see Section 2.5) for LO programs
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which we will define in this chapter, is the counterpart of the predecessor operator for the
given transition system. Thanks to Proposition 3.9, LO axioms can be seen as specifying
upward-closed sets of configurations, therefore evaluating the bottom-up semantics for an
LO program gives us an algorithm to solve the so-called covering problem (see Definition
6.7). Proposition 3.9 is crucial to prove that the algorithm for bottom-up evaluation of
LO programs is terminating. This result will follow from an argument (Dickson’s Lemma)
which is based on the general theory of well-quasi-orderings discussed in Section 6.2.1.
We will prove soundness and completeness results of the resulting semantics from scratch,
without relying on Chapter 6. We will exemplify the connection between provability and
verification, informally explained above, with the examples of Section 7.3.

Technically, the definition of the bottom-up semantics for LO will proceed as follows. The
semantics is based on the definition of an extended notion of interpretation comprising
multisets of atoms, and of a fixpoint operator which turns out to be monotonic and con-
tinuous over the complete lattice corresponding to the interpretation domain. Following
the semantic framework of (constraint) logic programming [GDL95, JM94], we formulate
the bottom-up evaluation procedure in two steps. More precisely, we first present a simple,
non-effective notion of (concrete) interpretations and the corresponding definition of fix-
point operator, which we call TP . Thanks to Proposition 3.9, already in the propositional
case there are infinitely many provable multisets of atomic formulas. To circumvent this
problem, we present an extended notion of (abstract) interpretations, ordered according
to the multiset inclusion relation of their elements, and we define a symbolic and effective
version of the fixpoint operator, which we call SP . The purpose of this double definition is
to ease the proof of soundness and completeness. Namely, this latter proof is carried out
by proving that the fixpoint of the TP operator is equivalent to the operational semantics
and that SP is a symbolic version of TP . Dickson’s Lemma [Dic13] ensures the termination
of the fixpoint computation based on SP for propositional LO programs.

This chapter is based on [BDM00, BDM02].

7.1 A Bottom-Up Semantics for LO

Some notations. In the following we will extensively use operations on multisets. We
assume as given a fixed signature Σ comprising a finite set of propositional symbols. Multi-
sets over Σ will be hereafter called facts, and noted A, B, C, . . .. A multiset with (possibly
duplicated) elements a1, . . . , an ∈ Σ will be simply indicated as {a1, . . . , an}, overloading
the usual notation for sets. We will use ∆,Θ, . . . to denote contexts, i.e., multisets of (possi-
bly compound) goal formulas (a fact is a context in which every formula is atomic). Given
two multisets ∆ and Θ, ∆ 4 Θ indicates multiset inclusion, ∆ + Θ (or ∆,Θ if there is no
ambiguity) multiset union, and ∆, {G} is written simply ∆, G. Finally, we remind that,
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P ⊢ ⊤,∆
⊤r

P ⊢ G1, G2,∆

P ⊢ G1
............................................
...........
.......
................................. G2,∆

............................................
...........
........
................................
r

P ⊢ G1,∆ P ⊢ G2,∆

P ⊢ G1 &G2,∆
& r

P ⊢ ∆

P ⊢ ⊥,∆
⊥r

P ⊢ G,A

P ⊢ Ĥ,A
bc (H ◦−G ∈ P )

Figure 7.1: A proof system for propositional LO

given a linear disjunction of atomic formulas H = a1
............................................
...........
.......
................................. . . . .

...........................................
...........
.......
................................. an, the notation Ĥ stands for

the multiset a1, . . . , an (by convention, ⊥̂ = ǫ).

Before proceeding with the definition of the bottom-up semantics, we define formally the
operational top-down semantics of LO programs. For the convenience of the reader, a proof
system for propositional LO, corresponding to the proof system presented in Figure 3.2, is
recalled in Figure 7.1.

Definition 7.1 (Operational Semantics) Given a propositional LO program P , its op-
erational semantics, denoted O(P ), is given by

O(P ) = {A | A is a fact and P ⊢ A}.

Note that, according to [And92], the information on provable facts from a given program
P is all we need to decide whether a general goal (with possible nesting of connectives) is
provable from P or not. In fact, provability of a compound goal can always be reduced to
provability of a finite set of atomic multisets.

We will now discuss the bottom-up semantics. We give the following definitions.

Definition 7.2 (Herbrand Base BP) Given a propositional LO program P defined over
Σ, the Herbrand base of P , denoted BP , is given by

BP =MS(Σ) = {A | A is a multiset (fact) over Σ}.

Definition 7.3 (Herbrand Interpretations) We say that I ⊆ BP is a Herbrand in-
terpretation. Herbrand interpretations form a complete lattice 〈D,⊆〉 with respect to set
inclusion, where D = P(BP ).

Before introducing the formal definition of the ground bottom-up semantics, we need to
define a notion of satisfiability of a context ∆ in a given interpretation I. For this purpose,
we introduce the judgment I |= ∆ ◮A, where I is an interpretation, ∆ is a context and A is

84



an output fact. The need for this judgment, with respect to the familiar logic programming
setting [GDL95], is motivated by the arbitrary nesting of connectives in LO clause bodies,
which is not allowed in traditional presentations of (constraint) logic programs. In I |=
∆ ◮A, A should be read as an output fact such that A + ∆ is valid in I. This notion
of satisfiability is modeled according to the right-introduction rules of the connectives. In
other words, the computation performed by the satisfiability judgment corresponds to top-
down steps inside our bottom-up semantics. The notion of output fact A will simplify the
presentation of the algorithmic version of the judgment which we will present in Section
7.2.

Definition 7.4 (Satisfiability Judgment) Let P be a propositional LO program and I
an interpretation. The satisfiability judgment |= is defined as follows:

I |= ⊤,∆ ◮A′ for any fact A′;

I |= A ◮A′ if A+A′ ∈ I;
I |= G1 &G2,∆ ◮A if I |= G1,∆ ◮A and I |= G2,∆ ◮A;

I |= G1
............................................
...........
........
................................ G2,∆ ◮A if I |= G1, G2,∆ ◮A;

I |= ⊥,∆ ◮A if I |= ∆ ◮A.

The satisfiability judgment |= satisfies the following properties.

Lemma 7.5 For every interpretation I, context ∆ and fact A,

I |= ∆ ◮A iff I |= ∆,A ◮ ǫ.

Proof By simple induction on |= definition. 2

Lemma 7.6 For any interpretations I1, I2, . . ., context ∆, and fact A,

i. if I1 ⊆ I2 and I1 |= ∆ ◮A then I2 |= ∆ ◮A;

ii. if I1 ⊆ I2 ⊆ . . . and
⋃∞
i=1 Ii |= ∆ ◮A then there exists k ∈ N s.t. Ik |= ∆ ◮A.

Proof The proof of i is by simple induction on |= definition. The proof of ii is by induction
on the derivation of

⋃∞
i=1 Ii |= ∆ ◮A.

- If ∆ = ⊤,∆′, obvious;
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- if ∆ is a fact, then
⋃∞
i=1 Ii |= ∆ ◮A means ∆ + A ∈ ⋃∞

i=1 Ii, which in turn implies
that there exists k such that ∆ +A ∈ Ik, therefore Ik |= ∆ ◮A;

- if ∆ = G1 &G2,∆
′, then by inductive hypothesis there exist k1 and k2 s.t. Ik1 |=

G1,∆
′

◮A and Ik2 |= G2,∆
′

◮A. By taking k = max{k1, k2}, by i we have that
Ik |= G1,∆

′
◮A and Ik |= G2,∆

′
◮A, therefore Ik |= G1 &G2,∆

′
◮A, i.e., Ik |= ∆ ◮A

as required;

- if ∆ = G1
............................................
...........
........
................................ G2,∆

′ or ∆ = ⊥,∆′, the conclusion follows by a straightforward appli-
cation of the inductive hypothesis.

2

We now come to the definition of the fixpoint operator TP .

Definition 7.7 (Fixpoint Operator TP ) Given a propositional LO program P and an
interpretation I, the fixpoint operator TP is defined as follows:

TP (I) = {Ĥ +A | H ◦−G ∈ P, I |= G ◮A}.

The following property holds.

Proposition 7.8 (Monotonicity and Continuity) For every propositional LO pro-
gram P , the fixpoint operator TP is monotonic and continuous over the lattice 〈D,⊆〉.

Proof Monotonicity. Immediate from TP definition and Lemma 7.6 i.
Continuity. We prove that TP is finitary. Namely, given a chain of interpretations I1 ⊆
I2 ⊆ . . ., TP is finitary if TP (

⋃∞
i=1 Ii) ⊆

⋃∞
i=1 TP (Ii). Let A ∈ TP (

⋃∞
i=1 Ii). By TP definition,

there exist a clause H ◦− G ∈ P and a fact B s.t. A = Ĥ + B and
⋃∞
i=1 Ii |= G ◮B. By

Lemma 7.6 ii, we have that there exists k ∈ N s.t. Ik |= G ◮B. Again by TP definition, we

get A = Ĥ + B ∈ TP (Ik) ⊆
⋃∞
i=1 TP (Ii). 2

Monotonicity and continuity of the TP operator imply, by Tarski’s Theorem, that lfp(TP ) =
TP↑ω. By analogy with fixpoint semantics for Horn clauses [Llo87], the fixpoint semantics
of a propositional LO program P is then defined as follows.

Definition 7.9 (Fixpoint Semantics) Given a propositional LO program P , its fixpoint
semantics, denoted F (P ), is defined as follows:

F (P ) = lfp(TP ) = TP↑ω .
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Intuitively, TP (I) is the set of immediate logical consequences of the program P and of the

facts in I. In fact, if we define PI as the program {A ◦− ⊤ | Â ∈ I}, the definition of TP
can be viewed as the following instance of the cut rule of linear logic (see Section 3.1):

⊢ P⊥, PI
⊥ : H,G⊥ ⊢ P⊥, PI

⊥ : G,A
⊢ P⊥, PI

⊥ : H,A
cut

which is equivalent to

⊢ (P, PI)
⊥ : H ◦−G ⊢ (P, PI)

⊥ : G,A

⊢ (P, PI)
⊥ : H,A

cut

Note that, since H ◦− G ∈ P , the sequent ⊢ (P, PI)
⊥ : H ◦−G is always provable in

linear logic. According to this view, F (P ) characterizes the set of logical consequences of
a program P .

We conclude this section by proving the following fundamental result, which states that
the fixpoint semantics is sound and complete with respect to the operational semantics.

Theorem 7.10 (Soundness and Completeness) For every propositional LO program
P , F (P ) = O(P ).

Proof F (P ) ⊆ O(P ). We prove that for every k ∈ N and context ∆, if TP↑k |= ∆ ◮ ǫ
then P ⊢ ∆. The proof is by lexicographic induction on (k, h), where h is the length of
the derivation of TP↑k |= ∆ ◮ ǫ.

- If ∆ = ⊤,∆′, obvious;

- if ∆ is a fact, then ∆ ∈ TP↑k, so that TP↑k 6= ∅ and k > 0. By definition of TP we have
that there exists a fact A and a clause H ◦− G ∈ P , such that TP↑k−1 |= G ◮A and

∆ = Ĥ,A. By Lemma 7.5 we have that TP↑k−1 |= G,A ◮ ǫ, and then, by inductive

hypothesis, P ⊢ G,A, therefore by LO bc rule, P ⊢ Ĥ,A, i.e., P ⊢ ∆;

- if ∆ = G1 &G2,∆
′ then by inductive hypothesis P ⊢ G1,∆

′ and P ⊢ G2,∆
′, therefore

P ⊢ G1 &G2,∆
′ by LO & r rule;

- if ∆ = G1
............................................
...........
........
................................ G2,∆

′ or ∆ = ⊥,∆′, the conclusion follows by a straightforward appli-
cation of the inductive hypothesis.

O(P ) ⊆ F (P ). We prove that for every context ∆ if P ⊢ ∆ then there exists k ∈ N such
that TP↑k |= ∆ ◮ ǫ. The proof is by induction on the derivation of P ⊢ ∆.
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- If the proof ends with an application of ⊤r, then the conclusion is immediate;

- if the proof ends with an application of the bc rule, then ∆ = A1, . . . , An,A, where
A1, . . . , An are atomic formulas, and there exists a clause A1

............................................
...........
........
................................ . . . ............................................

...........
........
................................ An ◦− G ∈ P .

For the uniformity of LO proofs, we can suppose A to be a fact. By inductive
hypothesis, we have that there exists k such that TP↑k |= G,A ◮ ǫ, then, by Lemma
7.5, TP↑k |= G ◮A, which, by definition of TP , in turn implies that A1, . . . , An,A ∈
TP (TP↑k) = TP↑k+1, therefore TP↑k+1 |= A1, . . . , An,A ◮ ǫ, i.e., TP↑k+1 |= ∆ ◮ ǫ;

- if the proof ends with an application of the & r rule, then ∆ = G1 &G2,∆
′ and, by

inductive hypothesis, there exist k1 and k2 such that TP↑k1 |= G1,∆
′

◮ ǫ and TP↑k2 |=
G2,∆

′
◮ ǫ. Then, if k = max{k1, k2} we have, by Lemma 7.6 i and monotonicity of

TP , that TP↑k |= G1,∆
′

◮ ǫ and TP↑k |= G2,∆
′

◮ ǫ, therefore TP↑k |= G1 &G2,∆
′

◮ ǫ,
i.e., TP↑k |= ∆ ◮ ǫ;

- the ............................................
...........
.......
................................. -case and ⊥-case follow by a straightforward application of the inductive hy-

pothesis.

2

We note that it is also possible to define a model-theoretic semantics (as for classical logic
programming [GDL95]) based on the notion of least model with respect to a given class
of models and partial order relation. In our setting, the partial order relation is simply
set inclusion, while models are exactly Herbrand interpretations which satisfy program
clauses, i.e., I is a model of P if and only if for every clause H ◦−G ∈ P and for every fact
A,

I |= G ◮A implies I |= H ◮A.
It turns out that the operational, fixpoint and model-theoretic semantics are all equivalent.
We omit details. Finally, we also note that these semantics can be proved equivalent to
the phase semantics for LO given in [AP91b].

7.2 An Effective Semantics for LO

The operator TP defined in the previous section does not enjoy one of the crucial properties
we required for our bottom-up semantics, namely its definition is not effective. As an
example, take the program P consisting of the clause a ◦− ⊤. Then, TP (∅) is the set of
all multisets with at least one occurrence of a, which is an infinite set. In other words,
TP (∅) = {B | a 4 B}, where 4 is the multiset inclusion relation. In order to compute
effectively one step of TP , we have to find a finite representation of potentially infinite
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sets of facts (in the terminology of [ACJT96], a constraint system). The previous example
suggests us that a provable fact A may be used to denote the ideal generated by A (see
Definition 6.9), i.e., the subset of BP defined as follows: [[A]] = {B | A 4 B}. We extend
this definition to interpretations as follows.

Definition 7.11 (Denotation of an Interpretation) Given an interpretation I, its
denotation [[I]] is the interpretation given by

[[I]] =
⋃

A∈I

[[A]].

Two interpretations I and J are said to be equivalent, written I ≃ J , if and only if
[[I]] = [[J ]].

Based on this idea, we define an abstract Herbrand base where we handle every single
fact A as a representative element for [[A]] (note that in the semantics of Section 7.1 the
denotation of a fact A is A itself).

Definition 7.12 (Abstract Interpretation Domain) Abstract interpretations form a
complete lattice 〈I,⊑〉 where

• I = {[I]≃ | I is an interpretation};

• [I]≃ ⊑ [J ]≃ iff [[I]] ⊆ [[J ]], i.e., iff for every B ∈ I there exists A ∈ J such that A 4 B;

• the least upper bound of [I]≃ and [J ]≃, written [I]≃
⊔

[J ]≃, is [I ∪ J ]≃;

• the bottom and top elements are [∅]≃ and [ǫ]≃, respectively.

The equivalence ≃ allows us to reason modulo redundancies. For instance, any A is redun-
dant in {ǫ,A}, which, in fact, is equivalent to {ǫ}. It is important to note that to compare
two ideals we simply need to compare their generators w.r.t. the multiset inclusion rela-
tion 4. Thus, given a finite set of facts we can always remove all redundancies using a
polynomial number of comparisons.

Notation. For the sake of simplicity, in the rest of the paper we will often identify an
interpretation I with its class [I]≃. Furthermore, note that if A 4 B, then [[B]] ⊆ [[A]]. In
contrast, if I and J are two interpretations and I ⊑ J then [[I]] ⊆ [[J ]].

The two relations 4 and ⊑ are well-quasi-orderings (see Section 6.2.1). This is a direct
consequence of Proposition 6.25 (Dickson’s Lemma). This property is the key point for
proving termination of the fixpoint computation for propositional LO programs. In fact, it
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will allow us to prove that the computation of the least fixpoint of the symbolic formulation
of the operator TP (working on abstract interpretations) is guaranteed to terminate on every
input LO program.

By definition of ⊑ and Proposition 6.23, the following corollary holds.

Corollary 7.13 There are no infinite chains of interpretations I0 ⊑ I1 ⊑ I2 ⊑ . . . such
that for all j, k ∈ N with j < k, Ik 6⊑ Ij.

Corollary 7.13 ensures that it is not possible to generate infinite sequences of interpreta-
tions such that each element is not subsumed (using a terminology from constraint logic
programming) by one of the previous elements in the sequence. The problem now is to
define a fixpoint operator over abstract interpretations that is correct and complete w.r.t.
the ground semantics. If we find it, then we can use the corollary to prove that (for any
program) its fixpoint can be reached after finitely many steps. For this purpose and us-
ing the multiset operations \ (difference), • (least upper bound w.r.t. 4), and ǫ (empty
multiset) defined in Section 2.2, we first define a new, abstract version, of the satisfiability
relation |=. The intuition under the new judgment I 
 ∆ ◮A, where I is an (abstract)
interpretation, ∆ is a context, and A is a fact, is that A is the minimal fact (in a sense to
be clarified) that should be added to ∆ in order for A+ ∆ to be satisfiable in I.

Definition 7.14 (Abstract Satisfiability Judgment) Let P be a propositional LO
program and I ∈ P(BP ). The abstract satisfiability judgment 
 is defined as follows:

I 
 ⊤,∆ ◮ ǫ;

I 
 A ◮B\A for B ∈ I;
I 
 G1 &G2,∆ ◮A1•A2 if I 
 G1,∆ ◮A1, I 
 G2,∆ ◮A2;

I 
 G1
............................................
...........
........
................................ G2,∆ ◮A if I 
 G1, G2,∆ ◮A;

I 
 ⊥,∆ ◮A if I 
 ∆ ◮A.

Given a finite interpretation I and a context ∆, the previous definition gives us an algorithm
to compute all facts A such that I 
 ∆ ◮A holds.

Example 7.15 Let us consider the following clause and interpretation:

b ◦− (d ............................................
...........
........
................................ e) & f, I = {{c, d}, {c, f}}.

We want to compute the facts A for which I 
 G ◮A, where G = (d ............................................
...........
........
................................ e) & f is the body of

the clause. From the second rule defining the judgment 
, we have that I 
 {d, e} ◮ {c},
because {c, d} ∈ I and {c, d}\{d, e} = {c}. Therefore we get I 
 d ............................................

...........
........
................................ e ◮ {c} using the fourth
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rule for 
. Similarly, we have that I 
 {f}◮ {c}, because {c, f} ∈ I and {c, f}\{f} = {c}.
By applying the third rule for 
, with G1 = d ............................................

...........
.......
................................. e, G2 = f , A1 = {c}, A2 = {c} and ∆ = ǫ,

we get I 
 G ◮ {c}, in fact {c}•{c} = {c}. There are other ways to apply the rules for

. In fact, we can get I 
 {d, e} ◮ {c, f}, because {c, f} ∈ I and {c, f}\{d, e} = {c, f}.
Similarly, we can get I 
 {f} ◮ {c, d}. By considering all combinations, it turns out
that I 
 G ◮A, for every A ∈ {{c}, {c, f}, {c, d}, {c, d, f}}. The information conveyed
by {c, f}, {c, d}, {c, d, f} is in some sense redundant, as we will see in the following (see
Example 7.26). In other words, it is not always true that the output fact of the judgment

 is minimal (in the previous example only the output {c} is minimal). Nevertheless,
the important point to be stressed here is that the set of possible facts satisfying the
judgment, given I and G, is finite. This will be sufficient to ensure effectiveness of the
fixpoint operator. 2

The connection between the satisfiability judgments |= and 
 is clarified by the following
lemma.

Lemma 7.16 For every I ∈ P(BP ), context ∆, and fact C,

i. if I 
 ∆ ◮A, then [[I]] |= ∆ ◮A′ for all A′ s.t. A 4 A′;

ii. if [[I]] |= ∆ ◮A′, then there exists A such that I 
 ∆ ◮A and A 4 A′.

Proof

i. By induction on the derivation of I 
 ∆ ◮A.

- I 
 ⊤,∆ ◮ ǫ and [[I]] |= ⊤,∆ ◮A′ and ǫ 4 A′ for any A′;

- if I 
 A ◮A′ then A′ = B\A for B ∈ I. Since B 4 (B\A) + A = A′ + A, we
have that (B\A) + A ∈ [[I]], therefore [[I]] |= A ◮B\A, so that [[I]] |= A ◮ C for
all C s.t. A′ = B\A 4 C, because [[I]] is upward closed;

- if I 
 G1 &G2,∆ ◮A then A = A1•A2 and I 
 G1,∆ ◮A1 and I 
 G2,∆ ◮A2.
By inductive hypothesis, [[I]] |= G1,∆ ◮B1 and [[I]] |= G2,∆ ◮B2 for any B1,B2

s.t. A1 4 B1 and A2 4 B2. That is, [[I]] |= Gi,∆ ◮ C for any C ∈ [[A1•A2]] i : 1, 2.
It follows that [[I]] |= G1 &G2,∆ ◮ C for all C ∈ [[A1•A2]];

- the ............................................
...........
........
................................ -case and ⊥-case follow by a straightforward application of the inductive

hypothesis.

ii. By induction on the derivation of [[I]] |= ∆ ◮A′.

- The ⊤-case follows by definition;
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- if [[I]] |= A ◮A′ then A′ +A ∈ [[I]], i.e., there exists B ∈ I s.t. B 4 A′ +A. Since
B\A 4 (A′ +A)\A = A′, it follows that for C = B\A, I 
 A ◮ C and C 4 A′;

- if [[I]] |= G1 &G2,∆ ◮A then [[I]] |= Gi,∆ ◮A for i : 1, 2. By inductive hy-
pothesis, there exists Ai such that Ai 4 A, I 
 Gi,∆ ◮Ai for i : 1, 2, i.e.,
I 
 G1 &G2,∆ ◮A1•A2. The thesis follows noting that A1•A2 4 A;

- the ............................................
...........
........
................................ -case and ⊥-case follow by a straightforward application of the inductive

hypothesis.

2

The satisfiability judgment 
 also satisfies the following properties.

Lemma 7.17 For any I1, I2, . . . ∈ P(BP ), context ∆, and fact A,

i. if I1 ⊑ I2 and I1 
 ∆ ◮A then there exists A′ such that I2 
 ∆ ◮A′ and A′ 4 A;

ii. if I1 ⊑ I2 ⊑ . . ., and
⊔∞
i=1 Ii 
 ∆ ◮A then there exists k ∈ N s.t Ik 
 ∆ ◮A.

Proof

i. If I1 
 ∆ ◮A, then by Lemma 7.16 i, [[I1]] |= ∆ ◮A. Since [[I1]] ⊆ [[I2]] then, by Lemma
7.6 i, [[I2]] |= ∆ ◮A. Thus, by Lemma 7.16 ii, there exists A′ 4 A s.t. I2 
 ∆ ◮A′;

ii. If
⊔∞
i=1 Ii 
 ∆ ◮A, then by Lemma 7.16 i, [[

⊔∞
i=1 Ii]] |= ∆ ◮A, i.e., as it can be readily

verified from Definition 7.11 and Definition 7.12,
⋃∞
i=1[[I1]] |= ∆ ◮A. By Lemma 7.6

ii, there exists k ∈ N s.t. [[Ik]] |= ∆ ◮A. Thus, by Lemma 7.16 ii, there exists A′ 4 A
s.t. Ik 
 ∆ ◮A′.

2

We are ready now to define the abstract fixpoint operator SP : I → I. We will proceed
in two steps. We will first define an operator working over elements of P(BP ). With a
little bit of overloading, we will call the operator with the same name, i.e., SP . As for the
SP operator used in the symbolic semantics of CLP programs [JM94], the operator should
satisfy the equation [[SP (I)]] = TP ([[I]]) for every I ∈ P(BP ). This property ensures the
soundness and completeness of the symbolic representation w.r.t. the concrete one.

After defining the operator over P(BP ), we will lift it to our abstract domain I consisting
of the equivalence classes of elements of P(BP ) w.r.t. the relation ≃ defined in Definition
7.11. Formally, we first introduce the following definition.
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Definition 7.18 (Symbolic Fixpoint Operator SP) Given a propositional LO pro-
gram P and I ∈ P(BP ), the symbolic fixpoint operator SP is defined as follows:

SP (I) = {Ĥ +A | H ◦−G ∈ P, I 
 G ◮A}.

The following property shows that SP is sound and complete w.r.t. TP .

Proposition 7.19 For every propositional LO program P and I ∈ P(BP ), [[SP (I)]] =
TP ([[I]]).

Proof Let A = Ĥ,B ∈ SP (I) where H ◦− G ∈ P and I 
 G ◮B then, by Lemma 7.16 i,

[[I]] |= G ◮B′ for any B′ s.t. B 4 B′. Thus, for any A′ = Ĥ,B′ s.t. A 4 A′, A′ ∈ TP ([[I]]).

Vice versa, if A ∈ TP ([[I]]) then A = Ĥ,B where H ◦−G ∈ P and [[I]] |= G ◮B. By Lemma

7.16 ii, there exists B′ s.t. B′ 4 B and I 
 G ◮B′, i.e., A′ = Ĥ,B′ ∈ SP (I) and A′ 4 A. 2

Furthermore, the following corollary holds.

Corollary 7.20 For every propositional LO program P and I, J ∈ P(BP ), if I ≃ J then
SP (I) ≃ SP (J).

Proof If I ≃ J , i.e., [[I]] = [[J ]], then TP ([[I]]) = TP ([[J ]]). Thus, by Prop. 7.19 it follows
that [[SP (I)]] = [[SP (J)]], i.e., SP (I) ≃ SP (J). 2

The previous corollary allows us to safely lift SP definition from the lattice 〈P(BP ),⊆〉 to
the lattice 〈I,⊑〉. Formally, we define the abstract fixpoint operator as follows.

Definition 7.21 (Abstract Fixpoint Operator SP) Given a propositional LO pro-
gram P and an equivalence class [I]≃ of I, the abstract fixpoint operator SP is defined
as follows:

SP ([I]≃) = [SP (I)]≃

where SP (I) is defined in Definition 7.18.

For the sake of simplicity, in the following we will use I to denote its class [I]≃. The
abstract fixpoint operator SP satisfies the following property.

Proposition 7.22 (Monotonicity and Continuity) For every propositional LO pro-
gram P , the abstract fixpoint operator SP is monotonic and continuous over the lattice
〈I,⊑〉.
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Procedure Symbolic Fixpoint

input P : an LO program
output Fsym(P )
begin

New := {Ĥ | H ◦− ⊤ ∈ P}; Old := ∅
repeat

Old := New
New := SP (New)

until New ⊑ Old
return Old end

Figure 7.2: Symbolic fixpoint computation

Proof Monotonicity. For any A = Ĥ,B ∈ SP (I) there exists H ◦−G ∈ P s.t. I 
 G ◮B.
Assume now that I ⊑ J . Then, by Lemma 7.17 i, we have that J 
 G ◮B′ for B′ 4 B.
Thus, there exists A′ = Ĥ,B′ ∈ SP (J) such that A′ 4 A, i.e., SP (I) ⊑ SP (J).
Continuity. We show that SP is finitary. Let I1 ⊑ I2 ⊑ . . . be a chain of interpretations.
For any A = Ĥ,B ∈ SP (

⊔∞
i=1 Ii) there exists H ◦−G ∈ P s.t.

⊔∞
i=1 Ii 
 G ◮B. By Lemma

7.17 ii, there exists k ∈ N s.t. Ik 
 G ◮B′ for B′ 4 B. Thus, A′ = Ĥ,B′ ∈ SP (Ik), i.e.,
A′ ∈ ⊔∞

i=1 SP (Ii) with A′ 4 A, i.e., SP (
⊔∞
i=1 Ii) ⊑

⊔∞
i=1 SP (Ii). 2

Corollary 7.23 For every propositional LO program P , [[lfp(SP )]] = lfp(TP ).

Let Fsym(P ) = lfp(SP ), then we have the following main theorem.

Theorem 7.24 (Soundness and Completeness) For every propositional LO program
P , O(P ) = F (P ) = [[Fsym(P )]]. Furthermore, there exists k ∈ N such that Fsym(P ) =⊔k
i=0 SP↑k (∅).

Proof Theorem 7.10 and Corollary 7.23 show that O(P ) = F (P ) = [[Fsym(P )]]. Corollary
7.13 guarantees that the fixpoint of SP can always be reached after finitely many steps. 2

The previous results give us an algorithm to compute the operational and fixpoint semantics
of a propositional LO program via the operator SP . The algorithm is inspired by the
backward reachability algorithm used in [ACJT96, FS01] to compute backwards the closure
of the predecessor operator of a well-structured transition system. The algorithm in pseudo-
code for computing F (P ) is shown in Figure 7.2. Corollary 7.13 guarantees that the
algorithm always terminates and returns a symbolic representation of O(P ). As a corollary
of Theorem 7.24, we obtain the following result.
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P ⊢ e, b,⊤
⊤r

P ⊢ d, e, b, c bc(3)

P ⊢ d, e, b ............................................
...........
........
................................ c

............................................
...........
........
................................
r

P ⊢ d, e, e, e bc(4)

P ⊢ d ............................................
...........
........
................................ e, e, e

............................................
...........
........
................................
r

P ⊢ b,⊤
⊤r

P ⊢ f, b, c bc(5)

P ⊢ f, b ............................................
...........
........
................................ c

............................................
...........
........
................................
r

P ⊢ f, e, e bc(4)

P ⊢ (d ............................................
...........
........
................................ e) & f, e, e

& r

P ⊢ b, e, e bc(2)

Figure 7.3: Another example of LO derivation

Corollary 7.25 The provability of P ⊢ G in propositional LO is decidable.

In view of Proposition 3.9, this result can be considered as an instance of the general decid-
ability result [Kop95] for propositional affine linear logic (i.e., linear logic with weakening).

Example 7.26 We compute the fixpoint semantics for the program P of Example 3.10,
which is given below.

1. a ◦− b ............................................
...........
.......
................................. c

2. b ◦− (d ............................................
...........
........
................................ e) & f

3. c ............................................
...........
........
................................ d ◦− ⊤

4. e ............................................
...........
.......
................................. e ◦− b ............................................

...........
.......
................................. c

5. c ............................................
...........
........
................................ f ◦− ⊤

We start the computation from SP ↑0= ∅. The first step consists in adding the multisets
corresponding to program facts, i.e., clauses 3 and 5, therefore we compute

SP↑1= {{c, d}, {c, f}}.
Now, we can try to apply clauses 1, 2, and 4 to facts in SP↑1. From the first clause, we have
that SP↑1 
 {b, c} ◮ {d} and SP↑1 
 {b, c} ◮ {f}, therefore {a, d} and {a, f} are elements
of SP ↑2. Similarly, for clause 2 we have that SP↑1 
 {d, e} ◮ {c} and SP↑1 
 {f} ◮ {c},
therefore we have, from the rule for & , that {b, c} belongs to SP ↑2 (we can also derive
other judgments for clause 2, as seen in Example 7.15, for instance SP↑1 
 {d, e}◮ {c, f},
but it immediately turns out that all these judgments give rise to redundant information,
i.e., facts that are subsumed by the already calculated ones). By clause 4, finally we have
that SP↑1 
 {b, c} ◮ {d} and SP↑1 
 {b, c} ◮ {f}, therefore {d, e, e} and {e, e, f} belong to
SP↑2. We can therefore take the following equivalence class as representative for SP↑2:

SP↑2= {{c, d}, {c, f}, {a, d}, {a, f}, {b, c}, {d, e, e}, {e, e, f}}.

95



We can similarly calculate SP↑3. For clause 1 we immediately have that SP↑2 
 {b, c} ◮ ǫ,
so that {a} is an element of SP↑3; this makes the information given by {a, d} and {a, f}
in SP ↑2 redundant. From clause 4 we can get that {e, e} is another element of SP ↑3,
which implies that the information given by {d, e, e} and {e, e, f} is now redundant. No
additional (not redundant) elements are obtained from clause 2. We therefore can take

SP↑3= {{c, d}, {c, f}, {b, c}, {a}, {e, e}}.

The reader can verify that SP↑4= SP↑3= Fsym(P ) so that

O(P ) = F (P ) = [[{{c, d}, {c, f}, {b, c}, {a}, {e, e}}]].

We suggest the reader to compare the top-down proof for the goal e, e, given in Figure
3.3, and the part of the bottom-up computation which yields the same goal. The order in
which the backchaining steps are performed is reversed, as expected. Moreover, the top-
down computation requires to solve one goal, namely d, e, c, which is not minimal, in the
sense that its proper subset c, d is still provable. Using the bottom-up algorithm sketched
above, at every step only the minimal information (in this case c, d) is kept at every step.

In general, this strategy has the further advantage of reducing the amount of non-deter-
minism in the proof search. For instance, let us consider the goal b, e, e (which is certainly
provable because of Proposition 3.9). This goal has at least two different proofs. The first
is a slight modification of the proof in Figure 3.3 (just add the atom b to every sequent).
An alternative proof, obtained by changing the order of applications of the backchaining
steps, is given in Figure 7.3. There are even more complicated proofs (for instance in the
left branch we could rewrite b again by backchaining over clause 2 rather than axiom 3).
The bottom-up computation avoids these complications by keeping only minimal infor-
mation at every step. We would also like to stress that the bottom-up computation is
always guaranteed to terminate, as stated in Theorem 7.24, while in general the top-down
computation can diverge. 2

——————————————————————————————————

7.3 Examples

——————————————————————————————————

We conclude this chapter by showing how computation of the bottom-up semantics for
propositional LO programs can be used to prove safety properties. In particular, we con-
sider the producer/consumer example of Section 4.2.1 and the net for mutual exclusion of
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{free, init}
{buffer, init}
{init, init}
{buffer, buffer, buffer, buffer, buffer, buffer}
{free, free, free, free, free, free, producing}
{buffer, free, free, free, free, free, producing}
{buffer, buffer, free, free, free, free, producing}
{buffer, buffer, buffer, free, free, free, producing}
{buffer, buffer, buffer, buffer, free, free, producing}
{buffer, buffer, buffer, buffer, buffer, free, producing}
{buffer, buffer, buffer, buffer, buffer, releasing, free}
{free, buffer, buffer, buffer, buffer, releasing, free}
{free, free, buffer, buffer, buffer, releasing, free}
{free, free, free, buffer, buffer, releasing, free}
{free, free, free, free, buffer, releasing, free}
{free, free, free, free, free, releasing, free}

Figure 7.4: Fixpoint computed for the producer/consumer example

Section 6.1.1. We use these examples to exemplify our methodology for backward verifi-
cation of safety properties. Other examples will be presented in the following chapters.
Verification has been performed by means of an automatic tool implementing the proce-
dure for the covering problem described in Figure 6.3. We refer the reader to Appendix A
for a description of this tool and details about the environment in which the experiments
have been conducted.

7.3.1 A Producer/Consumer Example

Let us consider the Petri net of Figure 4.1, representing a producer/consumer net with
a bounded capacity buffer. According to Section 4.3, translation of this net yields the
following LO program:

1. producing ◦− releasing
2. releasing ............................................

...........
........
................................ free ◦− producing ............................................

...........
........
................................ buffer

3. buffer ............................................
...........
.......
................................. buffer ............................................

...........
.......
................................. acquiring ◦− free ............................................

...........
.......
................................. free ............................................

...........
.......
................................. consuming

4. consuming ◦− acquiring

If we wish to verify properties of the reachable states of the Petri net in Figure 4.1, first of
all we need to give a specification of the initial states of the system. Specifically, we need
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to encode the initial marking drawn in Figure 4.1. To this aim, we can simply introduce a
new propositional symbol (place) init and add the following LO clause:

5. init : −releasing ............................................
...........
.......
................................. buffer ............................................

...........
.......
................................. buffer ............................................

...........
.......
................................. buffer ............................................

...........
.......
................................. free ............................................

...........
.......
................................. free ............................................

...........
.......
................................. acquiring

The only purpose of init is to load the initial configuration of the system.

We can now verify a safety property using the backward reachability algorithm of Section
6.1.1. For instance, the Petri net in Figure 4.1 has the following bounded capacity property:
at any time, the buffer contains at most five items. We can formally verify that the above
specification complies with the bounded capacity property using the following strategy.
First of all, we can see the above problem as an instance of the covering problem for the
Petri net in Figure 4.1. In fact, the bounded capacity property is equivalent to saying
that the buffer will never contain more than five items. Therefore, we need to verify that
starting from the initial marking we will never reach a marking containing six or more
items in place buffer. Otherwise said, we have to verify that it is not possible to cover the
following marking: {buffer, buffer, buffer, buffer, buffer, buffer}. According to the discussion
of Section 6.3, we can encode this problem using the following LO axiom:

6. buffer ............................................
...........
........
................................ buffer ............................................

...........
........
................................ buffer ............................................

...........
........
................................ buffer ............................................

...........
........
................................ buffer ............................................

...........
........
................................ buffer ◦− ⊤

The head of the above axiom represents the minimality violation of the safety property
under consideration. In other words, any marking with at least six items in place buffer is
unsafe. We recall that, from a logical point of view, this is a result of Proposition 3.9.

We can now run our verification tool (see Appendix A) to automatically verify if the
bounded capacity property holds. We simply need to evaluate the bottom-up semantics of
the above LO program, including the specification of the initial and of the final (unsafe)
states (i.e., we consider clauses 1 through 6), and check that the fixpoint does not contain
any legal initial state. In this case, the initial state (marking) is represented by the atom
init, therefore we simply need to verify that the marking {init} is not contained in the fix-
point, i.e., that {init} is not backward reachable. Termination of the bottom-up evaluation
is guaranteed by Lemma 7.13. Running the verification tool, we get the fixpoint shown in
Figure 7.4. The fixpoint contains 16 elements and is reached after 13 steps (iterations).
As it does not contain init, the bounded capacity property is verified.

We have used the producer/consumer example mainly to illustrate our approach and dis-
cuss our methodology for verification of safety properties. The above example is not par-
ticularly meaningful for the following reason. As discussed in Section 4.2.2 (see Example
4.16), the following invariant holds in the Petri net of Figure 4.1: the total number of
tokens in places buffer and free is always less or equal than five. The property we have
discussed above is a simple consequence of this invariant, and therefore it can be computed
statically. In the next section we present a more interesting example.
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....
P ⊢ waiting, waiting, lock1, cs2

P ⊢ waiting, waiting, waiting, lock1, lock2 bc(2)

P ⊢ waiting, waiting, lock2, cs1 bc(3)

P ⊢ waiting, waiting, waiting, lock1, lock2 bc(1)

P ⊢ init, waiting, waiting, waiting bc(6)

P ⊢ init, waiting, waiting bc(5)

P ⊢ init, waiting bc(5)

P ⊢ init bc(5)

Figure 7.5: A petri net for mutual exclusion: example trace

7.3.2 A Petri Net for Mutual Exclusion

Let us consider the Petri net presented in Figure 6.2. The net represents a simple monitor
for a parameterized system with two mutually exclusive critical sections (see discussion in
Example 6.8). Two locks are used to protect the critical sections from unauthorized access.
The net is parametric in the number of waiting processes, i.e., processes willing to enter
one of two critical sections. Following the encoding of section 4.3, the above Petri net is
represented by the LO program below:

1. waiting ............................................
...........
........
................................ lock1 ............................................

...........
........
................................ lock2 ◦− lock2 ............................................

...........
........
................................ cs1

2. waiting ............................................
...........
.......
................................. lock1 ............................................

...........
.......
................................. lock2 ◦− lock1 ............................................

...........
.......
................................. cs2

3. cs1 ◦− waiting ............................................
...........
........
................................ lock1

4. cs2 ◦− waiting ............................................
...........
........
................................ lock2

The first two clauses encode transitions Enter1 and Enter2, whereas the last two clauses
encode transitions Leave1 and Leave2, respectively.

Following the methodology illustrated in Section 7.3.1, we need to encode the initial and
final (i.e., unsafe) states of the system. Initial states can be encoded by introducing a new
propositional symbol init and adding the following LO clauses:

5. init ◦− init ............................................
...........
........
................................ waiting

6. init ◦− lock1 ............................................
...........
.......
................................. lock2

The above encoding is very flexible, in that it allows us to leave the number of initial
processes in place waiting (i.e., the parameter K in Figure 6.2) unspecified. In fact, by
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{cs1, cs1}
{cs1, cs2}
{cs2, cs2}
{init, init}
{cs1, init}
{cs2, init}
{lock2, init}
{lock1, init}
{waiting, lock2, waiting, lock1, lock2}
{lock1, waiting, waiting, lock1, lock2}
{cs1, waiting, lock1, lock2}
{cs2, waiting, lock1, lock2}
{lock2, waiting, lock2, cs1}
{lock1, waiting, lock1, cs2}

Figure 7.6: Fixpoint computed for the mutual exclusion example

using the first clause we can put any number of processes in place waiting, while the
second clause initializes the two locks and let the processes compete for accessing the
critical sections. For clarity, an example trace (LO proof fragment) is shown in Figure 7.5
(where P is the LO program made up of clauses 1 through 6, and we have followed the
usual notational conventions).

It remains to give the encoding of the unsafe states of the system. Specifically, a configu-
ration is unsafe if at least two processes are accessing either of the critical sections at the
same time. Namely, we have the following encoding in LO:

7. cs1 ............................................
...........
........
................................ cs1 ◦− ⊤

8. cs1 ............................................
...........
........
................................ cs2 ◦− ⊤

9. cs2 ............................................
...........
........
................................ cs2 ◦− ⊤

Now, we can run our automatic verification tool (see Appendix A) to evaluate the bottom-
up semantics of the above LO program (clauses 1 through 9), and check whether the fixpoint
contains the configuration {init} or not. We stress that in this case static computation of
structural invariants for the Petri net of Figure 6.2 is not sufficient to prove the above safety
property (see for instance [DRB01]). As an aside, we remark that the matrix representation
of the Petri net in Figure 6.2 (upon which the calculus of structural invariants is based)
is ambiguous, in the sense that there are cycles (e.g. the one given by the arc from lock2
to Enter1 and the arc from Enter1 to lock2) which are lost in the matrix representation.
Running the verification tool, we get the fixpoint shown in Figure 7.6. The fixpoint contains
14 elements and is reached after 7 steps. As it does not contain init, the mutual exclusion
property is verified.
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{cs1, cs1}
{cs1, cs2}
{cs2, cs2}
{cs2, waiting, lock1, lock2}
{cs1, waiting, lock1, lock2}

Figure 7.7: Fixpoint computation for the mutual exclusion example: first step

We now show how the computation of structural invariants of Section 4.2.2, in combi-
nation with the methodology of pruning of Section 6.1.2.2, can be used to optimize the
above fixpoint computation. Computing the place invariants for the Petri net in Figure
6.2 yields, among the others, the following properties: for every reachable marking M,
M(lock1) +M(cs1) = 1 and M(lock2) +M(cs2) = 1 (see for instance [DRB01]). This
in turn implies that configurations containing at least one token in lock1 and one token
in cs1 (or, respectively, one token in lock2 and one token in cs2) are unreachable and can
therefore be discarded (pruned). Using dynamic pruning (this requires a slight modification
of the fixpoint operator, see Section 6.1.2.2), this time the verification algorithm converges
immediately at the first iteration. In Figure 7.7 we show the partial result computed at
the second iteration of the algorithm without using dynamic pruning. With respect to the
initial set of unsafe states, only two elements (the last two) are computed. These elements
do not satisfy the above structural invariants, therefore they can be dynamically pruned.
The fixpoint consists of the remaining configurations.

Using our verification tool, we have verified that the mutual exclusion property holds for
the Petri net in Figure 6.2, independently of the number of initial processes. In other words,
we have verified a safety property for a parametric system. We conclude this section by
showing how even more sophisticated specifications are possible in linear logic. Specifically,
we can support dynamic generation of waiting processes. Let us consider the following
modified LO specification for the set of initial states:

5′. init ◦− demon ............................................
...........
........
................................ lock1 ............................................

...........
........
................................ lock2

6′. demon ◦− demon ............................................
...........
........
................................ waiting

Initialization of the system directly creates the two locks and a demon. The demon is used
to generate waiting processes at run-time. In other words, new waiting processes can be
dynamically injected in the system at any time after the initialization phase. Evaluating
the bottom-up semantics for the LO program obtained by substituting the above clauses 5’
and 6’ for, respectively, clauses 5 and 6, we can prove that the mutual exclusion property
still holds for the above specification. The fixpoint contains 20 elements and is reached
after 7 steps. Using dynamic pruning, the fixpoint computation converges immediately in
the same way as for the original specification.
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7.4 Related Work

The inspiration for our work (see [BDM02]) originally came from decidability results, based
on the theory of well-quasi-orderings, for verification algorithms for validation of parame-
terized systems via a backward reachability analysis [ACJT96, AJ98, FS01] (see also Section
6.4). Specifically, in this chapter we have defined a bottom-up evaluation algorithm which
solves the so-called covering problem (see [FS01]) for transition systems defined via the
linear logic language LO [AP91b]. The decidability result for propositional LO provabil-
ity, which we obtain here as a corollary, is not new. In particular, it is consequence of
decidability of linear affine logic [Kop95]. Given that Petri nets can be encoded in LO (see
Section 4.3), our bottom-up evaluation algorithm can be seen as an alternative to the Karp
and Miller’s coverability graph construction for Petri nets [KM69] (which, however, as a
difference with ours, is a forward construction). Here, we also deal with further connectives
like the additive conjunction of linear logic.

From a logic programming perspective, our bottom-up semantics is clearly an extension
of the traditional fixpoint semantics for Horn logic [Llo87] to a fragment of linear (affine)
logic. As a difference, we need to add special rules, handled via the satisfiability judgment

) to handle formulas built over the logical connectives ............................................

...........
........
................................ , & , ⊤ and ⊥.

Other sources of inspiration came from linear logic programming. In [HW98], the authors
present an abstract deductive system for the bottom-up evaluation of linear logic programs.
The left introduction, weakening and cut rules are used to compute the logical consequences
of a given formula. The proof system the authors propose should be thought of as a
general scheme to which evaluation of the specific language at hand should conform. The
scheme is general enough to allow for different computational strategies, mixing bottom-
up and top-down evaluation, breadth-first or depth-first search, eager or lazy evaluation.
The satisfiability relations we use in the definition of the fixpoint operators correspond
to top-down steps within their bottom-up evaluation scheme. The framework is discussed
for a more general fragment than LO, in particular dynamically changing programs are
supported. However, they do not provide an effective fixpoint operator as we did in the
case of LO, and they do not discuss computability issues for the derivability relation.

In [APC97], Andreoli, Pareschi and Castagnetti present a partial evaluation scheme for
propositional LO, which works as follows. Given an initial goal G, they use a construction
similar to Karp and Miller’s coverability graph [KM69] for Petri Nets to build a finite
representation of a proof tree for G. During the top-down construction of the tree for G,
they apply in fact a generalization step that works as follows. If a goal, say B, that has to
be proved is subsumed by a node already visited, say A, (i.e., B = A+A′), then the part of
proof tree between the two goals is replaced by a proof tree for A+(A′)∗, where A+(A′)∗

is a finite representation of the union of A with the closure of A′. Using Dickson’s Lemma,
the authors show that the construction always terminates. The main difference with our
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approach is that we study a goal independent bottom-up evaluation strategy, therefore
in our fixpoint semantics we do not need any generalization step. In fact, goals which
are subsumed can be automatically discarded during the bottom-up evaluation process.
This simplifies the computation as shown in Example 7.26. The partial evaluation scheme
of [APC97] is proposed as a target for analysis of first-order LO programs, via the so-
called counting abstraction, which consists in abstracting an atom with the corresponding
predicate symbol. Clearly, we can do the same with our bottom-up evaluation scheme.
However, in this thesis we allow for a much more refined analysis, by discussing directly
a non ground semantics for first-order programs, based on unification and most general
unifiers (see Chapters 9 and 10).

Finally, we must mention the connection between our semantics for LO and the bottom-up
semantics for Disjunctive Logic Programs [MRL91]. In a disjunctive logic program, the
head of a clause is a disjunction of atomic formulas, whereas the body is a conjunction of
atomic formulas. In the semantics of [MRL91] interpretations are collections of sets (i.e.,
classical disjunctions) of atomic formulas, whereas LO interpretations are multisets (i.e.,
............................................
...........
........
................................ -disjunctions) of atomic formulas. Therefore, in the propositional case in order to prove

the convergence of the fixpoint iteration, we need an argument (Dickson’s lemma) stronger
than the finiteness of the extended Herbrand base of [MRL91] (collection of minimal sets).
For a detailed discussion about the connection between LO and DLP, we refer the reader
to [BDM01b]. Here, we have proved that, from a proof theoretical perspective, DLP can
be derived from LO by admitting the structural rule of contraction. Furthermore, we
have shown that the fixpoint semantics for a DLP program can be obtained by making
abstract interpretation over the fixpoint semantics of a related LO program (specifically,
the abstraction maps any multiset into the corresponding set).

—————————————————————————————–

Summary of the Chapter. In this chapter we have discussed the foundations
of a bottom-up semantics for LO specifications. As a first step, we have dealt with
propositional programs. We have proved that the bottom-up semantics is correct and
complete with respect to the operational semantics, and we have shown an algorithm
for evaluating the bottom-up semantics which is always guaranteed to terminate.
As an application, we have presented some classical systems, specified in the Petri
net formalism, which can be translated into LO theories and validated using this
approach.

Building on the ideas presented here, in the following chapters we will extend the

bottom-up semantics to more complex fragments of linear logic. First of all, in the

next chapter we will discuss a simple addition enriching propositional LO with a more

refined resource management. However, the price to pay will be that provability in

general becomes undecidable.

—————————————————————————————–
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Chapter 8

Refining LO Resource Management:
LO with 1

This chapter extends the bottom-up semantics for LO of Chapter 3 by considering a richer
set of logical connectives. In fact, the decidability of propositional provability shows that
LO is not as interesting as one could expect from a state-oriented extension of the logic
programming paradigm. Specifically, LO does not provide a natural way to count resources.
This feature can be introduced by considering the language LO1 (see Section 3.3.1), i.e., by
considering a slight extension of LO in which we add unit clauses defined via the constant
1 and the multiplicative conjunction ⊗. The resulting language can be viewed as a first
step towards more complex languages based on linear logic like LinLog [And92]. In this
chapter we will also show that LO1 can be used to model more sophisticated models of
concurrent systems than LO, like Petri Nets with transfer arcs and broadcast protocols.

The addition of the constant 1 breaks down the decidability of provability which holds in-
stead for propositional LO. If we think about the connection between bottom-up semantics
and verification (see Section 6.3), it turns out that allowing axioms of the form H ◦− 1
introduces the possibility of specifying set of configurations (e.g. markings for Petri nets)
which are not upward-closed. Otherwise said, the result stated in Proposition 3.9 (admis-
sibility of the weakening rule) does not hold anymore for the fragment LO1. Remembering
the connection between LO and Petri nets (see Section 4.3), we have that undecidability
of LO1 provability follows by classical results which show that there is no algorithm to
compute the reachability set for Petri nets [EN94]. Despite this negative result, in this
chapter we will still be able to define an effective symbolic fixpoint operator for LO1.

Technically, we proceed as in Chapter 7. In particular, we formulate the bottom-up evalu-
ation procedure in two steps. We first present a simple, non-effective notion of (concrete)
interpretations and the corresponding definition of fixpoint operator. Then, we define an
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P ⊢1 ⊤,∆
⊤r

P ⊢1 G1, G2,∆

P ⊢1 G1
............................................
...........
........
................................ G2,∆

............................................
...........
........
................................
r

P ⊢1 G1,∆ P ⊢1 G2,∆

P ⊢1 G1 & G2,∆
& r

P ⊢1 ∆

P ⊢1 ⊥,∆
⊥r

P ⊢1 1
1r

P ⊢1 G1,∆1 P ⊢1 G2,∆2

P ⊢1 G1 ⊗G2,∆1,∆2

⊗r
P ⊢1 G,A

P ⊢1 Ĥ,A
bc (H ◦−G ∈ P )

Figure 8.1: A proof system for propositional LO1

abstract domain and a new symbolic fixpoint operator, which is shown to be equivalent
to the previous one. The abstract domain is a constraint system in the sense of [AJ01b],
i.e., it provides assertions to symbolically represent infinite sets of states. Specifically, we
will introduce an abstract domain based on a special class of linear constraints defined
over integer variables that count resources. This abstract domain generalizes the domain
used for propositional LO: the latter can be represented as the subclass of constraints with
no equalities. We remark that the use of constraints we make in this chapter is radically
different from that of Chapter 9. Here, we use constraints at the meta-level as symbolic
representations of semantical objects, while in Chapter 9 constraints are introduced at the
syntactical (and also semantical) level, as a means to allow for reasoning on specialized and
heterogeneous domains (e.g. integers, reals, strings, and so on) inside LO specifications.

For the sake of simplicity, we will overload some notations used in Chapter 7. Namely, the
notations O(P ),F (P ) for operational and fixpoint semantics, TP , SP for the concrete and
symbolic fixpoint operators, and |=,
 for the concrete and abstract satisfiability judgments
will be re-used to denote the analogous concepts for the language LO1.

This chapter extends our previous works [BDM00, BDM02].

8.1 A Bottom-Up Semantics for LO1

In the following we will use the same notations introduced in Chapter 7. We always
assume a fixed signature Σ including a finite set of propositional symbols a1, . . . , an. For
the convenience of the reader, in Figure 8.1 we recall a proof system for propositional
LO1 (see also Section 3.3.1). A sequent is now provable if all branches of its proof tree
terminate with instances of the ⊤r or the 1r axiom.

The top-down operational semantics can be defined as follows.

Definition 8.1 (Operational Semantics) Given a propositional LO1 program P , its
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operational semantics, denoted O(P ), is given by

O(P ) = {A | A is a fact and P ⊢1 A}.

We first note that, in contrast with Proposition 3.9, the weakening rule is not admissible
in LO1. This implies that we cannot use the same techniques we used for LO for defining
the abstract domain and also for proving termination of the bottom-up evaluation. So the
question is: can we still find a finite representation of O(P )? The following proposition
gives us a negative answer.

Proposition 8.2 (Undecidability of LO1 provability) Given a propositional LO1

program P , there is no algorithm to compute O(P ).

Proof We prove the proposition by presenting an encoding of Petri nets into LO1. Let
a Petri net N , with a set of initial markings I = {M1, . . . ,Mn}, be given. Consider the
LO (and thus LO1) propositional program P = P(R(N)) (see Section 4.3). Furthermore,
for every markingMi ∈ I consider the LO1 clause Hi ◦− 1, where Hi is a ............................................

...........
........
................................ -disjunction of

propositional symbols such that Ĥi =Mi, for i : 1, . . . , n. Let P ′ be the program consisting
of P and the above n clauses. Now, it is easy to recognize that computing the operational
semantics of P ′ amounts to computing the reachability set of N with initial markings I.
From classical results on Petri Nets (see e.g. the survey [EN94]), there is no algorithm to
compute this set. The conclusion follows by reduction to the marking equivalence problem
that is known to be undecidable. 2

As the reader can see, the above encoding of Petri nets into LO1 does not make use of
the multiplicative conjunction ⊗, therefore the operational semantics for the fragment of
LO1 without ⊗ (i.e., LO with the constant 1) is still not computable. Despite Proposition
8.2, it is still possible to define a symbolic, effective fixpoint operator for LO1 programs,
as shown in Section 8.2. Before going into more details, we first rephrase the semantics of
Section 7.1 for LO1. We omit the relevant proofs, which are analogous to those of Section
7.1. The definitions of Herbrand base and interpretations are the same as in Chapter 7.
The concrete semantics is defined on the usual domain 〈D,⊆〉, where D = P(BP ).

Definition 8.3 (Satisfiability Judgment) Let P be a propositional LO1 program and I
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an interpretation. The satisfiability judgment |= is defined as follows:

I |= ⊤,∆ ◮A′ for any fact A′;

I |= 1 ◮ ǫ;

I |= A ◮A′ if A+A′ ∈ I;
I |= G1 &G2,∆ ◮A if I |= G1,∆ ◮A and I |= G2,∆ ◮A;

I |= G1 ⊗G2,∆1,∆2 ◮A1 +A2 if I |= G1,∆1 ◮A1 and I |= G2,∆2 ◮A2;

I |= G1
............................................
...........
........
................................ G2,∆ ◮A if I |= G1, G2,∆ ◮A;

I |= ⊥,∆ ◮A if I |= ∆ ◮A.

The satisfiability judgment |= satisfies the following properties.

Lemma 8.4 For every interpretation I, context ∆ and fact A,

I |= ∆ ◮A iff I |= ∆,A ◮ ǫ.

Lemma 8.5 For any interpretations I1, I2, context ∆, and fact A,

i. if I1 ⊆ I2 and I1 |= ∆ ◮A then I2 |= ∆ ◮A;

ii. if I1 ⊆ I2 ⊆ . . . and
⋃∞
i=1 Ii |= ∆ ◮A then there exists k ∈ N s.t. Ik |= ∆ ◮A.

The fixpoint operator TP is defined like the one for LO.

Definition 8.6 (Fixpoint Operator TP ) Given a propositional LO1 program P and an
interpretation I, the fixpoint operator TP is defined as follows:

TP (I) = {Ĥ +A | H ◦−G ∈ P, I |= G ◮A}.

The following property holds.

Proposition 8.7 (Monotonicity and Continuity) For every propositional LO1 pro-
gram P , the fixpoint operator TP is monotonic and continuous over the lattice 〈D,⊆〉.

Monotonicity and continuity of the TP operator imply, by Tarski’s Theorem, that lfp(TP ) =
TP↑ω. The fixpoint semantics of a propositional LO1 program P is then defined as follows.
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Definition 8.8 (Fixpoint Semantics) Given a propositional LO1 program P , its fix-
point semantics, denoted F (P ), is defined as follows:

F (P ) = lfp(TP ) = TP↑ω .

The fixpoint semantics is sound and complete with respect to the operational semantics,
as stated in the following theorem.

Theorem 8.9 (Soundness and Completeness) For every propositional LO1 program
P , F (P ) = O(P ).

8.2 Constraint Semantics for LO1

In this section we will introduce an abstract domain (a constraint system using the termi-
nology of [AJ01b]) which consists of constraint-based representations of provable multisets,
and we will define a symbolic fixpoint operator over this domain. The application of this
operator is effective. Proposition 8.2 shows however that there is no guarantee that its
fixpoint can be reached after finitely many steps. Using the analogy between Petri nets
and vector addition systems, we make use of a class of constraints over integer variables
counting occurrences of atoms inside multisets (markings). Specifically, we use vectors of
variables x = 〈x1, . . . , xn〉, where variable xi denotes the number of occurrences of ai ∈ Σ
in a given fact. We give the following definition.

Definition 8.10 (Occurrence Constraints) Let A be a fact. We define the following
class of constraints.

αA(x,x′) ≡ ∧n
i=1 xi = x′i +A(ai)

ρA(x,x′) ≡ ∧n
i=1 xi = x′i −A(ai) ∧ xi ≥ 0

φA ≡
∧n
i=1 xi = A(ai)

φ[[A]] ≡
∧n
i=1 xi ≥ A(ai)

Rem(ϕ,A) = ∃x′.(ϕ[x′/x] ∧ ρA(x,x′))

Add(ϕ,A) = ∃x′.(ϕ[x′/x] ∧ αA(x,x′))

ϕ1 ⊗ϕ2 = ∃x′.∃x′′.(ϕ1[x
′/x] ∧ ϕ2[x

′′/x] ∧ x = x′ + x′′)

Example 8.11 Let Σ = {a1, a2}, and consider the multisets A = {a1, a1, a2}, B =
{a1, a2}. Then, φA ≡ x1 = 2 ∧ x2 = 1, φ[[A]] ≡ x1 ≥ 2 ∧ x2 ≥ 1, Rem(φ[[A]],B) ≡
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∃x′1, x′2.(x′1 ≥ 2 ∧ x′2 ≥ 1 ∧ x1 = x′1 − 1 ∧ x2 = x′2 − 1 ∧ x1 ≥ 0 ∧ x2 ≥ 0). This latter con-
straint is equivalent to x1 ≥ 1∧x2 ≥ 0. We also have that φ[[A]] ⊗φB ≡ ∃x′1, x′2, x′′1, x′′2.(x′1 ≥
2 ∧ x′2 ≥ 1 ∧ x′′1 = 1 ∧ x′′2 = 1 ∧ x1 = x′1 + x′′1 ∧ x2 = x′2 + x′′2). This constraint is equivalent
to x1 ≥ 3 ∧ x2 ≥ 2. 2

Using constraints of the form φ[[A]], for a fact A, we can immediately recover the seman-
tics of Section 7.2. All the operations on multisets involved in the definition of SP (see
Definition 7.14) can be expressed as operations over linear constraints. For instance, the
ideal generated by the empty multiset ǫ corresponds to the linear constraint φ[[ǫ]]; given the
ideals [[A]] and [[B]], the ideal [[A • B]] is represented as the constraint φ[[A]] ∧ φ[[B]], [[B\A]] is
represented as the constraint Rem(φ[[B]],A). The constraint ρA models the removal of the
occurrences of the propositional symbols in A from all elements of the denotation of B.
Similarly, [[B +A]], for a given multiset A, is represented as the constraint Add(φ[[B]],A).

The introduction of the constant 1 breaks down Proposition 3.9. As a consequence, the
abstraction based on ideals is not precise anymore. In order to give a semantics for LO1,
we need to add a class of constraints for representing collections of multisets that are not
upward-closed. Specifically, we need equality constraints of the form φA. The operations
over linear constraints discussed previously extend smoothly when adding this new class
of equality constraints. In particular, given two constraints ϕ1 and ϕ2, their conjunction
ϕ1 ∧ ϕ2 still plays the role that the operation • (least upper bound of multisets) had in
Definition 7.14, while Rem(ϕ,A), for a given constraint ϕ and a multiset A, plays the role
of multiset difference. The reader can compare Definition 7.14 with Definition 8.15.

For the class of linear integer constraints presented above, it is well-known that there
are algorithms for checking satisfiability, entailment, and for variable elimination (see e.g.
[BGP97]).

Based on these ideas, we can define a bottom-up evaluation procedure for LO1 programs via
a symbolic operator SP . In the following we will use the notation ĉ, where c = 〈c1, . . . , cn〉 is
a solution of a constraint ϕ (i.e., an assignment of natural numbers to the variables x which
satisfies ϕ), to indicate the multiset over Σ = {a1, . . . , an} which contains ci occurrences of
every propositional symbol ai (formally, ĉ = c1 · {a1}+ . . .+ cn · {an}). Note that according
to this notation, c is the unique solution of φbc (e.g. 〈1, 0, 0, . . .〉 is the unique solution of

φ{a1}). We extend this definition to a set C of constraint solutions by Ĉ = {ĉ | c ∈ C}.
We then define the denotation of a given constraint ϕ, written [[ϕ]], as the set of multisets
corresponding to solutions of ϕ. Formally, we have the following definition.

Definition 8.12 (Denotation of a Constraint) Given a linear constraint ϕ over the
integer variables 〈x1, . . . , xn〉, its denotation [[φ]] is given by

[[ϕ]] = {ĉ | x = c satisfies ϕ}.
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Two constraints ϕ and ψ are said to be equivalent, written ϕ ≃ ψ, if and only if [[ϕ]] = [[ψ]]
(i.e., we identify constraints with the same set of solutions).

For the sake of simplicity, in the following we will identify a constraint with its equivalence
class, i.e., we will simply write ϕ instead of [ϕ]≃. Let LCΣ be the set of (equivalence
classes of) of linear constraints over the integer variables x = 〈x1, . . . , xn〉 associated to
the signature Σ = {a1, . . . , an}. The operator SP is defined on constraint interpretations
consisting of sets (disjunctions) of (equivalence classes of) linear constraints. We have the
following definitions.

Definition 8.13 (Constraint Interpretation) We say that I ⊆ LCΣ is a constraint
interpretation. Constraint interpretations form a complete lattice 〈D,⊆〉 with respect to
set inclusion, where D = P(LCΣ).

Definition 8.14 (Denotation of a Constraint Interpretation) Given a constraint
interpretation I, its denotation [[I]] is the interpretation given by

[[I]] = {[[ϕ]] | ϕ ∈ I}.

For brevity, we will define the semantics directly on interpretations consisting of the repre-
sentative elements of the equivalence classes. Also, in the following definitions we assume
that the conditions apply only when the constraints involved are satisfiable. First of all, we
extend the definition of the satisfiability judgment using operations over constraints (see
Definition 8.10) as follows.

Definition 8.15 (Abstract Satisfiability Judgment) Let P be a propositional LO1

program and I an interpretation. The abstract satisfiability judgment 
 is defined as fol-
lows:

I 
 ⊤,∆ ◮φ[[ǫ]];

I 
 1 ◮φǫ;

I 
 A ◮Rem(ψ,A), for ψ ∈ I;
I 
 G1 &G2,∆ ◮ϕ1 ∧ ϕ2 if I 
 G1,∆ ◮ϕ1, I 
 G2,∆ ◮ϕ2;

I 
 G1 ⊗G2,∆1,∆2 ◮ϕ1 ⊗ϕ2 if I 
 G1,∆1 ◮ϕ1, I 
 G2,∆2 ◮ϕ2;

I 
 G1
............................................
...........
........
................................ G2,∆ ◮ϕ if I 
 G1, G2,∆ ◮ϕ;

I 
 ⊥,∆ ◮ϕ if I 
 ∆ ◮ϕ.

The connection between the satisfiability judgments |= and 
 is clarified by the following
lemma.
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Lemma 8.16 For every interpretation I, context ∆, and constraint ϕ,

i. if I 
 ∆ ◮ϕ, then [[I]] |= ∆ ◮A for every A ∈ [[ϕ]];

ii. if [[I]] |= ∆ ◮A, then there exists ϕ such that I 
 ∆ ◮ϕ and A ∈ [[ϕ]].

Proof

i. By induction on the derivation of I 
 ∆ ◮ϕ.

- If I 
 ⊤,∆ ◮ϕ, then every c (with ci ≥ 0) is solution of ϕ ≡ ∧n
i=1 xi ≥ 0, and

[[I]] |= ⊤,∆ ◮A′ for every fact A′;

- if I 
 1 ◮ϕ, then 〈0, . . . , 0〉 is the only solution of ϕ, and [[I]] |= 1 ◮ ǫ;

- if I 
 A ◮ϕ then there exists ψ ∈ I s.t. ϕ ≡ ∃x′.(ψ[x′/x] ∧ ρA(x,x′)) is
satisfiable. Then for every solution c of ϕ there exists a vector c′ s.t. ψ[c′/x]
is satisfiable and c′1 ≥ A(a1), c1 = c′1 −A(a1), . . . , c

′
n ≥ A(an), cn = c′n −A(an).

From this we get that for i = 1, . . . , n, c′i = ci + A(ai) is a solution for ψ,
therefore ĉ +A ∈ [[ψ]] ⊆ [[I]] so that we can conclude [[I]] |= A ◮ ĉ;

- if I 
 G1 &G2,∆ ◮ϕ then ϕ ≡ ϕ1 ∧ ϕ2 and I 
 G1,∆ ◮ϕ1, I 
 G2,∆ ◮ϕ2. By
inductive hypothesis, [[I]] |= G1,∆ ◮ ĉ1 and [[I]] |= G2,∆ ◮ ĉ2 for every c1 and
c2 solutions of ϕ1 and ϕ2, respectively. Thus [[I]] |= G1 &G2,∆ ◮ ĉ for every c
which is solution of both ϕ1 and ϕ2, i.e., for every c which is solution of ϕ1∧ϕ2;

- if I 
 G1 ⊗G2,∆1,∆2 ◮ϕ then then ϕ = ϕ1 ⊗ϕ2 and I 
 G1,∆1 ◮ϕ1, I 


G2,∆2 ◮ϕ2. By inductive hypothesis, [[I]] |= G1,∆1 ◮ ĉ1 and [[I]] |= G2,∆2 ◮ ĉ2

for every c1 and c2 solutions of ϕ1 and ϕ2, respectively. Hence, we get that
[[I]] |= G1 ⊗G2,∆1,∆2 ◮ ĉ1 + ĉ2 for every c1 and c2 solutions of ϕ1 and ϕ2, i.e.,
[[I]] |= G1 ⊗G2,∆1,∆2 ◮ ĉ for every c which is solution of ϕ1 ⊗ϕ2;

- the ............................................
...........
........
................................ -case and ⊥-case follow by a straightforward application of the inductive

hypothesis.

ii. By induction on the derivation of [[I]] |= ∆ ◮A.

- [[I]] |= ⊤,∆ ◮ ĉ for every c, and I 
 ⊤,∆ ◮ϕ, where ϕ ≡ x1 ≥ 0, . . . , xn ≥ 0,
and every c is solution of ϕ;

- if [[I]] |= 1 ◮ ǫ, ǫ = ̂〈0, . . . , 0〉, then I 
 1 ◮ϕ, where ϕ ≡ x1 = 0, . . . , xn = 0, and
〈0, . . . , 0〉 is solution of ϕ;

- if [[I]] |= A ◮ ĉ then ĉ + A ∈ [[I]], therefore there exists ψ ∈ I s.t. ĉ + A ∈ [[ψ]].
Therefore, if a is such that â = A, we have that ψ[c + a/x] is satisfiable, c is
solution of ϕ ≡ ∃x′.(ψ[x′/x] ∧ ρA(x,x′)) and I 
 A ◮ϕ;
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- if [[I]] |= G1 &G2,∆ ◮ ĉ then [[I]] |= G1,∆ ◮ ĉ and [[I]] |= G2,∆ ◮ ĉ. By inductive
hypothesis, there exist ϕ1 and ϕ2 such that I 
 G1,∆ ◮ϕ1 and I 
 G2,∆ ◮ϕ2,
and c is a solution of ϕ1 and ϕ2. Therefore I 
 G1 &G2,∆ ◮ϕ1 ∧ ϕ2 and c is a
solution of ϕ1 ∧ ϕ2;

- if [[I]] |= G1 ⊗G2,∆1,∆2 ◮ ĉ then there exist c1 and c2 s.t. c = c1 + c2, [[I]] |=
G1,∆1 ◮ ĉ1 and [[I]] |= G2,∆2 ◮ ĉ2. By inductive hypothesis, there exist ϕ1 and
ϕ2 such that I 
 G1,∆1 ◮ϕ1 and I 
 G2,∆2 ◮ϕ2, c1 is a solution of ϕ1 and c2

is a solution of ϕ2. Therefore I 
 G1 ⊗G2,∆1,∆2 ◮ϕ1 ⊗ϕ2 and c is a solution
of ϕ1 ⊗ϕ2;

- the ............................................
...........
........
................................ -case and ⊥-case follow by a straightforward application of the inductive

hypothesis.

2

The satisfiability judgment 
 also satisfies the following properties.

Lemma 8.17 For every interpretation I1, I2, . . ., context ∆, and constraint ϕ,

i. if I1 ⊆ I2 and I1 
 ∆ ◮ϕ, then I2 
 ∆ ◮ϕ;

ii. if I1 ⊆ I2 ⊆ . . . and
⋃∞
i=1 Ii 
 ∆ ◮ϕ then there exists k ∈ N s.t. Ik 
 ∆ ◮ϕ.

Proof

i. By simple induction on the derivation of I1 
 ∆ ◮ϕ.

ii. By induction on the derivation of
⋃∞
i=1 Ii 
 ∆ ◮ϕ.

- The ⊤ and 1-cases follow by definition;

- if
⋃∞
i=1 Ii 
 A ◮ϕ, then there exists ψ ∈ ⋃∞

i=1 Ii s.t. ϕ ≡ ∃x′.(ψ[x′/x]∧ρA(x,x′))
is satisfiable. Then there exists k s.t. ψ ∈ Ik and Ik 
 A ◮ϕ;

- if
⋃∞
i=1 Ii 
 G1 &G2,∆ ◮ϕ, then ϕ ≡ ϕ1 ∧ ϕ2, and, by inductive hypothesis,

there exist k1 and k2 s.t. Ik1 
 G1,∆ ◮ϕ1 and Ik2 
 G2,∆ ◮ϕ2. Then, for
k = max{k1, k2}, we have, by i, Ik 
 G1,∆ ◮ϕ1 and Ik 
 G2,∆ ◮ϕ2, therefore
Ik 
 G1 &G2,∆ ◮ϕ1 ∧ ϕ2;

- the ⊗-case is analogous to the & -case above;

- the ............................................
...........
.......
................................. -case and ⊥-case follow by a straightforward application of the inductive

hypothesis.
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2

We are now ready to define the extended operator SP .

Definition 8.18 (Abstract Fixpoint Operator SP) Given a propositional LO1 pro-
gram P and an interpretation I, the abstract fixpoint operator SP is defined as follows:

SP (I) = {Add(ψ, Ĥ) | H ◦−G ∈ P, I 
 G ◮ψ}

We recall that the constraint Add(·, ·) is defined in Definition 8.10. The following property
shows that SP is sound and complete w.r.t. TP .

Proposition 8.19 For every propositional LO1 program P and interpretation I, [[SP (I)]]
= TP ([[I]]).

Proof Let ĉ ∈ [[SP (I)]], then there exist ϕ ∈ SP (I) and a clause H ◦− G ∈ P , s.t. c is
solution of ϕ, ϕ ≡ ∃x′.(ψ[x′/x] ∧ α bH(x,x′)) and I 
 G ◮ψ. Then there exists c′ solution

of ψ s.t. ĉ = ĉ′ + Ĥ, and, by Lemma 8.16 i, [[I]] |= G ◮ ĉ′. Therefore, by definition of TP ,

ĉ = ĉ′ + Ĥ ∈ TP ([[I]]).
Vice versa, let ĉ ∈ TP ([[I]]), then there exists H ◦− G ∈ P s.t. [[I]] |= G ◮A and ĉ =

Ĥ + A. By Lemma 8.16 ii, there exists ψ s.t. I 
 G ◮ψ and A ∈ [[ψ]]. Therefore

ϕ ≡ ∃x′.(ψ[x′/x] ∧ α bH(x,x′)) ∈ SP (I), and ĉ = Ĥ +A ∈ [[ϕ]] ⊆ [[SP (I)]]. 2

The abstract fixpoint operator SP satisfies the following property.

Proposition 8.20 (Monotonicity and Continuity) For every propositional LO1 pro-
gram P , the abstract fixpoint operator SP is monotonic and continuous over the lattice
〈D,⊆〉.

Proof Monotonicity. Immediate from SP definition and Lemma 8.17 i.
Continuity. Let I1 ⊆ I2 ⊆ . . ., be a chain of interpretations. We show that SP (

⋃∞
i=1 Ii) ⊆⋃∞

i=1 SP (Ii). If ϕ ∈ SP (
⋃∞
i=1 Ii), by definition there exists a clause H ◦− G ∈ P s.t.⋃∞

i=1 Ii 
 G ◮ψ and ϕ ≡ ∃x′.(ψ[x′/x] ∧ α bH(x,x′)) is satisfiable. By Lemma 8.17 ii, there
exists k s.t. Ik 
 G ◮ψ. This implies that ϕ ∈ SP (Ik), i.e., ϕ ∈ ⋃∞

i=1 SP (Ii). 2

Corollary 8.21 [[lfp(SP )]] = lfp(TP ).

Now, let Fsym(P ) = lfp(SP ), then we have the following main theorem. which shows that
SP can be used (without termination guarantee) to compute symbolically the set of logical
consequences of an LO1 program.
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Theorem 8.22 (Soundness and Completeness) For every propositional LO1 pro-
gram P , O(P ) = F (P ) = [[Fsym(P )]].

Proof By Theorem 8.9 and Corollary 8.21. 2

8.3 Bottom-Up Evaluation for LO1

Using a constraint-based representation for LO1 provable multisets, we have reduced the
problem of computing O(P ) to the problem of computing the reachable states of a system
with integer variables. As shown by Proposition 8.2, the termination of the algorithm is
not guaranteed a priori. In this respect, Theorem 7.24 gives us sufficient conditions that
ensure its termination. The abstract fixpoint operator SP of Section 8.2 is defined over
the lattice 〈P(LCΣ),⊆〉, with set inclusion being the partial order relation and set union
the least upper bound operator. When we come to a concrete implementation of SP , it
is worth considering a weaker ordering relation between interpretations, namely pointwise
subsumption. By analogy with the multiset inclusion relation 4, let 4c be the partial order
between (equivalence classes of) constraints given by ϕ 4c ψ if and only if [[ψ]] ⊆ [[ϕ]]. In
accordance with the definition of pointwise subsumption given in Section 6.1.2, we say that
an interpretation I is subsumed by an interpretation J , written I ⊑ J , if and only if for
every ϕ ∈ I there exists ψ ∈ J such that ψ 4c ϕ.

As we do not need to distinguish between different interpretations representing the same
set of solutions, we can consider interpretations I and J to be equivalent in case both
I ⊑ J and J ⊑ I hold. In this way, we get a lattice of interpretations ordered by ⊑ and
such that the least upper bound operator is still set union. This construction is the natural
extension of the one of Section 7.2. Actually, when we limit ourselves to considering LO
programs (i.e., without the constant 1) it turns out that we need only consider constraints
of the form x ≥ c, which can be abstracted away by considering the upward closure of
ĉ, as we did in Section 7.2. The reader can note that the 4c relation defined above for
constraints is an extension of the multiset inclusion relation we used in Section 7.2.

The construction based on ⊑ can be directly incorporated into the semantic framework
presented in Section 8.2, where, for the sake of simplicity, we have adopted an approach
based on ⊆. Of course, relation ⊆ is stronger than ⊑, therefore a computation based on
⊑ is correct and it terminates every time a computation based on ⊆ does. However, the
converse does not always hold, and this is why a concrete algorithm for computing the
least fixpoint of SP relies on subsumption. Let us see an example.

Example 8.23 We calculate the fixpoint semantics for the following LO1 program made
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SP↑1 = { xa = 1 ∧ xb = 0 ∧ xc = 0, xa ≥ 1 ∧ xb ≥ 1 ∧ xc ≥ 0,
xa ≥ 0 ∧ xb ≥ 0 ∧ xc ≥ 2 }

SP↑2 = { xa = 0 ∧ xb = 2 ∧ xc = 0, xa ≥ 0 ∧ xb ≥ 3 ∧ xc ≥ 0,
xa ≥ 2 ∧ xb ≥ 0 ∧ xc ≥ 0 } ∪ SP↑1

SP↑3 = { xa = 0 ∧ xb = 1 ∧ xc = 1, xa ≥ 0 ∧ xb ≥ 2 ∧ xc ≥ 1,
xa ≥ 1 ∧ xb ≥ 0 ∧ xc ≥ 1 } ∪ SP↑2

Figure 8.2: Symbolic fixpoint computation for an LO1 program

up of six clauses:
1. a ◦− 1

2. a ............................................
...........
.......
................................. b ◦− ⊤

3. c ............................................
...........
........
................................ c ◦− ⊤

4. b ............................................
...........
........
................................ b ◦− a

5. a ◦− b
6. c ◦− a& b

Let Σ = {a, b, c} and consider constraints over the variables x = 〈xa, xb, xc〉. We have that
SP ↑0= ∅ 
 1 ◮ xa = 0 ∧ xb = 0 ∧ xc = 0, therefore, by the first clause, ϕ ∈ SP ↑1, where
ϕ = ∃x′.(x′a = 0 ∧ x′b = 0 ∧ x′c = 0 ∧ xa = x′a + 1 ∧ xb = x′b ∧ xc = x′c), which is equivalent
to xa = 1 ∧ xb = 0 ∧ xc = 0. From now on, we leave to the reader the details concerning
equivalence of constraints. By reasoning in a similar way, using clauses 2 and 3 we calculate
SP↑1 (see Figure 8.2).

We now compute SP ↑2. By 4, as SP↑1 
 a ◮xa = 0 ∧ xb = 0 ∧ xc = 0, we get xa = 0 ∧
xb = 2 ∧ xc = 0, and, similarly, we get xa ≥ 0 ∧ xb ≥ 3 ∧ xc ≥ 0. By 5, we have
xa ≥ 2 ∧ xb ≥ 0 ∧ xc ≥ 0, while clause 6 is not (yet) applicable. Therefore, modulo
redundant constraints (i.e., constraints subsumed by the already calculated ones) the value
of SP↑2 is given in Figure 8.2.

Now, we can compute SP ↑3. By 4 and xa ≥ 2 ∧ xb ≥ 0 ∧ xc ≥ 0 ∈ SP ↑2 we get
xa ≥ 1 ∧ xb ≥ 2 ∧ xc ≥ 0, which is subsumed by xa ≥ 1 ∧ xb ≥ 1 ∧ xc ≥ 0. By
5 and xa = 0 ∧ xb = 2 ∧ xc = 0, we get xa = 1 ∧ xb = 1 ∧ xc = 0, subsumed by
xa ≥ 1 ∧ xb ≥ 1 ∧ xc ≥ 0. Similarly, by 5 and xa ≥ 0 ∧ xb ≥ 3 ∧ xc ≥ 0 we get redundant
information. By 6, from xa ≥ 1 ∧ xb ≥ 1 ∧ xc ≥ 0 and xa = 0 ∧ xb = 2 ∧ xc = 0 we get
xa = 0 ∧ xb = 1 ∧ xc = 1, from xa ≥ 1 ∧ xb ≥ 1 ∧ xc ≥ 0 and xa ≥ 0 ∧ xb ≥ 3 ∧ xc ≥ 0
we get xa ≥ 0 ∧ xb ≥ 2 ∧ xc ≥ 1, and finally from xa ≥ 2 ∧ xb ≥ 0 ∧ xc ≥ 0 and
xa ≥ 1 ∧ xb ≥ 1 ∧ xc ≥ 0 we have xa ≥ 1 ∧ xb ≥ 0 ∧ xc ≥ 1. The reader can verify that
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no additional provable multisets can be obtained. It is somewhat tedious, but in no way
difficult, to verify that clause 6 yields only redundant information when applied to every
possible couple of constraints in SP↑3. We have then SP↑4= SP↑3= Fsym(P ), so that in this
particular case we achieve termination. We can reformulate the operational semantics of
P using the more suggestive multiset notation (we recall that [[A]] = {B | A 4 B}, where
4 is multiset inclusion):

F (P ) = {{a}, {b, b}, {b, c}} ∪ [[{a, b}, {c, c}, {b, b, b}, {a, a}, {b, b, c}, {a, c}]].

2

Example 8.24 Let us consider the LO1 program P of Example 3.13, which is given below.

1. c ............................................
...........
........
................................ c ◦− ⊤

2. a ............................................
...........
........
................................ b ◦− 1

3. b ◦− a⊗ c

Let Σ = {a, b, c} and consider constraints over the variables x = 〈xa, xb, xc〉. By axioms 1
and 2 we get that

SP↑1= {xa ≥ 0 ∧ xb ≥ 0 ∧ xc ≥ 2, xa = 1 ∧ xb = 1 ∧ xc = 0}.

Now we can apply clause 3 We have that SP↑1 
 a ◮xa = 0 ∧ xb = 1 ∧ xc = 0, and also
SP↑1 
 c ◮xa ≥ 0 ∧ xb ≥ 0 ∧ xc ≥ 1, therefore by the ⊗-case of 
 definition we have SP↑1 


a⊗ c ◮xa ≥ 0 ∧ xb ≥ 1 ∧ xc ≥ 1. By definition of SP , the constraint xa ≥ 0∧xb ≥ 2∧xc ≥ 1
belongs to SP↑2. There are no other elements except for redundant ones, therefore we can
assume

SP↑2= SP↑1 ∪ {xa ≥ 0 ∧ xb ≥ 2 ∧ xc ≥ 1}.
Now, we can still apply clause 3. We have that SP↑2 
 c ◮xa ≥ 0 ∧ xb ≥ 2 ∧ xc ≥ 0. By
combining this with SP↑2 
 a ◮xa = 0 ∧ xb = 1 ∧ xc = 0, we get the following judgment:
SP↑2 
 a⊗ c ◮xa ≥ 0 ∧ xb ≥ 3 ∧ xc ≥ 0. The new element is therefore xa ≥ 0 ∧ xb ≥
4 ∧ xc ≥ 0, and we can assume

SP↑3= SP↑2 ∪ {xa ≥ 0 ∧ xb ≥ 4 ∧ xc ≥ 0}.

As the reader can verify, SP ↑4= SP ↑3= Fsym(P ). Therefore, using the multiset notation
we have that

F (P ) = {{a, b}} ∪ [[{c, c}, {b, b, c}, {b, b, b, b}]].
2
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——————————————————————————————————

8.4 An Example: Readers/Writers

——————————————————————————————————

We conclude the chapter with an informal discussion about the connection between linear
logic specifications and the theory of broadcast protocols presented in Section 4.4.2. In
particular, we will show how the readers/writers example of Section 4.4.1 can be encoded
in the fragment LO1. The idea, explained below, is to exploit the capability of counting
resources given by the constant 1, together with the operational semantics of the additive
conjunction & , to implement the invalidation phase of the above protocol.

The readers/writers protocol presented in Section 4.4.1 is an abstraction of consistency
protocols used for maintaining coherence in distributed database systems. We have a set
of identical processes which compete for a shared resource. Processes can be reading, writ-
ing, or otherwise be idle. Processes are allowed to concurrently read the given resource,
while writing must be an exclusive operation. This protocol can be encoded by introduc-
ing a central monitor which serializes the accesses to the shared resource. The monitor
must guarantee mutual exclusion between agents with read and write access, and between
processes with write access.

The linear logic encoding of the above protocol is as follows. First of all, let us discuss the
initialization phase. As usual, we introduce a propositional symbol init to load the initial
configuration, and the following LO clauses:

1. init ◦− init ............................................
...........
........
................................ idle

2. init ◦−monitor
The first clause creates an arbitrary number of idle processes, which can compete for the
given shared resource. The second clause terminates the initialization phase by creating the
central monitor. Note that the number of initial processes is a parameter of the protocol.

Idle processes can non-deterministically request to upgrade their rights by sending a request
to the monitor. In response to such a request, the monitor (whose task is to serialize the
requests) enters a state in which it starts sending invalidation messages to the other agents.
The encoding is as follows.

3. idle ............................................
...........
.......
................................. monitor ◦− read req ............................................

...........
.......
................................. read inv

4. idle ............................................
...........
........
................................ monitor ◦− write req ............................................

...........
........
................................ write inv

Clause 3 and 4 deal with the case of idle processes willing to get, respectively, read access
or write access. In response to the corresponding requests, named read req and write req,
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the monitor enters an invalidation state called read inv or write inv. Note that after a
given request has been received by the monitor, no other requests can be accepted until
the first one has been processed to completion. This is enforced by requiring processes to
explicitly synchronize with the atom monitor, and removing it from the current state after
backchaining on the above clauses.

In the following we use the propositional symbols reading and writing to denote processes
in the corresponding state. A simple refinement of the above specification is given by the
following clause.

5. reading ............................................
...........
........
................................ idle ◦− write req ............................................

...........
........
................................ write inv

Namely, we allow a reading process to ask the monitor for an upgrade to state writing.
As for any write request, the monitor must enter a state of write invalidation.

Let us now discuss the core of the protocol, i.e., the invalidation phase. The coherence
protocol works as follows. Every time a process requests a write access, a broadcast message
must be sent to all reading and writing processes, requiring they downgrade their state to
idle. The management of read requests is similar, with the difference that only writing
processes must be invalidated. The broadcast can be simulated using an invalidation cycle,
as follows.

6. read inv ............................................
...........
.......
................................. writing ◦− read inv ............................................

...........
.......
................................. idle

7. write inv ............................................
...........
........
................................ writing ◦− write inv ............................................

...........
........
................................ idle

8. write inv ............................................
...........
........
................................ reading ◦− write inv ............................................

...........
........
................................ idle

The following clauses can be used to test that all processes which are required to be
invalidated have moved to state idle. Note the use of the & connective.

9. read inv ............................................
...........
........
................................ read req ◦− test read& (monitor ............................................

...........
........
................................ reading)

10. write inv ............................................
...........
........
................................ write req ◦− test write& (monitor ............................................

...........
........
................................ writing)

Let us discuss for instance clause 9. Using the connective & , we split the computation into
two branches. In the first one, we use the atom test read to test that all writing processes
have been invalidated. If this check is successful, in the other branch we grant read access
to the requesting process, re-initializing the monitor, which will be ready to accept new
requests afterwards. Clause 10 is similar. The test phase is implemented by the following
clauses. Note the use of the constant 1 to count resources.

11. test read ............................................
...........
.......
................................. idle ◦− test read

12. test write ............................................
...........
........
................................ idle ◦− test write

13. test read ............................................
...........
........
................................ reading ◦− test read

14. test read ◦− 1

15. test write ◦− 1

Intuitively, the test succeeds only when the resources at the moment of its first invocation do
not contain occurrences of atoms representing a forbidden access (i.e., reading or writing
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P ⊢1 1
1r

P ⊢1 test write
bc(15)

P ⊢1 idle, test write
bc(12)

P ⊢1 idle, idle, test write
bc(12)

P ⊢1 idle, idle, idle, test write
bc(12)

....
P ⊢1 monitor, writing, idle, idle, idle

P ⊢1 idle, idle, idle, test write& (monitor ............................................
...........
........
................................ writing)

& r

P ⊢1 idle, idle, idle, write req, write inv
bc(10)

P ⊢1 reading, idle, idle, write req, write inv
bc(8)

P ⊢1 reading, reading, idle, write req, write inv
bc(8)

P ⊢1 monitor, reading, reading, idle, idle
bc(4)

Figure 8.3: Invalidation phase for the readers/writers example

atoms for a write request and writing atoms for a read request). This check on the global
state is performed using two important aspects of LO1: the use of the additive conjunction
& , which allows to create an auxiliary branch of the current computation in which the
global context is copied to (clauses 9 and 10), and the capability of counting resources
introduced with the constant 1 (clauses 14 and 15).

Example 8.25 Let P the LO1 program consisting of clauses 1 through 15 above. Figure
8.3 presents an LO proof showing how the invalidation phase works. We have a configura-
tion consisting of the central monitor, two reading processes and two idle processes. One
of the two idle processes asks the monitor for being granted a write access. The central
monitor accepts the request and starts the invalidation phase. As a result, both reading
processes are downgraded to state idle. Once invalidation has been performed, a test is
made to ensure that all processes have been invalidated. The test is performed in the
left branch of the proof in Figure 8.3: idle processes are removed one by one and a check
is made to ensure that there are no other processes left. The right branch of the proof
in Figure 8.3 represents the main branch of the computation: the requesting process is
finally granted the write access and the monitor is re-initialized. As a result, the final
configuration consists of the central monitor, one writing process and three idle processes.

2
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8.4.1 Verification of the Readers/Writers Protocol

The readers/writers protocol presented in Section 8.4 must satisfy a mutual exclusion
property. Specifically, we wish to ensure that no read and write accesses are granted
simultaneously, and that write operations are exclusive. In this section we show how
the constraint bottom-up semantics for LO1 discussed in Section 8.2 can be exploited
to formally validate the readers/writers protocol with respect to the mutual exclusion
property. As LO1 specifications are currently not supported by our automatic verification
tool (see Appendix A), we have evaluated the semantics for the above example by hand.

We fix the following conventions. Let Σ be the signature comprising the propositional
symbols used in the specification of the readers/writers protocol of Section 8.4. In order to
manage occurrence constraints, we associate to every symbol a ∈ Σ a variable xa (e.g. we
have xidle, xmonitor, and so on). Let V the resulting (finite) set of variables. We introduce
the following compact notation. Given a constraint ϕ, we denote by ϕ ∧ REST ⋄ 0, where
⋄ ∈ {=,≥}, the constraint ϕ ∧ x1 ⋄ 0 ∧ . . . ∧ xk ⋄ 0, where {x1, . . . , xk} = V\FV (ϕ).

First of all, we must specify the set of unsafe states of the readers/writers protocol. As
usual, we introduce LO axioms to specify the minimality violations of the mutual exclusion
property, as follows.

16. reading ............................................
...........
........
................................ writing ◦− ⊤

17. writing ............................................
...........
.......
................................. writing ◦− ⊤

A configuration is unsafe if there are at least two processes whose access rights are in
conflict.

We are now ready to compute the constraint semantics for the resulting specification, i.e.,
the LO1 program consisting of clauses 1 through 17. Starting from the axioms (i.e., clauses
14 through 17), we compute the interpretation made up of the following constraints:

ϕ1. xtest read = 1 ∧ REST = 0

ϕ2. xtest write = 1 ∧ REST = 0

ϕ3. xreading ≥ 1 ∧ xwriting ≥ 1 ∧ REST≥ 0

ϕ4. xwriting ≥ 2 ∧ REST≥ 0

The remaining program clauses can now be applied to the above constraint interpretation.
However, we can immediately notice that the fixpoint computation is not terminating.
In fact, consider for instance clause 11, i.e., test read ............................................

...........
........
................................ idle ◦− test read. By repeatedly

applying this clause to the constraint xtest read = 1 ∧ REST = 0, we get the new constraints
xtest read = 1 ∧ xidle = 1∧ REST = 0, xtest read = 1 ∧ xidle = 2∧ REST = 0, and so on. In other
words, clause 11 can introduce an arbitrary number of idle atoms into any configuration
containing a test read atom. Similarly, clause 12 can introduce idle atoms into a config-
uration containing a test write atom, and, finally, clause 13 can introduce reading atoms
into a configuration containing a test read atom.
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ϕ′
1. xtest read = 1 ∧ xreading ≥ 0 ∧ xidle ≥ 0 ∧ REST =0

ϕ′
2. xtest write = 1 ∧ xidle ≥ 0 ∧ REST =0

ϕ3. xreading ≥ 1 ∧ xwriting ≥ 1 ∧ REST≥ 0

ϕ4. xwriting ≥ 2 ∧ REST≥ 0

Figure 8.4: Fixpoint computed using invariant strengthening for the readers/writers pro-
tocol

A way to avoid non-termination of the fixpoint computation is to exploit the methodology
of invariant strengthening described in Section 6.1.2.1. To this aim, consider the following
constraints:

ϕ′
1. xtest read = 1 ∧ xreading ≥ 0 ∧ xidle ≥ 0 ∧ REST =0

ϕ′
2. xtest write = 1 ∧ xidle ≥ 0 ∧ REST =0

These constraints formalize the intuitive idea explained above. For instance, the first one
states that any configuration with one test read atom and any number of reading and idle
atoms (and nothing else) is reachable. Similarly for the second constraint. In other words,
we have performed a widening operation by transforming a chain of constraints like x = 0,
x = 1, x = 2, and so on, into a constraint like x ≥ 0.

Consider the interpretation shown in Figure 8.4. This interpretation strictly includes the
interpretation computed at the first step (i.e., without invariant strengthening). By Propo-
sition 6.15, we are allowed to start the evaluation of the bottom-up semantics from the
set of constraints in Figure 8.4. If we can prove that the modified problem is unsatisfiable
(i.e., the atom init is not backward reachable) then Proposition 6.15 guarantees that also
the original problem is unsatisfiable. Note that the intuition we used to compute the mod-
ified constraints ϕ′

1 and ϕ′
2 does not matter at this level: in order for the methodology of

invariant strengthening to be sound, we only need to ensure that the set of unsafe states
we start the computation from is larger than the original one (and this is evident for the
interpretation of Figure 8.4).

It turns out that the interpretation shown in Figure 8.4 is actually the fixpoint yielded by
the bottom-up computation. In order to verify this, we need to ensure that nothing else
can be produced by applying clauses 1 through 13. We have the following:

• clauses 1 through 8 are not applicable to constraints ϕ′
1 and ϕ′

2 (e.g. the body of
clause 1 contains an atom init, whereas xinit = 0 in ϕ′

1 and ϕ′
2), whereas ϕ3 and ϕ4

are closed w.r.t. applications of clauses 1 through 8;

• clause 9 is not applicable. In fact, the semantics of & requires to find a common
context in which the two conjuncts are both provable. However, this is not possible
for the following reasons. The second conjunct, monitor ............................................

...........
.......
................................. reading, is only satisfiable
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using ϕ3 and ϕ4, with an output context containing at least one writing process (i.e.,
xwriting ≥ 1). The first conjunct, test read, is satisfiable with ϕ′

1, but with an output
context containing zero writing processes (i.e., xwriting = 0); also, the first conjunct
is not satisfiable using ϕ′

2; finally, using ϕ3 and ϕ4 to satisfy the first conjunct we get
ϕ3 and ϕ4, therefore nothing new is computed;

• clause 10 is not applicable (we can use a similar argument as for clause 9; note that
the second conjunct, monitor ............................................

...........
........
................................ writing, is only satisfiable with an output context

such that either xreading ≥ 1 or xwriting ≥ 1, whereas the first conjunct, test write is
satisfiable using ϕ′

2 with an output context such that xreading = 0 and xwriting = 0);

• every constraint in Figure 8.4 is clearly closed with respect to applications of clauses
11 through 13.

We can conclude that the mutual exclusion property holds for the readers/writers protocol
presented in Section 8.4, independently of the number of initial processes.

8.5 Related Work

In this section we have extended the bottom-up semantics for propositional LO given in
Chapter 7, by considering an extension admitting the constant 1 (and the multiplica-
tive conjunction) in goals. Evaluating the resulting semantics amounts to computing the
reachability set for Petri nets, and is therefore undecidable [EN94].

The model of parameterized broadcast protocols has been introduced in [EN98], where a
technique extending the Karp and Miller’s coverability graph construction for Petri nets
[KM69] is proposed, and used to verify some safety properties for an invalidation-based
cache coherence problem. However, as shown in [EFM99], the procedure proposed in
[EN98] may not terminate (even for protocols with only broadcast moves), whereas the
model-checking problem for safety properties for broadcast protocols is decidable. In par-
ticular, in [EFM99] it is shown that a backward verification procedure, along the lines of
[ACJT96], can be used to check safety properties for broadcast protocols with termination
guarantee. A similar result, given in [FS01], shows that the covering problem for Petri
nets with transfer arcs is decidable. In [EFM99], it is also proved that the model-checking
problem for liveness properties for broadcast protocols is undecidable. Finally, we mention
that in [DEP99] efficient data structures for implementing constraint systems for broadcast
protocols are studied.

Concerning our work, and in particular the broadcast protocol encoding informally pre-
sented in Section 8.4, we note that in general our verification algorithm in not guaranteed
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to terminate (as stated in Proposition 8.2. Clearly, the constant 1 can be used to imple-
ment more powerful computational mechanisms than transfer arcs. However, as informally
shown in Section 8.4.1, termination can be enforced by using suitable acceleration operators
(see e.g. [JN00, PS00]). We will address this point as part of our future work.

Finally, we mention that in [AP91a] a different computational mechanism for LO pro-
grams, involving broadcast communication, is considered. This mechanism operates at the
meta-level and is an alternative to the classical interpretation of logic programs involving
the concepts of shared logic variable, unification and computed answer substitution. The
broadcast mechanism operates as follows. Every branch of a proof tree is seen as a different
object. Proof construction can be seen as a bidirectional process, which, starting from a
partially defined initial node, either extends a branch of the proof tree, or furtherly specifies
the initial node. Partially specified nodes can be instantiated every time the backchaining
rule (method activation) is fired, and the relevant bindings are propagated backwards to
the root of the proof tree, and, consequently, to the other branches.

—————————————————————————————–

Summary of the Chapter. In this chapter we have discussed a fragment of
propositional linear logic consisting of the language LO presented in the previous
chapter enriched with the multiplicative conjunction and the constant 1. We have
extended the evaluation algorithm for computing the bottom-up semantics to this
fragment. The semantics is based on a class of meta-constraints which symbolically
represent provable multisets by counting resource occurrences. Though evaluation is
in general non-terminating, the semantics is still effective and complete with respect
to the operational semantics. We have shown that the greater expressive power of
this logic can be used to simulate broadcast primitives.

In the next chapter we will extend the language LO in another direction, namely

we will discuss a first-order formulation of LO with constraints. Constraints are an

elegant and convenient way to enrich logic languages with capabilities for reasoning

on specialized domains. We will isolate interesting fragments for which evaluation of

the bottom-up semantics is guaranteed to terminate.

—————————————————————————————–
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Chapter 9

Reasoning on Specialized Domains:
LO with Constraints

In this chapter we will extend the semantics presented in Chapter 7 by considering a first-
order formulation of LO. In particular, we will consider program clauses enriched with
constraints, as a means to reason on specialized domains. As in traditional constraint
programming [JM94], reasoning on heterogeneous domains (e.g. integer or real numbers,
strings and so on) is made easier by keeping the core specification logic separate from
the logic dealing with the particular domain under consideration. This solution is typi-
cally more flexible because reasoning on different domains can be delegated to specialized
constraint solvers.

In this chapter we will extend the construction of Chapter 7, which relates bottom-up
evaluation for LO programs with verification of concurrent systems specified as Petri nets.
In particular, using the concept of constraint we will be able to address the connection
between linear logic and coloured Petri nets (see Section 5.3). Our construction will pro-
vide an assertional language (in the sense of [KMM+97b]) to symbolically represent infinite
collections of states for systems parametric in several dimensions. The notion of constraint
is central to this construction. In fact, our approach is based on a combination of con-
straints and multiset rewriting (provided by the underlying fragment of linear logic). On
the one hand, multiset rewriting allows us to locally specify the behaviour of most concur-
rent systems in a natural way. On the other hand, annotating multiset rewrite rules with
constraints allows us to finitely and concisely (e.g. without the need of explicit axioms for
arithmetic operations) represent transition relations. Building upon these ideas, we will
introduce the notion of constrained multiset, which can be seen as a symbolic represen-
tation for upward-closed sets of markings of coloured Petri nets. Specifically, constraints
will be the technical device used to represent data attached to processes. Similarly to
Chapter 7, our construction will make use of a fixpoint operator to symbolically compute
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the predecessor operator on interpretations consisting of sets of constrained multisets. The
resulting bottom-up evaluation algorithm, according to the connection between provabil-
ity and reachability (see Section 6.3), can be viewed as an alternative to the so-called
occurrence-graph construction for coloured Petri nets [Jen97].

Technically, as in Chapter 7, we will define a bottom-up procedure to compute all goal
formulas which are provable from a given program. Thanks to the use of constraint solvers,
this semantics will be effective and complete with respect to the operational semantics.
Furthermore, we will isolate a fragment of first-order LO, enriched with constraints, for
which evaluation of the bottom-up semantics is guaranteed to terminate. We will exploit
this result to prove mutual exclusion for a parameterized formulation of the so-called ticket
protocol. As usual, for the sake of simplicity we re-use some notations like, e.g., the ones
for fixpoint operators and judgments.

Some preliminary results concerning the contents of this chapter appeared in [BDM01a,
BD02].

9.1 Enriching LO With Constraints

In this section we define the language LO enriched with constraints. First of all, we need
to define the notion of constraint system.

9.1.1 Constraint Systems

Definition 9.1 (Constraint System) A constraint system is a tuple C = 〈Σ,V,L,D,
Sol ,⊑c〉 where:

i. Σ is a signature with predicates;

ii. V is a denumerable set of variables;

iii. L is a first-order language over Σ and V (the assertional language) defining a set
of formulas (the constraints), closed with respect to variable renaming, existential
quantification and conjunction, and allowing equalities between variables;

iv. D is a possibly infinite set (the interpretation domain);

v. Sol(ϕ) is a set of mappings V → D (the set of solutions of a constraint ϕ ∈ L) that
preserves the usual semantics of equalities, ∧ and ∃ (intersection and projection of
the solutions);

125



vi. ⊑c is a relation such that ϕ ⊑c ψ implies Sol(ϕ) ⊆ Sol(ψ) (the entailment relation:
we say that ϕ entails ψ).

We assume that L contains constraints, denoted true and false, which are identically true
and identically false in D.

By analogy with constraint programming, further requirements on constraint systems, like
solution compactness [JL87], can be imposed. We refer to [JL87, Mah92] for a discussion.

In the following we will refer to a generic mapping V → D as an evaluation for the
variables in V into D. We use the notation 〈x1 7→ d1, x2 7→ d2, . . .〉 to denote an evaluation
mapping x1 to d1, x2 to d2, and so on, and the notation σ|x to denote the restriction of the
evaluation σ to the variables x. We also say that a constraint ϕ is satisfiable if Sol(ϕ) 6= ∅.
We conclude this section showing some examples of constraint systems which we will need
later on in this chapter.

Definition 9.2 (The Herbrand Constraint System HC) Let Σ be a signature and
V a denumerable set of variables. We define the Herbrand constraint system HC =
〈Σ,V,L,D, Sol,⊑c〉, where: D is the set of non-ground terms in T V

Σ , L contains equal-
ities between non-ground terms in T V

Σ , equality is interpreted as unification between terms,
Sol maps constraints to substitutions (term unifiers) and τ ⊑c θ if θ ≤ τ (i.e., θ is more
general than τ).

Definition 9.3 (The Constraint System LC) The class of linear integer con-
straints (LC-constraints) consists of integer constraints of the form

ϕ ::= ϕ ∧ ϕ | a1x1 + . . .+ anxn = an+1 | a1x1 + . . .+ anxn > an+1 | true | false

where ai ∈ Z for i : 1, . . . , n+1. Given D = Z, the interpretation Sol maps constraints into
sets of variable evaluations from V to Z, and ⊑c is the usual entailment relation between
integer constraints.

Definition 9.4 (The Constraint System DC) The class of difference constraints
(DC-constraints) is the subclass of linear integer constraints having the form

ϕ ::= ϕ ∧ ϕ | x = y + c | x > y + c | true | false

where c ∈ Z, Given D = Z, the interpretation Sol maps constraints into sets of vari-
able evaluations from V to Z, and ⊑c is the usual entailment relation for linear integer
constraints.
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Definition 9.5 (The Constraint System NC) The class of name constraints
(NC-constraints) is the subclass of difference constraints having the form

ϕ ::= ϕ ∧ ϕ | x = y | x > y | true | false

interpreted over Z and ordered with respect to the entailment relation ⊑c of linear integer
constraints.

Definition 9.6 (The Constraint System EC) The class of equality constraints
(EC-constraints) is the subclass of name constraints having the form

ϕ ::= ϕ ∧ ϕ | x = y | true | false

interpreted over Z and ordered with respect to the entailment relation ⊑c of linear integer
constraints.

For linear integer constraints (and thus DC-, NC- and EC-constraints) it is well-known that
there are algorithms for checking satisfiability, entailment, and for variable elimination (see
e.g. [BGP97]).

Example 9.7 Let ϕ be x > y ∧ x > z, then σ = 〈x 7→ 2, y 7→ 1, z 7→ 0, . . .〉 ∈ Sol(ϕ).
Furthermore, ϕ is satisfiable, ϕ ⊑c (x > y), and ∃y.ϕ ≡ (x > z). 2

We are now ready to define the language LO(C).

9.1.2 The Language LO(C)

In order to define the language LO(C), we will make a simplifying assumption. Namely,
we assume that LO(C) programs are built over atomic formulas consisting of a predicate
symbol applied to a list of distinct variables, instead of arbitrary terms. This assumption
simplifies a lot the following presentation, without causing any loss of generality. In fact,
arbitrary atomic formulas can be recovered by considering a constraint system in which
equality is interpreted as unification on a first-order term language (see Definition 9.2). We
give the following definitions.

Definition 9.8 (Atomic formulas) Let Π be a finite set of predicate symbols, and V a
denumerable set of variables. An atomic formula over Π and V has the form p(x1, . . . , xn)
(with n ≥ 0), where p ∈ Π, and x1, . . . , xn are distinct variables in V.
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Definition 9.9 (LO(C) programs) Let Π be a finite set of predicate symbols, and C =
〈Σ,V,L,D, Sol,⊑c〉 a constraint system. The sets of LO(C) goal formulas, head formulas,
and clauses, over Π and C, are defined by the following grammar

G ::= G ............................................
...........
........
................................ G | G & G | A | ⊤ | ⊥

H ::= A ............................................
...........
........
................................ . . . .

...........................................
...........
........
................................ A | ⊥

D ::= ∀ (H ◦− G 2 ϕ) | D & D

where A is an atomic formula over Π and V, and ϕ is a satisfiable constraint in L. We
assume that all variables appearing in a G-formula, H-formula or D-formula are distinct
from each other. An LO(C) program is a D-formula over Π and C.

Constraints can be viewed as a convenient way to represent (infinite) sets of ground clauses.
Therefore, a simple way to define the operational semantics of the language LO(C) is to
re-formulate the notion of ground instance of a program given in Definition 3.7. In the
rest of the chapter, we will use the notation σ(F ), where F is any expression (e.g. an
LO(C) clause) with variables in V and σ is a mapping V → D, to denote the application
of σ to F .

Definition 9.10 (Ground Instances) Let Π be a finite set of predicate symbols, and
C = 〈Σ,V,L,D, Sol,⊑c〉 a constraint system. Given an LO(C) program P , the set of
ground instances of P , denoted Gnd(P ), is defined as follows:

Gnd(P ) = {σ(H ◦−G) | (H ◦−G 2 ϕ) ∈ P and σ ∈ Sol(ϕ)}

Example 9.11 Let Π = {p, q, r, s}, and consider unification constraints over the term lan-
guage generated by a constant symbol a and a function symbol f . Let V be a denumerable
set of variables and x, y, . . . ∈ V. Let C be the clause

p(x) ............................................
...........
.......
................................. p(z) ◦− (q(x′) ............................................

...........
.......
................................. r(y)) & s(z′) 2 z = a ∧ x′ = x ∧ z′ = a.

Then
p(f(f(a))) ............................................

...........
........
................................ p(a) ◦− (q(f(f(a))) ............................................

...........
........
................................ r(f(a))) & s(a) ∈ Gnd(C).

2

Example 9.12 Let Π = {p, q, r, s}, let V be a denumerable set of variables and x, y, . . . ∈
V. Let C be the LO(DC) clause

p(x) ............................................
...........
.......
................................. q(y) ◦− q(z) ............................................

...........
.......
................................. r(w) ............................................

...........
.......
................................. s(w′) 2 z = x ∧ w > y ∧ w′ = w + 1

Then
p(1) ............................................

...........
........
................................ q(2) ◦− q(1) ............................................

...........
........
................................ r(5) ............................................

...........
........
................................ s(6) ∈ Gnd(C).

2
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P ⊢ ⊤,∆
⊤r

P ⊢ G1, G2,∆

P ⊢ G1
............................................
...........
.......
................................. G2,∆

............................................
...........
........
................................
r

P ⊢ G1,∆ P ⊢ G2,∆

P ⊢ G1 &G2,∆
& r

P ⊢ ∆

P ⊢ ⊥,∆
⊥r

P ⊢ G,A

P ⊢ Ĥ,A
bc (H ◦−G ∈ Gnd(P ))

Figure 9.1: A proof system for LO(C)

Using definition 9.10, the notion of provability can be defined in the same way as for
standard LO. The corresponding proof system is shown in Figure 9.1 for convenience. As
usual, an LO(C) sequent has the form P ⊢ G1, . . . , Gk, where P = D1 & . . . &Dn is an LO
program (the set of clauses D1, . . . , Dn) and G1, . . . , Gk is a multiset of goals. A sequent
is provable if all branches of its proof tree terminate with an instance of the ⊤r axiom.
Rule bc is applicable only if the right-hand side of the current sequent consists of atomic
formulas.

We can formulate the following proposition, which is analogous to Proposition 3.9.

Proposition 9.13 (Admissibility of the Weakening Rule) Given an LO(C) pro-
gram P and two multisets of goals ∆,∆′ such that ∆ 4 ∆′, if P ⊢ ∆ then P ⊢ ∆′.

9.2 An Effective Semantics for LO(C)

In this section we will discuss the definition of an effective bottom-up semantics for LO(C).
First of all, we reformulate the definition of the operational semantics as follows.

Definition 9.14 (Operational Semantics) Given an LO(C) program P , its opera-
tional semantics, denoted O(P ), is given by

O(P ) = {A | A is a multiset of ground atomic formulas and P ⊢ A}

Given that LO(C) provability can be reduced to LO provability using the concept of ground
instances of a clause, as explained in Section 9.1, we can re-use the results of Section 7.1
in order to define a bottom-up semantics for LO(C).
An LO(C) program can be seen as a (potentially infinite) set of ground clauses. We can
therefore reformulate the bottom-up semantics of Section 7.1 with the following slight
modifications: we consider a (generally infinite) set of ground atomic formulas instead of
a finite set of propositional symbols Σ; we substitute Gnd(P ) (for an LO(C) program P )

129



in place of P in all the definitions of Section 7.1. For instance, the Herbrand base will be
the set of all multisets of ground atomic formulas. With these modifications, the results of
Section 7.1 still hold, the proofs being exactly analogous. Infiniteness of the Herbrand base
and of the set of ground clauses of a program do not cause any harm. The resulting fixpoint
semantics is therefore sound and complete with respect to the operational semantics defined
above. Clearly, this bottom-up semantics is not effective.

In the rest of this section, we will refer to the definitions and notations used in Section
7.1. In particular, the (concrete) satisfiability judgment |= and the TP fixpoint operator
are defined, respectively, in Definition 7.4 and Definition 7.7.

We are now ready to present the symbolic version of the bottom-up semantics for LO(C).
First of all, we introduce the notion of constrained multiset, which is central to the semantics
definition.

Definition 9.15 (Constrained Multiset) Let Π be a finite set of predicate symbols, and
C = 〈Σ,V,L,D, Sol,⊑c〉 a constraint system. A constrained multiset over Π and C is a
multiset of atomic formulas, annotated with a constraint, of the form

{p1(x11, . . . , x1k1), . . . , pn(xn1, . . . , xnkn
)} : ϕ

where p1, . . . , pn ∈ Π, ϕ ∈ L is a satisfiable constraint, and x11, . . . , xnkn
are distinct

variables in V.

We often omit brackets in constrained multiset notation.

Notation. By analogy with multiset unifiers (see Section 2.4), we define the following
notation. Given two constrained multisets N = N1, . . . , Nn : ψ and M = M1, . . . ,Mn : ϕ
with disjoint variables (note that |N | = |M|), where Ni = pi(yi1, . . . , yiki

) and Mi =
qi(xi1, . . . , xiki

) for i : 1, . . . , n, we define the constraint N = M as
∧
i:1,...,n(yi1 = xli1 ∧

. . . ∧ yiki
= xliki

), provided pi = qli for every i : 1, . . . , n and {l1, . . . , ln} is a permutation
of {1, . . . , n}. We will use the notation N = M to denote a constraint which is non-
deterministically picked from the set of constraints which can obtained in the above manner
(in general more alternatives are possible, depending on the choice of the permutation).

Constrained multisets will be used as symbolic representations for sets of elements of the
(concrete) Herbrand base. With this in mind, we give the following definitions.

Definition 9.16 (Abstract Herbrand Base) Let Π be a finite set of predicate symbols,
and C a constraint system. Given an LO(C) program P , the Herbrand base of P , denoted
HB (P ), is given by

HB (P ) = {M : ϕ | M : ϕ is a constrained multiset over Π and C}.
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Definition 9.17 (Abstract Interpretations) Let Π be a finite set of predicate symbols,
and C a constraint system. Given an LO(C) program P , an interpretation I is any subset
of HB (P ), i.e., I ∈ P(HB (P )).

By analogy with definition 9.10, we give the following.

Definition 9.18 (Ground Instance Operator) Let Π be a finite set of predicate sym-
bols, and C = 〈Σ,V,L,D, Sol ,⊑c〉 a constraint system. Given an interpretation I, we
define the operator Inst as follows:

Inst (I) = {σ(M) | M : ϕ ∈ I, σ ∈ Sol(ϕ)}.

Let Up be the following operator on multisets of ground atomic formulas: Up(I) =
{A + C | A ∈ I}. The following definition provides the connection between concrete
interpretations and abstract interpretations.

Definition 9.19 (Denotation of an Interpretation) Let Π be a finite set of predicate
symbols, and C a constraint system. Given an (abstract) interpretation I, its denotation
[[I]] is the (concrete) interpretation defined as follows:

[[I]] = Up(Inst (I)).

Two interpretations I and J are said to be equivalent, written I ≃ J , if and only if
[[I]] = [[J ]].

We are now ready to define the abstract interpretation domain. As usual, we can identify
interpretations having the same denotation using equivalence classes with respect to the
corresponding equivalence relation ≃.

Definition 9.20 (Abstract Interpretation Domain) Abstract interpretations form
a complete lattice 〈I,⊑〉, where

• I = {[I]≃ | I is an interpretation};

• [I]≃ ⊑ [J ]≃ iff [[I]] ⊆ [[J ]];

• the least upper bound of [I]≃ and [J ]≃, written [I]≃
⊔

[J ]≃, is [I ∪ J ]≃;

• the bottom and top elements are [∅]≃ and [ǫ : true]≃, respectively.

Before going on with the definition of the satisfiability judgment, we introduce the following
notion of entailment between constrained multisets.
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Definition 9.21 (Entailment of Constrained Multisets) Let Π be a finite set of
predicate symbols, and C a constraint system. We call a relation ⊑M between constrained
multisets an entailment whenever N : ψ ⊑M M : ϕ implies [[N : ψ]] ⊆ [[M : ϕ]], for any
constrained multisets N : ψ and M : ϕ.

An example of entailment relation is given below. As we will prove in the following, it
amounts to an effective and sufficient condition for testing the ⊑ relation over interpreta-
tions. We first give the following definition.

Definition 9.22 (Entailment ⊑m) Let Π be a finite set of predicate symbols, C = 〈Σ,V,
L,D, Sol ,⊑c〉 a constraint system, and N : ψ,M : ϕ two constrained multisets over Π and
C with disjoint variables. We say that N : ψ entails M : ϕ, written N : ψ ⊑m M : ϕ, if
there exists a multiset N ′ 4 N such that

∃x.(N ′ =M∧ ψ) ⊑c ϕ
where x = FV (N : ψ).

Example 9.23 Let N : ψ ≡ p(y), q(z) : y > 0 ∧ z > 0, and M : ϕ ≡ p(x) : x > 0. Then
N : ψ ⊑m M : ϕ. In fact, if we take N ′ = p(y) we have that ∃y, z.(x = y ∧ y > 0 ∧ z >
0) ⊑c x > 0. 2

The following result states that ⊑m is an entailment.

Proposition 9.24 Let Π be a finite set of predicate symbols, C a constraint system, and
N : ψ,M : ϕ two constrained multisets over Π and C with disjoint variables. If N : ψ ⊑m
M : ϕ then [[N : ψ]] ⊆ [[M : ϕ]].

Proof It is sufficient to prove that for every σ ∈ Sol(ψ) there exists σ′ ∈ Sol(ϕ) such that
σ′(M) 4 σ(N ). Let σ ∈ Sol(ψ).

By hypothesis, there exists a multiset N ′ 4 N s.t. x = FV (N : ψ) and ∃x.(N ′ =
M∧ ψ) ⊑c ϕ, i.e., Sol(∃x.(N ′ =M∧ ψ)) ⊆ Sol(ϕ).

Now, let M = {M1, . . . ,Mn}, N ′ = N1, . . . , Nn and {i1, . . . , in} the permutation of
{1, . . . , n} (satisfying the above relation) such that Nik = Mk for k : 1, . . . , n. Assum-
ing Nik = p(yik) and Mk = p(xk), where yik and xk are vector of variables and p ∈ Π, the
above constraint is equivalent to yik = xk.

Now, let σ′ be the evaluation such that σ′
|xk

= σ|yik
for every k : 1, . . . , n, and σ′ = σ

otherwise. It easy to see that σ′ ∈ Sol(∃x.(N ′ =M∧ ψ)) (note that the constraint
N ′ = M is simply a renaming of variables: variables inside constrained multisets are
distinct and N : ψ, M : ϕ have disjoint variables). Therefore σ′ ∈ Sol(ϕ) using the fact
that Sol(∃x.(N ′ =M∧ ψ)) ⊆ Sol(ϕ). Besides, σ′(M) = σ(N ′) (by definition of σ′) and
σ(N ′) 4 σ(N ), from which the conclusion. 2
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We extend the entailment relation to interpretations as follows.

Definition 9.25 Let I and J be two interpretations. We say that I entails J , written
I ⊑i J , if for every (N : ψ) ∈ I there exists (M : ϕ) ∈ J s.t. N : ψ ⊑mM : ϕ.

Corollary 9.26 Given two interpretations I and J , if I ⊑i J then [[I]] ⊆ [[J ]].

Proof By Proposition 9.24, observing that [[I]] = {[[M : ϕ]] | M : ϕ ∈ I}. 2

Remark 9.27 We note that the reverse implication in Proposition 9.24 does not hold. In
fact, consider the following counterexample over linear integer constraints. Let

N : ψ ≡ p(x, y), p(w, z) : even(x) ∧ odd(z) ∧ y = w
M : ϕ ≡ p(x′, y′) : even(x′) ∧ odd(y′)

where even(v) is a shorthand for ∃u.(v = 2u) and odd(v) is a shorthand for ∃u.(v = 2u+1).
Then it is easy to see that [[N : ψ]] ⊆ [[M : ϕ]], while it is not the case that N : ψ ⊑m M : ϕ.
We also note that the reverse implication in Corollary 9.26 does not hold for a further reason
(besides the one above). Consider in fact the following counterexample (over linear integer
constraints): I = {p(x) : 1 < x < 5} and J = {p(y) : 1 < y < 3, p(z) : 2 < z < 6}.

We are now ready to define the abstract satisfiability judgment. The judgment has the
form I 
 ∆ : ϕ ◮ C ◮ϕ′, where I is an interpretation, ∆ : ϕ is a constrained context (i.e.,
a constrained multiset of goals) with ϕ satisfiable, C is an output fact (i.e., a multiset of
atomic formulas), and ϕ′ is an output constraint.

Definition 9.28 (Abstract Satisfiability Judgment) Let P be an LO(C) program
and I an interpretation. The abstract satisfiability judgment 
 is defined as follows:

I 
 ⊤,∆ : ϕ ◮ ǫ ◮ϕ;

I 
 A : ϕ ◮ C ◮ϕ′ if there exist B : ψ ∈ I (variant), B′ 4 B, A′ 4 A, |B′| = |A′|,
C = B\B′, and ϕ′ ≡ B′ = A′ ∧ ϕ ∧ ψ is satisfiable;

I 
 G1 &G2,∆ : ϕ ◮ C ◮ϕ′ if I 
 G1,∆ : ϕ ◮ C1 ◮ϕ1, I 
 G2,∆ : ϕ ◮ C2 ◮ϕ2,
D1 4 C1, D2 4 C2, |D1| = |D2|, C = C1 + (C2\D2),
and ϕ′ ≡ D1 = D2 ∧ ϕ1 ∧ ϕ2 is satisfiable;

I 
 G1
............................................
...........
........
................................ G2,∆ : ϕ ◮ C ◮ϕ′ if I 
 G1, G2,∆ : ϕ ◮ C ◮ϕ′;

I 
 ⊥,∆ : ϕ ◮ C ◮ϕ′ if I 
 ∆ : ϕ ◮ C ◮ϕ′.
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Example 9.29 Let Π = {p, q, r, s, t}, and consider unification constraints over the term
language generated by a constant symbol a and a function symbol f . Let V be a denumer-
able set of variables and x, y, z, . . . ∈ V. Consider the following clause

p(x) ............................................
...........
........
................................ p(z) ◦− (q(x′) ............................................

...........
........
................................ r(y)) & s(z′) 2 z = a ∧ x′ = x ∧ z′ = a.

and the interpretation I consisting of the following constrained multisets:

M1 : ψ1 ≡ t(u1, v1), q(w1) : u1 = f(q1) ∧ w1 = a

M2 : ψ2 ≡ t(u2, v2), s(w2) : v2 = f(q2) ∧ w2 = a

Let G : ϕ be (q(x′) ............................................
...........
........
................................ r(y)) & s(z′) : z = a ∧ x′ = x ∧ z′ = a. First of all, we use the & -rule

for 
. We have to compute C1, C2, ϕ1 and ϕ2 such that

I 
 q(x′) ............................................
...........
........
................................ r(y) : ϕ ◮ C1 ◮ϕ1 and I 
 s(z′) : ϕ ◮ C2 ◮ϕ2.

For the first conjunct and using the ............................................
...........
........
................................ -rule, we have that I 
 q(x′) ............................................

...........
........
................................ r(y) : ϕ ◮ C1 ◮ϕ1 iff

I 
 q(x′), r(y) : ϕ ◮ C1 ◮ϕ1. By the second rule for 
, applied to M1 : ψ1 ∈ I, we have
that C1 = t(u1, v1) and ϕ1 ≡ x′ = w1 ∧ w1 = a ∧ z = a ∧ x′ = x ∧ z′ = a ∧ u1 = f(q1). For
the second conjunct and using the second rule for 
 applied toM2 : ψ2 ∈ I, we have that
C2 = t(u2, v2) and ϕ2 ≡ z′ = w2 ∧w2 = a ∧ z = a∧ x′ = x ∧ z′ = a ∧ v2 = f(q2). Therefore
by definition of the & -rule, if we unify t(u1, v1) and t(u2, v2), we have that

I 
 G : ϕ ◮ t(u1, v1) ◮ u1 = u2 ∧ v1 = v2 ∧ ϕ1 ∧ ϕ2.

We also have, again by the & -rule (by choosing empty sub-multisets), that

I 
 G : ϕ ◮ t(u1, v1), t(u2, v2) ◮ϕ1 ∧ ϕ2.

2

The following lemma states a simple property which we will need later.

Lemma 9.30 For every interpretation I, constrained multiset of goals ∆ : ϕ, fact C, and
constraint ϕ′, if I 
 ∆ : ϕ ◮ C ◮ϕ′ then there exists a constraint ψ s.t. ϕ′ ≡ ϕ ∧ ψ, ϕ′ is
satisfiable, FV (ψ) ∩ FV (ϕ) ⊆ FV (∆), FV (C) ∩ FV (ϕ) = ∅, and FV (C) ∩ FV (∆) = ∅.

Proof By simple induction on the 
 definition. 2

The connection between the satisfiability judgments |= and 
 is clarified by the following
lemma.
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Lemma 9.31 For every interpretation I, constrained multiset of goals ∆ : ϕ, facts C and
S, constraint ϕ′ and evaluation σ,

i. if I 
 ∆ : ϕ ◮ C ◮ϕ′ and σ ∈ Sol(ϕ′), then [[I]] |= σ(∆) ◮S for all S s.t σ(C) 4 S;

ii. if [[I]] |= σ(∆) ◮S and σ ∈ Sol(ϕ), then there exist a multiset C, a satisfiable constraint
ϕ′, and an evaluation σ′ ∈ Sol(ϕ′) s.t. I 
 ∆ : ϕ ◮ C ◮ϕ′, σ′(C) 4 S, and σ′

|FV (∆) =
σ|FV (∆).

Proof

i. By induction on the derivation of I 
 ∆ : ϕ ◮ C ◮ϕ′.

- If I 
 ⊤,∆ : ϕ ◮ ǫ ◮ϕ and σ ∈ Sol(ϕ) then [[I]] |= σ(⊤,∆) ◮S for every S;

- if I 
 A : ϕ ◮ C ◮ϕ′ and σ ∈ Sol(ϕ′), then there exists a variant B : ψ of an
element in I s.t. B′ 4 B, A′ 4 A, |B′| = |A′|, ϕ′ ≡ B′ = A′∧ϕ∧ψ is satisfiable,
and C = B\B′.

We have that [[I]] |= σ(A) ◮S if σ(A) + S ∈ [[I]]. This holds if σ(B) 4 σ(A) + S
iff (remember that B′ 4 B and A′ 4 A) σ(B\B′)+σ(B′) 4 σ(A\A′)+σ(A′)+S
iff σ(B\B′) 4 σ(A\A′) + S iff σ(C) 4 σ(A\A′) + S. The latter relation holds
if σ(C) 4 S;

- if I 
 G1 &G2,∆ : ϕ ◮A ◮ϕ′ and σ ∈ Sol(ϕ′), then

I 
 G1,∆ : ϕ ◮A1 ◮ϕ1 and I 
 G2,∆ : ϕ ◮A2 ◮ϕ2,

with A′
1 4 A1, A′

2 4 A2, |A′
1| = |A′

2|, ϕ′ ≡ A′
1 = A′

2 ∧ϕ1 ∧ϕ2 is satisfiable, and
A = A1 + (A2\A′

2).

Clearly, σ ∈ Sol(ϕ′) implies σ ∈ Sol(ϕ1) and σ ∈ Sol(ϕ2). Therefore, by
inductive hypothesis, we have that [[I]] |= σ(G1,∆) ◮S for all S s.t. σ(A1) 4 S,
and [[I]] |= σ(G2,∆) ◮S for all S s.t. σ(A2) 4 S.

Clearly, σ(G1,∆) = σ(G1), σ(∆), and similarly for G2. Therefore we have that
[[I]] |= σ(G1) & σ(G2), σ(∆) ◮S for all S s.t. σ(A1) 4 S and σ(A2) 4 S, i.e.,
[[I]] |= σ(G1 &G2,∆) ◮S for all S s.t. σ(A1) 4 S and σ(A2) 4 S.

In order to conclude, it is sufficient to observe that σ(A1) 4 σ(A) and σ(A2) 4

σ(A). In fact, A = A1+(A2\A′
2), so that σ(A1) 4 σ(A). Besides, σ(A2) 4 σ(A)

because σ(A′
2) = σ(A′

1) and σ(A′
1) 4 σ(A1);

- if ∆ = G1
............................................
...........
........
................................ G2,∆

′ of ∆ = ⊥,∆′, the conclusion follows by a straightforward
application of the inductive hypothesis.
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ii. By induction on the derivation of [[I]] |= σ(∆) ◮S.

- If [[I]] |= ⊤,∆ ◮S, σ ∈ Sol(ϕ) and ∆ = σ(∆1), then we take C = ǫ and σ′ = σ,
and we have I 
 ⊤,∆1 : ϕ ◮ ǫ ◮ϕ;

- if [[I]] |= A ◮S, σ ∈ Sol(ϕ), and A = σ(A1), then A+ S ∈ [[I]]. Therefore there
exists B ∈ [[I]] s.t. B = A+ S, i.e., there exists B1 : ψ, variant of an element in
I, and an evaluation σ′ ∈ Sol(ψ) s.t. σ′(B1) 4 B.

Let B′ = σ′(B1)\S, and B′
1 4 B1 s.t. σ′(B′

1) = B′ (it is easy to show that such
B′

1 exists). By definitions and the relations σ′(B1) 4 B and B = A + S, it also
follows that B′ 4 A. Therefore, let A′

1 4 A1 s.t. σ(A′
1) = B′.

Now, let σ′′ be the evaluation such that

σ′′
|FV (B1,ψ) = σ′

|FV (B1,ψ) and σ′′ = σ otherwise

(note that B1 : ψ is a variant, therefore B1 : ψ and A1 : ϕ have no variables in
common). Let ϕ′ ≡ B′

1 = A′
1 ∧ ϕ ∧ ψ.

We have that σ′′ ∈ Sol(ϕ′), in fact σ′′(B′
1)=σ

′(B′
1)=B′=σ(A′

1)= σ′′(A′
1), besides

it can be easily shown that σ′′ is a solution for both ϕ and ψ.

It follows that I 
 A1 : ϕ ◮ C ◮ϕ′ and C = B1\B′
1. Therefore σ′′(C)=σ′′(B1\B′

1)=
(remember that B′

1 4 B1) σ
′′(B1)\σ′′(B′

1) 4 B\B′ = (A+ S)\B′ 4 S (because
B′ 4 A). Finally, σ′′

|FV (A1) = σ|FV (A1) by construction;

- if [[I]] |= F &G,∆ ◮S, σ ∈ Sol(ϕ), and F &G,∆ = σ(F1 &G1,∆1), then [[I]] |=
F,∆ ◮S, [[I]] |= G,∆ ◮S. By inductive hypothesis, there exist multisets A1 and
A2, satisfiable constraints ϕ1, ϕ2, and evaluations σ′

1 ∈ Sol(ϕ1), σ
′
2 ∈ Sol(ϕ2)

s.t
I 
 F1,∆1 : ϕ ◮A1 ◮ϕ1 and I 
 G1,∆1 : ϕ ◮A2 ◮ϕ2,

with σ′
1(A1) 4 S, σ′

2(A2) 4 S, σ′
1|FV (F1,∆1)

= σ|FV (F1,∆1), and σ′
2|FV (G1,∆1)

=
σ|FV (G1,∆1). By Lemma 9.30, we also have that there exist ψ1 and ψ2 such that
ϕ1 ≡ ϕ ∧ ψ1 and ϕ2 ≡ ϕ ∧ ψ2.

Now, let σ′′ be the evaluation s.t.

σ′′
|FV (F1,∆1,A1,ϕ1) = σ′

1|FV (F1,∆1,A1,ϕ1)
and σ′′ = σ′

2 otherwise.

We have that σ′′ is a solution for ϕ1 (by construction) and σ′′ is a solution
for ϕ2. In fact ϕ2 ≡ ϕ ∧ ψ2, σ

′′ is a solution for ϕ because ϕ1 ≡ ϕ ∧ ψ1,
and σ′′ is a solution for ψ2 because σ′′

|FV (ψ2)= σ′
2|FV (ψ2) (note that FV (ψ2) ∩

FV (ϕ) ⊆ FV (G1,∆1) by Lemma 9.30 and that σ′
1 and σ′

2 coincide on variables
in FV (G1,∆1) ∩ FV (F1,∆1)).

Now, let B = σ′′(A1)•σ′′(A2) (we recall that • denotes the merge of multisets,
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see Section 2.2), and A′
1, A′

2 s.t. A′
1 4 A1, A′

2 4 A2, σ
′′(A′

1) = σ′′(A′
2), and

σ′′(A1) + σ′′(A2\A′
2) = B (it is easy to show that such A′

1 and A′
2 exist). We

have that
I 
 F1 &G1,∆ : ϕ ◮A ◮ϕ′,

where ϕ′ ≡ A′
1 = A′

2 ∧ ϕ1 ∧ ϕ2, σ
′′ ∈ Sol(ϕ′), and A = A1 + (A2 \A′

2).
We also have that σ′′(A) = σ′′(A1 + (A2\A′

2)) = (remember that A′
2 4 A2)

σ′′(A1) + σ′′((A2\A′
2)) = B = σ′′(A1)•σ′′(A2) 4 S because σ′′(A1) = σ′

1(A1) 4

S and σ′′(A2) = σ′
2(A2) 4 S. Finally, σ′′

|FV (F1 &G1,∆) = σ|FV (F1 &G1,∆) by
construction;

- if ∆ = G1
............................................
...........
........
................................ G2,∆

′ of ∆ = ⊥,∆′, the conclusion follows by a straightforward
application of the inductive hypothesis.

2

The satisfiability judgment 
 also satisfies the following properties.

Lemma 9.32 For any interpretations I1, I2, . . . , constrained multiset of goals ∆ : ϕ, fact
C′, constraint ϕ′ and evaluation σ,

i. if I1 ⊑ I2, I1 
 ∆ : ϕ ◮ C′ ◮ϕ′ and σ ∈ Sol(ϕ′), then there exist a fact C′′, a constraint
ϕ′′ and an evaluation σ′ ∈ Sol(ϕ′′) s.t. I2 
 ∆ : ϕ ◮ C′′ ◮ϕ′′, σ′(C′′) 4 σ(C′) and
σ′

|FV (∆) = σ|FV (∆);

ii. if I1 ⊑ I2 ⊑ . . .,
⊔∞
i=1 Ii 
 ∆ : ϕ ◮ C′ ◮ϕ′ and σ ∈ Sol(ϕ′), then there exist k ∈ N,

a fact C′′, a constraint ϕ′′ and an evaluation σ′ ∈ Sol(ϕ′′) s.t. Ik 
 ∆ : ϕ ◮ C′′ ◮ϕ′′,
σ′(C′′) 4 σ(C′) and σ′

|FV (∆) = σ|FV (∆).

Proof

i. Suppose I1 ⊑ I2 and I1 
 ∆ : ϕ ◮ C′ ◮ϕ′. Then by Lemma 9.31 i we have that for
every σ ∈ Sol(ϕ′), [[I1]] |= σ(∆) ◮ σ(C′). By hypothesis, [[I1]] ⊆ [[I2]], therefore by
Lemma 7.6 i we have [[I2]] |= σ(∆) ◮σ(C′). The conclusion then follows from Lemma
9.31 ii;

ii. suppose I1 ⊑ I2 ⊑ . . . and
⊔∞
i=1 Ii 
 ∆ : ϕ ◮ C′ ◮ϕ′. Then by Lemma 9.31 i we have

that for every σ ∈ Sol(ϕ′), [[
⊔∞
i=1 Ii]] |= σ(∆) ◮ σ(C′), i.e., as it can be readily verified

from Definition 9.19 and Definition 9.20,
⋃∞
i=1[[Ii]] |= σ(∆) ◮ σ(C′). By Lemma 7.6 ii,

we have that there exists k ∈ N s.t. [[Ik]] |= σ(∆) ◮σ(C′). The conclusion then follows
from Lemma 9.31 ii.
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2

We are now ready to define the abstract fixpoint operator SP : I → I. As in Chapter 7,
we will proceed in two steps. We will first define an operator working over interpretations
(i.e., elements of P(HB (P ))) and then we will lift it to our abstract domain I consisting of
the equivalence classes of elements of P(HB (P )) w.r.t. the relation ≃ defined in Definition
9.19. Formally, we first introduce the following definitions.

Definition 9.33 (Clause Variants) Let Π be a finite set of predicate symbols, and C =
〈Σ,V,L,D, Sol,⊑c〉 a constraint system. Given an LO(C) program P , the set of variants
of clauses in P , denoted Vrn(P ), is defined as follows:

Vrn(P ) = {(H ◦−G 2 ϕ) θ | ∀ (H ◦−G 2 ϕ) ∈ P and θ is a renaming
of the variables in FV (H ◦−G 2 ϕ) with new variables}

Definition 9.34 (Symbolic Fixpoint Operator SP) Given an LO(C) program P
and an interpretation I, the symbolic fixpoint operator SP is defined as follows:

SP (I) = {Ĥ + C : ∃x.ϕ′ | (H ◦−G 2 ϕ) ∈ Vrn(P ),

I 
 G : ϕ ◮ C ◮ϕ′ and x = FV (ϕ′)\FV (Ĥ + C)}.

The following property shows that SP is sound and complete w.r.t TP .

Proposition 9.35 Let P be an LO(C) program and I and interpretation. Then [[SP (I)]]
= TGnd(P )([[I]]).

Proof

- [[SP (I)]] ⊆ TGnd(P )([[I]]).

Let B : ∃x.ϕ′ = Ĥ + C : ∃x.ϕ′ ∈ SP (I), where H ◦− G 2 ϕ is a variant of a clause in P ,
I 
 G : ϕ ◮ C ◮ϕ′, and x = FV (ϕ′)\FV (B).

Let σ ∈ Sol(∃x.ϕ′). Then, there exists σ′ ∈ Sol(ϕ′) s.t. σ′
|FV (B) = σ|FV (B). By Lemma

9.30, there exists ψ s.t. ϕ′ ≡ ϕ ∧ ψ, therefore σ′ ∈ Sol(ϕ).

Let H1◦−G1 = σ′(H◦−G) ∈ Gnd(P ). By Lemma 9.31 i, we also have that [[I]] |= σ′(G) ◮A
for all A s.t. σ′(C) 4 A.

By TP definition, Ĥ1+A ∈ TGnd(P )([[I]]), for allA s.t. σ′(C) 4 A. That is, D ∈ TGnd(P )([[I]]),
for all D s.t. σ′(B) 4 D. Note that σ′(B) = σ(B), therefore it follows that D ∈ TGnd(P )([[I]])
for all D ∈ [[B : ∃xϕ′]] and hence the conclusion.
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- TGnd(P )([[I]]) ⊆ [[SP (I)]].

Let B = Ĥ +A ∈ TGnd(P )([[I]]), where H ◦−G ∈ TGnd(P ) and [[I]] |= G ◮A.

Then, there exist H1 ◦− G1 2 ϕ variant of a clause in P and σ ∈ Sol(ϕ) s.t. H ◦− G =
σ(H1 ◦− G1). By Lemma 9.31 ii and Lemma 9.30, there exist a multiset C, satisfiable
constraints ϕ′ and ψ, and evaluation σ′ s.t. σ′ ∈ Sol(ϕ′), σ′

|FV (G1) = σ|FV (G1), ϕ
′ ≡ ϕ ∧ ψ,

I 
 G1 : ϕ ◮ C ◮ϕ′, and σ′(C) 4 A.

Let σ′′ be the evaluation such that

σ′′
|FV (H1,ϕ) = σ|FV (H1,ϕ) and σ′′ = σ′ otherwise.

We have that σ′′ ∈ Sol(ϕ′). In fact, first of all ϕ′ ≡ ϕ ∧ ψ; σ′′ ∈ Sol(ϕ) because σ ∈
Sol(ϕ) and σ′′

|FV (ϕ) = σ|FV (ϕ) by definition; finally, σ′′ ∈ Sol(ψ) because σ′ ∈ Sol(ψ) and
σ′′

|FV (ψ) = σ′
|FV (ψ) (in fact, note that: FV (ψ) ∩ FV (H1) ⊆ FV (G1) ∪ FV (ϕ) because

H1 does not appear in the judgment I 
 G1 : ϕ ◮ C ◮ϕ′; FV (ψ) ∩ FV (ϕ) ⊆ FV (G1) by
Lemma 9.30; σ|FV (G1) = σ′

|FV (G1)). We also have that σ′′(C) = σ′(C) by Lemma 9.30 and
σ′′ definition.

Clearly, σ′′ ∈ Sol(ϕ′) implies σ′′ ∈ Sol(∃x.ϕ′). By SP definition, Ĥ1 + C : ∃x.ϕ′ ∈ SP (I).

It follows that σ′′(Ĥ1 + C) = σ′′(Ĥ1) + σ′′(C) = σ(Ĥ1) + σ′(C) = Ĥ + σ′(C) 4 Ĥ +A = B,
hence the conclusion. 2

Furthermore, the following corollary holds.

Corollary 9.36 For every LO(C) program P and interpretations I and J , if I ≃ J then
SP (I) ≃ SP (J).

Proof If I ≃ J , i.e., [[I]] = [[J ]], we have that TGnd(P )([[I]]) = TGnd(P )([[J ]]), and, by
Proposition 9.35, [[SP (I)]] = [[SP (J)]], i.e., SP (I) ≃ SP (J). 2

The previous Corollary allows us to safely lift SP definition to the lattice 〈I,⊑〉. Formally,
we define the abstract fixpoint operator as follows.

Definition 9.37 (Abstract Fixpoint Operator SP) Given an LO(C) program P and
an equivalence class [I]≃ of I, the abstract fixpoint operator SP is defined as follows:

SP ([I]≃) = [SP (I)]≃

where SP (I) is defined in Definition 9.34.
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For the sake of simplicity, in the following we will often use I to denote its class [I]≃, and
we will simply use the term (abstract) interpretation to refer to an equivalence class, i.e.,
an element of I. The abstract fixpoint operator SP satisfies the following property.

Proposition 9.38 (Monotonicity and Continuity) For every LO(C) program P , the
abstract fixpoint operator SP is monotonic and continuous over the lattice 〈I,⊑〉.

Proof

Monotonicity.

Assume that I ⊑ J and Ĥ + C′ : ∃x.ϕ′ ∈ SP (I), where H ◦−G 2 ϕ is a variant of a clause

in P , x = FV (ϕ′)\FV (Ĥ + C′), and I 
 G : ϕ ◮ C′ ◮ϕ′.

Let σ ∈ Sol(∃x.ϕ′). Then, there exists τ ∈ Sol(ϕ′) s.t. σ|FV (H,C′) = τ|FV (H,C′).

By Lemma 9.32 i, we have that there exist C′′, ϕ′′ and τ ′ ∈ Sol(ϕ′′) s.t. J 
 G : ϕ ◮ C′′ ◮ϕ′′,
τ ′(C′′) 4 τ(C′) and τ ′|FV (G) = τ|FV (G). By Lemma 9.30, we also have that τ ∈ Sol(ϕ) and
there exists ψ s.t. ϕ′′ = ϕ ∧ ψ.

By SP definition, we have that Ĥ + C′′ : ∃y.ϕ′′ ∈ SP (J), with y = FV (ϕ′′)\FV (Ĥ + C′′).
Now, let σ′ be the evaluation s.t.

σ′
|FV (H,ϕ) = τ|FV (H,ϕ) and σ′ = τ ′ otherwise.

We have that σ′ ∈ Sol(ϕ′′). In fact, first of all ϕ′′ = ϕ∧ψ; σ′ ∈ Sol(ϕ) because τ ∈ Sol(ϕ)
and σ′

|FV (ϕ) = τ|FV (ϕ) by definition; finally, σ′ ∈ Sol(ψ) because τ ′ ∈ Sol(ψ) and σ′
|FV (ψ) =

τ ′|FV (ψ) (in fact, note that: FV (ψ) ∩ FV (H) ⊆ FV (G) ∪ FV (ϕ) because H does not
appear in the judgment J 
 G : ϕ ◮ C′′ ◮ϕ′′; FV (ψ) ∩ FV (ϕ) ⊆ FV (G) by Lemma 9.30;
τ|FV (G) = τ ′|FV (G)). We also have that σ′(C′′) = τ ′(C′′) by Lemma 9.30 and σ′ definition.

Clearly, σ′ ∈ Sol(ϕ′′) implies σ′ ∈ Sol(∃y.ϕ′′). Therefore we have proved that for every

σ ∈ Sol(∃x.ϕ′) there exists σ′ ∈ Sol(∃y.ϕ′′) s.t. σ′(Ĥ + C′′) = σ′(Ĥ) + σ′(C′′) = τ(Ĥ) +

τ ′(C′′) 4 τ(Ĥ) + τ(C′) = τ(Ĥ + C′) = σ(Ĥ + C′).
Using the fact that Ĥ + C′′ : ∃y.ϕ′′ ∈ SP (J) and Ĥ + C′ : ∃x.ϕ′ ∈ SP (I), we can conclude
that [[SP (I)]] ⊆ [[SP (J)]], i.e., SP (I) ⊑ SP (J).

Continuity.

We show that SP is finitary. Suppose I1 ⊑ I2 ⊑ . . ., and Ĥ + C′ : ∃xϕ′ ∈ SP (
⊔∞
i=1 Ii), with

H ◦−G 2 ϕ variant of a clause in P , x = FV (ϕ′)\FV (Ĥ + C′), and
⊔∞
i=1 Ii 
 G : ϕ ◮ C′ ◮ϕ′.

Let σ ∈ Sol(∃x.ϕ′). Then, there exists τ ∈ Sol(ϕ′) s.t. σ|FV (H,C′) = τ|FV (H,C′).
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By Lemma 9.32 ii we have that there exist k ∈ N, C′′, ϕ′′ and τ ′ ∈ Sol(ϕ′′) s.t. Ik 


G : ϕ ◮ C′′ ◮ϕ′′, τ ′(C′′) 4 τ(C′), and τ ′|FV (G) = τ|FV (G).

By SP definition, we have that Ĥ + C′′ : ∃y.ϕ′′ ∈ SP (Ik), with y = FV (ϕ′′)\FV (Ĥ + C′′).
At this point, we proceed exactly as above (proof of monotonicity) to build an evaluation

σ′ ∈ Sol(∃y.ϕ′′) s.t. σ′(Ĥ + C′′) 4 σ(Ĥ + C′).
It follows that [[SP (

⊔∞
i=1 Ii)]] ⊆ [[SP (Ik)]]. Using the fact that [[SP (Ik)]] ⊆ [[

⊔∞
i=1 SP (Ii)]], we

can conclude that [[SP (
⊔∞
i=1 Ii)]] ⊆ [[

⊔∞
i=1 SP (Ii)]], i.e., SP (

⊔∞
i=1 Ii) ⊑

⊔∞
i=1 SP (Ii). 2

Corollary 9.39 For every LO(C) program P , [[lfp(SP )]] = lfp(TGnd(P )).

Let Fsym(P ) = lfp(SP ), then we have the following main theorem.

Theorem 9.40 (Soundness and Completeness) For every LO(C) program P , O(P )
= [[Fsym(P )]].

Proof From Definition 9.14, Theorem 7.10 and Corollary 9.39. 2

The previous results give us an algorithm to compute the operational and fixpoint semantics
of an LO(C) program P via the fixpoint operator SP .

Example 9.41 Let Π = {p, q, r, s, t}, and consider unification constraints over the term
language generated by a constant symbol a and a function symbol f . Let V be a denumer-
able set of variables and x, y, z, . . . ∈ V. Let H ◦−G 2 ϕ be the following clause

p(x) ............................................
...........
.......
................................. p(z) ◦− (q(x′) ............................................

...........
.......
................................. r(y)) & s(z′) 2 z = a ∧ x′ = x ∧ z′ = a

and I the interpretation of Example 9.29, i.e., consisting of the following constrained
multisets:

M1 : ψ1 ≡ t(u1, v1), q(w1) : u1 = f(q1) ∧ w1 = a

M2 : ψ2 ≡ t(u2, v2), s(w2) : v2 = f(q2) ∧ w2 = a

From Example 9.29, we know that

I 
 G : ϕ ◮ t(u1, v1) ◮ϕ′ and I 
 G : ϕ ◮ t(u1, v1), t(u2, v2) ◮ϕ′′,

with ϕ′ ≡ u1 = u2 ∧ v1 = v2 ∧ ϕ1 ∧ ϕ2, ϕ
′′ ≡ ϕ1 ∧ ϕ2,

ϕ1 ≡ x′ = w1 ∧ w1 = a ∧ z = a ∧ x′ = x ∧ z′ = a ∧ u1 = f(q1),

ϕ2 ≡ z′ = w2 ∧ w2 = a ∧ z = a ∧ x′ = x ∧ z′ = a ∧ v2 = f(q2).
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Therefore, we get that p(x), p(z), t(u1, v1) : ψ′ ∈ SP (I) and p(x), p(z), t(u1, v1), t(u2, v2) :
ψ′′ ∈ SP (I), where ψ′ ≡ ∃x′, z′, u2, v2, w1, w2, q1, q2.(ϕ

′) ≡ x = a∧z = a∧u1 = f(q1)∧v1 =
f(q2) and ψ′′ ≡ ∃x′, z′, w1, w2, q1, q2.(ϕ

′′) ≡ x = a ∧ z = a ∧ u1 = f(q1) ∧ v2 = f(q2).
Summarizing, SP (I) contains the two elements

p(x), p(z), t(u1, v1) : x = a ∧ z = a ∧ u1 = f(q1) ∧ v1 = f(q2)

p(x), p(z), t(u1, v1), t(u2, v2) : x = a ∧ z = a ∧ u1 = f(q1) ∧ v2 = f(q2)

By considering the ground instances of the above constrained multisets, we have that
[[SP (I)]] contains, e.g., p(a), p(a), t(f(a), f(a)) and p(a), p(a), t(f(a), a), t(a, f(a)). Note
that different ways of choosing the sub-multisets D1 and D2 in Definition 9.28 yield different
(and not redundant) elements. 2

9.3 Ensuring Termination

In this section we present a fragment of LO, enriched with linear constraints over integer
variables, for which termination of the bottom-up evaluation algorithm presented in Section
9.2 is guaranteed. We will exploit this result in Section 9.4. Specifically, we introduce the
class of programs with monadic predicate symbols, over the constraint system NC of
definition 9.5, and the corresponding class of constrained multisets. The results of this
section appeared in [BD02]. We note, however, that some results presented in [BD02],
specifically the ones concerning programs with predicate symbols with arity greater than
one, were incorrect. Suitable further restrictions, which make the results of [BD02] sound,
are currently under investigation.

Definition 9.42 (The P1(NC) class) The class P1(NC) consists of LO(NC) programs
such that every predicate symbol has arity at most one.

Definition 9.43 (Constrained Multisets M1(NC)) The class M1(NC) consists of
constrained multisets with predicate symbols with arity at most one, annotated with NC
constraints.

Example 9.44 Let Π = {p, q, r, s}, with p, q having arity one and r, s arity zero. Let V
be a denumerable set of variables, and x, y, . . . ∈ V, Then the clause

r ............................................
...........
........
................................ p(x) ............................................

...........
........
................................ q(y) ◦− s ............................................

...........
........
................................ p(x′) ............................................

...........
........
................................ q(y′) 2 y = x ∧ x′ = x ∧ y′ > y

is in the class P1(NC), and the constrained multiset r, p(x), q(y), q(z) : x = y ∧ z > y is in
the class M1(NC). 2
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The following result holds.

Proposition 9.45 The class M1(NC) is closed under applications of SP , i.e., if I ⊆
M1(NC) then SP (I) ⊆M1(NC).

Proof Immediate by Definition 9.34 and Definition 9.28. Note that NC constraints are
closed with respect to existential quantification. 2

The other property we shall prove is that there exists an entailment relation for constrained
multisets that ensures the termination of the fixpoint computation for the bottom-up
semantics. To improve the presentation, we will prove this property in two steps.

Entailment for the class M1(EC)

We first consider the subclass M1(EC) of constrained multisets annotated with equality
constraints only (see Definition 9.6), i.e. without >-constraints. Without loss of generality,
we assume hereafter to deal with a set of predicate symbols with arity one. If it is not the
case, we can complete predicates with arity less than one with dummy variables.

Definition 9.46 Let M : ϕ be a constrained multiset in M1(EC). The symmetric and
transitive closure of the relation = induces an equivalence relation ≡ on the variables in
M : ϕ. Let C1, . . . , Cr be the ≡-equivalence classes for these variables. We define Mi as
the multiset of predicate symbols having a variable x ∈ Ci as argument inM. Furthermore,
we define S(M : ϕ) as the multiset {M1, . . . ,Mr}.

Example 9.47 LetM : ϕ be the constrained multiset

p(x), q(y), p(z), q(t), r(u), q(v), r(w) : x = y ∧ x = z ∧ t = u ∧ v = w.

The variables x, y, z, t, u, v, w can be partitioned into three clusters C1 = {x, y, z}, C2 =
{t, u}, and C3 = {v, w}. S(M : ϕ) is the multiset consisting of the elements M1 = {p, p, q},
M2 = {q, r}, and M3 = {q, r}, i.e. S(M : ϕ) = {{p, p, q}, {q, r}, {q, r}}. 2

We introduce now the following ordering ⊑S between multisets of clusters of predicate
symbols.

Definition 9.48 Let N : ψ and M : ϕ be two constrained multisets in M1(EC), and
let S(N : ψ) = {N1, N2, . . . , Nr} and S(M : ϕ) = {M1,M2, . . .Mk}. We write
S(N : ψ) ⊑S S(M : ϕ) iff there exists an injective mapping h from {1, . . . , k} to {1, . . . , r}
such that Mi 4 Nh(i) for i : 1, . . . , k.
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Example 9.49 As an example, {{p, p, p}, {t, t}, {q, q}, {r, r, r}} ⊑S {{p, p}, {q}, {r, r}} by
mapping {p, p} into {p, p, p} (in fact, {p, p} 4 {p, p, p}), {q} into {q, q}, and {r, r} into
{r, r, r}. 2

The following property holds.

Proposition 9.50 Let N : ψ and M : ϕ be two constrained multiset in M1(EC). Then
S(N : ψ) ⊑S S(M : ϕ) implies [[N : ψ]] ⊆ [[M : ϕ]].

Proof Let S(N : ψ) = {N1, N2, . . . , Nr} and S(M : ϕ) = {M1,M2, . . .Mk}, and suppose
S(N : ψ) ⊑S S(M : ϕ). Thus, for every Mi there exists a distinct Nh(i) such that
Mi 4 Nh(i). If C ∈ [[N : ψ]], then there exist σ ∈ Sol(ψ) and D s.t. then C = σ(N ) +D.
Since σ ∈ Sol(ψ), it follows that for i : 1, . . . , r there exists vi s.t. σ(x) = σ(y) = vi for
every pair of variables x and y in the i-th cluster of N : ψ, i.e., C = C1 + . . . + Cr + D,
where Ci = {pi1(vi), pi2(vi), . . . , pimi

(vi)} and Ni = {pi1, pi2, . . . , pimi
} for i : 1, . . . , r.

Let us now consider the multiset E = E1 + . . . + Ek where Ei = {qi1(vh(i)), qi2(vh(i)), . . . ,
qizi

(vh(i))}, where Mi = {qi1, qi2, . . . , qizi
} for i : 1, . . . , k. Then, by definition of S(M : ϕ),

E ∈ [[M : ϕ]]. Furthermore, since, by hypothesis, there exist Nh(1), . . . , Nh(k) s.t. Mi 4

Nh(i) for i : 1, . . . , k, and from the injectivity of h, it follows that E 4 σ(N ) 4 C, hence
C ∈ [[M : ϕ]]. 2

Remark 9.51 Note that the condition stated in Proposition 9.50 is not necessary. For
instance, consider the following counterexample: M : ϕ ≡ p(x), q(y) : true and N : ψ ≡
p(x′), q(y′) : x′ = y′; clearly [[N : ψ]] ⊆ [[M : ϕ]], but N : ψ ⊑S M : ϕ does not hold. In
fact, we cannot find an injective mapping from {{p}, {q}}, which contains two elements,
into {{pq}}, which contains only one element.

Furthermore, we have the following property. In the following we use the notation ⊒S for
the reverse of the relation ⊑S , i.e. S ⊒S T stands for T ⊑S S.

Lemma 9.52 The entailment relation ⊒S between constrained multisets in M1(EC) is a
well-quasi-ordering.

Proof The conclusion follows from Dickson’s Lemma (see Proposition 6.25), stating that
the submultiset relation for multisets over a finite set is a wqo, and from Proposition 6.24
iii). 2
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Entailment for the class M1(NC)

Let us now deal with the case of >-constraints. First of all, we note that, given a set S of
constrained multisets in the class M1(NC), we can always construct a set S ′ of elements
of the same class, such that:

• for every M : ϕ in S ′, every pair of variables x, y occurring in ϕ are related by an
atomic constraint (= or >) in ϕ;

• [[S]] = [[S ′]].

The transformation of S into S ′ amounts to the completion of the constraints occurring
in a constrained configuration with all the possible missing ones. Specifically, given a
(satisfiable) constrained multiset M : ϕ, we can transform it into the set of (satisfiable)
constrained configurations obtained by completing the partial ordering induced by ϕ on
the variables inM into a total ordering (if x is unrelated w.r.t. y in ϕ, we consider all the
possible completions given by the alternatives x = y, x > y, or y > x).

Given a set S of constrained multisets inM1(NC), let us call Comp(S) the operator that
returns the (union of the sets of) completions of the elements in S. From now on, we will
work using completed elements in the class M1(NC).

LetM : ϕ be a completed constrained multiset inM1(NC). As usual, the symmetric and
transitive closure of the relation = induces an equivalence relation ≡ on the corresponding
variables. Let C1, . . . , Cr be the ≡-equivalence classes for the variables of M : ϕ.

We define Mi as the multiset of predicate symbols having a variable x ∈ Ci as argument
in M. Since variables are totally ordered w.r.t. > in ϕ (as we work with completed
constrained multisets) and the constraint ϕ is satisfiable, we can order the resulting clusters
M1, . . . ,Mr into a string Mi1 · . . . ·Mir such that

• if p and q occur in Mij , then for some variables x and y, p(x) and q(y) occur in M
and x = y follows from ϕ;

• if p occurs in Mij and q occurs in Mik , with ij > ik, then for some variables x and y,
p(x) and q(y) occur inM and x > y follows from ϕ.

Based on this idea, we define Str(M) as the string Mi1 · . . . ·Mir .

Example 9.53 LetM : ϕ be the constrained multiset

p(x), q(y), p(z), q(t), r(u) : x > y ∧ y = z ∧ z > t ∧ t = u.

The variables x, y, z, t, u can be partitioned into three clusters C1 = {t, u}, C2 = {y, z},
and C3 = {x}. Str(M : ϕ) is the string {q, r} · {p, q} · {p}. 2
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We introduce now the following ordering between multisets of clusters of predicate symbols.

Definition 9.54 Let N : ψ and M : ϕ be two constrained multisets in M1(NC), and
let Str(N : ψ) = N1 · N2 · . . . · Nr and Str(M : ϕ) = M1 ·M2 · . . . ·Mk. We write
Str(N : ψ) ⊑∗ Str(M : ϕ) iff there exists an injective mapping h from 1, . . . , k to 1, . . . , r
such that if i < j then h(i) < h(j) (h is monotone), and Mi 4 Nh(i) for i : 1, . . . , k.

Example 9.55 As an example, {p, p, p} · {t, t} · {q, q} · {r, r, r} ⊑S {p, p} · {q} · {r, r} by
mapping {p, p} into {p, p, p} (in fact, {p, p} 4 {p, p, p}), {q} into {q, q}, and {r, r} into
{r, r, r}. On the contrary, {p, p, p} · {t, t} · {r, r, r} · {q, q} ⊑S {p, p} · {q} · {r, r} does not
hold (note that the previous mapping would not respect the monotonicity property). 2

The following property holds.

Proposition 9.56 Let N : ψ and M : ϕ be two constrained multisets in M1(NC). Then
Str(N : ψ) ⊑∗ Str(M : ϕ) implies [[N : ψ]] ⊆ [[M : ϕ]].

Proof Let Str(N : ψ) = N1 · N2 · . . . · Nr and Str(M : ϕ) = M1 ·M2 · . . . ·Mk,
and suppose Str(N : ψ) ⊑∗ Str(M : ϕ). Thus, for every Mi there exists a distinct Nh(i)

(with h(i) < h(j) for i < j) such that Mi 4 Nh(i). If C ∈ [[N : ψ]], then then there exist
σ ∈ Sol(ψ) and D s.t. C = σ(N )+D. Since σ ∈ Sol(ψ), it follows that for i : 1, . . . , r there
exists vi s.t. σ(x) = σ(y) = vi for every pair of variables x and y in the i-th cluster ofN : ψ,
and vi > vj for i > j. Thus, C = C1+. . .+Cr+D, where Ci = {pi1(vi), pi2(vi), . . . , pimi

(vi)}
and Ni = {pi1, pi2, . . . , pimi

} for i : 1, . . . , r, with vi > vj if i > j.

Let us now consider the multiset E = E1 + . . .+ Ek where Ei = {qi1(vh(i)), qi2(vh(i)), . . . ,
qizi

(vh(i))} and Mi = {qi1, qi2, . . . , qizi
} for i : 1, . . . , k, with vi > vj if i > j. Then,

by definition of Str(M : ϕ) and from the monotonicity property of h, we have that
E ∈ [[M : ϕ]]. Furthermore, since, by hypothesis, there exists Nh(1), . . . , Nh(k) such that
Mi 4 Nh(i) for i : 1, . . . , k, and from the injectivity of h, it follows that E 4 σ(N ) 4 C,
hence C ∈ [[M : ϕ]]. 2

Furthermore, we have the following property. As usual, we denote by ⊒∗ the reverse of the
relation ⊑∗.

Lemma 9.57 The entailment relation ⊒∗ between completed constrained multisets in
M1(NC) is a well-quasi-ordering.

Proof The conclusion follows from Dickson’s Lemma (see Proposition 6.25) and Propo-
sition 6.24 iv). 2
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We can therefore state the following result, which proves termination of the bottom-up
evaluation for the class P1(NC).

Corollary 9.58 Let P be a P1(NC) program. Then there exists k ∈ N such that Fsym(P ) =⊔k
i=0 SP↑k (∅).

Proof By Propositions 9.45, 9.57, and 6.23. 2

Remark 9.59 Concerning Corollary 9.58, note that the termination of bottom-up evalu-
ation has been proved as soon as the backward reachability algorithm discussed in Section
9.2 is extended so as to maintain intermediate constrained multisets in completed form.
However, as completion of constrained multisets can be computationally expensive, effi-
ciency reasons suggest to use entailment tests like, e.g., the ⊑m relation of Definition 9.22,
which has been proved to be sound (though we have not directly proved termination with
this ordering).

9.3.1 A Dynamic Abstraction from DC to NC

We conclude this section by discussing a dynamic abstraction (see Section 6.1.2.1) which
can be used, in conjunction with the result given by Corollary 9.58, to automatically verify
systems specified over the DC constraint system. An application of this abstraction will
be presented in Section 9.4.2. The abstraction is as follows.

Definition 9.60 (Abstraction from DC to NC) Let ⋄ ∈ {=, >}. The abstraction α
from DC-constraints to NC-constraints is defined as follows: α(true) = true, α(false) =
false, α(ϕ1 ∧ ϕ2) = α(ϕ1) ∧ α(ϕ2), and

α(x ⋄ y + c) =





x ⋄ y if c = 0
x > y if c > 0
y > x if c < 0 and ⋄ is =
true otherwise

The abstraction α can be lifted to constrained multisets and interpretations as follows:
α(M : ϕ) =M : α(ϕ), and α(I) = {α(M : ϕ) | M : ϕ ∈ I}.

Clearly, we have that Sol(ϕ) ⊆ Sol(α(ϕ)) for every DC-constraint ϕ, and, consequently,
Sol(I) ⊆ Sol(α(I)) for every interpretation I.

We will see an example of application of this technique in Section 9.4.2.
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——————————————————————————————————

9.4 An Example: The Ticket Protocol

——————————————————————————————————

We conclude this chapter with an example consisting in a multi-client, multi-server pa-
rameterized formulation of the classical ticket protocol. As usual, we have automatically
validated the proposed examples using the verification tool of Appendix A.

The ticket protocol is a mutual exclusion protocol designed for multi-client systems op-
erating on shared resources (e.g. memory). In order to access the critical section, every
client executes the protocol, which is based on a first-in first-served access policy. A de-
scription of the protocol in an idealized high-level language is presented in Figure 9.2. We
use P | Q to denote the interleaving parallel execution of the sub-programs P and Q, and
〈·〉 to denote atomic fragments of code. The initial number of clients is a parameter n of
the protocol. The protocol works as follows. Initially, all clients are thinking, while t and
s store the same initial value. When requesting the access to the critical section, a client
stores the value of the current ticket t in its local variable a. A new ticket is then emitted
by incrementing t. Clients wait for their turn until the value of their local variable a equals
the value of s. After the elaboration inside the critical section, a process releases it and the
current turn is updated by incrementing s. During the execution, the global state of the
protocol consists of the internal state (current value of the local variable) of n processes
together with the current value of s and t. As remarked in [BGP97], even with a finite
number of clients (e.g. for n = 2) the values of the local variables of individual processes
as well as s and t may get unbounded. This implies that any instance (for fixed values of n)
of the scheme of Figure 9.2 gives rise to an infinite-state system. Obviously, the algorithm
is supposed to work for any value of n.

In Section 9.4.1 we will discuss different formulations of the ticket protocol, in particular a
multi-client single-server version and a multi-client multi-server version. We model it using
LO clauses enriched with difference constraints (see 9.4) allowing arithmetic operations like
increment and decrement of data variables. This way, we can give a model which is faithful
to the original formulation of Figure 9.2: we do not abstract away global and local integer
variables attached to individual clients, that in fact can still grow unboundedly in our
specification.

Validation of the ticket protocol will be discussed in Section 9.4.2. Specifically, we have
defined an automated and conservative abstraction that can be used to attack verification
problems for systems defined over linear integer constraints (like the DC-constraints above)
that lay outside the NC class for which we have proved that termination of backward reach-
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The system with n processes

Program
global var s, t : integer

begin
t := 0
s := 0
P1 | . . . | Pn

end

The i-th component

Process Pi ::=
local var a : integer
repeat

think : 〈 a := t; t := t+ 1 〉
wait : when 〈 a = s 〉 do
use : begin

critical section
〈 s := s+ 1 〉

end
forever

Figure 9.2: High-level description of the ticket protocol

ability is guaranteed. The abstraction maps linear integer constraints into NC-constraints,
and it can be computed automatically on sets of constrained multisets. We will also discuss
optimization of the fixpoint computation using pruning invariants.

9.4.1 Specifying the Ticket Protocol

In this sections we present different formulations of the ticket protocol. First of all, we
have encoded a multi-client, single-server version of the protocol, i.e., with an arbitrary
but finite number of clients, fixed after an initialization phase. Translation into LO(DC)
is shown in Figure 9.3. The (infinite) collection of admissible initial states consists of all
configurations with an arbitrary but finite number of thinking processes and two counters
having the same initial value (t = s). This set can be specified via rules 1 and 2 in Figure
9.3: as usual we define a predicate called init acting as the seed of all possible runs of
the protocol. The counters are represented via the atoms count(t) and turn(s). Thinking
clients are represented via the propositional symbol think (the value of the local variable
of a client does not matter at this point). The behaviour of an individual client can be
described via rules 3 through 5, which faithfully correspond to the high-level description of
Figure 9.2. The relations between the local variable and the global counters are represented
via DC-constraints. Finally, we allow thinking processes to terminate their execution as
specified by rule 6. Note that the specification is independent of the number of clients,
and that we keep an explicit representation of the data variables without putting any
restrictions on their values.

The second version of the ticket protocol is a slight variation of the one presented in Figure
9.3. Namely, we allow dynamic creation of clients. The extended model is obtained by
introducing a demon process whose only goal is to non deterministically generate new
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Initial States

1. init ◦− think ............................................
...........
........
................................ init 2 true

2. init ◦− count(t) ............................................
...........
........
................................ turn(s) 2 t = s

Individual Behaviour

3. think ............................................
...........
........
................................ count(t) ◦− wait(a) ............................................

...........
........
................................ count(t′) 2 a = t ∧ t′ = t+ 1

4. wait(a) ............................................
...........
........
................................ turn(s) ◦− use(a′) ............................................

...........
........
................................ turn(s′) 2 a = s ∧ a′ = a ∧ s′ = s

5. use(a) ............................................
...........
.......
................................. turn(s) ◦− think ............................................

...........
.......
................................. turn(s′) 2 s′ = s+ 1

Termination

6. think ◦− ⊥ 2 true

Figure 9.3: A multi-client, single-server version of the ticket protocol

clients. The encoding is obtained by changing the first two rules in Figure 9.3 with the
rules below (whereas the rules for individual processes remain unchanged):

Initial States and Dynamic Process Generation

1′. init ◦− count(t) ............................................
...........
........
................................ turn(s) ............................................

...........
........
................................ demon 2 t = s

2′. demon ◦− demon ............................................
...........
........
................................ think 2 true

Finally, let us consider now a system with an arbitrary but finite number of shared resources,
each one controlled by two local counters s and t. The idea is to associate a unique identifier
to each resource and use it to stamp the corresponding pair of counters. The resulting
specification is shown in Fig 9.4. We consider only the more interesting case in which clients
and servers are generated dynamically. The process demon(n) maintains a local counter n
used to generate a new identifier, say id, to associate to newly created resources. Resources
are in turn represented via pairs of the form count(id, t) and turn(id, s). A thinking process
can non-deterministically chooses which resource to wait for by synchronizing with one of
the counters in the system (rule 4 in Figure 9.4). After this choice, the algorithm behaves
as usual w.r.t. to the chosen resource. The termination rules can be specified as natural
extensions of the single-server case. We show an example trace in Figure 9.5, where P is
the program in Figure 9.4. Note that in this specification the sources of infiniteness are:
the number of clients, the number of shared resources, the values of resource identifiers
and the values of tickets.
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Initial States

1. init ◦− demon(n) 2 true

Dynamic Server and Process Generation

2. demon(n) ◦− demon(n′) ............................................
...........
.......
................................. count(id, t) ............................................

...........
.......
................................. turn(id′, s) 2 n′ = n+ 1 ∧ t = s ∧

id = n ∧ id′ = id

3. demon(n) ◦− demon(n′) ............................................
...........
........
................................ think 2 n′ = n

Individual Behaviour

4. think ............................................
...........
........
................................ count(id, t) ◦− think(r) ............................................

...........
........
................................ count(id′, t′) 2 r = id ∧ id′ = id ∧ t′ = t

5. think(r) ............................................
...........
.......
................................. count(id, t) ◦− wait(r′, a) ............................................

...........
.......
................................. count(id′, t′) 2 r = id ∧ a = t ∧ t′ = t+ 1 ∧

r′ = r ∧ id′ = id

6. wait(r, a) ............................................
...........
........
................................ turn(id, s) ◦− use(r′, a′) ............................................

...........
........
................................ turn(id′, s′) 2 r = id ∧ a = s ∧ a′ = a ∧

s′ = s ∧ r′ = r ∧ id′ = id

7. use(r, a) ............................................
...........
........
................................ turn(id, s) ◦− think ............................................

...........
........
................................ turn(id′, s′) 2 r = id ∧ s′ = s + 1 ∧ id′ = id

Termination

8. think(r) ◦− ⊥ 2 true

9. think ◦− ⊥ 2 true

Figure 9.4: A multi-client, multi-server version of the ticket protocol

9.4.2 Verifying the Ticket Protocol

We have validated the different versions of the ticket protocol analyzed in Section 9.4.1,
with respect to the mutual exclusion property, using the verification tool presented in
Appendix A. Let us describe the verification process in detail.

Safety Properties. The set of violations to mutual exclusion can be represented through
the following LO axioms:

use(x) ............................................
...........
........
................................ use(y) ◦− ⊤ 2 true

for the single-server formulation, and

use(id, x) ............................................
...........
........
................................ use(id′, y) ◦− ⊤ 2 id = id′

for the multi-server formulation. In both cases, they denote all configurations with at least
two clients in the critical section at the same time.
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....
P ⊢ count(3, 0), turn(3, 0), count(4, 11), turn(4, 10), wait(4, 10), think(3), demon(5)

P ⊢ count(3, 0), turn(3, 0), count(4, 10), turn(4, 10), think(4), think(3), demon(5)
bc(5)

P ⊢ count(3, 0), turn(3, 0), count(4, 10), turn(4, 10), think(4), think, demon(5)
bc(4)

P ⊢ count(3, 0), turn(3, 0), count(4, 10), turn(4, 10), think, think, demon(5)
bc(4)

P ⊢ count(3, 0), turn(3, 0), count(4, 10), turn(4, 10), think, demon(5)
bc(3)

P ⊢ count(3, 0), turn(3, 0), think, demon(4)
bc(2)

P ⊢ count(3, 0), turn(3, 0), demon(4)
bc(3)

P ⊢ demon(3)
bc(2)

P ⊢ init bc(1)

Figure 9.5: Multi-client ticket protocol: example trace

Relaxing Constraints. The bottom-up evaluation algorithm, when applied to the spec-
ifications in Figure 9.3 and Figure 9.4 and the above safety axioms, is not guaranteed to
terminate. However, we can apply the abstraction technique described in Section 6.1.2.1
using the function α discussed in Section 9.3 (see Definition 9.60). In this way, termination
is guaranteed for the specification given in Figure 9.3 and its variation based on dynamic
process generation. In fact, the single-server specification of the ticket protocol of Figure
9.3 makes use of monadic predicate symbols, therefore using the abstraction α we have
a verification problem covered by Corollary 9.58. Although the verification problem for
the multi-server specification of Figure 9.4 is not covered by the results of Section 9.3, the
symbolic backward reachability algorithm still terminates (see Table 9.1).

Pruning and Invariant Strengthening. Using the so-called counting abstraction,
which simply forgets local data, while keeping track of the number of processes in a given
state, we obtain models as expressive as Petri nets. Computing the structural invariants
for the related Petri net model is not useful to prove properties that depend on the val-
ues attached to the tokens like mutual exclusion for the ticket protocol. However, these
invariants can still be used in combination with the pruning technique of Section 6.1.2.2
in order to relieve the state explosion problem. Using a package for Petri net analysis, we
can automatically obtain the invariants xinit+xcount = 1 and xinit+xturn = 1, which imply
that the number of tokens in places turn and count are always bounded by one. A similar
reasoning can be applied to the multi-server protocol concerning the counters associated
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Ticket Specification Seed α Static Opt Steps Size Time Verified

Us ↑
Multi-client, Single-server Us Pr/Invar ↑

Us

√
17 201 126 yes

Us

√
Pruning 9 23 < 1 yes

Us

√
Invar 9 26 < 1 yes

Us ↑
Multi-client, Single-server Us Pr/Invar ↑

Dynamic Gen. Us

√
17 222 150 yes

Us

√
Pruning 10 32 < 1 yes

Us

√
Invar 10 34 < 1 yes

Um ↑
Multi-client, Multi-server Um Pr/Invar ↑

Dynamic Gen. Um

√
> 18 > 3500 > 4h

Um

√
Pruning 19 141 15 yes

Um

√
Invar 19 147 19 yes

Us is the singleton containing use(x), use(y) : true.
Um is the singleton containing use(id, x), use(id′, y) : id = id′.

Table 9.1: Validating the ticket protocol: experimental results

to a given identifier (at most one copy of each counter) and the demon process (at most
one copy). We have used these information to prune the backward search space.

In an additional series of experiments, we have tested again the three models using the
structural invariants to perform invariant strengthening (i.e., adding them to the set of
unsafe states, see Section 6.1.2.1) instead of using them for pruning. This technique, so to
say, has an effect which is similar to dynamic pruning (in fact, all constrained multisets
that entail an invariant are discarded during the fixpoint computation, instead of being
pruned).

Experimental Results. In Table 9.1, we show some experimental results. In column
’α’,
√

indicates that the abstraction α has been applied after each application of the sym-
bolic predecessor operator; in column ’Static Opt’ we have denoted by ’Pruning’ and ’Invar’
the use of structural invariants, for, respectively, pruning the search space or performing
invariant strengthening (’Pr/Invar’ denotes use of either technique); column ‘Steps’ con-
tains the number of iterations needed to reach a fixpoint or before stopping the program (↑
indicates that the procedure was still computing after several hours); column ‘Size’ denotes
the number of constrained multisets contained in the fixpoint (or when the program was
stopped); finally, ‘Time’ is the execution time (in seconds). We refer to Appendix A.4 for
details on the experimental environment. As shown in Table 9.1, using the abstract (the-
oretically always terminating) backward reachability algorithm we managed to prove all
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safety properties we were interested in. Furthermore, we managed to prove mutual exclu-
sion without using structural invariants for the first two models, whereas it was necessary
to use them in the third example, in order to avoid the state explosion problem.

9.5 Related Work

In this chapter we have defined a bottom-up semantics for the language LO enriched with
constraints, from which we have derived a fully automated and sound method to attack
verification of parameterized systems with unbounded local data. We have exemplified
our approach by proving mutual exclusion for a parameterized, multi-client and multi-
server formulation of the ticket protocol. The method is powered by using static analysis
techniques coming from the structural theory of Petri Nets and by automatic abstractions
working on constraints.

This work is inspired to the approach of [AJ98, AN00]. In [AJ98], Abdulla and Jonsson
proposed an assertional language for Timed Petri Nets in which they use dedicated data
structures to symbolically represent markings parametric in the number of tokens and
in the age (represented as a real number) associated to tokens. In [AN00], Abdulla and
Nylén formulate a symbolic algorithm using existential regions to represent the state-space
of Timed Petri Nets. Our approach is an attempt to generalize the ideas of [AJ98, AN00]
to problems and constraint systems that do not depend on the notion of time. In [AJ01a],
Abdulla and Jonsson have used similar techniques to prove termination for backward reach-
ability of lossy/non lossy unordered channel systems (i.e., finite-state control, unbounded
channels) in which messages can vary over an infinite name domain.

For networks of finite-state processes, it is important to mention the automata theoretic
approach to parameterized verification followed, e.g., in [KMM+97b, ABJN99, BBLS00,
JN00, Nil00, PS00]. In this setting, the set of possible local states of individual processes are
abstracted into a finite alphabet, whereas sets of global states are represented as networks
parameterized by regular languages. Finite-state transducers are then applied to compute
sets of predecessors. Manipulations on regular sets can be performed automatically by
using tools like Mona [HJJ+95] or MoSel [KMM+97a]. In [KMM+97b], these ideas are
applied to networks of processes arranged into an array topology, and specified in a second-
order logic derived from WS1S (weak second order logic of one successor [Tho90]). An
extension to tree topologies is considered. A similar approach is followed in [BBLS00],
where symbolic exploration is performed by means of automated abstractions techniques.
Specifically, networks of processes are specified in the logic WS1S and then abstracted into
a finite-state system which can be model-checked. The approach can be used to verify a
class of liveness properties. In [ABJN99], the focus is on model-checking of parameterized
systems whose actions are specified by means of local transitions and global transitions.
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Symbolic exploration is made effective by using operations over automata with ad hoc
accelerations. Specifically, a method is devised to compute the result of applying a given
action an arbitrary number of times. A general method for deriving the transitive closure
for a large class of actions, improving the approach of [ABJN99], is presented in [JN00]. As
a difference with [BBLS00], this method only works for safety properties. The construction
of [ABJN99, JN00] is generalized in [PS00], where a model-checking procedure is presented,
which can be used to verify liveness properties as well. Finally, a similar automata theoretic
approach, called regular model checking, is presented in [Nil00] (see also [BJNT00]). It
makes use of regular sets to represent both sets of states and transition relations, and it is
usable for a class of liveness properties.

Though limited to studying safety properties, our approach has some advantages over
the automata theoretic approaches described above. In particular, differently from the
automata theoretic approach, in our setting we handle parameterized systems in which
individual components have local variables that range over unbounded values. As an exam-
ple, in our model of the ticket protocol local variables and tickets range over unbounded
integers. Furthermore, note that the abstraction from DC to NC-constraints does not
“finitize” the resulting symbolic representation, though termination can be guaranteed by
applying the theory of well-quasi-orderings. This way, we do not have to apply manual
abstractions to describe individual processes. This is an important aspect to take into
account when comparing our practical results for the single-server system (the first exper-
iment of Section 9.4.1) with those obtained in [JN00, Nil00], in which an idealized version
of the ticket algorithm has been automatically verified using the regular model checking
method (actually, a precise comparison is difficult here because the verified model is not
described in [JN00, Nil00]).

The previous features also distinguish our approach from the verification with invisible
invariants method of [PRZ01, APR+01]. The method of [PRZ01, APR+01] uses heuristics,
based on model-checking finite instances of a parameterized system, to automatically guess
induction invariants. Invariants computed in this way are then verified by checking they
hold for a problem-dependent finite dimension of the parameterized system (a theorem is
provided, working for some classes of invariants, which ensures that the invariants hold
for every possible dimension). As an example, invisible invariants have been applied to
automatically verify a restricted version of the parameterized bakery algorithm in which a
special reducing process is needed to force the value of the tickets to stay within a given
range (finite, though with parametric bound). A related approach is the one given in
[FPP01], where the authors use constraint logic programming over the WSkS logic (weak
second order logic of k successors) and folding/unfolding program transformations, to prove
mutual exclusion for a parameterized version of the bakery algorithm.

As mentioned in the previous sections, a formulation of the single-server ticket protocol
with two processes, but unbounded global and local variables, has been automatically
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verified using constraint-based model checkers equipped with Presburger constraint solvers
[BGP97], or real arithmetic constraint solvers [DP99]. We are not aware, however, of
methods that can automatically handle the parameterized, multi-server and multi-client
model of the ticket protocol presented in Section 9.4.1.

Our ideas are related to previous works connecting Constraint Logic Programming and
verification, see e.g. [DP99, Fri99]. In this setting, transition systems are encoded via CLP
programs used to encode the global state of a system and its updates. In our approach, we
refine this idea by using multiset rewriting and constraints to locally specify updates to the
global state. The notion of constrained multiset naturally extends the notion of constrained
atom of [DP99]. The locality in the representation of rules allows us to consider rich
denotations (upward-closures) instead of flat ones (instances) like, e.g., in [DP99]. This
way, we can lift the approach to the parameterized case.

Finally, an alternative approach to verification is based on theorem proving, e.g. by using
induction and invariant generation. We refer to Section 10.6 for a detailed discussion.

—————————————————————————————–

Summary of the Chapter. In this chapter we have presented an extension of LO
with constraints. This extension is inspired by traditional constraint programming
languages, and is suitable to specify systems which use data structures with values
ranging over heterogeneous domains. Validation can then be performed with the
help of specialized constraint solvers. We have discussed the monadic fragment of
LO, enriched with a subclass of linear integer constraints, for which we have proved
termination of the bottom-up evaluation algorithm. We have also proved mutual
exclusion for a parameterized, multi-client and multi-server formulation of the well-
known ticket protocol.

In the next chapter we will extend the language LO in another direction, namely we

will consider a first-order formulation of the logic, with universal quantification in

goals providing a way to generate new values.

—————————————————————————————–
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Chapter 10

Bottom-Up Evaluation of First-Order
LO Programs

In this chapter we will discuss a first-order formulation of LO which can be seen as a
particular case of the construction shown in Chapter 9, where the constraint system at
hand is the Herbrand constraint system HC of Definition 9.2. The first reason why we
chose to deal with this fragment separately, is that the bottom-up evaluation construction
of Chapter 9 can be specialized to the case of the Herbrand constraint system. Similarly
to traditional logic programming, the specialized construction is based on notions like
Herbrand interpretations, substitutions, and most general unifiers. The second reason for
which we are discussing this fragment in a separate chapter, is that we want to allow an
interesting extension, namely we want to extend LO programs with universal quantification
in goals.

Universal quantification can be thought of as a primitive for dynamically introducing new
names during the computation. To understand the point, consider the specification of the
ticket protocol given in Figure 9.4, and in particular clause 2, given below.

2. demon(n) ◦− demon(n′) ............................................
...........
........
................................ count(id, t) ............................................

...........
........
................................ turn(id′, s) 2 n′ = n+ 1 ∧ t = s ∧

id = n ∧ id′ = id

Here, we have used a demon(n) process, where n works as a counter, to generate new
identifiers for stamping pairs of count/turn processes. Given that we do not care about
the actual value count/turn processes are stamped with (we only require that different
pairs are associated with different values) we could achieve the same effect by exploiting
the operational semantics of the universal quantifier (see Section 3.3.2). In the specific
case, the only thing we have to do is to quantify over the variable id and use it to stamp
both the count and the turn atoms (the counter n is not needed anymore). An example
of specification showing the use of the universal quantifier will be presented in Section
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10.5. Clearly, the connection between the bottom-up semantics for the fragment LO∀ and
verification of parameterized systems is the same as in Chapter 9. In particular, we will
show that the fragment LO∀ is suitable to reason about application domains like security
protocols (this topic will be discussed in Chapter 11). In fact, the logical fragment consid-
ered in this chapter has been inspired by multiset rewriting with universal quantification
(see Section 5.4) and [CDL+99], which discusses an equivalent fragment where existential
quantification is used as a way to generate nonces in security protocols.

Technically, as in the previous chapters our aim is to define a bottom-up procedure to
compute all goal formulas which are provable from a given program. Needless to say, the
decidability property which we were able to prove for propositional LO is now lost. Nev-
ertheless, we will still be able to define an effective, symbolic fixpoint operator for which
every single step can be finitely computed, and we will able to prove soundness and com-
pleteness of this operator with respect to the operational semantics. Furthermore, re-using
the results of Section 9.3, we will state termination of the bottom-up fixpoint computation
algorithm for the class of monadic LO programs with universal quantification. In this
chapter we will deal with the fragment LO∀ (see Section 3.3.2), i.e., a first-order formula-
tion of LO comprising the logical connectives ............................................

...........
.......
................................. , −◦, & , ⊤, ⊥, and universal quantification

over goals.

As usual, in order to ease the proof of soundness and completeness, the definition of the
bottom-up semantics will be presented in two steps. More precisely, we first present a
simple, non-effective notion of (concrete) interpretation and the corresponding definition
of fixpoint operator, which we call TP . We then present an extended notion of (abstract)
interpretation, and we define a symbolic and effective version of the fixpoint operator,
called SP . Owing to the presence of universal quantification, the semantic definition must
carefully take into account the fact that program signatures can dynamically grow. As
usual, for the sake of simplicity, we re-use some notations like, e.g., the ones for fixpoint
operators and judgments.

10.1 A Proof-system for LO∀

Some notations. Given an LO∀ program P , we denote by ΣP the signature comprising
the set of constant, function, and predicate symbols in P . We assume to have an infinite
set V of variable symbols (usually noted x, y, z, . . . ). In order to deal with signature
augmentation (due to the presence of universal quantification over goals) we also need
an infinite set E of new constants (called eigenvariables). We denote by SigP the set of
signatures which comprise at least the symbols in ΣP (and possibly some eigenvariables).
T V

Σ denotes the set of non ground terms over Σ and AV
Σ the set of non ground atoms over Σ.

Similarly to Chapter 7, multisets of atoms over AV
Σ will be called facts, and usually noted
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A, B, C, . . .. We will also overload the usual notation for sets to indicate multisets. The
notation B < A will stand for A 4 B. The notations for multisets of formulas (contexts)
are the same as in Chapter 7. Some notions concerning substitutions and the definition of
most general unifiers of multisets have been given in Section 2.4.

Before discussing the bottom-up semantics, we need to lift the definition of operational se-
mantics to LO∀ programs. One possible solution is to resort to Definition 7.1 by considering
the so-called ground instances of first-order programs. However, in presence of universal
quantification in goals, this solution is not completely satisfactory. Consider, in fact, the
following example. Take a signature with a predicate symbol p and two constants a and b,
and consider the LO∀ program consisting of the axiom ∀x.p(x) ◦−⊤ and the program con-
sisting of the two axioms p(a)◦−⊤ and p(b)◦−⊤. The two programs have the same ground
semantics according to Definition 7.1, i.e., {p(a), p(b)}. However, the LO∀ goal ∀x.p(x)
succeeds only in the first one, as the reader can verify. In order to distinguish the two
programs, one possibility could be to consider the eigenvariables as part of the signature
on which the ground semantics is computed. However, in this thesis we take an alternative
approach, namely we consider the so-called non ground semantics. In particular, our aim
in this chapter will be to extend the so-called C-semantics of [FLMP93, BGLM94] (see
also Section 2.5) to first-order LO.

First of all, by analogy with Definition 9.33 we give the following definition.

Definition 10.1 (Clause Variants) Given an LO∀ program P , the set of variants of
clauses in P , denoted Vrn(P ), is defined as follows:

Vrn(P ) = {(H ◦−G) θ | ∀ (H ◦−G) ∈ P and θ is a renaming
of the variables in FV (H ◦−G) with new variables}

Now, we need to reformulate the proof-theoretical semantics of Section 3.3.2 (see Figure
3.6). According to the C-semantics of [FLMP93, BGLM94], our goal is to define the set
of non ground goals which are provable from a given program P with an empty answer
substitution. Slightly departing from [FLMP93, BGLM94], we define the proof system
presented in Figure 10.1. This proof system is based on the idea of considering a first order
program as the (generally infinite) collection of (non ground) instances of its clauses. By
instance of a clause H ◦− G, we mean a clause Hθ ◦− Gθ, where θ is any substitution.
The reader can see that, with this intuition, the set of goals provable from the system
presented in Figure 10.1 correspond to the set of non ground goals which are provable with
an empty answer substitution according to [FLMP93, BGLM94]. We remark that in this
proof system there is no notion of unification. This formulation of the proof system is the
proof-theoretical counterpart of the bottom-up semantics we will define in Section 10.2.

All formulas (and also substitutions) on the right-hand side of sequents in Figure 10.1 are
implicitly assumed to range over the set of non ground terms over Σ. Rule ∀r is responsible
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P ⊢Σ⊤,∆
⊤r

P ⊢ΣG1, G2,∆

P ⊢ΣG1
............................................
...........
........
................................ G2,∆

............................................
..........
........
.................................
r

P ⊢ΣG1,∆ P ⊢ΣG2,∆

P ⊢ΣG1 &G2,∆
& r

P ⊢Σ ∆

P ⊢Σ⊥,∆
⊥r

P ⊢Σ,cG[c/x],∆

P ⊢Σ ∀x.G,∆
∀r (c 6∈ Σ)

P ⊢ΣGθ,A

P ⊢Σ Ĥθ,A
bc (H ◦−G ∈ Vrn(P ))

Figure 10.1: A proof system for non ground semantics of LO∀

for signature augmentation. Every time rule ∀r is fired, a new constant c is added to the
current signature, and the resulting goal is proved in the new signature. This behaviour
is standard in logic programming languages [MNPS91]. Rule bc denotes a backchaining
(resolution) step, where θ indicates any substitution. For our purposes, we can assume
Dom(θ) ⊆ FV (H) ∪ FV (G) (we remind that FV (F ) denotes the free variables of F ).
Note that H ◦−G is assumed to be a variant, therefore it has no variables in common with
A. According to the usual concept of uniformity, bc can be executed only if the right-hand
side of the current sequent consists of atomic formulas. Rules ⊤r, ............................................

...........
........
................................
r, & r and ⊥r are the

same as in propositional LO. A sequent is provable if all branches of its proof tree terminate
with instances of the ⊤r axiom.

Clearly, the proof system of Figure 10.1 is not effective, however it will be sufficient for our
purposes. An effective way to compute the set of goals which are provable from the above
proof system will be discussed in Section 10.3.

We give the following definition, where ⊢Σ is the provability relation defined by the proof
system in Figure 10.1.

Definition 10.2 (Operational Semantics) Given an LO∀ program P , its operational
semantics, denoted O(P ), is given by

O(P ) = {A | A is a multiset of (non ground) atoms in AV
ΣP

and P ⊢ΣP
A}.

Intuitively, the set O(P ) is closed by instantiation, i.e., Aθ ∈ O(P ) for any substitution θ,
provided A ∈ O(P ). Note that the operational semantics only include multisets of (non
ground) atoms, therefore no connective (including the universal quantifier) can appear in
the set O(P ). However, the intuition will be that the variables appearing in a multiset in
O(P ) must be implicitly considered universally quantified (e.g. {p(x), q(x)} ∈ O(P ) implies
that the goal ∀x.(p(x) ............................................

...........
........
................................ q(x)) is provable from P ). As usual, the idea is that provability of

a compound goal can always be reduced to provability of a finite set of atomic multisets.
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10.2 A Bottom-Up Semantics for LO∀

We will now discuss the bottom-up semantics. In presence of universal quantification and
therefore signature augmentation, we need to extend the definition of Herbrand base and
(concrete) interpretations as follows. Namely, the definition of Herbrand base now depends
explicitly on the signature, and interpretations can be thought of as infinite tuples, with
one element for every signature Σ ∈ SigP . We give the following definitions.

Definition 10.3 (Herbrand Base) Given an LO∀ program P and a signature Σ ∈ SigP ,
the Herbrand base of P over Σ, denoted HBΣ(P ), is given by

HBΣ(P ) =MS(AV
Σ) = {A | A is a multiset of (non ground) atoms in AV

Σ}.

Definition 10.4 (Interpretations) Given an LO∀ program P , a (concrete) interpreta-
tion is a family of sets {IΣ}Σ∈SigP

, where IΣ ∈ P(HBΣ(P )) for every Σ ∈ SigP .

In the following we often use the notation I for an interpretation to denote the family
{IΣ}Σ∈SigP

.

Interpretations form a complete lattice where inclusion and least upper bound are defined
like (component-wise) set inclusion and union. In the following definition we therefore
overload the symbols ⊆ and ∪ for sets.

Definition 10.5 (Interpretation Domain) Interpretations form a complete lattice
〈D,⊆〉, where:

• D = {I | I is an interpretation};

• I ⊆ J iff IΣ ⊆ JΣ for every Σ ∈ SigP ;

• the least upper bound of I and J is {IΣ ∪ JΣ}Σ∈SigP
;

• the bottom and top elements are ∅ = {∅Σ}Σ∈SigP
and {HBΣ(P )}Σ∈SigP

, respectively.

Before introducing the definition of fixpoint operator, we need to define the notion of
satisfiability of a context ∆ in a given interpretation I. For this purpose, we introduce
the judgment I |=Σ ∆ ◮ C, where I is an interpretation, ∆ is a context, and C is an output
fact. The judgment is also parametric with respect to a given signature Σ. The parameter
C must be thought of as an output fact such that C+ ∆ is valid in I. The notion of output
fact will simplify the presentation of the algorithmic version of the judgment which we will
present in Section 10.3.
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Remark 10.6 In what follows, using the notation I |=Σ ∆ ◮ C we always make the implicit
assumption that ∆ is a context defined over Σ (i.e., terms constructors in ∆ must belong
to Σ). As a result, also the output fact C must be defined over Σ. This assumption, which
is the counterpart of an analogous assumption for proof systems like the one in Figure
3.6, i.e., with explicit signature notation, will always and tacitly hold in the following. For
example, note that in the ∀-case of the |=Σ definition below, the newly introduced constant
c cannot be exported through the output fact C. This is crucial to capture the operational
semantics of the universal quantifier.

As usual, the notion of satisfiability is modeled according to the right-introduction (de-
composition) rules of the proof system, as follows.

Definition 10.7 (Satisfiability Judgment) Let P be an LO∀ program, Σ ∈ SigP , and
I = {IΣ}Σ∈SigP

an interpretation. The satisfiability judgment |=Σ is defined as follows:

I |=Σ ⊤,∆ ◮ C for any fact C in AV
Σ;

I |=Σ A ◮ C if A+ C ∈ IΣ;

I |=Σ ∀x.G,∆ ◮ C if I |=Σ,c G[c/x],∆ ◮ C, with c 6∈ Σ (see remark 10.6);

I |=Σ G1 &G2,∆ ◮ C if I |=Σ G1,∆ ◮ C, I |=Σ G2,∆ ◮ C;
I |=Σ G1

............................................
...........
........
................................ G2,∆ ◮ C if I |=Σ G1, G2,∆ ◮ C;

I |=Σ ⊥,∆ ◮ C if I |=Σ ∆ ◮ C.

The satisfiability judgment |=Σ satisfies the following properties.

Lemma 10.8 For every interpretation I = {IΣ}Σ∈SigP
, context ∆, and fact C,

I |=Σ ∆ ◮ C iff I |=Σ ∆, C ◮ ǫ.

Proof If part. By induction on the derivation of I |=Σ ∆, C ◮ ǫ.

- If ∆ = ⊤,∆′, obvious;

- if ∆ = A and A+ C ∈ IΣ, then also I |=Σ A ◮ C holds;

- if ∆ = ∀x.G,∆′ and I |=Σ,c G[c/x],∆′, C ◮ ǫ, with c 6∈ Σ, then by inductive hypothesis
I |=Σ,c G[c/x],∆′

◮ C, which implies I |=Σ ∀x.G,∆′
◮ C;

- if ∆ = G1 &G2,∆
′, I |=Σ G1,∆

′, C ◮ ǫ and I |=Σ G2,∆
′, C ◮ ǫ, by inductive hypothesis

I |=Σ G1,∆
′

◮ C and I |=Σ G2,∆
′

◮ C, which implies I |=Σ G1 &G2,∆
′

◮ C;
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- if ∆ = G1
............................................
...........
........
................................ G2,∆

′ or ∆ = ⊥,∆′, the conclusion follows by a straightforward appli-
cation of the inductive hypothesis.

Only if part. By induction on the derivation of I |=Σ ∆ ◮ C.

- If ∆ = ⊤,∆′, obvious;

- if ∆ = A and A+ C ∈ IΣ, then also I |=Σ A, C ◮ ǫ holds;

- if ∆ = ∀x.G,∆′ and I |=Σ,c G[c/x],∆′
◮ C, with c 6∈ Σ, then by inductive hypothesis

I |=Σ,c G[c/x],∆′, C ◮ ǫ, which implies I |=Σ ∀x.G,∆′, C ◮ ǫ;

- if ∆ = G1 &G2,∆
′, I |=Σ G1,∆

′
◮ C and I |=Σ G2,∆

′
◮ C, by inductive hypothesis

I |=Σ G1,∆
′, C ◮ ǫ and I |=Σ G2,∆

′, C ◮ ǫ, which implies I |=Σ G1 &G2,∆
′, C ◮ ǫ;

- if ∆ = G1
............................................
...........
.......
................................. G2,∆

′ or ∆ = ⊥,∆′, the conclusion follows by a straightforward appli-
cation of the inductive hypothesis.

2

Lemma 10.9 For any interpretations I1 = {(I1)Σ}Σ∈SigP
, I2 = {(I2)Σ}Σ∈SigP

, . . . , context
∆, and fact C,

i. if I1 ⊆ I2 and I1 |=Σ ∆ ◮ C then I2 |=Σ ∆ ◮ C;

ii. if I1 ⊆ I2 ⊆ . . . and
⋃∞
i=1 Ii |=Σ ∆ ◮ C then there exists k ∈ N s.t. Ik |=Σ ∆ ◮ C.

Proof

i. By induction on the derivation of I1 |=Σ ∆ ◮ C.

- If ∆ = ⊤,∆′, obvious;

- if ∆ = A and A + C ∈ (I1)Σ, then A + C ∈ (I2)Σ, because I1 ⊆ I2, therefore
I2 |=Σ A ◮ C;

- if ∆ = ∀x.G,∆′ and I1 |=Σ,c G[c/x],∆′
◮ C, with c 6∈ Σ, then by inductive

hypothesis I2 |=Σ,c G[c/x],∆′
◮ C, which implies I2 |=Σ ∀x.G,∆′

◮ C;
- if ∆ = G1 &G2,∆

′, I1 |=Σ G1,∆
′

◮ C and I1 |=Σ G2,∆
′

◮ C, by inductive hypoth-
esis I2 |=Σ G1,∆

′
◮ C and I2 |=Σ G2,∆

′
◮ C, which implies I2 |=Σ G1 &G2,∆

′
◮ C;

- if ∆ = G1
............................................
...........
........
................................ G2,∆

′ or ∆ = ⊥,∆′, the conclusion follows by a straightforward
application of the inductive hypothesis.
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ii. By induction on the derivation of
⋃∞
i=1 Ii |=Σ ∆ ◮ C.

- If ∆ = ⊤,∆′, then for every k ∈ N, Ik |=Σ ∆ ◮ C;
- if ∆ = A and A + C ∈ (

⋃∞
i=1 Ii)Σ, there exists k ∈ N s.t. A + C ∈ (Ik)Σ, i.e.,

Ik |=Σ A ◮C;
- if ∆ = ∀x.G,∆′ and

⋃∞
i=1 Ii |=Σ,c G[c/x],∆′

◮ C, with c 6∈ Σ, then by inductive
hypothesis there exists k ∈ N s.t. Ik |=Σ,c G[c/x],∆′

◮ C, therefore Ik |=Σ

∀x.G,∆′
◮ C;

- if ∆ = G1 &G2,∆
′,

⋃∞
i=1 Ii |=Σ G1,∆

′
◮ C and

⋃∞
i=1 Ii |=Σ G2,∆

′
◮ C, by in-

ductive hypothesis there exist k1, k2 ∈ N s.t. Ik1 |=Σ G1,∆
′

◮ C and Ik2 |=Σ

G2,∆
′

◮ C. By taking k = max{k1, k2}, by i we get Ik |=Σ G1,∆
′

◮ C and
Ik |=Σ G2,∆

′
◮ C, which implies Ik |=Σ G1 &G2,∆

′
◮ C;

- if ∆ = G1
............................................
...........
........
................................ G2,∆

′ or ∆ = ⊥,∆′, the conclusion follows by a straightforward
application of the inductive hypothesis.

2

We are now ready to define the fixpoint operator TP .

Definition 10.10 (Fixpoint Operator TP ) Given an LO∀ program P and an interpre-
tation I = {IΣ}Σ∈SigP

, the fixpoint operator TP is defined as follows:

TP (I) = {(TP (I))Σ}Σ∈SigP

(TP (I))Σ = {Ĥθ + C | (H ◦−G) ∈ Vrn(P ), θ is
any substitution, and I |=Σ Gθ ◮ C}.

Remark 10.11 In the previous definition, θ is implicitly assumed to be defined over Σ,
i.e., θ can only map variables in Dom(θ) to terms in T V

Σ .

The following property holds.

Proposition 10.12 (Monotonicity and Continuity) For every LO∀ program P , the
fixpoint operator TP is monotonic and continuous over the lattice 〈D,⊆〉.

Proof Monotonicity. Immediate from TP definition and Lemma 10.9 i.
Continuity. We prove that TP is finitary, i.e., for any increasing chain of interpretations I1 ⊆
I2 ⊆ . . . we have that TP (

⋃∞
i=1 Ii) ⊆

⋃∞
i=1 TP (Ii), i.e., for every Σ ∈ ΣP , (TP (

⋃∞
i=1 Ii))Σ ⊆

(
⋃∞
i=1 TP (Ii))Σ. Let A ∈ (TP (

⋃∞
i=1 Ii))Σ. By TP definition, there exist H ◦− G variant of

a clause in P , a substitution θ and a fact C s.t. A = Ĥθ + C and
⋃∞
i=1 Ii |=Σ Gθ ◮ C. By

Lemma 10.9 ii, we have that there exists k ∈ N s.t. Ik |=Σ Gθ ◮ C. Again by TP definition,

we get A = Ĥθ + C ∈ (TP (Ik))Σ ⊆ (
⋃∞
i=1 TP (Ii))Σ. 2
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Monotonicity and continuity of the TP operator imply, by Tarski’s Theorem, that lfp(TP ) =
TP↑ω. The fixpoint semantics of a program P is then defined as follows.

Definition 10.13 (Fixpoint Semantics) Given an LO∀ program P , its fixpoint seman-
tics, denoted F (P ), is defined as follows:

F (P ) = (lfp(TP ))ΣP
= (TP↑ω({∅Σ}Σ∈SigP

))ΣP
.

We conclude this section by proving the following fundamental result, which states that
the fixpoint semantics is sound and complete with respect to the operational semantics.

Theorem 10.14 (Soundness and Completeness) For every LO∀ program P , F (P ) =
O(P ).

Proof F (P ) ⊆ O(P ). We prove that for every k ∈ N, for every signature Σ ∈ SigP ,
and for every context ∆, TP↑k |=Σ ∆ ◮ ǫ implies P ⊢Σ ∆. The proof is by lexicographic
induction on (k, h), where h is the length of the derivation of TP↑k |=Σ ∆ ◮ ǫ.

- If ∆ = ⊤,∆′, obvious;

- if ∆ = A and A ∈ (TP ↑k)Σ, then there exist a variant H ◦− G of a clause in P , a

fact C and a substitution θ s.t. A = Ĥθ+C and TP↑k−1 |=Σ Gθ ◮ C. By Lemma 10.8,
this implies TP↑k−1 |=Σ Gθ, C ◮ ǫ. Then by inductive hypothesis we have P ⊢ΣGθ, C,
from which P ⊢Σ Ĥθ, C, i.e., P ⊢ΣA follows by bc rule;

- if ∆ = ∀x.G,∆′ and TP↑k |=Σ,c G[c/x],∆′
◮ ǫ, with c 6∈ Σ, then by inductive hypoth-

esis we have P ⊢Σ,cG[c/x],∆′ from which P ⊢Σ ∀x.G,∆′ follows by ∀r rule;

- if ∆ = G1 &G2,∆
′, TP↑k |=Σ G1,∆

′
◮ ǫ, and TP↑k |=Σ G2,∆

′
◮ ǫ, then by inductive

hypothesis we have P ⊢ΣG1,∆
′ and P ⊢ΣG2,∆

′, from which P ⊢ΣG1 &G2,∆
′

follows by & r rule;

- if ∆ = G1
............................................
...........
........
................................ G2,∆

′ and TP↑k |=Σ G1, G2,∆
′

◮ ǫ, then by inductive hypothesis we have
P ⊢ΣG1, G2,∆

′, from which P ⊢ΣG1
............................................
...........
........
................................ G2,∆

′ follows by ............................................
...........
........
................................
r rule;

- if ∆ = ⊥,∆′ and TP↑k |=Σ ∆′
◮ ǫ, then by inductive hypothesis we have P ⊢Σ ∆′,

from which P ⊢Σ⊥,∆′ follows by ⊥r rule.

O(P ) ⊆ F (P ). We prove that for every signature Σ ∈ SigP and for every context ∆, if
P ⊢Σ ∆ then there exists k ∈ N s.t. TP↑k |=Σ ∆ ◮ ǫ. The proof is by induction on the
derivation of P ⊢Σ ∆.
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- If ∆ = ⊤,∆′, then for every k ∈ N, TP↑k |=Σ ∆ ◮ ǫ;

- if ∆ = Ĥθ,A, with H ◦−G variant of a clause in P , θ substitution, and P ⊢Σ Gθ,A,
then by inductive hypothesis we have that there exists k ∈ N s.t. TP↑k |=Σ Gθ,A ◮ ǫ.

Then, by Lemma 10.8, TP↑k |=Σ Gθ ◮A. By TP definition, Ĥθ + A ∈ (TP ↑k+1)Σ,

which implies TP↑k+1 |=Σ Ĥθ +A ◮ ǫ;

- if ∆ = ∀x.G,∆′ and P ⊢Σ,cG[c/x],∆′, with c 6∈ Σ, then by inductive hypothesis
we have that there exist k ∈ N s.t. TP↑k |=Σ,c G[c/x],∆′

◮ ǫ, from which TP↑k |=Σ

∀x.G,∆′
◮ ǫ follows;

- if ∆ = G1 &G2,∆
′, P ⊢ΣG1,∆

′ and P ⊢ΣG2,∆
′, then by inductive hypothesis we

have that there exist k1, k2 ∈ N s.t. TP↑k1 |=Σ G1,∆
′

◮ ǫ and TP↑k2 |=Σ G2,∆
′

◮ ǫ. By
taking k = max{k1, k2}, by Lemma 10.9 i and monotonicity of TP we get TP↑k |=Σ

G1,∆
′

◮ ǫ and TP↑k |=Σ G2,∆
′

◮ ǫ, from which TP↑k |=Σ G1 &G2,∆
′

◮ ǫ follows;

- if ∆ = G1
............................................
...........
........
................................ G2,∆

′ or ∆ = ⊥,∆′, the conclusion follows by a straightforward appli-
cation of the inductive hypothesis.

2

Example 10.15 Let Σ be a signature including the constant symbols a and b, a function
symbol f , and the predicate symbols p, q, r, let V be a denumerable set of variables, and
let P be the following following LO∀ program:

1. r(f(b)) ............................................
...........
........
................................ p(a) ◦− ⊤

2. p(x) ◦− ⊤
3. q(y) ◦− (∀x.p(x)) & r(y)

Let I0 = {∅Σ}Σ∈SigP
, and let us compute I1 = TP (I0). Using axioms 1 and 2, we get that

(I1)Σ contains the multisets of atoms of the form {r(f(b)), p(a)} + A, and {p(t)} + A,
where A is any multiset of (possibly non-ground) atoms in AV

Σ, while t is any (possibly non
ground) term in T V

Σ . Similarly (I1)Σ′ , for a generic signature Σ′ such that Σ ⊆ Σ′, contains
all multisets of the above form where A and t are taken from, respectively, AV

Σ′ and T V
Σ′ .

For instance, let c be a new constant not appearing in Σ. The set (I1)Σ′ will contain, e.g.,
the multisets {p(c)}, {p(f(c)), q(b)}, and so on.

Now, consider the substitution θ = [y 7→ f(b)] and the following corresponding instance of
clause 3: q(f(b)) ◦− (∀x.p(x)) & r(f(b)). Suppose we want to compute an output fact C for
the judgment

I1 |=Σ (∀x.p(x)) & r(f(b)) ◮ C.
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By |= definition, we have to compute I1 |=Σ (∀x.p(x)) ◮ C and I1 |=Σ r(f(b)) ◮ C. For
the latter judgment we have that, e.g., I1 |=Σ r(f(b)) ◮ p(a). For the first judgment, by
|= definition, we must compute I1 |=Σ,c ∀x.p(c) ◮ C, where c is a new constant not in Σ.
As {p(c)} is contained in (I1)Σ,c, we can get that I1 |=Σ,c ∀x.p(c) ◮ ǫ. We can also get
I1 |=Σ,c ∀x.p(c) ◮ p(a) (in fact {p(c), p(a)} is also contained in (I1)Σ,c. By applying the
& -rule for |=, we get that I1 |=Σ (∀x.p(x)) & r(f(b)) ◮ p(a). Therefore, e.g., the multiset
{q(b), p(a)} is in (I2)Σ = (TP (I1))Σ. 2

10.3 An Effective Semantics for LO∀

The fixpoint operator TP defined in the previous section does not enjoy one of the crucial
properties we required for our bottom-up semantics, namely its definition is not effective.
This is a result of both the definition of the satisfiability judgment (whose clause for ⊤ is
clearly not effective) and the definition of interpretations as infinite tuples. In order to solve
these problems, we first define the (abstract) Herbrand base and (abstract) interpretations
as follows.

Definition 10.16 (Abstract Herbrand Base) Given an LO∀ program P , the Herb-
and base of P , denoted HB (P ), is given by

HB (P ) = HBΣP
(P ).

Definition 10.17 (Abstract Interpretations) Given an LO∀ program P , an interpre-
tation I is any subset of HB (P ), i.e., I ∈ P(HB (P )).

In order to define the abstract domain of interpretations, we need the following definitions.

Definition 10.18 (Instance Operator) Given an interpretation I and a signature Σ ∈
SigP , we define the operator InstΣ as follows:

InstΣ(I) = {Aθ | A ∈ I, θ substitution over Σ}.

Definition 10.19 (Upward-closure Operator) Given an interpretation I and a signa-
ture Σ ∈ SigP , we define the operator UpΣ as follows:

UpΣ(I) = {A+ C | A ∈ I, C fact over Σ}.

Remark 10.20 Note that, as usual, in the previous definitions we assume the substitution
θ and the fact C to be defined over Σ.
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The following definition provides the connection between the (abstract) interpretations
defined in Definition 10.17 and the (concrete) interpretations of Definition 10.4. The idea
behind the definition is that an interpretation implicitly denotes the set of elements which
can be obtained by either instantiating or closing upwards elements in the interpretation
itself (where the concepts of instantiation and upward-closure are made precise by the
above definitions). The operation of instantiation is related to the notion of C-semantics
[FLMP93] (see Definition 10.2), while the operation of upward-closure is justified by Propo-
sition 3.14. Note that the operations of instantiation and upward-closure are performed
for every possible signature Σ ∈ SigP .

Definition 10.21 (Denotation of an Interpretation) Given an (abstract) interpreta-
tion I, its denotation [[I]] is the (concrete) interpretation {[[I]]Σ}Σ∈SigP

defined as follows:

[[I]]Σ = InstΣ(UpΣ(I)) (or, equivalently, [[I]]Σ = UpΣ(InstΣ(I))).

Two interpretations I and J are said to be equivalent, written I ≃ J , if and only if
[[I]] = [[J ]].

The equivalence of the two different equations in Definition 10.21 is stated in the following
proposition.

Proposition 10.22 For every interpretation I, and signature Σ ∈ SigP ,

InstΣ(UpΣ(I)) = UpΣ(InstΣ(I)).

Proof Let (A + C)θ ∈ InstΣ(UpΣ(I)), with A ∈ I. Then (A + C)θ = (Aθ) + Cθ ∈
UpΣ(InstΣ(I)). Vice versa, let Aθ + C ∈ UpΣ(InstΣ(I)), with A ∈ I. Let B be a variant
of C with new variables (not appearing in A, θ, and C) and θ′ be the substitution with
domain Dom(θ) ∪ FV (B) and s.t. θ′|Dom(θ) = θ and θ′ maps B to C. Then Aθ + C =
Aθ′ + Bθ′ = (A+ B)θ′ ∈ InstΣ(UpΣ(I)). 2

We are now ready to define the abstract interpretation domain. As we do not need to
distinguish between interpretations having the same denotation, we simply identify them
using equivalence classes with respect to the corresponding equivalence relation ≃.

Definition 10.23 (Abstract Interpretation Domain) Abstract interpretations form
a complete lattice 〈I,⊑〉, where

• I = {[I]≃ | I is an interpretation};

• [I]≃ ⊑ [J ]≃ iff [[I]] ⊆ [[J ]];
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• the least upper bound of [I]≃ and [J ]≃, written [I]≃
⊔

[J ]≃, is [I ∪ J ]≃;

• the bottom and top elements are [∅]≃ and [ǫ]≃, respectively.

The following proposition provides an effective and equivalent condition for testing the ⊑
relation over interpretations. We will need this result later on.

Proposition 10.24 Given two interpretations I and J , [[I]] ⊆ [[J ]] iff for every A ∈ I,
there exist B ∈ J , a substitution θ and a fact C (defined over ΣP ) s.t. A = Bθ + C.

Proof If part. We prove that for every Σ ∈ SigP , [[I]]Σ ⊆ [[J ]]Σ. Let A′ = Aθ′ + C′ ∈
UpΣ(InstΣ(I)) = [[I]]Σ, with A ∈ I and θ′, C′ defined over Σ. By hypothesis, there exist
B ∈ J , a substitution θ and a fact C (defined over ΣP ) s.t. A = Bθ + C. Therefore,
A′ = Aθ′ + C′ = (Bθ + C)θ′ + C′ = Bθθ′ + (Cθ′ + C′) ∈ UpΣ(InstΣ(J)) = [[J ]]Σ (note that
θθ′ and Cθ′ + C′ are both defined over Σ because ΣP ⊆ Σ).
Only if part. Let A ∈ I, then A ∈ [[I]]ΣP

(note that A is defined over ΣP by definition
of interpretation). Then, by hypothesis we have that A ∈ [[J ]]ΣP

= UpΣP
(InstΣP

(J)), i.e.,
there exist B ∈ J , a substitution θ and a fact C (defined over ΣP ) s.t. A = Bθ + C. 2

We now define the abstract satisfiability judgment I 
Σ ∆ ◮ C ◮ θ, where I is an interpre-
tation, ∆ is a context, C is an output fact, and θ is an output substitution.

Remark 10.25 As usual, the notation I 
Σ ∆ ◮ C ◮ θ requires that ∆, C, and θ are defined
over Σ. As a consequence, the newly introduced constant c in the ∀-case of the 
Σ definition
below cannot be exported through the output parameters C or θ.

The judgment 
Σ can be thought of as an abstract version of the judgment |=Σ. We now
need one more parameter, namely an output substitution. The idea behind the definition is
that the output fact C and the output substitution θ are minimal (in a sense to be clarified)
so that they can be computed effectively given a program P , an interpretation I, and a
signature Σ. The output substitution θ is needed in order to deal with clause instantiation,
and its minimality is ensured by using most general unifiers in the definition. We recall
that the notation θ1 ↑ θ2 denotes the least upper bound of substitutions (see Section 2.4).

Definition 10.26 (Abstract Satisfiability Judgment) Let P be an LO∀ program, I
an interpretation, and Σ ∈ SigP . The abstract satisfiability judgment 
Σ is defined as
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follows:

I 
Σ ⊤,∆ ◮ ǫ ◮nil;

I 
Σ A ◮ C ◮ θ if there exist B ∈ I (variant), B′ 4 B, A′ 4 A, |B′| = |A′|,
C = B\B′, and θ = m.g.u.(B′,A′)|FV (A,C);

I 
Σ ∀x.G,∆ ◮ C ◮ θ if I 
Σ,c G[c/x],∆ ◮ C ◮ θ, with c 6∈ Σ (see remark 10.25);

I 
Σ G1 &G2,∆ ◮ C ◮ θ if I 
Σ G1,∆ ◮ C1 ◮ θ1, I 
Σ G2,∆ ◮ C2 ◮ θ2,
D1 4 C1, D2 4 C2, |D1| = |D2|, θ3 = m.g.u.(D1,D2),
C = C1 + (C2\D2), and θ = (θ1 ↑ θ2 ↑ θ3)|FV (G1,G2,∆,C);

I 
Σ G1
............................................
...........
........
................................ G2,∆ ◮ C ◮ θ if I 
Σ G1, G2,∆ ◮ C ◮ θ;

I 
Σ ⊥,∆ ◮ C ◮ θ if I 
Σ ∆ ◮ C ◮ θ.

We recall that two multisets in general may have more than one (not necessarily equivalent)
most general unifier and that using the notation m.g.u.(B′,A′) we mean any unifier which is
non-deterministically picked from the set of most general unifiers of B′ and A′ (see Section
2.4).

Example 10.27 Let us consider a signature with a function symbol f and predicate sym-
bols p, q, r, s. Let V be a denumerable set of variables, and u, v, w, . . . ∈ V. Let I be the
interpretation consisting of the two multisets {p(x), q(x)} and {r(y), p(f(y))} (for simplic-
ity, hereafter we omit brackets in multiset notation), and P the program

1. r(w) ◦− q(f(w))

2. s(z) ◦− ∀x.p(f(x))

3. ⊥ ◦− q(u) & r(v)

Let’s consider (a renaming of) the body of the first clause, q(f(w′)), and (a renaming of)
the first element in I, p(x′), q(x′). Using the second clause for the 
ΣP

judgment, with
A = A′ = q(f(w′)), B = p(x′), q(x′), B′ = q(x′), we get

I 
ΣP
q(f(w′)) ◮ p(x′) ◮ [x′ 7→ f(w′)].

Let’s consider now (a renaming of) the body of the second clause, ∀x.p(f(x)), and another
renaming of the first element, p(x′′), q(x′′). From the ∀-case of 
ΣP

definition, I 
ΣP

∀x.p(f(x)) ◮ C ◮ θ if I 
ΣP ,c p(f(c)) ◮ C ◮ θ, with c 6∈ ΣP . Now, we can apply the second
clause for 
ΣP ,c. Unfortunately, we can’t choose A′ to be p(f(c)) and B′ to be p(x′′). In
fact, by unifying p(f(c)) with p(x′′), we should get the substitution θ = [x′′ 7→ f(c)] and the
output fact q(x′′) (note that x′′ is a free variable in the output fact) and this is not allowed
because the substitution θ must be defined on ΣP , in order for I 
ΣP

∀x.p(f(x)) ◮ C ◮ θ
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to be meaningful. It turns out that the only way to use the second clause for 
ΣP ,c is to
choose A′ = B′ = ǫ, which is useless in the fixpoint computation (see Example 10.39).

Finally, let’s consider (a renaming of) the body of the third clause, ⊥ ◦− q(u′) & r(v′).
According to the & -rule for the 
ΣP

judgment, we must first compute C1, C2, θ1 and θ2
such that I 
ΣP

q(u′) ◮ C1 ◮ θ1 and I 
ΣP
r(v′) ◮ C2 ◮ θ2. To this aim, take two variants of

the multisets in I, p(x′′′), q(x′′′) and r(y′), p(f(y′)). Proceeding as above, we get that

I 
ΣP
q(u′) ◮ p(x′′′) ◮ [u′ 7→ x′′′] and I 
ΣP

r(v′) ◮ p(f(y′)) ◮ [v′ 7→ y′].

Now, we can apply the & -rule for the 
ΣP
judgment, with D1 = p(x′′′), D2 = p(f(y′)),

and θ3 = [x′′′ 7→ f(y′)]. We have that θ1 ↑ θ2 ↑ θ3 = [u′ 7→ f(y′), v′ 7→ y′, x′′′ 7→ f(y′)].
Therefore, we get that

I 
ΣP
q(u′) & r(v′) ◮ p(x′′′) ◮ [u′ 7→ f(y′), v′ 7→ y′, x′′′ 7→ f(y′)].

2

The following lemma states a simple property of the substitution domain, which we will
need in the following.

Lemma 10.28 For every interpretation I, context ∆, fact C, and substitution θ, if I 
Σ

∆ ◮ C ◮ θ then Dom(θ) ⊆ FV (∆) ∪ FV (C).

Proof Immediate by induction on 
Σ definition. 2

The connection between the satisfiability judgments |=Σ and 
Σ is clarified by the following
lemma.

Lemma 10.29 For every interpretation I, context ∆, fact C, and substitution θ,

i. if I 
Σ ∆ ◮ C ◮ θ then [[I]] |=Σ ∆θθ′ ◮ C′θ′ for every substitution θ′ and fact C′ < Cθ;

ii. if [[I]] |=Σ ∆θ ◮ C then there exist a fact C′, and substitutions θ′ and σ s.t. I 
Σ

∆ ◮ C′ ◮ θ′, θ|FV (∆) = (θ′ ◦ σ)|FV (∆), C′θ′σ 4 C.

Proof

i. By induction on the derivation of I 
Σ ∆ ◮ C ◮ θ.

- If ∆ = ⊤,∆′, obvious;

171



- suppose ∆ = A, with B ∈ I (variant), B′ 4 B, A′ 4 A, C = B \B′, and
θ = m.g.u.(B′,A′)|FV (A,C). We want to prove that [[I]] |=Σ Aθθ′ ◮ C′θ′ for every

substitution θ′ and fact C′ < Cθ, i.e., Aθθ′ + Cθθ′ +Dθ′ ∈ [[I]]Σ for every substi-
tution θ′ and fact D.

Now, Aθθ′ +Cθθ′ +Dθ′ = (Aθ+Cθ+D)θ′ = (A′θ+(A\A′)θ+(B\B′)θ+D)θ′ =
(remember that B′ 4 B) (A′θ + (A\A′)θ + (Bθ\B′θ) + D)θ′ = Bθθ′ + ((A\
A′)θθ′ +Dθ′) ∈ [[I]]Σ;

- if ∆ = ∀x.G,∆′ and I 
Σ,c G[c/x],∆′
◮ C ◮ θ, with c 6∈ Σ, then by inductive

hypothesis we have that

[[I]] |=Σ,c G[c/x]θθ′,∆′θθ′ ◮ C′θ′

for every substitution θ′ and fact C′ < Cθ (where θ′ and C′ are defined over Σ, c).

Assuming that the variable x is not in the domain of θθ′ (it is always pos-
sible to rename the universally quantified variable x in ∀x.G), we have that
[[I]] |=Σ,c Gθθ′[c/x],∆′θθ′ ◮ C′θ′, and, by definition of the judgment, we get
[[I]] |=Σ ∀x.(Gθθ′),∆′θθ′ ◮ C′θ′, i.e., [[I]] |=Σ (∀x.G,∆′)θθ′ ◮ C′θ′, for every substi-
tution θ′ and fact C′ defined over Σ, c (and therefore also for every substitution
θ′ and fact C′ defined over Σ), with C′ < Cθ;

- suppose ∆ = G1 &G2,∆
′ and I 
Σ G1 &G2,∆

′
◮ C ◮ θ. We need to prove that

[[I]] |=Σ (G1 &G2,∆
′)θθ′ ◮ C′θ′ for every substitution θ′ and fact C′ < Cθ, i.e.,

that [[I]] |=Σ (G1 &G2,∆
′)θθ′ ◮ Cθθ′ + Fθ′ for every substitution θ′ and fact F .

By 
Σ definition, we have that there exist facts C′1 4 C1, C′2 4 C2 with |C′1| = |C′2|,
and substitutions θ1, θ2, θ3 s.t.

θ3 = m.g.u.(C′1, C′2), C = C1 + (C2\C′2), θ = (θ1 ↑ θ2 ↑ θ3)|FV (∆,C),

I 
Σ G1,∆
′

◮ C1 ◮ θ1 and I 
Σ G2,∆
′

◮ C2 ◮ θ2.

By inductive hypothesis, we have that

[[I]] |=Σ (G1,∆
′)θ1θ

′
1

◮ C1θ1θ′1 +D1θ
′
1 and [[I]] |=Σ (G2,∆

′)θ2θ
′
2

◮ C2θ2θ′2 +D2θ
′
2

for every substitutions θ′1, θ
′
2 and facts D1,D2.

By choosing D1 = (C2\C′2)θ1 + F1 and D2 = (C1\C′1)θ2 + F2, we have, for every
substitutions θ′1, θ

′
2 and facts F1,F2,

[[I]] |=Σ (G1,∆
′)θ1θ

′
1

◮ (C1 + (C2\C′2))θ1θ′1 + F1θ
′
1,

[[I]] |=Σ (G2,∆
′)θ2θ

′
2

◮ (C2 + (C1\C′1))θ2θ′2 + F2θ
′
2.
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By θ definition, we have that there exist substitutions γ1, γ2, γ3 and τ s.t.

τ = θ1 ◦ γ1, τ = θ2 ◦ γ2, τ = θ3 ◦ γ3, and θ = τ|FV (∆,C).

Now, let F1 be a variant of Fθ′ with new variables, and define the substitution
θ′1 s.t. Dom(θ′1) = Dom(γ1 ◦ θ′) ∪ FV (F1) (clearly these two latter sets are
disjoint), θ′1|Dom(γ1◦θ′)

= γ1 ◦ θ′ and F1θ
′
1 = Fθ′. Do the same for F2, i.e., let it

be another variant of Fθ′ with new variables, and define θ′2 in the same way, so
that Dom(θ′2) = Dom(γ2 ◦ θ′)∪FV (F2), θ

′
2|Dom(γ2◦θ′)

= γ2 ◦ θ′, and F2θ
′
2 = Fθ′.

Now, from τ definition it follows (G1,∆
′)θ1θ

′
1 = (G1,∆

′)θ1γ1θ
′ = (G1,∆

′)θθ′,
and similarly (G2,∆

′)θ2θ
′
2 = (G2,∆

′)θθ′. Besides, (C1 + (C2\C′2))θ1θ′1 = Cθ1θ′1 =
Cθθ′.
We also have that (C2 +(C1\C′1))θ2θ′2 = (C2 +(C1\C′1))θ2γ2θ

′ = (C2 +(C1\C′1))τθ′ =
(C2 + (C1 \C′1))θ3γ3θ

′ = (remember that C′1 4 C1) (C2θ3 + (C1θ3 \C′1θ3))γ3θ
′ =

(remember that θ3 is a unifier of C′1 and C′2) (C2θ3 + (C1θ3\C′2θ3))γ3θ
′ = (note

that C′2θ3 = C′1θ3 4 C1θ3) ((C2θ3 + C1θ3) \ C′2θ3)γ3θ
′ = (note that C′2 4 C2)

(C1θ3 + (C2θ3\C′2θ3))γ3θ
′ = (C1 + (C2\C′2))θ3γ3θ

′ = Cθ3γ3θ
′ = Cθθ′.

It follows that, by putting everything together, the inductive hypotheses become
[[I]] |=Σ (G1,∆

′)θθ′ ◮ Cθθ′ + Fθ′ and [[I]] |=Σ (G2,∆
′)θθ′ ◮ Cθθ′ + Fθ′, from which

the thesis follows by |=Σ definition;

- if ∆ = G1
............................................
...........
.......
................................. G2,∆

′ and I 
Σ G1, G2,∆
′

◮ C ◮ θ, then by inductive hypothesis
we have that [[I]] |=Σ (G1, G2,∆

′)θθ′ ◮ C′θ′, for every substitution θ′ and fact
C′ < Cθ. Therefore, [[I]] |=Σ G1θθ

′, G2θθ
′,∆′θθ′ ◮ C′θ′, and, by definition of the

judgment, we get [[I]] |=Σ (G1
............................................
...........
........
................................ G2,∆)θθ′ ◮ C′θ′;

- if ∆ = ⊥,∆′, the conclusion follows by a straightforward application of the
inductive hypothesis.

ii. By induction on the derivation of [[I]] |=Σ ∆θ ◮ C.

- If ∆ = ⊤,∆′, take C′ = ǫ, θ′ = nil, and σ = θ;

- suppose [[I]] |=Σ Aθ ◮ C and Aθ + C ∈ [[I]]Σ = UpΣ(InstΣ(I)). Then there exist
B ∈ I, a fact D and a substitution τ (defined on Σ) s.t. Aθ + C = Bτ +D. We
can safely assume, thanks to the substitution τ , that B is a variant of an element
in I. Also, we can assume that Dom(τ) ⊆ FV (B) and Dom(θ)∩Dom(τ) = ∅.
Now, take the substitution γ s.t. Dom(γ) = (Dom(θ) ∩ FV (A)) ∪ Dom(τ),

γ|Dom(θ)∩FV (A) = θ|Dom(θ)∩FV (A) and γ|Dom(τ) = τ.

We have that Aγ + C = Bγ + D. Let A′ 4 A and B′ 4 B be two maximal
sub-multisets s.t. A′γ = B′γ, ρ = m.g.u.(A′,B′), and θ′ = ρ|FV (A)∪FV (B\B′). By
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definition of the 
Σ judgment, we have that I 
Σ A ◮ C′ ◮ θ′, where C′ = B\B′.

As γ is a unifier for A′,B′, while ρ = m.g.u.(A′,B′), we have that there exists
a substitution σ s.t. γ = ρ ◦ σ. Therefore, θ|FV (A) = γ|FV (A) = (ρ ◦ σ)|FV (A) =

(ρ|(FV (A)∪FV (B\B′)) ◦ σ)
|FV (A)

= (θ′ ◦ σ)|FV (A), as required.

Furthermore, since Aγ + C = Bγ + D and A′ 4 A, it follows that A′γ + (A\
A′)γ + C = B′γ + (B\B′)γ + D, i.e., (A\A′)γ + C = (B\B′)γ + D. By this
equality and maximality of A′ and B′, we get that necessarily (B\B′)γ 4 C
(otherwise, (B\B′)γ and (A\A′)γ would have elements in common). Therefore,
C′θ′σ = (B\B′)θ′σ = (B\B′)ρσ = (B\B′)γ 4 C, as required;

- if ∆ = ∀x.G,∆′ and [[I]] |=Σ,c (G[c/x],∆′)θ ◮ C, with c 6∈ Σ, then by inductive
hypothesis there exist a fact C′, and substitutions θ′ and σ (defined over Σ, c)
s.t.

I 
Σ,c G[c/x],∆′
◮ C′ ◮ θ′,

θ|FV (G[c/x],∆′) = (θ′ ◦ σ)|FV (G[c/x],∆′), and C′θ′σ 4 C. By definition of the 
Σ

judgment, we get that
I 
Σ ∀x.G,∆′

◮ C′ ◮ θ′.

The conclusion follows (remember that we must ensure that C′, θ′ and σ are
defined over Σ) by the following crucial observations:

· Dom(θ′) ⊆ (FV (G[c/x],∆′) ∪ FV (C′)) by Lemma 10.28;

· θ′ does not map variables in G[c/x],∆′ to the eigenvariable c. In fact we
know that θ does not map variables in G[c/x],∆′ to c (by hypothesis) and
we know that (θ′ ◦ σ)|FV (G[c/x],∆′) = θ|FV (G[c/x],∆′);

· θ′ does not map variables in C′ to c and C′ itself does not contain c. In fact
we know that C does not contain c (by hypothesis) and also that C′θ′σ 4 C;
· we can safely assume that Dom(σ) does not contain variables mapped to
c. Intuitively, these bindings are useless. Formally, we can restrict the
domain of σ to variables that are not mapped to c: with this restriction,
the equalities θ|FV (G[c/x],∆′) = (θ′ ◦ σ)|FV (G[c/x],∆′) and C′θ′σ 4 C still hold.

- suppose ∆ = G1 &G2,∆
′ and [[I]] |=Σ (G1 &G2∆

′)θ ◮ C. We need to prove that
there exist a fact C′ and substitutions θ′ and σ s.t. I 
Σ G1 &G2,∆

′
◮ C′ ◮ θ′,

θ|FV (G1,G2,∆′) = (θ′ ◦ σ)|FV (G1,G2,∆′), C′θ′σ 4 C. By |=Σ definition, we have that

I |=Σ (G1,∆
′)θ ◮ C and I |=Σ (G2,∆

′)θ ◮ C.

By inductive hypothesis, we have that there exist facts C1, C2 and substitutions
θ1, θ2, σ1, σ2 s.t.

I 
Σ G1,∆
′

◮ C1 ◮ θ1 and I 
Σ G2,∆
′

◮ C2 ◮ θ2,
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θ|FV (G1,∆′) = (θ1 ◦ σ1)|FV (G1,∆′), C1θ1σ1 4 C, θ|FV (G2,∆′) = (θ2 ◦ σ2)|FV (G2,∆′) and
C2θ2σ2 4 C.
Now, let D1 4 C1 and D2 4 C2 s.t. D1θ1σ1 = D2θ2σ2 = C1θ1σ1 ∩ C2θ2σ2. Let τ
be the substitution (θ1 ◦ σ1)|FV (G1,∆′,C1)

∪ (θ2 ◦ σ2)|FV (G2,∆′,C2); τ is well defined

because θ1 ◦ σ1 and θ2 ◦ σ2 both behave like θ on variables in FV (G1,∆
′) ∩

FV (G2,∆
′), and C1, C2 do not have variables in common except for variables in

G1, G2,∆
′ (note that new variants of elements in I are chosen every time the

judgment 
Σ is computed).

Now, D1 and D2 are unified by τ , because D1τ = D1θ1σ1 = D2θ2σ2 = D2τ .
Therefore, there exists θ3 = m.g.u.(D1,D2) s.t. τ ≥ θ3 (θ3 is more general than
τ). Also, τ ≥ θ1σ1 ≥ θ1 and τ ≥ θ2σ2 ≥ θ2. Therefore, τ is an upper bound for
{θ1, θ2, θ3}, hence there exist θ′ = (θ1 ↑ θ2 ↑ θ3)|FV (G1,G2,∆′,C), and a substitution

γ s.t. τ = θ′ ◦ γ. Now we can apply 
Σ definition (rule for & ) and we get that

I 
Σ G1 &G2,∆
′

◮ C′ ◮ θ′,

where C′ = C1 + (C2\D2). Let σ = γ, and let’s prove the thesis.

First of all, since θ′ ◦ σ = θ′ ◦ γ = τ , and by definition of τ , we have that
θ|FV (G1,G2,∆′) = (θ′ ◦ σ)|FV (G1,G2,∆′). It remains to prove that C′θ′σ 4 C. Now,

C′θ′σ = C′τ = C1τ +C2τ\D2τ = C1τ +C2τ\D2θ2σ2 = C1τ +C2τ\(C1θ1σ1∩C2θ2σ2)
= C1τ + C2τ \(C1τ ∩ C2τ) 4 C. The last passage holds because C1τ 4 C and
C2τ 4 C (by definition of τ and by inductive hypothesis) and relies on the
following property of multisets: A 4 D and B 4 D implies A+B\(A∩B) 4 D;

- if ∆ = G1
............................................
...........
........
................................ G2,∆

′ of ∆ = ⊥,∆′, the conclusion follows by a straightforward
application of the inductive hypothesis.

2

The satisfiability judgment 
Σ also satisfies the following properties.

Lemma 10.30 For any interpretations I1, I2, . . . , context ∆, fact C, and substitution θ,

i. if I1 ⊑ I2 and I1 
Σ ∆ ◮ C ◮ θ then there exist a fact C′, and substitutions θ′ and σ
s.t. I2 
Σ ∆ ◮ C′ ◮ θ′, θ|FV (∆) = (θ′ ◦ σ)|FV (∆), C′θ′σ 4 Cθ;

ii. if I1 ⊑ I2 ⊑ . . . and
⊔∞
i=1 Ii 
Σ ∆ ◮ C ◮ θ then there exist k ∈ N, a fact C′, and

substitutions θ′ and σ s.t. Ik 
Σ ∆ ◮ C′ ◮ θ′, θ|FV (∆) = (θ′ ◦ σ)|FV (∆), C′θ′σ 4 Cθ.

Proof
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i. Suppose I1 
Σ ∆ ◮ C ◮ θ and I1 ⊑ I2. By Lemma 10.29 i, [[I1]] |=Σ ∆θ ◮ Cθ. By
Lemma 10.9 i, [[I2]] |=Σ ∆θ ◮ Cθ. The conclusion then follows from Lemma 10.29 ii;

ii. Suppose
⊔∞
i=1 Ii 
Σ ∆ ◮ C ◮ θ and I1 ⊑ I2 ⊑ . . .. By Lemma 10.29 i, [[

⊔∞
i=1 Ii]] |=Σ

∆θ ◮ Cθ, i.e., as it can be readily verified from Definition 10.21 and Definition 10.23,⋃∞
i=1[[Ii]] |=Σ ∆θ ◮ Cθ. By Lemma 10.9 ii, there exists k ∈ N s.t. [[Ik]] |=Σ ∆θ ◮ Cθ.

The conclusion then follows from Lemma 10.29 ii.

2

We are now ready to define the abstract fixpoint operator SP : I → I. As usual, we will
proceed in two steps. We will first define an operator working over interpretations (i.e.,
elements of P(HB (P ))). With a little bit of overloading, we will call the operator with
the same name, i.e., SP . This operator should satisfy the equation [[SP (I)]] = TP ([[I]]) for
every interpretation I. This property ensures soundness and completeness of the symbolic
representation.

After defining the operator over P(HB (P )), we will lift it to our abstract domain I con-
sisting of the equivalence classes of elements of P(HB (P )) w.r.t. the relation ≃ defined in
Definition 10.21. Formally, we first introduce the following definition.

Definition 10.31 (Symbolic Fixpoint Operator SP) Given an LO∀ program P and
an interpretation I, the symbolic fixpoint operator SP is defined as follows:

SP (I) = {(Ĥ + C) θ | (H ◦−G) ∈ Vrn(P ), I 
ΣP
G ◮ C ◮ θ}.

Note that the SP operator is defined using the judgment 
ΣP
.

Proposition 10.33 states that SP is sound and complete w.r.t TP . In order to prove it, we
need to formulate Lemma 10.32 below.

Notation. Let P be an LO∀ program, and Σ,Σ1 ∈ SigP be two signatures such that
Σ1 ⊆ Σ. Given a fact C, defined on Σ, we use ⌈C⌉Σ→Σ1

to denote any fact which is obtained
in the following way. For every constant (eigenvariable) c ∈ (Σ\Σ1), pick a new variable
in V (not appearing in C), let it be xc (distinct variables must be chosen for distinct
eigenvariables). Now, ⌈C⌉Σ→Σ1

is obtained by C by replacing every c ∈ (Σ\Σ1) with xc.
For instance, if C = {p(x, f(c)), q(y, d)}, with c ∈ (Σ\Σ1) and d ∈ Σ1, we have that
⌈C⌉Σ→Σ1

= {p(x, f(xc)), q(y, d)}.
Given a context (multiset of goals) ∆, defined on Σ, we define ⌈∆⌉Σ→Σ1

in the same way.
Similarly, given a substitution θ, defined on Σ, we use the notation ⌈θ⌉Σ→Σ1

to denote the
substitution obtained from θ by replacing every c ∈ (Σ\Σ1) with a new variable xc in
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every binding of θ. For instance, if θ = [u 7→ p(x, f(c)), v 7→ q(y, d)], with c ∈ (Σ\Σ1) and
d ∈ Σ1, we have that ⌈θ⌉Σ→Σ1

= [u 7→ p(x, f(xc)), v 7→ q(y, d)].

Using the notation [[I]] |=Σ1
⌈∆⌉Σ→Σ1

◮ ⌈C⌉Σ→Σ1
we mean the judgment obtained by replacing

every c ∈ (Σ\Σ1) with xc simultaneously in D and C. Newly introduced variables must
not appear in ∆, C, or I.

When Σ and Σ1 are clear from the context, we simply write ⌈C⌉, ⌈∆⌉, and ⌈θ⌉ for ⌈C⌉Σ→Σ1
,

⌈∆⌉Σ→Σ1
, and ⌈θ⌉Σ→Σ1

.

Finally, we use ξΣ1→Σ (or simply ξ if it is not ambiguous) to denote the substitution which
maps every variable xc back to c (for every c ∈ (Σ\Σ1)), i.e., consisting of all bindings of
the form xc 7→ c for every c ∈ Σ\Σ1. Clearly, we have that ⌈F ⌉ξ = F , for any fact or
context F , and ⌈θ⌉ ◦ ξ = θ for any substitution θ.

Note that, by definition, ⌈C⌉Σ→Σ1
and ⌈∆⌉Σ→Σ1

are defined on Σ1, while ξΣ1→Σ is defined on
Σ.

Lemma 10.32 Let P be an LO∀ program, I an interpretation, and Σ,Σ1 ∈ SigP two
signatures, with Σ1 ⊆ Σ.

i. If I 
Σ1
∆ ◮ C ◮ θ then I 
Σ ∆ ◮ C ◮ θ;

ii. If [[I]] |=Σ ∆ ◮ C then [[I]] |=Σ1
⌈∆⌉Σ→Σ1

◮ ⌈C⌉Σ→Σ1
.

Proof

i. By simple induction on the derivation of I 
Σ1
∆ ◮ C ◮ θ.

ii. By induction on the derivation of [[I]] |=Σ ∆ ◮ C.

- If [[I]] |=Σ ⊤,∆ ◮ C, immediate;

- suppose [[I]] |=Σ A ◮C and A+C ∈ [[I]]Σ. It follows that there exist B ∈ I, a fact
D and a substitution θ (defined on Σ) such that A+ C = Bθ +D. Note that B
is defined on ΣP by definition of (abstract) interpretation.

Now, ⌈A⌉ + ⌈C⌉ = ⌈A+ C⌉ = ⌈Bθ +D⌉ = ⌈Bθ⌉ + ⌈D⌉ = (remember that B
is defined on ΣP ⊆ Σ1) B⌈θ⌉ + ⌈D⌉. We can conclude that ⌈A⌉ + ⌈C⌉ ∈ [[I]]Σ1

(note that B ∈ I and ⌈θ⌉, ⌈D⌉ are defined on Σ1), it follows [[I]] |=Σ1
⌈A⌉ ◮ ⌈C⌉;

- suppose [[I]] |=Σ ∀x.G,∆ ◮ C and [[I]] |=Σ,c G[c/x],∆ ◮ C, with c 6∈ Σ. From
Σ1 ⊆ Σ we get Σ1, c ⊆ Σ, c, therefore we can apply the inductive hypothesis.

It follows that [[I]] |=Σ1,c ⌈G[c/x],∆⌉ ◮ ⌈C⌉ iff [[I]] |=Σ1,c ⌈G[c/x]⌉, ⌈∆⌉ ◮ ⌈C⌉ iff (re-
member that c 6∈ Σ\Σ1 because c 6∈ Σ) [[I]] |=Σ1,c ⌈G⌉[c/x], ⌈∆⌉ ◮ ⌈C⌉. By |= def-
inition (remember that c 6∈ Σ implies c 6∈ Σ1), we get [[I]] |=Σ1

∀x.⌈G⌉, ⌈∆⌉ ◮ ⌈C⌉
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iff [[I]] |=Σ1
⌈∀x.G,∆⌉ ◮ ⌈C⌉ (we assume x to be disjoint with the variables intro-

duced by the ⌈·⌉ construction);

- the remaining cases follow by a straightforward application of the inductive
hypothesis.

2

Proposition 10.33
For every LO∀ program P and interpretation I, [[SP (I)]] = TP ([[I]]).

Proof

- [[SP (I)]] ⊆ TP ([[I]]).

We prove that for every Σ ∈ SigP , [[SP (I)]]Σ ⊆ TP ([[I]])Σ. Suppose (Ĥ + C)θ ∈ SP (I),
with H ◦− G variant of a clause in P and I 
ΣP

G ◮ C ◮ θ. Suppose also that A =

((Ĥ + C)θ +D)θ′ ∈ InstΣ(UpΣ(SP (I))) = [[Sp(I)]]Σ.

We have that I 
ΣP
G ◮ C ◮ θ implies I 
Σ G ◮ C ◮ θ by Lemma 10.32 i (remember that

ΣP ⊆ Σ). Therefore, by Lemma 10.29 i, we get [[I]] |=Σ Gθθ′ ◮ C′θ′ for any fact C′ < Cθ.
Taking C′ = Cθ+D, it follows that [[I]] |=Σ Gθθ

′
◮ Cθθ′ +Dθ′. Therefore, by TP definition,

we have Ĥθθ′ + Cθθ′ +Dθ′ ∈ (TP ([[I]]))Σ, i.e., A ∈ (TP ([[I]]))Σ.

- TP ([[I]]) ⊆ [[SP (I)]].

We prove that for every Σ ∈ SigP , Tp([[I]])Σ ⊆ [[SP (I)]]Σ. Suppose A ∈ (TP ([[I]]))Σ. By
definition of TP , there exist a variant of a clause H ◦−G in P , a fact C and a substitution
θ (defined over Σ) s.t. A = Ĥθ + C and [[I]] |=Σ Gθ ◮ C.
By Lemma 10.32 ii we have that [[I]] |=Σ Gθ ◮ C implies [[I]] |=ΣP

⌈Gθ⌉ ◮ ⌈C⌉ (hereafter,
we use the notation ⌈·⌉ for ⌈·⌉Σ→ΣP

). From H ◦− G in P , we know that G is defined on
ΣP . It follows easily that ⌈Gθ⌉ = G⌈θ⌉, so that [[I]] |=ΣP

G⌈θ⌉ ◮ ⌈C⌉. By Lemma 10.29 ii,
there exist a fact C′, and substitutions θ′ and σ (defined over ΣP ) s.t. I 
ΣP

G ◮ C′ ◮ θ′,
⌈θ⌉|FV (G) = (θ′ ◦ σ)|FV (G), and C′θ′σ 4 ⌈C⌉.

By SP definition, we have (Ĥ + C′)θ′ ∈ SP (I).

Now, A = Ĥθ + C = Ĥ⌈θ⌉ξ + ⌈C⌉ξ = (note that by hypothesis θ′ ◦ σ and ⌈θ⌉ coincide for
variables in G, and are not defined on variables in H which do not appear in G because
H ◦−G is a variant) Ĥθ′σξ + ⌈C⌉ξ < Ĥθ′σξ + C′θ′σξ = ((Ĥ + C′)θ′)σξ ∈ [[(Ĥ + C′)θ′]]Σ ⊆
[[SP (I)]]Σ. 2

The following corollary holds.
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Corollary 10.34 For every LO∀ program P and interpretations I and J , if I ≃ J then
SP (I) ≃ SP (J).

Proof If I ≃ J , i.e., [[I]] = [[J ]], we have that TP ([[I]]) = TP ([[J ]]). By Proposition 10.33, it
follows that [[SP (I)]] = [[SP (J)]], i.e., SP (I) ≃ SP (J). 2

The previous Corollary allows us to safely lift SP definition from the lattice 〈P(HB (P )),⊆〉
to 〈I,⊑〉. Formally, we define the abstract fixpoint operator as follows.

Definition 10.35 (Abstract Fixpoint Operator SP) Given an LO∀ program P and
an equivalence class [I]≃ of I, the abstract fixpoint operator SP is defined as follows:

SP ([I]≃) = [SP (I)]≃

where SP (I) is defined in Definition 10.31.

For the sake of simplicity, in the following we will often use I to denote its class [I]≃, and
we will simply use the term (abstract) interpretation to refer to an equivalence class, i.e.,
an element of I. The abstract fixpoint operator SP satisfies the following property.

Proposition 10.36 (Monotonicity and Continuity) For every LO∀ program P , the
abstract fixpoint operator SP is monotonic and continuous over the lattice 〈I,⊑〉.

Proof

Monotonicity.

We prove that if I ⊑ J , then SP (I) ⊑ SP (J), i.e., [[SP (I)]] ⊆ [[SP (J)]]. To prove this
latter condition, we will use the characterization given by Proposition 10.24. Suppose
A = (Ĥ + C)θ ∈ SP (I), with H ◦−G variant of a clause in P and I 
ΣP

G ◮ C ◮ θ.

By Lemma 10.30 i, there exist a fact C′, and substitutions θ′ and σ (note that they are
defined over ΣP ) s.t. J 
ΣP

G ◮ C′ ◮ θ′, θ|FV (G) = (θ′ ◦ σ)|FV (G), C′θ′σ 4 Cθ. Let Cθ =

C′θ′σ +D, with D a fact defined over ΣP . By SP definition, B = (Ĥ + C′)θ′ ∈ SP (J).

Now, A = (Ĥ+C)θ = Ĥθ+Cθ = Ĥθ′σ+C′θ′σ+D (note in fact that by hypothesis θ′σ and
θ coincide for variables in G, and are not defined on variables in H which do not appear in
G because H ◦−G is a variant). Therefore, we have that A = Ĥθ′σ+ C′θ′σ+D = Bσ+D.

Continuity.

We show that SP is finitary, i.e., if I1 ⊑ I2 ⊑ . . ., then SP (
⊔∞
i=1 Ii) ⊑

⊔∞
i=1 SP (Ii), i.e.,
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[[SP (
⊔∞
i=1 Ii)]] ⊆ [[

⊔∞
i=1 SP (Ii)]]. Again, we will use the characterization given by Proposition

10.24. Suppose A = (Ĥ + C)θ ∈ SP (
⊔∞
i=1 Ii), with H ◦− G variant of a clause in P and⊔∞

i=1 I1 
ΣP
G ◮ C ◮ θ.

By Lemma 10.30 ii, there exist k ∈ N, a fact C′, and substitutions θ′ and σ (note that
they are defined over ΣP ) s.t. Ik 
ΣP

G ◮ C′ ◮ θ′, θ|FV (G) = (θ′ ◦ σ)|FV (G), C′θ′σ 4 Cθ. Let

Cθ = C′θ′σ+D, with D a fact defined over ΣP . By SP definition, B = (Ĥ+C′)θ′ ∈ SP (Ik).

Exactly as above, we prove that A = (Ĥ + C)θ = Ĥθ′σ + C′θ′σ +D = Bσ +D. 2

Corollary 10.37 For every LO∀ program P , [[lfp(SP )]] = lfp(TP ).

Let Fsym(P ) = lfp(SP ), then we have the following main theorem.

Theorem 10.38 (Soundness and Completeness) For every LO∀ program P , O(P ) =
F (P ) = [[Fsym(P )]]ΣP

.

Proof From Theorem 10.14 and Corollary 10.37. 2

The previous results give us an algorithm to compute the operational and fixpoint semantics
of a program P via the fixpoint operator SP .

Example 10.39 Let us consider a signature with a constant symbol a, a function symbol
f and predicate symbols p, q, r, s. Let V be a denumerable set of variables, and u, v, w, . . . ∈
V. Let us consider the program P of Example 3.15, which is given below.

1. r(w) ◦− q(f(w))

2. s(z) ◦− ∀x.p(f(x))

3. ⊥ ◦− q(u) & r(v)

4. p(x) ............................................
...........
........
................................ q(x) ◦− ⊤

From clause 4, and using the first rule for 
ΣP
, we get that SP (∅) = [{{p(x), q(x)}}]≃. For

simplicity, we omit the class notation, and we write

SP↑1= SP (∅) = {{p(x), q(x)}}.

We can now apply the remaining clauses to the element I = {p(x), q(x)} (remember
that SP ([I]≃) = [SP (I)]≃). From the first clause (see Example 10.27) we have I 
ΣP

q(f(w′)) ◮ p(x′) ◮ [x′ 7→ f(w′)]. It follows (r(w′), p(x′))[x′ 7→ f(w′)] = r(w′), p(f(w′)) ∈
SP↑2. As the reader can verify (see discussion in Example 10.27), clause 2 does not yield
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any further element, and the same holds for clause 3, therefore we can assume (changing
w′ into y for convenience)

SP↑2= {{p(x), q(x)}, {r(y), p(f(y))}}.

Now, we can apply clause 3 to elements in SP ↑2. According to Example 10.27, we have
that I 
ΣP

q(u′) & r(v′) ◮ p(x′′′) ◮ [u′ 7→ f(y′), v′ 7→ y′, x′′′ 7→ f(y′)]. Therefore we get that
(p(x′′′))[u′ 7→ f(y′), v′ 7→ y′, x′′′ 7→ f(y′)] = p(f(y′)) ∈ SP ↑3. Clause 2 cannot be applied
yet, for the same reasons as above. Also, note that the element r(y), p(f(y)) is now
subsumed by p(f(y′)). Therefore we can assume

SP↑3= {{p(x), q(x)}, {p(f(y′))}}.

Finally, we can apply clause 2 to SP ↑3, using the ∀-rule for the 
ΣP
judgment. Take

c 6∈ ΣP , and consider a renaming of the last element in SP ↑3, p(f(y′′)). Consider (a
renaming of) clause 2, s(z′) ◦− ∀x.p(f(x)). We have that I 
ΣP ,c p(f(c)) ◮ ǫ ◮nil, with nil
being the empty substitution. Therefore we get that I 
ΣP

∀x.p(f(x)) ◮ ǫ ◮nil, from which
s(z′) ∈ SP↑4. The reader can verify that no further clauses can be applied and that SP↑4
is indeed the fixpoint of SP , therefore we have that

SP↑4= SP↑ω= {{p(x), q(x)}, {p(f(y′))}, {s(z′)}}.

Note that F (P ) is defined to be [[lfp(SP )]]ΣP
, therefore it includes, e.g., the elements s(a)

(see Example 3.15), p(f(f(y′′))) and p(f(f(y′′))), q(x′′). 2

10.4 Ensuring Termination

In this section we will rephrase the results of Section 9.3, concerning termination of the
bottom-up evaluation algorithm, to the case of LO∀ programs. An application of these
results will be presented in Section 10.5.

Accordingly, we introduce the class of programs with monadic predicate symbols.

Definition 10.40 (The P1(LO∀) class) The class P1(LO∀) consists of LO∀ programs
built over a signature Σ including a finite set of constant symbols, no function symbols,
and a finite set of predicate symbols with arity at most one.

Definition 10.41 (Multisets M1(LO∀)) The class M1(LO∀) consists of multisets of
(non ground) atomic formulas over a signature Σ including a finite set of constant symbols,
no function symbols, and predicate symbols with arity at most one.
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Example 10.42 Let Σ be a signature including a constant symbols a, no function symbols,
and predicate symbols p, q (with arity one) and r (with arity zero). Let V be a denumerable
set of variables, and x, y, . . . ∈ V. Then the clause

p(x) ............................................
...........
........
................................ q(x) ............................................

...........
........
................................ q(y) ............................................

...........
........
................................ r ◦− (p(a) ............................................

...........
........
................................ p(y)) & ∀z.q(z)

is in the class P1(LO∀), and the multiset {p(x), q(x), q(a), r} is in the class M1(LO∀). 2

The following result holds.

Proposition 10.43 The class M1(LO∀) is closed under applications of SP , i.e., if I ⊆
M1(LO∀) then SP (I) ⊆M1(LO∀).

Proof Immediate by Definition 10.31 and Definition 10.26. 2

Termination of the bottom-up evaluation for the class P1(LO∀) is stated in the following
proposition.

Proposition 10.44 Let P be a P1(LO∀) program. Then there exists k ∈ N such that
Fsym(P ) =

⊔k
i=0 SP↑k (∅).

Proof The proof is carried out, similarly to that of Proposition 9.57, by proving that the
entailment relation between multisets in the class M1(LO∀) (see Proposition 10.24) is a
wqo.

Entailment between multisets inM1(LO∀) being a wqo is a simple consequence of Propo-
sition 9.57. Take a multiset in the class M1(LO∀). First of all, perform the following
transformation: for every atom p(a), where a is a constant symbol in Σ (note that there no
other ground terms other than constants in this class) introduce a new predicate symbol,
with arity zero, let it be pa, and transform the original multiset by substituting pa in place
of p(a). The resulting set of predicate symbols is still finite (the set of constants of the
program is finite).

Now, it is easy to see that entailment between multisets transformed in the above way is
a sufficient condition for entailment of the original multisets (note that the condition is
not necessary, e.g. I cannot recognize that p(a) entails p(x)). Now, entailment between
transformed multisets is a wqo. In fact, note that a transformed multiset consists of atomic
formulas with a predicate symbol (with arity zero or one), where arguments are (possibly
duplicated) variables. Now, duplicated variables correspond to equality constraints in the
class M1(NC) of Section 9.3.

Using a similar proof to that of Proposition 9.52, and from Propositions 10.43 and 6.23,
we can conclude. 2
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——————————————————————————————————

10.5 An Example: A Distributed Test-and-Lock

Protocol

——————————————————————————————————

We conclude this chapter by discussing an example, which can be seen as a specification for
a distributed test-and-lock protocol for a net with multiple resources, each one controlled
by a monitor. We have verified protocol correctness using the tool described in Appendix
A.

The protocol is as follows. A set of resources, distinguished by means of resource identifiers,
and an arbitrary set of processes are given. Processes can non-deterministically request
access to any resource. Access to a given resource must be exclusive (only one process at
a time). Mutual exclusion is enforced by providing each resource with a semaphore.

Given a propositional symbol init, we can encode the initial states of the system as follows
(we intentionally introduce a flaw which we will disclose later):

1. init ◦− init ............................................
...........
........
................................ think

2. init ◦− init ............................................
...........
........
................................ m(x, unlocked)

3. init ◦− ⊥

The atom think represents a thinking (idle) process, while the first-order atom m(x, s)
represents a monitor for the resource with identifier x and associated semaphore s. The
semaphore s can assume one of the two values locked or unlocked. Clause 1 and clause
2 can modify the initial state by adding, respectively, an arbitrary number of thinking
processes and an arbitrary number of resources (with an initially unlocked semaphore).
Finally, using clause 3 the atom init can be removed after the initialization phase.

The core of the protocol works as follows:

4. think ◦− wait(x)
5. wait(x) ◦− think
6. wait(x) ............................................

...........
........
................................ m(x, unlocked) ◦− use(x) ............................................

...........
........
................................ m(x, locked)

7. use(x) ............................................
...........
.......
................................. m(x, locked) ◦− think ............................................

...........
.......
................................. m(x, unlocked)

Using clause 4, a process can non-deterministically request access to any resource with
identifier x, moving to a waiting state represented by the atom wait(x). Clause 5 allows
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P ⊢Σ init,⊤, m(x, locked), m(x, locked)
⊤r

P ⊢Σ init, use(x), use(x), m(x, locked), m(x, locked)
bc(8)

P ⊢Σ init, wait(x), wait(x), m(x, unlocked), m(x, unlocked)
bc(6

∗)

P ⊢Σ init, think, think,m(x, unlocked), m(x, unlocked)
bc(4

∗)

P ⊢Σ init, think, think
bc(2

∗)

P ⊢Σ init
bc(1

∗)

Figure 10.2: A trace violating mutual exclusion for the test-and-lock protocol

....
P ⊢Σ,c,d use(c), wait(d), think,m(c, locked), m(d, unlocked)

P ⊢Σ,c,dwait(c), wait(d), think,m(c, unlocked), m(d, unlocked)
bc(6)

P ⊢Σ,c,dwait(c), wait(d), use(c), m(c, locked), m(d, unlocked)
bc(7)

P ⊢Σ,c,dwait(c), wait(d), wait(c), m(c, unlocked), m(d, unlocked)
bc(6)

P ⊢Σ,c,d think, wait(d), wait(c), m(c, unlocked), m(d, unlocked)
bc(4)

P ⊢Σ,c,d think, think, wait(c), m(c, unlocked), m(d, unlocked)
bc(4)

P ⊢Σ,c,d think, think, think,m(c, unlocked), m(d, unlocked)
bc(4)

P ⊢Σ,c,d init, think, think, think,m(c, unlocked), m(d, unlocked)
bc(3)

P ⊢Σ init, think, think, think
bc(2

′∗)

P ⊢Σ init
bc(1

∗)

Figure 10.3: A test-and-lock protocol: example trace
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{use(x), use(x)}
{m(x, unlocked), use(x), init}
{m(x, unlocked), use(x), wait(y)}
{m(x, unlocked), use(x), use(y), m(y, locked)}
{m(x, locked), use(x), m(y, unlocked), m(y, unlocked), think}
{m(x, unlocked), m(x, unlocked), wait(y), think}
{m(x, unlocked), m(x, unlocked), use(y), m(y, locked), use(z), m(z, locked)}
{m(x, unlocked), m(x, unlocked), use(y), m(y, locked), wait(z)}
{wait(x), m(y, unlocked), m(y, unlocked), wait(z)}
{m(x, unlocked), m(x, unlocked), init}
{m(x, unlocked), m(x, unlocked), think, think}
{use(x), m(x, unlocked), think}

Figure 10.4: Fixpoint computed for the test-and-lock protocol

a process to go back to thinking from a waiting state. By clause 6, a waiting process can
synchronize with the relevant monitor and is granted access provided the corresponding
semaphore is unlocked. As a result, the semaphore is locked. The atom use(x) represents
a process which is currently using the resource with identifier x. Clause 7 allows a process
to release a resource and go back to thinking, unlocking the corresponding semaphore.

Using our verification tool (see Appendix A), we can now automatically verify the mutual
exclusion property for the above test-and-lock protocol. The specification of unsafe states
is simply as follows:

8. use(x) ............................................
...........
........
................................ use(x) ◦− ⊤

The test-and-lock specification can be seen to fall into the class P1(LO∀). In fact, the
binary predicate symbol m plays the same role as two unary predicate symbols mlocked

and munlocked (note that the second argument of m in the initial specification is always
instantiated). Termination of the fixpoint computation is therefore guaranteed by Propo-
sition 10.44. Running the verification algorithm, we actually find a security violation. The
corresponding trace is shown in Figure 10.2. The problem of the above specification lies in
clause 2. In fact, using an (externally quantified) variable x does not prevent the creation
of multiple monitors for the same resource. This causes a violation of mutual exclusion
when different processes are allowed to concurrently access a given resource by different
monitors.

Luckily, we can fix the above problem in a very simple way. As we do not care about what
resource identifiers actually are, we can elegantly encode them using universal quantifica-
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{use(x) , use(x)}
{m(x, y) , m(x, z)}
{m(x, unlocked) , use(x) , use(y) , m(y, z)}
{m(x, unlocked) , use(x) , wait(y)}
{m(x, unlocked) , use(x) , init}
{use(x) , m(x, unlocked) , think}

Figure 10.5: Fixpoint computed using invariant strengthening for the test-and-lock protocol

tion in the body of clause 2, as follows:

2′. init ◦− init ............................................
...........
.......
................................. ∀x.m(x, unlocked)

Every time a resource is created, a new constant, acting as the corresponding identifier,
is created as well. Note that by the operational semantics of universal quantification,
different resources are assigned different identifiers. This clearly prevents the creation of
multiple monitors for the same resource. An example trace for the modified specification
is shown in Figure 10.3 (where P is the program consisting of clauses 1, 2’, 3 through 8
above, and we followed the usual conventions, with bc(i

∗) denoting multiple applications of
clause number i).

Now, running again our verification tool on the corrected specification (termination is still
guaranteed by Proposition 10.44), with the same set of unsafe states, we get the fixpoint
shown in Figure 10.4 (where, for readability, we re-use the same variables in different
multisets). The fixpoint contains 12 elements and is reached in 7 steps. As the fixpoint
does not contain init, mutual exclusion is verified, for any number of processes and any
number of resources.

We conclude by showing how it is possible to optimize the fixpoint computation by invariant
strengthening (see Section 6.1.2.1). One possibility might be to apply the so-called counting
abstraction, i.e., turn the above LO specification into a propositional program (i.e., a Petri
net) by abstracting first-order atoms into propositional symbols (e.g. wait(x) into wait,
and so on), and compute the structural invariants of the corresponding Petri net. However,
this strategy is not helpful in this case (no meaningful invariant is found). We can still try
some invariants using some ingenuity. For instance, consider the following invariant:

9. m(x, y) ............................................
...........
........
................................ m(x, z) ◦− ⊤

For what we said previously (different resources are assigned different identifiers) this
invariant must hold for our specification. Running the verification tool on this extended
specification we get the fixpoint in Figure 10.5, containing only 6 elements and converging
in 4 steps. A further optimization could be obtained by adding the invariant use(x) ............................................

...........
.......
.................................

m(x, unlocked) ◦− ⊤ (intuitively, if someone is using a given resource, the corresponding
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semaphore cannot be unlocked). In this case the computation converges immediately at
the first step.

10.6 Related Work

In this section we report on some related work, in particular for what concerns automated
deduction techniques for verification of parameterized systems. Alternative approaches
based, e.g., on model checking, have been discussed in Section 9.5. Clearly, there may
be overlaps between the two approaches. For instance, [FO97] uses an approach based
on regular sets (see Section 9.5) in a deductive setting. Specifically, a methodology is
proposed, which is able to infer, using a generalization method, a regular language to
represent reachable states for parameterized rings.

Many methods proposed for the verification of parameterized systems, can be roughly
classified into those using explicit induction, network invariants, which can be viewed as
implicit induction, and abstraction. Among those using explicit induction, there are, e.g.,
[EN95, GS92]. In [EN95], for instance, it is shown that some properties of rings of arbitrary
size can be verified by checking they hold for a finite number of instances of the problem.
The resulting instances can then be verified by model checking techniques.

Implicit induction is used, e.g., in [WL89, LHR97, KM95]. A general structural induction
theorem for concurrent models of processes is discussed in [KM95]. The induction method
is based on representing a given specification as a process, and in finding a suitable invariant
process to apply induction. In [LHR97] the problem of verification for linear networks of
processes is reduced to the construction of a network invariant, which can be synthetized
using heuristics, e.g. widening techniques [CC77].

Abstraction techniques are used, e.g., in [ID96, LS97, GZ98]. For instance, in [ID96] systems
with replicated components are verified by explicit enumeration in an abstract state space
in which states do not record the exact number of components. The notion of conservative
abstraction is discussed in [LGS+95]. Namely, the paper discusses property preserving
transformations, which ensure that a property for a given system can be safely verified on
a simpler abstraction. The formal results are based on the theory of abstract interpretation
[CC77]. An approach mixing abstraction and induction is the one given in [MQS00].

Finally, approaches which are more deductive in nature include for instance [RV95]. An
application of this system to specification and verification of security protocols is given
in [JRV00] (see Section 11.6). Traditional automated deduction approaches include for
instance using the PVS system [ORR+96], which combines (interactive) proof checking
with model checking techniques, and provides a meta-language for defining proof strategies.
Other deductive tools include, e.g., LCF [GMW79], Nuprl [CAB+86],and HOL [GM93].
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—————————————————————————————–

Summary of the Chapter. In this chapter we have discussed a bottom-up se-
mantics for a first-order formulation of LO, where universal quantification is used as a
primitive for generating new values. We have shown that the usual ground semantics
is not refined enough to capture the operational semantics of the universal quantifier.
The semantics we have defined is the equivalent of the so-called non-ground success
set semantics of Horn logic. The semantics is effective and complete with respect
to the operational semantics, though in general evaluation can be non-terminating.
As an example, we have verified that mutual exclusion holds for a parameterized
version of a distributed test-and-lock protocol, where universal quantification is used
to generate new resource identifiers.

In the next chapter we will apply the methodology and techniques discussed in this

chapter to the security protocol domain. We will encode security protocols using

first-order LO specifications, and we will see how interesting properties like, e.g., con-

fidentiality, can be automatically validated using our backward reachability strategy.

—————————————————————————————–
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Chapter 11

A Case-Study: Security Protocols

In this chapter we will illustrate and apply the methodology for system verification dis-
cussed in this thesis to the security protocol domain. Given the enormous increase in the
development and applications of networked and distributed systems which has taken place
in recent years, the field of security protocols seems to be a particularly interesting and
relevant test bed for any verification tool, as witnessed by the plentiful and varied liter-
ature on this subject. The design and implementation of security protocols are difficult
and error-prone. As a meaningful example, we mention the case of Needham-Schroeder
authentication protocol [NS78], which only recently (seventeen years after its publication)
has been shown to be flawed [Low95]. That’s why formal techniques to specify and analyze
protocols have deserved great attention in the community.

In this chapter we will focus in particular on authentication protocols. Authentication
protocols are a common means to synchronize and distribute information between agents
(called principals) operating over a network. Typically, execution of a protocol run should
provide the involved principals with some secret information, e.g. a cryptographic key, or
knowledge about the other principals. Authentication protocols should be reliable enough
to be used in a potentially compromised environment, so as to prevent a malicious intruder
to cheat another agent about its own identity, or to get unauthorized information.

After presenting some background on security, in this chapter we will show how our verifi-
cation tool can be used to specify, validate or detect attacks in security protocols. We will
exemplify our methodology through a careful selection of different protocols presented in
the literature on security. Formally, we will encode protocols in a fragment of first-order
linear logic with universal quantification, corresponding to the language LO∀ presented in
Chapter 10. Our inspiration came from [CDL+99], where an equivalent logical fragment,
using existential quantification, is presented. Following [CDL+99], we will use the univer-
sal quantifier to model the generation of new values (called nonces) which are commonly
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used in the design of security protocols. A remarkable feature of our approach is that we
can reason about parametric and open systems. As a result, we do not have to pose any
artificial limitation on the number of parallel runs of a given protocol. In particular, we
allow an agent to take part into different protocol sessions at the same time.

This chapter extends some preliminary results reported in [Boz01].

11.1 Introduction

In a distributed environment, it is necessary to provide the agents with a way to ensure each
other’s identity, and to exchange confidential information in a secure manner. This is the
role of authentication protocols. Typically, running an authentication protocol provides the
involved principals with information about the environment and the other principals, which
can subsequently be used to take decisions on how to act. Clearly, it is crucial to ensure
that these information may not be tampered with by a malicious intruder. In general,
it is very difficult or even impossible to prevent every form of malicious listening over a
network. The design of authentication protocols must take into account the possibility of
messages sent over a network to be intercepted, and the presence of malicious agents which
can impersonate the role of an honest participant in a given protocol run. Authentication
protocols should be designed in such a way to be resistant to every form of attack, so as
not to disclose private information to unauthorized agents, and to prevent an agent from
cheating other agents about its own identity. Cryptographic primitives are a common
means to achieve these goals, but they are not sufficient to ensure authentication.

In our view, formal verification of protocols is a process which is made up of two distinct,
though related, phases: (1) choosing a suitable formalism to represent the environment
and protocol execution (typically, in the form of a specification logic), and to specify
security properties; (2) enriching the logic with a (hopefully complete and automatic) tool
to formally verify that a given specification is correct with respect to a given property.

Neither of the two phases should be underestimated. In particular, phase (1) is responsi-
ble for fixing a suitable abstraction to represent protocol execution. Typically, simplifying
assumptions on messages exchanged by agents and on cryptographic primitives are used in
order to abstract from implementation-dependent details. For instance, according to the
so-called Dolev-Yao model [DY83], messages are considered as indivisible abstract values,
rather than sequences of bits, and encryption is modeled in an idealized way. Therefore,
phase (2) alone is not sufficient to guarantee correctness. One should never forget that cor-
rectness results strongly rely on the abstraction chosen in phase (1), for instance using the
Dolev-Yao model we will not be able to prove that a protocol is resistant to implementation-
dependent attacks due to the particular crypto-algorithm used. Even most importantly,
correctness results rely upon protocol specification given in phase (1) being faithful (in a
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sense to be clarified) with respect to the given abstraction one has in mind.

Here, we present a comprehensive logical environment for the specification and analysis of
protocols. Our position with respect to phase (1) mentioned above is to use a specification
logic which is as close as possible to the usual informal presentation which can be found
in the literature on security protocols. In particular, following [CDL+99] we will use a
multiset-rewriting-like formalism to represent a given set of principals executing protocol
sessions by exchanging messages over a network, with universal quantification providing
a logical and clean way to express creation of nonces. As far as phase (2) is concerned,
protocol verification will be carried out using the backward search strategy based on the
bottom-up semantics for linear logic described in this thesis.

In particular, our approach is well suited to verify properties which can be specified by
means of minimality conditions (e.g., a given state is unsafe if there are at least two prin-
cipals which have completed the execution of a protocol and a given shared secret has
been unintentionally disclosed to a third malicious agent). Our verification algorithm has
connections both with (symbolic) model checking and with theorem proving. Unlike tradi-
tional approaches based on model-checking, we can reason about parametric, infinite-state
systems, thus we do not pose any limitation on the number of parallel runs of a given
protocol. We also allow a principal to take part into different sessions at the same time.

First of all, in the next section we give a brief overview about security and in particular
about authentication protocols.

11.2 Some Background on Authentication

In this section we briefly discuss some background on authentication protocols and we fix
some terminology and notations which will be used throughout the chapter.

Authentication protocols are used to coordinate the activity of different parties (e.g. users,
hosts, or processes) operating over a network. These parties are usually referred to as
principals in security literature. Execution of an authentication protocol can take place
for various reasons. Principals can run an authentication protocol, e.g., to get some kind of
information (e.g. cryptographic keys), or to make sure that another entity is operational,
or to exchange private information with other principals using a secure communication
channel. In general, a successful run of an authentication protocol will affect the subsequent
decisions which the involved principals may take.

An authentication protocol generally consists of a sequence of messages exchanged between
two or more principals (e.g. two users and a coordinating entity acting as a server). The
form and number of exchanged messages is usually fixed in advance and must conform to
a specific format. In general, a given principal can take part into a given protocol run in
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different ways, e.g. as the initiator of the protocol or the responder (it is usually said
that a principal can have different roles). Often, a principal is allowed to take part into
different protocol runs simultaneously, possibly with different roles.

The design of authentication protocols must take into account the possibility of messages to
be intercepted, and the presence of malicious agents which can impersonate the role of an
honest principal. One of the key issues in authentication is to ensure confidentiality, i.e.,
to avoid private information being disclosed to unauthorized clients. Another issue is to
prevent malicious principals from cheating by impersonating other principals. In general,
a principal should have enough information to ensure that every message received has been
created recently (as part of the current protocol run) and by the principal who claims to
have sent it. Replaying of old messages should be detected. Authentication protocols must
be designed in such a way to be resistant to every possible form of attack. In particular,
interception of messages can prevent completion of a protocol run, but should never cause
a leak of information or compromise security.

11.2.1 Cryptographic Prerequisites

Cryptographic primitives are a fundamental, though not sufficient, ingredient of authen-
tication protocols. A message to be transmitted over a network is usually referred to as
plaintext or datagram. The task of a cryptographic algorithm is to convert the given
message to a form which is unintelligible to anyone else except the intended receiver. The
conversion phase is called encryption and usually depends on an additional parameter
known as encryption key, whereas the encoded message is referred to as ciphertext or
cryptogram. The reverse phase of decoding is called decryption, and usually requires
possession of the corresponding decryption key.

In symmetric key cryptography, the encryption key and the decryption key can be
easily obtained from each other by public techniques (usually they are identical). Security
of communication requires the keys to be kept secret between the relevant principals.
The exact way encryption works depends on the particular crypto-algorithm used. Most
algorithms work by encrypting blocks of plaintext at a time. The most famous of this class is
the so-called Data Encryption Standard (DES) [DES76]. In public key cryptography,
no secret is shared between communicating principals. Each principal A has a pair of
keys, the first one being the public key, and the other the private key. The public key is
made available and can be used to encrypt messages for principal A, whereas the private
key is only known to A, who can use it to decrypt incoming messages. Some public key
algorithm allow the private key to be used for encryption and the public key to be used for
decryption. This mechanism is used to guarantee authenticity (rather than confidentiality)
of messages. The most famous algorithm in this class was developed by Rivest, Shamir
and Adleman, and is universally known as RSA [RSA78].
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Authentication protocols (see [CJ97] for a survey) are usually classified depending on the
cryptographic approach taken, e.g. symmetric key or public key protocols. Furthermore, a
distinction is also made between protocols which use one or more trusted third parties
(e.g. a central distribution key server) and protocols which do not.

11.2.2 A Classification of Attacks

Authentication protocols can be compromised by different forms of attacks. We present
below a quick and rather informal classification (see also [CJ97]). Some examples of attacks
of known protocols will be illustrated in Section 11.4.

Freshness Attacks: a freshness attack typically takes place when a principal is induced
to accept, as part of the current protocol run, an old message which is currently
being replayed by a malicious intruder. For instance, a principal can be led to accept
an old and possibly compromised key as a new and legitimate one. Mechanisms for
ensuring freshness of messages (e.g. timestamps) are often used to prevent such kind
of attacks;

Type Flaw Attacks: a type flaw attack takes place when a principal is induced to erro-
neously interpret the structure of the current message. This may happen because,
at the concrete level, a message is nothing but a flat sequence of bits. Mechanisms
to prevent this kind of attacks usually rely on enriching messages with redundant
information about their internal structure;

Parallel Session Attacks: a parallel session attack is usually carried out by a malicious
intruder which forms messages for a given protocol run using messages coming an-
other legitimate session which is executed concurrently;

Implementation Dependent Attacks: implementation dependent attacks are very
subtle and can depend on a number of ways a given protocol is implemented. A
typical area in which implementation dependent attacks can arise is given by the
subtleties of the particular crypto-algorithm used and its interaction with specific
protocols.

Other forms of attacks include, e.g., binding attacks and encapsulation attacks. We refer
to [CJ97] for a discussion and several examples of all the different forms of attacks.

11.2.3 The Dolev-Yao Intruder Model

Most formal approaches to protocol specification and analysis, including ours, are based
on a set of simplifying assumptions, which is known as the Dolev-Yao intruder model. This
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model has been developed on the basis of some assumptions described by Needham and
Schroeder in [NS78] and by Dolev and Yao in [DY83].

According to the so-called Dolev-Yao model [DY83], messages are considered as indivisible
abstract values, instead of sequences of bits. Furthermore, the details of the particular
crypto-algorithm used are abstracted away, giving rise to a black-box model of encryption
(perfect encryption). This set of assumptions simplifies protocol analysis, although it has
the drawback of preventing the discovery of implementation dependent attacks.

There seems to be no standard presentation of the Dolev-Yao intruder model. In general,
it consists of a set conservative assumptions on the potentialities of any possible attacker.
Typically, this model tries to depict a worst-case scenario, in which there is an intruder who
has complete control of the network, so that he/she can intercept messages, block further
transmission and/or replay them at any time, possibly modifying them. The intruder
works by decomposing messages (provided he/she knows the key they are encrypted with),
and composing new messages with the information in his/her possession. The intruder can
also use an internal memory to store information, in general he/she knows the identity and,
in the case of public-key encryption, the public keys of the other principals. The intruder
is supposed not to know the private keys of the other principals, unless they have been
disclosed in some way (clearly, without this latter assumption any protocol is breakable in
general).

It has been proved that the Dolev-Yao intruder is, so to say, the most powerful attacker
[Cer01a] for the given model under consideration (e.g. perfect encryption), in the sense
that it can simulate the activity of any other possible attacker. Furthermore, in [SMC00]
it has been proved that it is not restrictive to consider a single Dolev-Yao intruder instead
of multiple ones.

11.2.4 An Informal Protocol Notation

In the literature on security, protocols are usually presented by means of an informal
notation. In this section we explain this notation illustrating the so-called Needham-
Schroeder public-key authentication protocol [NS78] (see also Section 11.4.2).

The protocol, in the usual notation, is as follows.

1. A→ S : A,B
2. S → A : {Kb, B}K−1

s

3. A→ B : {Na, A}Kb

4. B → S : B,A
5. S → B : {Ka, A}K−1

s

6. B → A : {Na, Nb}Ka

7. A→ B : {Nb}Kb
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The protocol is run to achieve authentication between two principals A and B. A central
server S is in charge of distributing the public keys of principals. Messages 3, 6, and 7 are
the core of the protocol, while the purpose of messages 1, 2, 4 and 5 is to get public keys
from the central authority. The notation {M}K indicates a message with content M and
encrypted with a key K. Also, by convention A,B, . . . indicate principal identifiers, Ka

and Kb denote, respectively, A’s and B’s public keys, and K−1
s is the private key of server

S (encryption with the private key is used to ensure authenticity, see Section 11.2.1).

Now, the protocol has the following structure. A given principal A acts as initiator of
the protocol, and asks the central authority for B’s public key (message 1). The central
authority sends back to A the required key (message 2: B’s identity is included in the
message to prevent attacks based on diverting key deliveries). Principal A creates a nonce
(i.e., a newly generated value), called Na, and sends it to B together with its own identity
(message 3), encrypting the message with B’s public key. Upon receiving this message,
principal B decrypts the message, and in turn asks the central authority for the public key
of A (message 4). After getting the server’s reply (message 5), principal B generates a new
nonce Nb, and sends both nonces, Na and Nb, to A, encrypting the message with A’s key
(message 6). When A gets this message, a check is made that it contains the previously
generated nonce Na, and, if so, a new message, encrypted with B’s key and including the
last nonce Nb, is sent to B (message 7). The protocol is successfully completed provided
B gets the previously generated nonce Nb.

Completion of the protocol should convince A about B’s identity (and vice versa) and also
provide A and B with two shared values (Na and Nb) which they could use afterwards
for authentication purposes. The use of nonces is ubiquitous in authentication protocols.
Intuitively, a nonce should be considered as some sort of random and unguessable value.
The purpose of nonces is to prevent a malicious intruder from attempting to break a given
protocol by sending messages and pretending they have been generated by someone else.
To exemplify, an attacker could possibly pretend to be principal B, intercept message 6 and
replace it with a different message. However, the message created by the attacker will never
be accepted as a legitimate message by A, unless it contains the nonce Na. Unfortunately
(for the attacker) nonce Na is not known except to B (and A, of course), because only B
can decrypt message 3.

Intuitively, assuming A and B behave honestly and their private keys are not known to
anyone else, and assuming nonces are not guessable, the protocol should prevent a malicious
intruder to impersonate one of the two principals. However, under certain conditions, this
protocol fails to achieve authentication [Low95]. We will discuss this point in Section
11.4.2.
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11.3 Specifying Authentication Protocols

In Section 11.4, we will illustrate the specification and analysis of different examples of
protocols. Our approach is based on the fragment of first-order linear logic and on the
bottom-up evaluation algorithm explained in Chapter 10. As discussed in Part I, our
specification language has a natural correspondence with multiset rewriting systems (see
in particular Section 5.4), and, in fact, it has been inspired by the approach taken in
[CDL+99]. In this section we introduce, rather informally, some generalities about the way
we will use to specify protocols in Section 11.4.

First of all, we need a representation for the entities (e.g. principals and messages) involved.
In particular, we will use a notation like

pr(id, s)

to denote a principal with identifier id and internal state s. The internal state s can store
information about an ongoing execution of any given protocol (for instance, the identifier
of another principal, which step of the protocol has been executed, the role of the principal,
and so on). Typically, the state s will be a term like init (indicating the initial state of a
principal, before protocol execution), or a term like stepi(data), where the constructor stepi
denotes which is the last step executed and data represents the internal data of a given
principal. In general, we allow more than one atom pr(id, ) inside a given configuration.
In this way, we can model the possibility of a given principal to take part into different
protocol runs, possibly with different roles.

Messages sent over a given network can in turn be represented by terms like

n(mess content)

where mess content is the content of the message. Depending on the particular proto-
col under consideration, we can fix a specific format for messages. For instance, a mes-
sage encrypted with the public key of a principal a could be represented as the term
enc(pubk(a), mess content).

Finally, we will use the Dolev-Yao intruder model (see Section 11.2.3) and the associated
assumptions. In particular, as explained in Section 11.2.3, we need a way to store the
intruder knowledge. We will use terms such as

m(inf )

to represent the information in possession of the intruder (m stands for the internal memory
of the intruder). At any given instant of time, we can think of the current state of a
given system as a multiset of atoms representing principals and messages currently on the
network, and the intruder knowledge.
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Following [CDL+99], we represent the environment in which protocol execution takes place
by means of: a protocol theory, which includes rules for every protocol role (typically, one
rule for every step of the protocol), and an intruder theory, which formalizes the set of
possible actions of a malicious intruder who tries to break the protocol. In addition, it is
possible to have additional rules for the environment. Rules assume the general format

F1
............................................
...........
........
................................ . . . .

...........................................
...........
........
................................ Fn ◦− ∀X1 . . .∀Xk.(G1

............................................
...........
........
................................ . . . .

...........................................
...........
........
................................ Gm)

where Fi, Gi are atomic formulas (representing e.g. principals or messages) and Xi are
variables. As explained in Section 10, the standard semantics for the universal quantifier
requires new values to be chosen before application of a rule. We use this behaviour to
encode nonce generation during protocol runs. As a result, we get for free the assumption
(required by the Dolev-Yao model) that nonces are not guessable. In the following we
will use these notational conventions: free variables inside a rule are always implicitly
universally quantified, and variables are written as upper-case identifiers.

As far the specification of the initial states is concerned, we take here a slightly different
approach w.r.t. the specifications in the previous chapters. Namely, we allow a partial
specification of the initial states (see Appendix A.3). This strategy is more flexible in that
it may help us to find additional hypotheses under which a given attack might take place.
As a general rule, the partial specification of the initial states we have chosen requires
every principal to be in his/her initial state (represented by the term init) at the beginning
of protocol execution. As usual, we express security properties by means of their negation,
i.e., using formulas representing their violation. We will analyze properties which can be
expressed by means of minimality conditions.

Finally, we conclude this section by collecting together some rules which are common
to all the examples presented in Section 11.4. In particular, we have two rules for the
environment:

e1) pr(Z, S) ◦− pr(Z, S) ............................................
...........
........
................................ ∀ID.(pr(ID, init))

e2) pr(Z, S) ◦− pr(Z, S) ............................................
...........
.......
................................. pr(Z, init)

The first one allows creation of new principals (we use the universal quantifier to generate
new identifiers for them), whereas the second rule allows creation of a new instance of a
given principal (this allows a principal to start another execution of a given protocol with
a new and possibly different role). Both rules can be fired at run-time, i.e., during the
execution of a given protocol. We use the term init to denote the initial state of any given
principal. We also have the following two rules for the intruder theory:

t1) pr(Z, S) ◦− pr(Z, S) ............................................
...........
........
................................ m(Z)

t2) pr(Z, S) ◦− pr(Z, S) ............................................
...........
.......
................................. ∀N.(m(N))

The first one allows the intruder to store the identifier of any principal, whereas the second
rule formalize the capability of the intruder to generate new values (e.g. nonces).
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——————————————————————————————————

11.4 Examples

——————————————————————————————————

In this section we present the specification and analysis of different authentication proto-
cols, taken from the literature on security. Some generalities concerning the encoding we
will use in the following have been discussed in Section 11.3. We summarize the experi-
mental results for this section, obtained using the tool presented in Appendix A, in Table
11.1 (see Section 11.4.5).

11.4.1 Millen’s ffgg protocol

We begin our survey from the so-called Millen’s ffgg protocol [Mil99]. Although an artificial
protocol, its analysis will be a good starting point to illustrate the capabilities of our
verification tool. In fact, this protocol provides an example of a parallel session attack,
which requires running at least two processes for the same role. It has been proved (see
[Mil99]) that no serial attacks exist, i.e., the protocol is secure if processes are serialized.

The protocol is as follows.

1. A→ B : A
2. B → A : N1, N2

3. A→ B : {N1, N2, S}Kb
%{N1, X, Y }Kb

4. B → A : N1, X, {X, Y,N1}Kb

As usual, N1 and N2 stand for nonces, created by principal B and included in message
2. The m%m′ notation, introduced in [Low98], used in message 3 represents a message
which has been created by the sender according to format m, but is interpreted as m′ by
the receiver. In this case, the intuition is that upon receiving message 3, B checks that the
first component does correspond to the first of the two nonces previously created, while
no check at all is performed on the second component of the message. In message 2, S
stands for a secret, of the same length as a nonce, which is in possession of B. The security
property one is interested to analyze is whether the secret S can be disclosed to a malicious
intruder.

We have implemented the ffgg protocol through the specification shown in Figure 11.1,
while the intruder theory is presented in Figure 11.2. The specification consists of a set of
protocol rules (rules p1 through p4 in Figure 11.1) and an intruder theory (rules i1 through
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p1) pr(A, init) ............................................
...........
.......
................................. pr(B, init) ◦− pr(A, step1(B)) ............................................

...........
.......
................................. pr(B, init) ............................................

...........
.......
................................. n(plain(A))

p2) pr(B, init) ............................................
...........
........
................................ n(plain(A)) ◦− ∀N1.∀N2.(pr(B, step2(A,N1)) ............................................

...........
........
................................ n(plain(N1,N2)))

p3) pr(A, step1(B)) ............................................
...........
........
................................ n(plain(N1,N2)) ◦− ∀S.(pr(A, step3(B, S)) ............................................

...........
........
................................

n(enc(pubk(B),N1,N2, S)))

p4) pr(B, step2(A,N1)) ............................................
...........
........
................................ n(enc(pubk(B),N1,X,Y)) ◦− pr(B, step4(A)) ............................................

...........
........
................................

n(plain(N1,X), enc(pubk(B),X,Y,N1))

Figure 11.1: Specification of the ffgg protocol

i8 in Figure 11.2). We remind the reader that the four rules e1, e2, t1 and t2 discussed in
Section 11.3 are in addition to the present rules.

Protocol rules directly correspond to the informal description of the ffgg protocol previously
presented. We have followed the conventions outlined in Section 11.3 to model the internal
state of principals. In particular, we have a term init denoting the initial state of a
principal, and the constructors step1, step2, step3 and step4 to model the different steps
of a protocol run. At every step, each principal needs to remember the identifier of the
other principal he/she is executing the protocol with. In addition, at step 2 the responder
stores the first nonce created (in order to be able to perform the required check, see rule
p4), and at step 3 the initiator of the protocol remembers the secret S. We have modeled
the secret S using the universal quantifier, as for nonces. In this way, we can get for free
the requirement that the secret initially is only known to the principal who possesses it.
Finally, we have term constructors plain(. . .) and enc(. . .) (to be precise, we should say
a family of term constructors, we find it convenient to overload the same symbol with
different arities) to distinguish plain messages from encrypted messages.

The intruder theory is made up of rules i1 through i8 in Figure 11.2. It is an instance
of the Dolev-Yao intruder theory illustrated in Section 11.2.3. Let us discuss it in more
detail. Rules i1 through i4 are decomposition rules, whereas rules i5 through i8 are com-
position rules. We have four rules for each of the two different kinds (composition and
decomposition) of messages, dealing with the different formats of messages used in the ffgg
protocol. For instance, rule i1 deals with decomposition of plain messages with one com-
ponent, whereas rule i4 deals with decomposition of messages with two plain components
and one encrypted component, and so on. Clearly, the intruder cannot furtherly decom-
pose encrypted components, which are stored exactly as they are, whereas plain messages
are decomposed into their atomic constituents. The intruder theory we have presented
is an instance of the general Dolev-Yao intruder theory, in that intruder rules have been
tailored to the particular form of messages used in the specific protocol under considera-
tion. In general, we have followed this strategy also for the other examples we will present
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i1) n(plain(X)) ◦− m(plain(X))

i2) n(plain(X,Y)) ◦− m(plain(X)) ............................................
...........
........
................................ m(plain(Y))

i3) n(enc(X,Y,Z,W)) ◦− m(enc(X,Y,Z,W))

i4) n(plain(X,Y), enc(U,V,W,Z)) ◦− m(plain(X)) ............................................
...........
........
................................ m(plain(Y)) ............................................

...........
........
................................

m(enc(U,V,W,Z))

i5) m(plain(X)) ◦− m(plain(X)) ............................................
...........
........
................................ n(plain(X))

i6) m(plain(X)) ............................................
...........
........
................................ m(plain(Y)) ◦− m(plain(X)) ............................................

...........
........
................................ m(plain(Y)) ............................................

...........
........
................................ n(plain(X,Y))

i7) m(enc(X,Y,Z,W)) ◦− m(enc(X,Y,Z,W)) ............................................
...........
.......
................................. n(enc(X,Y,Z,W))

i8) m(plain(X)) ............................................
...........
........
................................ m(plain(Y)) ............................................

...........
........
................................ m(enc(U,V,W,Z)) ◦− m(plain(X)) ............................................

...........
........
................................

m(plain(Y)) ............................................
...........
........
................................ m(enc(U,V,W,Z)) ............................................

...........
........
................................ n(plain(X,Y), enc(U,V,W,Z))

Figure 11.2: Intruder theory for the ffgg protocol

in the following. We refer to Section 11.5 for a discussion on how this approach could
be generalized. In the case of ffgg protocol, we have not given the intruder any capabil-
ity to decrypt messages. This hypothesis can be relaxed (see for instance the analysis of
Needham-Schroeder protocol in Section 11.4.2). The present specification is sufficient for
our purposes.

Now, we can simply specify the set of unsafe states as follows:

u) pr(alice, step3(bob, S)) ............................................
...........
........
................................ pr(bob, step4(alice)) ............................................

...........
........
................................ m(plain(S)) ◦− ⊤

Namely, we consider a configuration unsafe if there exist two honest principals, say alice
and bob, who have run the protocol to completion (i.e., they have completed, respectively,
step 4 and step 3) and the secret S has been disclosed to the intruder (i.e., it is eventually
stored in the intruder’s internal memory).

Running our verification algorithm, we automatically find an attack, whose trace is shown
in Figure 11.3. Besides the usual notational conventions, we have fixed the following short-
ened notations: alice has been shortened to al; pid stands for a principal p after execution
of step number i with internal data d; pinit stands for a principal in its initial state; we have
omitted the plain term constructor for plain messages; we have noted encrypted messages
using the usual protocol notation; M(x, y, . . .) stands for the multiset m(x), m(y), . . .; fi-
nally, Σ1 = Σ, n1, n2, Σ2 = Σ, n1, n2, n3, n4, and Σ3 = Σ, n1, n2, n3, n4, s. The attack is
exactly the parallel session one described in [Mil99]. We note that this attack is also an
example of a type flaw attack, in that it relies on the secret S be passed as a nonce (under
the hypothesis that the lengths of the respective fields are the same).

We also remark that we have performed some further experiments, which we don’t discuss
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P ⊢Σ al
init, bobinit

bc(e2)

Figure 11.3: A parallel session attack to the ffgg protocol
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in detail for the sake of brevity. In particular, we wanted to ascertain the role of the
two nonces N1 and N2 in the ffgg protocol. According to the informal notation for the
protocol introduced at the beginning of this section, principal B only checks that the first
component of message T is the nonce N1, whereas no check is performed for the second
component. We have verified that imposing the check on the second component, the ffgg
protocol is safe w.r.t. the security property and the intruder theory we have presented,
while removing all checks introduces serial attacks.

We think that this example is a good illustration of the capabilities of our verification tool.
In fact, using the backward evaluation strategy championed in this thesis, we are able to
automatically find a parallel session attack, without encoding any prior knowledge about the
kind of attacks to look for. In particular, according to [Mil99] the ffgg can be generalized
to protocols which only admit higher-order parallel attacks (i.e., attacks which take place
only in presence of three or more concurrent roles for the same principal). Using our tool
we can automatically find such attacks, if any exists. This distinguishes our methodology
from most approaches based on model-checking, which operate on a finite-state abstraction
of a given protocol, and require the number of principals and the number of roles to be
fixed in advance.

11.4.2 The Needham-Schroeder Protocol

In this section we analyze the Needham-Schroeder public-key authentication protocol, pre-
viously discussed in Section 11.2.4. For the sake of precision, we restrict our attention the
fragment of the Needham-Schroeder protocol where the key distribution phase (i.e., the
messages exchanged with the trusted server) has been omitted.

The resulting protocol, corresponding to messages 3, 6, and 7 of Section 11.2.4, is as follows:

1. A→ B : {Na, A}Kb

2. B → A : {Na, Nb}Ka

3. A→ B : {Nb}Kb

and has been implemented using the specification illustrated in Figure 11.4 and the intruder
theory in Figure 11.5. Let us discuss the rules in more detail.

The protocol rules have been encoded in the same way as for the ffgg protocol of Section
11.4.1, and directly correspond to the informal notation previously introduced. This time,
all messages sent over the network are encrypted, therefore we have modeled them using
atomic formulas like n(pubk(id), mess content), where id is a principal identifier, whereas
mess content is a term of the form mess(. . .). Internal states of principals have been
enriched in order to express the security violations we will present in the following.

The intruder theory is shown in Figure 11.5. We consider here a more extended intruder
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p1) pr(A, init) ............................................
...........
.......
................................. pr(B, init) ◦− pr(B, init) ............................................

...........
.......
................................. ∀NA.(pr(A, step1(NA,B)) ............................................

...........
.......
.................................

n(pubk(B), mess(NA,A)))

p2) pr(B, init) ............................................
...........
........
................................ n(pubk(B), mess(NA,A)) ◦− ∀NB.(pr(B, step2(NA,NB,A)) ............................................

...........
........
................................

n(pubk(A), mess(NA,NB)))

p3) pr(A, step1(NA,B)) ............................................
...........
........
................................ n(pubk(A), mess(NA,NB)) ◦− pr(A, step3(NA,NB,B)) ............................................

...........
........
................................

n(pubk(B), mess(NB))

p4) pr(B, step2(NA,NB,A)) ............................................
...........
.......
................................. n(pubk(B), mess(NB)) ◦− pr(B, step4(NA,NB,A))

Figure 11.4: Specification of the Needham-Schroeder protocol

theory w.r.t. the one for the ffgg protocol in Figure 11.2. Namely, we give the intruder
the capability to decrypt messages addressed to himself/herself. Given that private keys
are not exchanged, the intruder will never be able to know the private keys of some other
principal, therefore we still assume that the intruder is not able to decrypt messages other
than the ones intended for himself/herself. Rule i1 and i2 deal with interception: the
intruder can intercept any message and replay it (possibly more than once) at any given
time in the future. Rule i3 states that the intruder can decompose any message addressed
to himself/herself. Rules i4 and i5 are the usual rules for decomposition of messages (with
one or two components). Rules i6 and i7 are the corresponding rules for composition of
messages (with one or two components). Finally, using rule i8 the intruder can send a
newly composed message to any principal.

Now, the specification of unsafe states is as follows:

u1) pr(alice, step3(NA,NB, bob)) ............................................
...........
........
................................ m(NA) ◦− ⊤

u2) pr(alice, step3(NA,NB, bob)) ............................................
...........
........
................................ m(NB) ◦− ⊤

u3) pr(bob, step4(NA,NB, alice)) ............................................
...........
........
................................ m(NA) ◦− ⊤

u4) pr(bob, step4(NA,NB, alice)) ............................................
...........
.......
................................. m(NB) ◦− ⊤

Namely, a state is unsafe if there exist two principals, say alice and bob, such that either
alice has run the protocol to completion with bob, or bob with alice, and at least one of the
two nonces has been disclosed to the intruder. We call the security property specified by
the above rules strong correctness.

We can now run our verification tool on the resulting specification. As observed by Lowe
[Low95], Needham-Schroeder protocol is not safe w.r.t. the above security properties.
In fact, we find the attack shown in Figure 11.6, corresponding to the one presented in
[Low95] (we have followed the same conventions as in Figure 11.3, with Σ1 = Σ, na and
Σ2 = Σ, na, nb). The attack takes place because alice decides to contact the intruder,
without knowing he/she is cheating. Thus, the intruder is able to impersonate alice and
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i1) n(pubk(A),M) ◦− intercept(n(pubk(A),M))

i2) intercept(n(pubk(A),M)) ◦− intercept(n(pubk(A),M)) ............................................
...........
........
................................ n(pubk(A),M)

i3) n(pubk(intruder),M) ◦− dec(M)

i4) dec(mess(M)) ◦− m(M)

i5) dec(mess(M,N)) ◦− m(M) ............................................
...........
........
................................ m(N)

i6) m(M) ◦− m(M) ............................................
...........
........
................................ comp(mess(M))

i7) m(M) ............................................
...........
........
................................ m(N) ◦− m(M) ............................................

...........
........
................................ m(N) ............................................

...........
........
................................ comp(mess(M,N))

i8) comp(C) ◦− n(pubk(Z),C)

Figure 11.5: Intruder theory for the Needham-Schroeder protocol

P ⊢Σ2
⊤, al3na,nb,i, iinit, m(al, nb)

⊤r

P ⊢Σ2
al3na,nb,i, bob

4
na,nb,al, i

init, m(na, al, nb)
bc(u3)

P ⊢Σ2
al3na,nb,i, bob

2
na,nb,al, i

init, m(na, al, nb), n({mess(nb)}Kbob
)
bc(p4)

P ⊢Σ2
al3na,nb,i, bob

2
na,nb,al, i

init, m(na, al, nb), comp(mess(nb))
bc(i8)

P ⊢Σ2
al3na,nb,i, bob

2
na,nb,al, i

init, m(na, al, nb)
bc(i6)

P ⊢Σ2
al3na,nb,i, bob

2
na,nb,al, i

init, m(na, al), dec(mess(nb))
bc(i4)

P ⊢Σ2
al3na,nb,i, bob

2
na,nb,al, i

init, m(na, al), n({mess(nb)}Ki
)
bc(i3)

P ⊢Σ2
al1na,i, bob

2
na,nb,al, i

init, m(na, al), n({mess(na, nb)}Kal
)
bc(p3)

P ⊢Σ1
al1na,i, bob

init, iinit, m(na, al), n({mess(na, al)}Kbob
)

bc(p2)

P ⊢Σ1
al1na,i, bob

init, iinit, m(na, al), comp(mess(na, al))
bc(i8)

P ⊢Σ1
al1na,i, bob

init, iinit, m(na, al)
bc(i7)

P ⊢Σ1
al1na,i, bob

init, iinit, dec(mess(na, al))
bc(i5)

P ⊢Σ1
al1na,i, bob

init, iinit, n({mess(na, al)}Ki
)
bc(i3)

P ⊢Σ al
init, bobinit, iinit

bc(p1)

Figure 11.6: An attack to the Needham-Schroeder protocol
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cheat bob. Note that as a result the protocol has been broken from the point of view of bob.
In fact, bob thinks he has got authentication with alice and that provided alice is honest,
the nonces have not been disclosed to anyone else (which is false), whereas from the point
of view of alice, she correctly thinks to have established authentication with the intruder
(the nonces have been disclosed to bob, but only because the intruder is cheating and alice
does not know that).

With this in mind, we can now try the following stronger security violations (we call the
corresponding security property weak correctness).

u′1) pr(alice, step3(NA,NB, bob)) ............................................
...........
.......
................................. pr(bob, step4(NA,NB, alice)) ............................................

...........
.......
................................. m(NA) ◦− ⊤

u′2) pr(alice, step3(NA,NB, bob)) ............................................
...........
........
................................ pr(bob, step4(NA,NB, alice)) ............................................

...........
........
................................ m(NB) ◦− ⊤

Namely, we try to ascertain whether it is possible that two honest principals alice and bob
both believe to have completed the protocol with each other, and still at least one of the
two nonces has been disclosed to the intruder (as the reader can easily verify, this is not the
case for the trace of the previous attack). This time the verification algorithm terminates,
proving that Needham-Schroeder protocol is safe with respect to this property.

We conclude this section by showing how the methodology of invariant strengthening,
discussed in Section 6.1.2.1, can improve the verification algorithm performance. Namely,
we augment the set of security violations with this further rule:

u′3) pr(alice, step1(NA, bob)) ............................................
...........
........
................................ m(NA) ◦− ⊤

Intuitively, this violation is never met. In fact, the nonce NA is created by alice during
step 1 and sent to bob. If bob is honest, he will never send it to the intruder. Adding
this rule has the effect of accelerating convergence of the fixpoint computation (see the
experimental results in Table 11.1). Note that the following invariant is instead violated
(the attack follows the same scheme of the one in Figure 11.6):

u′4) pr(bob, step2(NA,NB, alice)) ............................................
...........
.......
................................. m(NB) ◦− ⊤

We remind that adding rules (including axioms) to the theory is always sound, in the sense
that if no attack is found in the augmented theory, no attack can be found in the original
one.

11.4.3 Corrected Needham-Schroeder

As observed by Lowe [Low95], the Needham-Schroeder protocol can be fixed with a small
modification. The problem with the original protocol is that the second message exchanged
does not contain the identity of the responder. Adding the responder’s identity to this
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message prevents the intruder from replaying it, because now the initiator is expecting a
message from the intruder. The corrected version of Needham-Schroeder protocol is

1. A→ B : {Na, A}Kb

2. B → A : {B,Na, Nb}Ka

3. A→ B : {Nb}Kb

We need to make minor modifications to our previous specification. Namely, we modify
rules p2) and p3) by adding the additional argument B:

p′2) pr(B, init) ............................................
...........
.......
................................. n(pubk(B), mess(NA,A)) ◦− ∀NB.(pr(B, step2(NA,NB,A)) ............................................

...........
.......
.................................

n(pubk(A), mess(B,NA,NB)))

p′3) pr(A, step1(NA,B)) ............................................
...........
........
................................ n(pubk(A), mess(B,NA,NB)) ◦−

pr(A, step3(NA,NB,B)) ............................................
...........
.......
................................. n(pubk(B), mess(NB))

and we add two rules for composition and decomposition of messages with three compo-
nents:

u9) dec(mess(M,N,O)) ◦− m(M) ............................................
...........
........
................................ m(N) ............................................

...........
........
................................ m(O)

u10) m(M) ............................................
...........
........
................................ m(N) ............................................

...........
........
................................ m(O) ◦− m(M) ............................................

...........
........
................................ m(N) ............................................

...........
........
................................ m(O) ............................................

...........
........
................................ comp(mess(M,N,O))

We can now use our algorithm to automatically verify if the protocol satisfy strong cor-
rectness (axioms u1 through u4). As in Section 11.4.2, we can accelerate convergence by
means of invariant strengthening (see the experimental results in Table 11.1). We can use
the two invariants u′3 and u′4 discussed in Section 11.4.2, which should now both hold. The
verification algorithm terminates, as expected, proving that the modified version of the
Needham-Schroeder protocol is correct w.r.t. the notion of strong correctness.

11.4.4 The Otway-Rees Protocol

The Otway-Rees protocol [OR87] provides a typical example of a type flaw attack. It is
intended for key distribution between two principals communicating with a central server by
means of shared keys (the protocol assumes symmetric key encryption, see Section 11.2.1).

The protocol is as follows (the form presented here is the one given in [BAN89]).

1. A→ B : N,A,B, {Na, N,A,B}Kas

2. B → S : N,A,B, {Na, N,A,B}Kas
, {Nb, N,A,B}Kbs

3. S → B : N, {Na, Kab}Kas
, {Nb, Kab}Kbs

4. B → A : N, {Na, Kab}Kas

The protocol is run between two principals A and B, communicating with a trusted server S
by means of shared keys Kas and Kbs. The purpose of the protocol is to get a new key Kab,
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p1) pr(A, init) ............................................
...........
.......
................................. pr(B, init) ◦− pr(B, init) ............................................

...........
.......
................................. ∀N.∀NA.

(n(plain(cons(N, cons(A,B))), enc(sk(A, s), cons(NA, cons(N, cons(A,B)))) ............................................
...........
........
................................

pr(A, step1(B,N,NA))))

p2) n(plain(cons(N, cons(A,B))), enc(sk(A, s), cons(NA, cons(N, cons(A,B))))) ............................................
...........
.......
.................................

pr(B, init) ◦− ∀NB.(pr(B, step2(A,N,NB)) ............................................
...........
........
................................

n(plain(cons(N, cons(A,B))), enc(sk(A, s), cons(NA, cons(N, cons(A,B)))),
enc(sk(B, s), cons(NB, cons(N, cons(A,B))))))

p3) n(plain(cons(N, cons(A,B))), enc(sk(A, s), cons(NA, cons(N, cons(A,B)))),
enc(sk(B, s), cons(NB, cons(N, cons(A,B))))) ............................................

...........
........
................................ pr(s, init) ◦− pr(s, init) ............................................

...........
........
................................

∀KAB.n(plain(N), enc(sk(A, s), cons(NA,KAB)), enc(sk(B, s), cons(NB,KAB))))

p4) n(plain(N), enc(sk(A, s), cons(NA,KAB)), enc(sk(B, s), cons(NB,KAB))) ............................................
...........
........
................................

pr(B, step2(A,N,NB)) ◦− pr(B, step3(A,KAB)) ............................................
...........
........
................................

n(plain(N), enc(sk(A, s), cons(NA,KAB)))

p5) pr(A, step1(B,N,NA)) ............................................
...........
........
................................ n(plain(N), enc(sk(A, s), cons(NA,KAB))) ◦−

pr(A, step4(B,KAB))

Figure 11.7: Specification of the Otway-Rees protocol

generated by the trusted server, to be used as a shared key in subsequent communications
between A and B. At the first step, principal A generates a nonce N , to be used as a run
identifier, and a nonce Na, and sends to B the plaintext N,A,B and an encrypted message,
readable only by the server S, of the form shown. In turn, principal B generates a nonce
Nb and forwards A’s message to S, together with a similar encrypted component. The
server checks that the N,A,B components in both messages match, and, if so, generates a
new key Kab and replies to B with message 3 above, which includes a component intended
for B and one for A. The component intended for A is forwarded to him/her by B with
message 4.

We have encoded the Otway-Rees protocol with the rules in Figure 11.7. Let us discuss
them in more detail. The encoding is similar to the one used for Millen’s ffgg protocol (see
Section 11.4.1), in particular we distinguish between the plaintext part of messages (term
constructor plain) and the encrypted part (term constructor enc). Furthermore, we use a
concatenation operator cons to glue together different components inside the plaintext or
the ciphertext. In this way, we are able to capture type flaw attacks. We use an identifier s
for the trusted server, and the notation sk(id, s) to denote the shared key between principal
id and s. Rules p1 through p5 are a direct translation of the protocol steps written in the
usual notation. As usual, we have denoted the internal state of principals by means of
term constructors like stepi. When the protocol is run to completion, the internal state of
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i1) n(plain(X), enc(sk(K, s),Y)) ◦− m(plain(X)) ............................................
...........
.......
................................. m(enc(sk(K, s),Y))

i2) m(plain(X), enc(sk(K, s),Y), enc(sk(H, s),W)) ◦− m(plain(X)) ............................................
...........
........
................................

m(enc(sk(K, s),Y)) ............................................
...........
........
................................ m(enc(sk(H, s),W))

i3) m(plain(cons(X,Y))) ◦− m(plain(cons(X,Y))) ............................................
...........
.......
................................. m(plain(X)) ............................................

...........
.......
................................. m(plain(Y))

i4) m(plain(X)) ............................................
...........
........
................................ m(plain(Y)) ◦− m(plain(X)) ............................................

...........
........
................................ m(plain(Y)) ............................................

...........
........
................................

m(plain(cons(X,Y)))

i5) m(plain(X)) ............................................
...........
........
................................ m(enc(sk(K, s),Y)) ◦− m(plain(X)) ............................................

...........
........
................................ m(enc(sk(K, s),Y)) ............................................

...........
........
................................

n(plain(X), enc(sk(K, s),Y))

i6) m(plain(X)) ............................................
...........
........
................................ m(enc(sk(K, s),Y)) ............................................

...........
........
................................ m(enc(sk(H, s),W)) ◦− m(plain(X)) ............................................

...........
........
................................

m(enc(sk(K, s),Y)) ............................................
...........
.......
................................. m(enc(sk(H, s),W)) ............................................

...........
.......
.................................

n(plain(X), enc(sk(K, s),Y), enc(sk(H, s),W))

Figure 11.8: Intruder theory for the Otway-Rees protocol

each of the two involved principals contains the identity of the other principal and the new
shared key obtained from the server.

The intruder theory in presented in Figure 11.8. Rules i1 and i2 are the usual decomposition
rules for, respectively, messages with one encrypted component and with two encrypted
components. Rules i3 and i4 allow the intruder to arbitrarily decompose and re-assemble
plaintext messages, whereas encrypted messages are stored as they are. Finally, rules i5
and i6 allow the intruder to create new messages from stored components.

We wish to verify if the intruder can get the shared key which comes from a protocol run
between two honest principals, say alice and bob. The specification of unsafe states is
straightforward:

u1) pr(bob, step3(alice,KAB)) ............................................
...........
........
................................ m(plain(KAB)) ◦− ⊤

u2) pr(alice, step4(bob,KAB)) ............................................
...........
........
................................ m(plain(KAB)) ◦− ⊤

Running our verification tool, we automatically find the type flaw attack described in
[CJ97]. The corresponding trace is shown in Figure 11.9 (we have followed the usual
conventions, with Σ1 = Σ, n1, na). The attack takes place because a malicious intruder
can intercept the first message, and, after stripping it of the A and B components (in the
plaintext part), replay it as the last message of the protocol. The attack is successful under
the hypothesis that the triple N,A,B may be erroneously accepted, by the initiator of the
protocol, as the desired key. This is clearly a security flaw because the triple N,A,B is
sent in clear in the first message, and therefore publicly known.

The Otway-Rees protocol provides a classical example of a type flaw attack. This kind
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P ⊢Σ1
⊤, bobinit,M({na·n1·al·bob}Kas , n1, al·bob)

⊤r

P ⊢Σ1
al4bob,n1·al·bob, bob

init,M(n1·al·bob, {na·n1·al·bob}Kas , n1, al·bob)
bc(u2)

P ⊢Σ1
al1bob,n1,na, bob

init,M(n1·al·bob, {na·n1·al·bob}Kas , n1, al·bob), n(n1, {na·n1·al·bob}Kas)
bc(p5)

P ⊢Σ1
al1bob,n1,na, bob

init,M(n1·al·bob, {na·n1·al·bob}Kas , n1, al·bob)
bc(i5)

P ⊢Σ1
al1bob,n1,na, bob

init,M(n1·al·bob, {na·n1·al·bob}Kas)
bc(i3)

P ⊢Σ1
al1bob,n1,na, bob

init, n(n1·al·bob, {na·n1·al·bob}Kas)
bc(i1)

P ⊢Σ alinit, bobinit
bc(p1)

Figure 11.9: An attack to the Otway-Rees protocol

Protocol Invar Steps Size MSize Time Verified

Millen’s ffgg 14 306 677 1335 attack
Millen’s ffgg 14 27 810 2419 yes
(corrected)

Needham-Schroeder 13 294 323 45 attack
(strong correctness)
Needham-Schroeder 13 304 755 516 yes
(weak correctness)

√
12 299 299 63 yes

Corrected Needham-Schroeder 14 1575 1575 791 yes
(strong correctness)

√
9 402 402 31 yes

Otway-Rees 5 10339 10339 4272 attack

Table 11.1: Analysis of authentication protocols: experimental results

of attacks are very pervasive in authentication. Another classical example of type-flawed
protocol is the Yahalom protocol [CJ97].

11.4.5 Experimental Results

In Table 11.1 we summarize the experimental results for the examples of Section 11.4. We
use the following conventions: a symbol

√
in column ’Invar’ indicates use of the invariant

strengthening technique; the column ‘Steps’ denotes the number of iterations needed to
reach a fixpoint (or before finding an attack); ‘Size’ is the number of multisets contained in
the fixpoint (or at the time the attack was found), while ’MSize’ is the maximum number
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of multisets computed at any step; ‘Time’ is the execution time (in seconds).

11.5 Future Work

In this section we discuss some lines of research for future work. We refer to Appendix A
for a discussion on the verification tool we have used to carry out the experiments discussed
in this chapter, and on the future improvements we plan to implement. As an example,
in order to perform protocol correctness analysis, we would like to support automatic or
semi-automatic generation of invariants and pruning conditions. On the theoretical side,
we have also singled out the following points.

We want to study a (possibly automatic) translation between the usual informal descrip-
tion of protocols and our representation. As suggested by the examples presented in this
chapter, a one-to-one translation (one rule for every step) could be sufficient, provided we
have a way to store the information about the internal state of principals.

Furthermore, we want to study a general formulation of the Dolev-Yao intruder theory,
which could be optimized and selectively refined for analyzing the specific protocol at hand.
This refinement and optimization phase can be useful in order to analyze a given protocol
under different assumptions for the intruder capabilities, and it is also crucial for efficiency
considerations, as exemplified by the experiments we have presented. Specifically, optimiz-
ing the rules for composition and decomposition of messages seems to be crucial to improve
the verification algorithm performance. We plan to use techniques like folding/unfolding
to automatize this process. A similar technique is used for instance in [Bla01].

We also consider the possibility of enriching the multiset rewriting formalism underlying
our specification language with a more general term rewriting theory based on equational
theories and AC unification, as done for instance in [Mea96, DMT98, JRV00].

We want to carry out further experiments on other security protocols presented in the
literature. In particular, we plan to combine our verification tool with a constraint solver,
along the lines discussed in Chapter 9, to analyze protocols which make use of timestamps
to ensure freshness of messages exchanged between principals. Other classes of protocols
which could be worth investigating include fair exchange protocols and looping protocols
like Kerberos [BAN89].

Another topic we would like to investigate is typed multiset rewriting [Cer01b], which
extends multiset rewriting with a typing theory based on dependent types with subsorting.
Dependent types can be used to enforce dependency between an encryption key and its
owner. The paper [Cer01b] also presents some extensions which increase the flexibility of
multiset rewriting specifications, e.g. using memory predicates to remember information
across role executions.
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Finally, an open question is the problem of non-termination. In the few examples we
have presented, our algorithm is always terminating, even without invariant strengthen-
ing. Although secrecy has been proved to be undecidable, even for finite-length protocols
with data of bounded complexity [CDL+99], one may ask if a more restricted subclass of
protocols exists, for which the verification algorithm presented here is always terminating.

11.6 Related Work

In this chapter we have presented security protocols as a possible application field for our
methodology based on a multiset-rewriting-like specification language and on a backward
search verification strategy. Our verification procedure is tailored to study security vio-
lations which can be specified by means of minimality conditions. While this may rule
out interesting properties, e.g. questions of belief [BAN89], the proposed approach can be
used to study secrecy and confidentiality properties. No artificial limit is imposed on the
number of simultaneous sessions we are able to analyze.

We have performed some experiments on different authentication protocols which show that
the methodology we propose can be effective either to find attacks or to validate existing
protocols. We plan to overcome some current limitations of our approach, in particular
we plan to refine and automatize the specification phase of protocols and of the intruder
theory, as discussed in Section 11.5. We expect further results from future work on this
point. Below we discuss some related work in more detail.

A wide research area in security protocol analysis is related to rewriting logic [Mes92].
For instance, we mention [Cir01], which specifies security protocols as rewriting theories
which can be executed in the ELAN system [BKK+96]. A similar approach is followed in
[DMT98], where the target executable language is instead Maude [CELM96]. Perhaps the
more interesting work in this class is [JRV00]. This work presents an automatic compilation
process from security protocol descriptions into rewrite rules. The resulting specifications
are then executed using the daTac theorem prover [Vig95]. As a difference with [DMT98],
which is based on matching, the execution strategy of [JRV00] relies on narrowing and
AC unification. Our approach, based on multiset unification, is clearly closer to the latter
approach, although currently we do not support equational theories. All of the above
approaches are limited to protocol debugging, therefore they can find attacks mounted on
a given protocol, but they cannot be used to analyze correctness. Also, a crucial difference
is that all the above works are based on a forward breadth-first-search strategy, while
effectiveness of our verification algorithm strongly relies on a backward search strategy.
Another approach which shares some similarity with ours is [Del01], where a specification
for security protocols based on rewriting and encoded in a subset of intuitionistic logic
is presented. The author uses universal quantification to generate nonces, like us, and
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embedded implication to store the knowledge of agents. This approach is still limited to
protocol debugging.

An alternative approach to verifying security protocols is based on model checking. For
instance, the FDR model checking tool was used by Lowe [Low96] to analyze the Needham-
Schroeder public-key protocol and the attack previously reported in [Low95]. Other works
which fall into this class are [MCJ97, RB99]. All these approaches have in common the
use of some kind of abstraction to transform the original problem into a finite-state model-
checking problem, which is then studied by performing a forward reachability analysis.
Using a finite-state approximation has the advantage of guaranteeing termination, however
it only allows one to analyze a fixed number of concurrent protocol runs, an approach which
is infeasible as this number increases. As a difference, we use a symbolic representation
for infinite sets of states and a backward reachability verification procedure, which avoid
putting limitations on the number of parallel sessions we are able to analyze.

Theorem proving techniques are used in [Pau98], where protocols are inductively defined
as sets of traces, and formally analyzed using the theorem prover Isabelle [Pau94]. Here,
analysis is a semi-automatic process which can take several days. The NRL protocol
analyzer [Mea96] provides a mixed approach. It is based on protocol specifications given
via Prolog rules, and enriched via a limited form of term rewriting and narrowing to manage
symbolic encryption equations. Similarly to us, verification is performed by means of a
symbolic model-checker which relies on a backward evaluation procedure which takes as
input a set of insecure states. The analyzer needs to be fed with some inductive lemmas
by the user, in the same way theorem provers need to be guided by the user during the
proof search process.

In [Bla01], the author proposes an optimized specification of security protocols based on
an “attacker view” of protocol security, specified by means of Prolog rules, as in [Mea96].
The approach is effective, and has been applied to prove correctness of a number of real
protocols. The verification algorithm performs a backward depth-first search, which seems
to be closely related to our evaluation strategy, and uses an intermediate code optimization
using a technique similar to unfolding, which we plan to study as future work. On the other
hand, we think that the multiset rewriting formalism which we use is more amenable to
an automatic translation from the usual protocol notation. As we stressed in Section 11.1,
ensuring faithfulness between the intended semantics of a protocol and its specification is
necessary to prove correctness. Also, with respect to [Bla01], we use a cleaner treatment
for nonces, and we don’t have to use approximations (which may introduce false attacks)
except for invariant strengthening, which can be controlled by the user.

Finally, we mention some works concerning the process of translation from the usual in-
formal notation for protocols, which we plan to study as part of our future work. Existing
approaches include Casper [Low98], a compiler from protocol specifications into the CSP
process algebra, oriented towards verification in FDR, and CAPSL [Mil97], a specification
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language which can be compiled into an intermediate language and used to feed tools like
Maude [DMT98] or the NRL analyzer [Mea96]. Finally, [JRV00] presents an automatic
compilation process into rewriting rules which is able to manage infinite-state models.

—————————————————————————————–

Summary of the Chapter. In this chapter we have illustrated the use of our
framework based on linear logic for the specification and analysis of authentication
protocols. Protocols and security properties can be specified using a uniform logic
corresponding to multiset rewriting enhanced with nonce management via universal
quantification, and validated by means of a bottom-up evaluation algorithm which
performs backward search starting from a protocol/intruder theory and a set of ax-
ioms representing security violations.

We have presented a set of examples taken from classic literature on security pro-

tocols, and we have shown that our verification methodology can be used both for

finding design errors and for validating protocols with respect to a given intruder

theory and a given security property. Unlike most traditional approaches based on

model-checking, our verification strategy does not pose any limitation on the number

of simultaneous sessions which can be analyzed, and allows any principal to take part

into different protocol runs simultaneously, possibly with different roles.

—————————————————————————————–
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Chapter 12

Conclusions

In this thesis we have a presented a specification language, based on a fragment of Girard’s
linear logic, which is suitable for the specification of concurrent systems, and in particular
of parameterized and infinite-state systems. Furthermore, we have enriched the language
with a novel computational model based on bottom-up evaluation of linear logic programs,
which has strong connections with symbolic model checking procedures. We have shown
different classes of parameterized and infinite-state systems which can be validated using
this machinery. Summarizing, we believe that this thesis provides some original contribu-
tion at least on the following points:

• Regarding the specification language in itself, we think that a strong point in favour
of our approach is the seamless integration of specialized constraint solvers into a
substratum consisting of a multiset-rewriting-like logic. Further extensions like, e.g.,
equational rewriting theories or more complex type theories might be plugged into
our system with a limited effort. Finally, universal quantification in goals provides a
logical and clean way to specify name generation. We have shown the last point in
the test-and-lock example of Section 10.5 and in Chapter 11, where the quantifier is
used to generate nonces;

• we have defined a new bottom-up semantics for a fragment of first-order linear logic
(with or without constraints). In particular, we have extended the so-called C-
semantics of [FLMP93, BGLM94] to a fragment of first-order linear logic including
universal quantification in goals. As a result, we have also obtained the extension of
the C-semantics to Horn clauses with embedded universal quantification;

• as a result of our semantical investigation, we have obtained decidability results for
some fragments of first-order linear logic (with constraints or without constraints),
with applications for the verification of infinite-state systems (as in the case of the
ticket protocol). We expect further results in this direction from our future work;
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• we have presented a verification procedure which can be used either to detect design
errors (e.g. attacks for authentication protocols) or to validate infinite-state systems.
In particular, this procedure is suitable to study a wide class of safety properties. Its
strength is due to the following reasons: a symbolic computation strategy based on
first-order unification (in the case of the language LO∀) or on specialized constraint
solvers (in the case of LO(C)); the possibility of expressing safety properties via
upward-closed sets; a backward evaluation strategy (we remark that using a forward
strategy would not yield the same results); a subsumption mechanism (and also static
analysis techniques) to relieve the state explosion problem;

• finally, we have applied our verification procedure to verify safety properties for a
wide class of parameterized and infinite-state systems ranging from mutual exclusion
protocols, to broadcast and authentication protocols. We have also obtained some
original results. For instance, we have verified, to our knowledge for the first time, a
parameterized formulation, admitting an arbitrary number of clients and servers, of
the so-called ticket protocol. It is important to note that our specification of the ticket
protocol is faithful to its original formulation, in fact we model integer variables using
integer variables (which can grow unboundedly). In other words, we do not abstract
away their values, and we do not use reduction to a finite-state problem as in some
alternative approaches.

We summarize in Table 12.1 all the experiments that we have carried out in this thesis,
using the tool presented in Appendix A. The column ’Section’ indicates the section in
which the relevant experiment has been presented, a symbol

√
in column ’Static Opt’

indicates the use of static analysis techniques like invariant strengthening or pruning (the
abstraction α of Definition 9.60 is always used in the case of the ticket algorithm); the
column ‘Steps’ denotes the number of iterations needed to reach a fixpoint (or before
finding a security violations); ‘Size’ is the number of multisets contained in the fixpoint (or
at the time the violation was found); finally, ‘Time’ is the execution time in seconds (not
applicable for the readers/writers example which has been verified by hand).

12.1 Future Work

We conclude by outlining the directions of future research we believe more promising.

We are considering enriching our specification language with a type theory, possibly based
on dependent types, along the tradition of logical frameworks [Pfe01, CP02]. Dependent
types provide more flexible specifications, for instance, in security protocol specifications,
they can be used to enforce dependency between an encryption key and its owner [Cer01b].
More importantly, dependent types allow one to represent and manipulate computations

215



Example Section Static Opt Steps Size Time Verified

Producer/Comsumer 7.3.1 13 16 56 yes
A Petri Net For Mutual 7.3.2 7 14 < 1 yes

Exclusion 7.3.2
√

1 3 < 1 yes
A Petri Net For Mutual 7.3.2 7 20 < 1 yes
Exclusion (Dyn.Gen.) 7.3.2

√
1 3 < 1 yes

Readers/Writers 8.4
√

1 4 n.a. yes

Ticket Protocol 9.4 17 201 126 yes
(Multi-client, Single-server) 9.4

√
9 23 < 1 yes

Ticket Protocol, Dyn.Gen. 9.4 17 222 150 yes
(Multi-client, Single-server) 9.4

√
10 32 < 1 yes

Ticket Protocol, Dyn.Gen. 9.4
√

19 141 15 yes
(Multi-client, Multi-server)

Test and Lock 10.5 7 12 < 1 yes

Millen’s ffgg Protocol 11.4.1 14 306 1335 attack
Millen’s ffgg Protocol 11.4.1 14 27 2419 yes

(corrected)
Needham-Schroeder Protocol 11.4.2 13 294 45 attack

(strong correctness)
Needham-Schroeder Protocol 11.4.2 13 304 516 yes

(weak correctness) 11.4.2
√

12 299 63 yes
Corrected Needham-Schroeder 11.4.3 14 1575 791 yes

(strong correctness) 11.4.3
√

9 402 31 yes
Otway-Rees Protocol 11.4.4 5 10339 4272 attack

Table 12.1: A summary of the experiments carried out in the thesis

as objects. In the context of security protocols, this would amount to representing traces
of attacks as terms.

We are currently making further experiments on other classes of protocols, including the
field of security protocols. We want to carry out more experiments on different domains
(other than integer numbers) and we want to study new abstraction techniques (see Sec-
tion 9.3) and automatic methods to generate invariants for pruning the search space (see
Section 6.1.2). Furthermore, we are investigating the issue of termination of the bottom-up
evaluation algorithm for more extended linear logic fragments than the monadic fragments
discussed in Section 9.3 and Section 10.4.

We also want to find out whether it is possible to study different classes of problems
or different classes of properties (e.g. liveness properties) for infinite-state systems. A
starting point could be [FS01], where it is shown that the construction of well-structured
transition systems can be used to deal with the termination, inevitability and boundedness
problems. Solution of these problems is based on tree-saturation methods, which represent
computations by means of a finite tree-like structure.
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We believe that improving the implementation of our verification tool (see Appendix A)
could allow us to analyze more complex protocols than the ones considered so far. In
particular, we need to optimize multiset unification (and the related operation of sub-
sumption) and term representation. We are currently studying ad-hoc data structures for
representing (constrained) multisets, when dealing with specific domains.

From a logic programming perspective, we can extend the results presented in this thesis
either by considering more complex linear logic languages [And92, HM94, Mil96, DM01],
or more complex observational semantics, like the S-semantics of [FLMP93, BGLM94]. We
would also like to extend the decidability results presented in Section 9.3 and Section 10.4.
Finally, we would also investigate the connection between our multiset rewriting logic and
concurrent constraint programming languages [Sar93], where constraints are used, at the
programming level, as a means to provide communication and synchronization primitives
between processes running in parallel. In particular, we want to consider the tccp language
described in [dBGM00], which deals with a timed extension of CCP languages, suitable to
specify reactive systems.
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Appendix A

Verification Tool

In order to run the experiments described in chapters 7 through 11, we have built a
(prototypical) verification tool implementing the backward reachability algorithm for the
covering problem discussed in Chapter 6. In this section we give a brief overview about
the use and implementation of the tool.

A.1 General Description

The verification tool can be viewed as an implementation of the (semi)-algorithm for the
covering problem presented in Figure 6.3. In particular, it supports computation of the
bottom-up semantics for first-order LO programs with clauses built upon the logical con-
nectives ............................................

...........
........
................................ , ◦−, ⊤, and the universal quantifier ∀ in goals. The verification algorithm

exploits the upward-closure property of LO axioms of the form H ◦− ⊤ and is therefore
tailored to solve the so-called covering problem (see Section 6.1.1). For this reason, the
logical constant 1 (and consequently the multiplicative conjunction ⊗) are not supported.
Furthermore, the additive conjunction & is currently not supported (though it could be
added with a limited effort). In order to run the experiments described in Chapter 9,
a (core of a) specialized constraint solver has been implemented. In particular, the tool
supports the DC-constraints of Chapter 9.

The algorithm evaluates the bottom-up semantics of an LO program, producing in output
the backward reachability set computed at every iteration. The fixpoint is computed
(modulo state-explosion) any time termination is guaranteed. In case an attack (i.e., a
counterexample violating the property under investigation) is found, the corresponding
execution trace can be recovered and examined.

In Section A.3 we give more details about how the algorithm works.
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A.2 Implementation Notes

Following [EP91], the verification tool has been implemented in Standard ML (see [Pau96]
or [Har01] for a tutorial). We chose SML because it provides high-level programming
features together with a reasonable computational efficiency.

The verification tool has been built as a collection of independent modules implementing,
respectively: language parsing, term management, a specialized constraint solver for a
subset of linear constraints, (constrained) multisets, the bottom-up evaluation procedure,
and a user frontend. A parser supporting the languages LO∀ and LO(C) has been produced
using ML-Lex [AMT94] and ML-Yacc [TA00], a lexical analyzer and an automatic parser
generator available for the SML environment. Some parts of the code dealing with term
management, e.g. unification, have been adapted from the source code for an interpreter
for the language Lolli [HM94], originally written by J. Hodas.

A.3 How It Works

The verification tool takes as input a given system specification as a set of LO clauses and
a set of LO axioms representing the set of final states, a specification of the set of initial
states, and possibly some pruning invariants (see Section 6.1.2.2). The output consists
of the sets of configurations computed at each iteration and the resulting fixpoint, if the
computation is terminating. More details are given below.

Initial States. The tool allows one to give a partial specification of the set of the initial
states. It is possible to require a certain atom (or multiset of atoms) to belong to every
initial state and/or impose an atom (multiset of atoms) not to belong to any initial state.
The verification algorithm signals it has possibly found an attack every time it finds a state
which is compatible with the partial specification and the user must take care of checking
if it is really an attack or not. Exact specification of the set of initial states is also possible.
However, partial specification is more flexible because it may help one to find additional
hypotheses under which a security violation might take place.

Invariant Strengthening. The tool supports the invariant strengthening technique (see
Section 6.1.2.1, consisting in enriching the set of the states the bottom-up evaluation
starts from (i.e., enriching the set of logical axioms). We have also plugged the abstraction
function α of Section 9.3, which can be set to validate specifications written in LO enriched
with a subclass of linear integer constraints.
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Procedure Symbolic Fixpoint

input P : a set of LO clauses
Ax: a set of LO axioms
Initial: a set of initial states
Invar: pruning invariants

output Fsym(P )
begin

Step := 1
Interp := SAx(∅); Last := Interp
repeat

Step := Step + 1
Last := SP (Last)
Last := prune(Last, Invar)
(Interp, Last) := cut subsumed(Interp, Last)
print Step, Interp
if Last ∩ Initial 6= ∅ then print “attack found”

until Last = ∅
print “fixpoint”

end

Figure A.1: Pseudo-algorithm for bottom-up evaluation

Pruning. The tool supports the pruning methodology (see Section 6.1.2.2). Specifically,
it is possible to specify pruning invariants in the form of upward-closed sets of states which
are known to be unreachable. Upward-closed sets of states can be specified as LO axioms.
The tool checks every computed configuration against the pruning invariants, and possibly
cuts the search space accordingly. At the moment, pruning invariants must be provided
by the user and are not tested for correctness (see also Section A.5).

Subsumption. At every iteration of the fixpoint computation, subsumption checks are
performed in order to discard redundant information. Intuitively, an element (constraint
in the terminology of [AJ01b]) is redundant if its denotation is contained in the denotation
of some previously computed element. Subsumption checks work as follows. Every newly
generated element is checked against the already computed ones. If it is subsumed, then it
can be immediately discarded, otherwise it is inserted. Elements which become redundant
as a result of this insertion are in turn discarded.

Evaluation Algorithm. The bottom-up evaluation algorithm, written in pseudo-code,
in presented in Figure A.1. At any given iteration, the variable Interp contains the cur-
rent (global) interpretation computed so far, while the variable Last contains the subset
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of elements of Interp computed during the last step. The subroutine prune prunes a
given interpretation with respect to the given set of pruning invariants. The subroutine
cut subsumed takes Interp and Last as input and inserts elements of Last into Interp per-
forming the subsumption checks described in the previous paragraph (subsumed elements
are removed from Last).

A.4 Experimental Environment

In Chapters 7 through 11 we have presented some experiments which we have carried out
using our verification tool. All experiments have been executed on a Pentium III 450 Mhz,
under Linux 2.2.13-0.9, and running Standard ML of New Jersey, Version 110.0.7.

A.5 Future Work

We have singled out a number of improvements of the current prototype which we want to
carry out. On the theoretical level, we plan to enrich our tool with support for (automatic
or semi-automatic) generation of invariants (see Section 6.1.2.1) and cut conditions (see
6.1.2.2). To this aim, we plan to integrate a module for automatic generation of struc-
tural invariants for Petri nets [CFGR95]. We also plan to interface our tool with general
constraint solvers for different domains.

From an implementation point of view, some improvements are needed in order to get a
better performance. In particular, the critical operation is multiset unification (directly im-
plemented in SML), which requires to consider (classical) unification between sub-multisets
of terms of the original multisets. The most expensive phase of the verification algorithm is
by far the subsumption check, which makes heavy use of multiset unification. Subsumption
is indeed the basis of the verification algorithm’s power. Future work includes implement-
ing some kind of indexing to order terms inside multisets, so to make unification faster,
and optimizing the subsumption phase (e.g. using heuristics). We also need to optimize
the term representation, which is currently very naive.
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