
A Bottom-up Semantics for Linear Logic Programs

Marco Bozzano
∗

Giorgio Delzanno

Dipartimento di Informatica e
Scienze dell’Informazione

Via Dodecaneso 35
16146 Genova, Italy

giorgio@disi.unige.it

Maurizio Martelli
†

ABSTRACT
The operational semantics of linear logic programming lan-
guages is given in terms of goal-driven sequent calculi. The
proof-theoretic presentation is the natural counterpart of the
top-down semantics of traditional logic programs. In this pa-
per we investigate the theoretical foundation of an alterna-
tive operational semantics based on a bottom-up evaluation
of linear logic programs via a fixpoint operator. The bottom-
up fixpoint semantics is important in applications like active
databases, and, more in general, for program analysis and
verification. As a first case-study, we consider Andreoli and
Pareschi’s LO [4] enriched with the constant 1. For this
language, we give a fixpoint semantics based on an oper-
ator defined in the style of TP . We give an algorithm to
compute a single application of the fixpoint operator where
constraints are used to represent in a finite way possibly
infinite sets of provable goals. Furthermore, we show that
the fixpoint semantics for propositional LO without the con-
stant 1 can be computed after finitely many steps. To our
knowledge, this is the first attempt to define an effective fix-
point semantics for LO. We hope that our work will open
interesting perspectives for the analysis and verification of
linear logic programming languages.

1. INTRODUCTION
In recent years a number of fragments of linear logic [16]
have been proposed as a logical foundation for extensions
of logic programming [28]. Several new programming lan-
guages like LO [4], ACL [24], Lolli [20], and Lygon [17] have
been proposed with the aim of enriching traditional logic
programming languages like Prolog with a well-founded no-
tion of state and with aspects of concurrency. The oper-

∗email:bozzano@disi.unige.it
†email:martelli@disi.unige.it

ational semantics of this class of languages is given via a
sequent-calculi presentation of the corresponding fragment
of linear logic. Special classes of proofs like the focusing
proofs of Andreoli [2] and the uniform proofs of Miller [27] al-
low us to restrict our attention to cut-free, goal-driven proof
systems that are complete with respect to provability in lin-
ear logic. These presentations of linear logic are the natural
counterpart of the traditional top-down operational seman-
tics of logic programs.

In this paper we investigate an alternative operational se-
mantics for one of the above mentioned languages, namely
LO [4]. The operational semantics we propose consists of
a goal-independent bottom-up evaluation of LO programs.
Specifically, given an LO program P our aim is to compute
a finite representation of the set of goals that are provable
from P . There are several reasons to look at this problem.
First of all, as discussed in [18], the bottom-up evaluation
of programs is the key ingredient for all applications where
it is difficult or impossible to specify a given goal in ad-
vance. Examples are active (constraint) databases, agent-
based systems and genetic algorithms. Furthermore, new
results connecting verification techniques and semantics of
logic programs [12] show that bottom-up evaluation can be
used to automatically check properties (specified in tempo-
ral logic like CTL) of the original program. Finally, a for-
mal definition of the bottom-up semantics can be useful for
studying equivalence, compositionality and abstract inter-
pretation (as for traditional logic programs [7, 15]). The
reason we selected LO in this preliminary work is that we
were looking for a relatively simple linear logic language with
a uniform-proof presentation, state-based computations and
aspects of concurrency. Operationally, LO programs behave
like a set of multiset rewriting rules. In practice, LO has
been successfully applied to model, e.g., concurrent object-
oriented languages [4], and coordination languages based on
the Linda model [3].

Technically, our contributions are as follows. We first con-
sider a formulation of LO with

..

..
........
..
.
......
..
....
..
.........
..
.
..
..
..
...
..
..
..
.
..
.
..
..
..............

.

..

..

............ ,−◦, & and ⊤. Following
the semantic framework of (constraint) logic programming
[15, 21], we formulate the bottom-up evaluation procedure
in two steps. We first define what one could call a ground se-
mantics via a fixpoint operator TP defined over an extended
notion of Herbrand interpretation consisting of multisets of

atomic formulas. This way, we capture the uniformity of
LO-provability, according to which compound goals must
be completely decomposed into atomic goals before program
clauses can be applied. Due to the notion of resource pecu-
liar to linear logic, this semantics may introduce infinitely
many provable multisets even for propositional goals. In
fact, LO-provability enjoys the following property. If a mul-
tiset of goals ∆ is provable in P , then any ∆′ such that ∆
is a sub-multiset of ∆′ is provable in P . To circumvent this
problem, we order the interpretations according to the mul-
tiset inclusion relation of their elements and we define a new
operator SP that computes only the minimal (wrt. multiset
inclusion) provable contexts. Dickson’s Lemma (see e.g. [1])
ensures the termination of the fixpoint computation based
on SP for propositional LO programs. Interestingly, this
result is an instance of the general decidability results for
model checking of infinite-state systems given in [1, 14]. In
the paper we also show that adding the constant 1 to the
original formulation of LO in [4] breaks down the above men-
tioned property. Nevertheless, it is still possible to define an
effective S1

P operator by taking linear constraints as sym-
bolic representation of potentially infinite sets of contexts
(actually, the previous result is a particular case where con-
straints have no equalities). Though for the new operator
we cannot guarantee that the fixpoint can be reached after
finitely many steps, this connection allows us to apply tech-
niques developed in model checking for infinite-state systems
(e.g. [1, 9, 12, 19, 14]) and abstract interpretation [11] to
compute approximations of the fixpoint of S1

P . In this pa-
per we limit ourselves to the study of the propositional case
that, as shown in [6], can be viewed as the target of a possi-
ble abstract interpretation of a first-order program. To our
knowledge, this is the first attempt of defining an effective
fixpoint semantics for LO with the 1 constant. We hope
that this work will help in finding new research directions
(e.g. connections with model checking) and application for
linear logic programs.

Plan of the paper.
After introducing some notations in Section 2, in Section 3
we recall the main feature of LO [4]. In Section 4 we intro-
duce the ground semantics, the operator TP and prove that
the least fixpoint of TP characterizes the operational seman-
tics of a program. In Section 5 we introduce the symbolic
SP operator and we relate it to TP . In Section 6 we con-
sider an extended fragment with 1, extending the notion of
satisfiability given in Section 4 and introducing an operator
T 1

P . In Section 7 we introduce a symbolic operator S1

P for
the extended fragment, and we discuss its algorithmic im-
plementation in Section 8. Finally, in Section 9 and Section
10 we discuss related works and conclusions.

An extended version of this paper (containing all the proofs)
is available as technical report [8].

2. PRELIMINARIES
In the paper we will use A,B, C, . . . to denote multisets of
propositional symbols, hereafter called facts, defined over a
fixed signature Σ = {a1, . . . , an}. A fact A is uniquely de-
termined by a finite map Occ : Σ ; N such that OccA(ai)
is the number of occurrences of ai in A. Facts are ordered
according to the multiset inclusion relation 4 defined as
follows, A 4 B if and only if OccA(ai) ≤ OccB(ai) for

i : 1, . . . , n. The empty multiset is denoted ǫ and is such that
Occǫ(ai) = 0 for i : 1, . . . , n, and ǫ 4 A for any A. The mul-
tiset union A,B (alternatively A+B when ‘,’ is ambiguous)
of two facts A and B is such that OccA,B(ai) = OccA(ai) +
OccB(ai) for i : 1, . . . , n. The multiset difference A \ B is
such that OccA\B(ai) = max(0,OccA(ai)−OccB(ai)) for i :
1, . . . , n. Finally, we define a special operation • to compute
the least upper bound of two facts with respect to 4. Namely,
A • B is such that OccA•B(ai) = max(OccA(ai), OccB(ai))
for i : 1, . . . , n. In the rest of the paper we will use ∆,Θ, . . .
to denote multisets of possibly compound formulas. Given
two multisets ∆ and Θ, ∆ 4 Θ indicates multiset inclusion
and ∆,Θ multiset union, as before, and ∆, {G} is written
simply ∆, G. In the following, a context will denote a mul-
tiset of goal-formulas (a fact is a context in which every
formula is atomic). Given a linear disjunction of atomic for-

mulas H = a1
..
..
........
.
..
.
......
.
...
.
..
.........
..
.
..
..
..
..
..
..
..
.
..
.
..
..
...
...........

..

.

..

.

............ . . .
..
..
........
.
..
.
......
.
...
.
..
.........
..
.
..
..
..
..
..
..
..
.
..
.
..
..
...
...........

..

.

..

.

............ an, we introduce the notation bH to
denote the multiset a1, . . . , an. Finally, let T : I ; I be an
operator defined over a complete lattice 〈I,⊑〉. We define
T↑0= ∅, where ∅ is the bottom element, T↑k+1= T (T↑k) for
all k ≥ 0, and T↑ω=

F∞
k=0 T↑k, where

F

is the least upper
bound wrt. ⊑. Furthermore, we use lfp(T) to denote the
least fixpoint of T .

3. THE PROGRAMMING LANGUAGE LO
LO [4] is a logic programming language based on linear logic.
Its mathematical foundations lie on a proof-theoretical pre-
sentation of a fragment of linear logic defined over the linear
connectives ◦−, & ,

..

..
........
.
..
.
.....
.
....
.
..
.........
..
.
..
..
..
..
..
..
..
.
..
.
..
..
...
...........

..

.

..

............. , and ⊤. In the propositional case LO
consists of the following class of formulas:

D ::= A1
..
..
........
.
..
.
......
.
....
..
.........
..
.
..
..
..
..
..
..
..
.
..
.
..
..
...
...........

..

.

..

.

............ . . .
..
..
........
.
..
.
......
.
....
..
.........
..
.
..
..
..
..
..
..
..
.
..
.
..
..
...
...........

..

.

..

.

............ An ◦− G | D & D

G ::= G
..
..
........
..
.
......
..
....
..
.........
..
.
..
..
..
...
..
..
..
.
..
.
..
..
..............

.

..

..

............ G | G & G | A | ⊤

Here A1, . . . ,An and A range over propositional symbols
from a fixed signature Σ. G-formulas correspond to goals
to be evaluated in a given program. D-formulas correspond
to multiple-headed program clauses. An LO program is a
D-formula. Let P be the program C1 & . . . &Cn. The ex-
ecution of a multiset of G-formulas G1, . . . , Gk in P corre-
sponds to a goal-driven proof for the two-sided LO-sequent

P ⇒ G1, . . . , Gk.

The LO-sequent P ⇒ G1, . . . , Gk is an abbreviation for the
following two-sided linear logic sequent

!C1 ⊗ . . . ⊗ !Cn → G1
..
..
........
..
.
......
.
.....
..
.........
..
.
..
..
..
..
..
..
..
.
.
..
.
..
..
..............

.

..

.

............. . . .
..
..
........
..
.
......
.
.....
..
.........
..
.
..
..
..
..
..
..
..
.
.
..
.
..
..
..............

.

..

.

............. Gk.

The formula !F on the left-hand side of a sequent indicates
that F can be used in a proof an arbitrary number of times.
From the left rules of ⊗ and & (see e.g. [2, 27]) this im-
plies that an LO-Program can be viewed also as a set of
reusable clauses. According to this view, the operational se-
mantics of LO is given via the uniform (goal-driven) proof
system defined in Fig. 1. In Fig.1, P is a set of implicational
clauses, A denotes a multiset of atomic formulas, whereas
∆ denotes a multiset of G-formulas. A sequent is provable
if all branches of its proof tree terminate with instances of
the ⊤r axiom. The proof system of Fig. 1 is a specializa-
tion of more general uniform proof systems for linear logic
like Andreoli’s focusing proofs [2], and Forum [27]. The rule
bc denotes a backchaining (resolution) step. Note that bc

P ⇒ ⊤,∆
⊤r

P ⇒ G1, G2,∆

P ⇒ G1
..
..
........
.
..
.
......
.
....
..
.........
..
.
..
..
..
..
..
..
..
.
..
.
..
..
...
...........

..

.

..

.

............ G2,∆

..

..

........
..
.
......
.
....
.
..
.
........
.
.
..
..
..
..
...
..
..
.
.
..
.
..
..
..............

.

..

.

.............

r

P ⇒ G1,∆ P ⇒ G2,∆

P ⇒ G1 &G2,∆
& r

P ⇒ G,A

P ⇒ a1, . . . , an,A
bc (a1

..

..
.........
.
..
......
.
....
..
.........
..
.
..
..
..
..
..
..
..
..
.
..
..
..
.............

.

..

.

..

............ . . .
..
..
.........
.
..
......
.
....
..
.........
..
.
..
..
..
..
..
..
..
..
.
..
..
..
.............

.

..

.

..

............ an ◦−G ∈ P)

Figure 1: A proof system for LO

can be executed only if the right-hand side of the current
LO sequent consists of atomic formulas. Thus, LO clauses
behave like multiset rewriting rules. LO clauses having the
following form

a1
..
..
.........
.
..
......
.
....
..
.........
..
.
..
..
..
..
..
..
..
..
.
..
..
..
.............

.

..

..

.

............ . . .
..
..
.........
.
..
......
.
....
..
.........
..
.
..
..
..
..
..
..
..
..
.
..
..
..
.............

.

..

..

.

............ an ◦− ⊤

play the same role as the unit clauses of Horn programs. In
fact, a backchaining step over such a clause leads to success
independently of the current context A, as shown in the
following scheme:

P ⇒ ⊤,A
⊤r

P ⇒ a1, . . . , an,A
bc (a1

..

..
.........
.
..
.....
..
....
..
.........
..
.
..
..
..
...
..
..
..
.
.
..
..
..
.............

.

..

.

..

............ . . .
..
..
.........
.
..
.....
..
....
..
.........
..
.
..
..
..
...
..
..
..
.
.
..
..
..
.............

.

..

.

..

............ an ◦− ⊤ ∈ P)

This observation leads us to the following property.

Proposition 3.1. Given an LO program P and two con-
texts ∆,∆′ such that ∆ 4 ∆′, if P ⇒ ∆ then P ⇒ ∆′.

This property is the key point in our analysis of the opera-
tional behavior of LO. It states that the weakening rule is
admissible in LO.

Example 3.2. Let P be the LO program consisting of
the clauses

1. a ◦− (b& c)
..
..
.........
.
..
.....
..
....
..
.........
..
.
..
..
..
...
..
..
..
.
.
..
..
..
.............

.

..

.

..

............ e
2. b ◦− ⊤
3. c ◦− d

..

..
.........
.
..
......
.
....
..
.........
..
.
..
..
..
..
..
..
..
.
..
..
..
..
.............

..

.

..

.

............ b

and consider an initial goal a. Using clause 1., to prove a
we have to prove (b& c)

..

..

........
..
..
.....
..
....
..
.........
..
.
..
..
..
...
..
..
..
.
..
.
..
..
..............

..

.

..

............ e, and then, by LO
..
..
........
..
..
.....
..
....
..
.........
..
.
..
..
..
...
..
..
..
.
..
.
..
..
..............

..

.

..

............

r and & r

rules, we have to prove b, e and c, e. By clause 2., b, e is
provable, and by clause 3. to prove c, e we can prove d, b, e,
which is in turn provable by clause 2. By Proposition 3.1,
provability of a implies provability of any multiset of goals
containing a. 2

4. A BOTTOM-UP SEMANTICS FOR LO
The proof-theoretical semantics of LO corresponds to the
top-down operational semantics based on resolution for tra-
ditional logic programming languages like Prolog. The main
difference is that instead of conjunctions of atomic formulas
(as in Prolog) in LO we need to handle arbitrary nesting of
conjunctions, expressed via & , and disjunctions, expressed
via

..

..
........
.
..
.
......
.
....
..
.........
..
.
..
..
..
..
..
..
..
.
..
.
..
..
...
...........

..

.

..

.

............ , of goals. In this paper we are interested in finding a
suitable definition of bottom-up semantics that can be used
as an alternative operational semantics for LO. More pre-
cisely, given an LO program P we would like to compute
all goal formulas G such that G is provable in P . Without

loss of generality, we will limit ourselves to goal formulas
consisting of multisets of atomic formulas. In fact, in order
to analyze a compound goal G, we can always add a clause
p ◦−G to the original program and analyze p. For this pur-
pose, we define the operational semantics of an LO program
P as follows:

O(P) = {A | A is a fact and P ⇒ A is provable}

In the rest of the paper we will always consider proposi-
tional LO programs defined over a finite set of propositional
symbols Σ. We give the following definitions.

Definition 4.1 (Herbrand base BP). Given a pro-
positional LO program P defined over Σ,

BP = {A | A is a multiset (fact) over Σ}

Definition 4.2 (Herbrand interpretation). We
say that I ⊆ BP is a Herbrand interpretation. Herbrand in-
terpretations form a complete lattice D = 〈P(BP),⊆〉 with
respect to set inclusion.

Before introducing the formal definition of the ground bot-
tom-up semantics, we need to define a notion of satisfiability
of a context ∆ in a given interpretation I . For this purpose,
we introduce the judgment I |= ∆[A]. In I |= ∆[A], the
output A is a fact such that A+∆ is valid in I . This notion of
satisfiability is modeled according to the right-introduction
rules of the connectives. The notion of output fact A will
simplify the presentation of the algorithmic version of the
judgment which we will present in Section 5.

Definition 4.3 (Satisfiability). Let I ⊆ BP , then
|= is defined as follows:

I |= ⊤,A[A′] for any fact A′;

I |= A[A′] if A + A′ ∈ I ;

I |= G1
..
..
........
..
.
......
.
....
.
..
.........
..
.
..
..
..
..
..
..
..
.
.
..
.
..
..
..............

.

..

.

............. G2,∆[A] if I |= G1, G2,∆[A];

I |= G1 &G2,∆[A] if I |= G1,∆[A] and I |= G2,∆[A].

The relation |= satisfies the following properties.

Lemma 4.4. For any interpretations I, J, context ∆, and
fact A,

1. I |= ∆[A] if and only if I |= ∆,A[ǫ];

2. if I ⊆ J and I |= ∆[A] then J |= ∆[A];

3. given a chain of interpretations I1 ⊆ I2 ⊆ . . . , if
S∞

i=1 Ii |= ∆[A] then there exists k s.t. Ik |= ∆[A].

We now come to the definition of the fixpoint operator TP .

Definition 4.5 (Fixpoint operator TP). Given a
program P , the operator TP is defined as follows:

TP (I) = { bH + A | H ◦− G ∈ P, I |= G[A]}

The following property holds.

Proposition 4.6. For every program P , Tp is monotonic
and continuous wrt. ⊆.

Monotonicity and continuity of the TP operator imply, by
Tarski Theorem, that lfp(TP) = TP↑ω .

Following [26], we define the fixpoint semantics F (P) of an
LO program P as the least fixpoint of TP , namely F (P) =
lfp(TP). Intuitively, TP (I) is the set of immediate logical
consequences of the program P and of the facts in I . In

fact, if we define PI as the program {A ◦− ⊤ | bA ∈ I}, the
definition of TP can be viewed as the following instance of
the cut rule of linear logic:

!P,G→ H !PI → G,A

!P, !PI → H,A
cut

Using the notation used for LO-sequents we obtain the fol-
lowing rule:

P ⇒ H ◦−G PI ⇒ G,A

P ∪ PI ⇒ H,A
cut

Note that, since H ◦− G ∈ P , the sequent P ⇒ H ◦− G is
always provable in linear logic. According to this view, F (P)
characterizes the set of logical consequences of a program P .

The fixpoint semantics is sound and complete with respect
to the operational semantics as stated in the following the-
orem.

Theorem 4.7 (Soundness and Completeness).
For every LO program P , F (P) = O(P).

We note that it is possible to define a model-theoretic se-
mantics, based on the classical notion of least model with
respect to a given class of models and partial order relation.
In this context, the partial order relation is simply set in-
clusion, while models are exactly Herbrand interpretations
which satisfy program clauses, i.e. I is a model of P if and
only if for every clause H ◦−G ∈ P and for every fact A,

I |= G[A] implies I |= H [A].

It turns out that the operational, fixpoint and model-theor-
etic semantics are all equivalent. We note that these seman-
tics are also equivalent to the phase semantics for LO given
in [4].

5. AN EFFECTIVE SEMANTICS FOR LO
The operator TP defined in the previous section is not effec-
tive. As an example, take the program P consisting of the
clause a◦−⊤. Then, TP (∅) contains all multisets with at least
one occurrence of a. In other words, TP (∅) = {B | a 4 B },
where 4 is the multiset inclusion relation of Section 2. In
order to compute effectively one step of TP , we have to find
a finite representation of potentially infinite sets of facts (in
the terminology of [1], a constraint system). The previous
example suggests us that a provable fact A may be used to
implicitly represent the ideal generated by A, i.e., the subset
of BP defined as follows:

[[A]] = {B | A 4 B}

We extend the definition of [[·]] to sets of facts as follows:
[[I]] =

S

A∈I
[[A]]. Based on this idea, we define an abstract

Herbrand base where we handle every single fact A as a
representative element for [[A]] (note that in the semantics
of Section 4 the denotation of a fact A is A itself!). The
abstract domain is defined as follows.

Definition 5.1 (Abstract Interpretation). The
lattice 〈I,⊑〉 of abstract Herbrand interpretations is defined
as follows:

• I = P(BP)/ ≃ where I ≃ J if and only if [[I]] = [[J]];

• [I]≃ ⊑ [J]≃ if and only if for all B ∈ I there exists
A ∈ J such that A 4 B;

• the bottom element is the empty set ∅, the top ele-
ment is the ≃-equivalence class of the singleton {ǫ}
(ǫ=empty multiset, ǫ 4 A for any A ∈ BP);

• the least upper bound I ⊔ J is the ≃-equivalence class
of I ∪ J.

The equivalence ≃ allows us to reason modulo redundancies.
For instance, any A is redundant in {ǫ,A}, which, in fact,
is equivalent to {ǫ}. It is important to note that to com-
pare two ideals we simply need to compare their generators
wrt. the multiset inclusion relation 4. Thus, given a finite
set of facts we can always remove all redundancies using a
polynomial number of comparisons.

Notation.
For the sake of simplicity, in the rest of the paper we will
identify an interpretation I with its class [I]≃. Furthermore,
note that if A 4 B, then [[B]] ⊆ [[A]]. In contrast, if I and J
are two interpretations and I ⊑ J then [[I]] ⊆ [[J]].

The two relations 4 and ⊑ are well-quasi orderings [1, 14],
as stated in Prop. 5.2 and Cor. 5.3 below. This property
is the key point of our idea. In fact, it will allow us to
prove that a symbolic formulation of the operator TP work-
ing on abstract Herbrand interpretations is guaranteed to
terminate on every input LO program.

Proposition 5.2 (Dickson’s Lemma). Let A1A2 . . .
be an infinite sequence of multisets over the finite alphabet
Σ. Then there exist two indices i and j such that i < j and
Ai 4 Aj .

Following [1], by definition of ⊑ the following Corollary
holds.

Corollary 5.3. There are no infinite sequences of inter-
pretations I1I2 . . . Ik . . . such that for all k and for all j < k,
Ik 6⊑ Ij.

Corollary 5.3 ensures that it is not possible to generate in-
finite sequences of interpretations such that each element is
not subsumed (using a terminology from constraint logic pro-
gramming) by one of the previous elements in the sequence.
The problem now is to define a fixpoint operator over ab-
stract Herbrand interpretations that is correct and complete
wrt. the ground semantics. If we find it, then we can use
the corollary to prove that (for any program) its fixpoint
can be reached in finitely many steps. For this purpose and
using the multiset operations \ (difference), • (least upper
bound wrt. 4), and ǫ (empty multiset) defined in Section
2, we first define a new version of the satisfiability relation
|=. The intuition under the judgment I ∆[A] is that A
is the minimal fact (wrt. multiset inclusion) that should be
added to ∆ in order for A + ∆ to be satisfiable in I .

Definition 5.4 (Satisfiability). Let I ∈ I, then

is defined as follows:

I ⊤,A[ǫ];

I A[B \ A] for B ∈ I ;

I G1
..
..
.........
.
..
.....
..
....
..
.........
..
.
..
..
..
...
..
..
..
.
.
..
..
..
.............

.

..

.

..

............ G2,∆[A] if I G1, G2,∆[A];

I G1 &G2,∆[A1 • A2] if I G1,∆[A1], I G2,∆[A2].

Given a finite interpretation I and a context ∆, the previous
definition gives us an algorithm to compute all facts A such
that I ∆[A] holds. Furthermore, the relation satisfies
the following properties.

Lemma 5.5. Given I, J ∈ I,

1. if I ∆[A], then [[I]] |= ∆[A′] for all A′ s.t. A 4 A′;

2. if [[I]] |= ∆[A′], then there exists A such that I ∆[A]
and A 4 A′;

3. if I ∆[A] and I ⊑ J, then there exists A′ such that
J ∆[A′] and A′ 4 A;

4. given a chain of abstract Herbrand interpretations I1 ⊑
I2 ⊑ . . . , if [[

F∞
i=1 Ii]] |= ∆[A] then there exists k s.t

[[Ik]] |= ∆[A].

The abstract fixpoint operator SP : I ; I should satisfy the
equation [[SP (I)]] = TP ([[I]]) (as for the SP operator used in
the symbolic semantics of CLP programs [21]). We define
the new operator as follows (we recall that if H = a1

..

..

........
.
..
.
......
.
....
..
.........
..
.
..
..
..
..
..
..
..
.
..
.
..
..
...
...........

..

.

..

.

............ . . .
..
..
........
.
..
.
......
.
....
..
.........
..
.
..
..
..
..
..
..
..
.
..
.
..
..
...
...........

..

.

..

.

............

an, then bH is the multiset a1, . . . , an).

Definition 5.6 (Abstract Fixpoint Operator SP).
Given an LO program P , the operator SP is defined as fol-
lows:

SP (I) = { bH + A | H ◦−G ∈ P, I G[A]}

The abstract (symbolic) operator SP satisfies the following
property.

Proposition 5.7. SP is monotonic and continuous wrt.
⊑.

Furthermore, the following properties show that the abstract
operator is sound and complete wrt. the ground operator
TP .

Proposition 5.8. Let I ∈ I, then [[SP (I)]] = TP ([[I]]).

Corollary 5.9. [[lfp(SP)]] = lfp(TP).

Let SymbF (P) = lfp(SP), then we have the following main
Theorem.

Theorem 5.10 (Soundness and Completeness).
Given an LO program P , O(P) = F (P) = [[SymbF (P)]].
Furthermore, there exists k ∈ N such that SymbF (P) =
Fk

i=0 SP↑k (∅).

Proof. Theorem 4.7 and Corollary 5.9 show that O(P) =
F (P) = [[SymbF (P)]]. Corollary 5.3 guarantees that the
fixpoint of SP can always be reached after finitely many
steps. 2

The previous results give us an algorithm to compute the
operational and fixpoint semantics of a propositional LO
program via the operator SP . The algorithm is inspired by
the backward reachability algorithm proposed in [1, 14] (used
to compute backwards the closure of the predecessor operator
of a well-structured transition system). The algorithm in
pseudo-code for computing F (P) is shown in Fig. 2. Cor.
5.3 guarantees that the algorithm always terminates and
returns a symbolic representation of O(P). As a corollary of
Theorem 5.10, we obtain the following result.

Corollary 5.11. The provability of P ⇒ G in proposi-
tional LO is decidable.

In view of Prop. 3.1, this result can be considered as an in-
stance of the general decidability result [25] for propositional
affine linear logic (i.e. linear logic with weakening).

Example 5.12. We calculate the fixpoint semantics in a
simple case. We have an LO program P made up of five
clauses:

1. a ◦− b
..
..
........
..
.
......
.
....
.
..
.........
..
.
..
..
..
..
..
..
..
.
.
..
.
..
..
..............

.

..

.

............. c
2. b ◦− (d

..

..

.........
.
..
.....
..
....
..
.........
..
.
..
..
..
...
..
..
..
.
.
..
..
..
.............

.

..

.

..

............ e) & f
3. c

..

..

........
.
..
.
......
.
....
..
.........
..
.
..
..
..
..
..
..
..
.
..
.
..
..
...
...........

..

.

..

.

............ d ◦− ⊤
4. c

..

..

........
..
.
......
.
....
.
..
.........
..
.
..
..
..
..
..
..
..
.
.
..
.
..
..
..............

.

..

.

............. e ◦− c
..
..
........
..
.
......
.
....
.
..
.........
..
.
..
..
..
..
..
..
..
.
.
..
.
..
..
..............

.

..

.

............. b
5. c

..

..

.........
.
..
.....
..
....
..
.........
..
.
..
..
..
...
..
..
..
.
.
..
..
..
.............

.

..

.

..

............ f ◦− ⊤

We start the computation from SP ↑0= ∅. The first step
consists in adding the multisets corresponding to program
facts, i.e., clauses 3. and 5., therefore we compute

SP↑1= {{c, d}, {c, f}}

Procedure symbF (P : LO program):

set New := { bH | H ◦− ⊤ ∈ P} and Old := ∅;
repeat

set Old := Old ∪ New and New := SP (New);
until New ⊑ Old;
return Old.

Figure 2: Symbolic fixpoint computation

Now, we can try to apply clauses 1., 2., and 4. to facts in
SP ↑1. From the first clause, we have that SP ↑1 {b, c}[d]
and SP↑1 {b, c}[f], therefore {a, d} and {a, f} are elements
of SP↑2. Similarly, for clause 2. we have that SP↑1 {d, e}[c]
and SP↑1 {f}[c], therefore we have, from the rule for & ,
that {b, c} belongs to SP↑2 (we can also derive other judg-
ments for clause 2., for instance SP ↑1 {d, e}[c, f], but it
immediately turns out that all these judgments give rise to
“redundant” information, i.e., facts that are subsumed by
the already calculated ones). By clause 4., finally we have
that SP↑1 {c, b}[d] and SP↑1 {c, b}[f], therefore {c, d, e}
and {c, e, f} belong to SP↑2, but this information is redun-
dant. We can therefore take the following equivalence class
as representative for SP↑2:

SP↑2= {{c, d}, {c, f}, {a, d}, {a, f}, {b, c}}

We can similarly calculate SP↑3. For clause 1. we immedi-
ately have that SP↑2 {b, c}[ǫ], so that {a} is an element of
SP ↑3; this makes the information given by {a, d}, {a, f} in
SP ↑2 redundant. No additional (not redundant) elements
are obtained from clause 2., while from clause 4. we can get
that {c, e} is another element of SP↑3. We therefore have

SP↑3= {{c, d}, {c, f}, {b, c}, {a}, {c, e}}

The reader can verify that SP ↑4= SP ↑3= SymbF (P) so
that

O(P) = F (P) = [[{{c, d}, {c, f}, {b, c}, {a}, {c, e}}]]

2

6. A BOTTOM-UP SEMANTICS FOR LO 1

As shown in [2], the original formulation of the language LO
can be extended in order to take into consideration more
powerful programming constructs. In this paper we will
consider an extension of LO where goal formulas range over
the G-formulas of Section 3 and over the logical constant 1.
In other words, we extend LO with clauses of the following
form:

A1
..
..
........
.
..
......
.
....
.
..
.........
..
.
..
..
..
..
..
..
..
.
.
..
..
..
...
............

.

..

.

............. . . .
..
..
........
.
..
......
.
....
.
..
.........
..
.
..
..
..
..
..
..
..
.
.
..
..
..
...
............

.

..

.

............. An ◦− 1

We name the resulting language LO1, and use the notation
P ⇒1 ∆ for LO1 sequents. The meaning of the new kind of
clauses is given by the following inference scheme:

P ⇒1 1
1r

P ⇒1 a1, . . . , an

bc (a1
..
..
.........
.
..
......
.
....
..
.........
..
.
..
..
..
..
..
..
..
..
.
..
..
..
.............

.

..

..

.

............ . . .
..
..
.........
.
..
......
.
....
..
.........
..
.
..
..
..
..
..
..
..
..
.
..
..
..
.............

.

..

..

.

............ an ◦− 1 ∈ P)

Note that there cannot be other resources in the right-hand
side of the lower sequent apart from a1, . . . , an. Thus, in
contrast with ⊤, the constant 1 introduces the possibility of
counting resources. Provability in LO1 amounts to provabil-
ity in the proof system for LO augmented with the 1r rule.

As for LO, let us define the top-down operational semantics
of an LO1 program as follows:

O1(P) = {A | A is a fact and P ⇒1 A is provable}

Now the question is: is it still possible to find a finite rep-
resentation of O1(P)? We first note that, in contrast with
Prop. 3.1, the weakening rule is not admissible in LO1. This
implies that we cannot use the same techniques we used for
the fragment without 1. More formally, the following propo-
sition gives a negative answer to our question.

Proposition 6.1. Given an LO1 program P , there is no
algorithm to compute O1(P).

Proof. To prove the result we present an encoding of
Vector Addition Systems (VAS) into LO1 programs. A VAS
is defined via a transition system defined over n variables
〈x1, . . . , xn〉 ranging over positive integers. The transition
rules have the form x′

1 = x1 +δ1, . . . , x
′
n = xn +δn where δn

is an integer constant. Whenever δi < 0, guards of the form
xi ≥ −δi ensure that the variables assume only positive
values. Following [10], the encoding of a VAS in LO1 is
defined as follows. We associate a propositional symbol ai ∈
Σ to each variable xi. A VAS-transition now becomes a
rewriting ruleH◦−B where Occ bB

(ai) = −δi if δi < 0 (tokens
removed from place i) and Occ bH

(ai) = δi if δi ≥ 0 (tokens
added to place i). We encode the set of initial markings
(i.e. assignments for the variables xi’s) M1, . . . ,Mk using k
clauses as follows. The i-th clauseHi◦−1 is such that ifMi is
the assignment 〈x1 = c1, . . . , xn = cn〉 then OcccHi

(aj) = cj
for j : 1, . . . , n. Based on this idea, if PV is the program
that encodes the VAS V it is easy to check that O(PV)
corresponds to the set of reachable markings of V (i.e. to
the closure post∗ of the successor operator post wrt. V and
the initial markings). From classical results on Petri Nets
[13], there is no algorithm to compute the set of reachable
states of a VAS V (=O(PV)). If not so, we would be able
to solve the marking equivalence problem that is known to
be undecidable [13]. 2

Despite of Prop. 6.1, it is still possible to define a symbolic,
effective fixpoint operator for LO1 programs as we will show
in the following section. Before going into more details, we
first rephrase the semantics of Section 4 for LO1. In the rest
of the paper we will still denote the satisfiability judgments
for LO1 with |= and .

Definition 6.2 (Satisfiability in LO1).

Let I ⊆ BP , then |= is defined as follows:

I |= 1[ǫ];

I |= ⊤,A[A′] for any fact A′;

I |= A[A′] if A + A′ ∈ I ;

I |= G1
..
..
.........
.
..
.....
..
....
..
.........
..
.
..
..
..
...
..
..
..
.
.
..
..
..
.............

.

..

.

..

............ G2,∆[A] if I |= G1, G2,∆[A];

I |= G1 &G2,∆[A] if I |= G1,∆[A] and I |= G2,∆[A].

The new satisfiability relation satisfies the following proper-
ties.

Lemma 6.3. For any interpretations I, J, context ∆, and
fact A,

i) I |= ∆[A] if and only if I |= ∆,A[ǫ];

ii) if I ⊆ J and I |= ∆[A] then J |= ∆[A];

iii) given a chain of interpretations I1 ⊆ I2 ⊆ . . . , if
S∞

i=1 Ii |= ∆[A] then there exists k s.t. Ik |= ∆[A].

The fixpoint operator T 1

P is defined like TP .

Definition 6.4 (Fixpoint operator T 1

P). Given an
LO1 program P , the operator T 1

P is defined as follows:

T 1

P (I) = { bH + A | H ◦− G ∈ P, I |= G[A]}

The following property holds.

Proposition 6.5. T 1

P is monotonic and continuous wrt.
⊆.

The fixpoint semantics is defined as F1(P) = lfp(T 1

P) =
T 1

P ↑ω. It is sound and complete with respect to the opera-
tional semantics, as stated in the following theorem.

Theorem 6.6 (Soundness and Completeness).
For every LO1 program P , F1(P) = O1(P).

7. CONSTRAINT SEMANTICS FOR LO 1

In this Section we will define a symbolic fixpoint operator
which relies on a constraint-based representation of provable
multisets. Application of this operator is effective. Prop.
6.1 shows however that there is no guarantee that its fix-
point can be reached after finitely many steps. According
to the encoding of VAS used in the proof of Prop. 6.1, let
x = 〈x1, . . . , xn〉 be a vector of variables, where variable xi

denotes the number of occurrences of ai ∈ Σ in a given fact.
Then we can immediately recover the semantics of Section
5 using a very simple class of linear constraints. Namely,
given a fact A we can denote its closure, i.e., the ideal [[A]],
by the constraint

ϕ[[A]] ≡
n̂

i=1

xi ≥ OccA(ai).

Then all the operations on multisets involved in the defi-
nition of SP (see Def. 5.4) can be expressed as operations
over linear constraints. In particular, given the ideals [[A]]
and [[B]], the ideal [[A • B]] is represented as the constraint

ϕ[[A•B]] = ϕ[[A]] ∧ ϕ[[B]],

while [[B \ A]], for a given multiset A, is represented as the
constraint

ϕ[[B\A]] = ∃x′.(ϕ[[B]][x
′/x] ∧ ρA(x,x′)),

where

ρA(x,x′) ≡
n

^

i=1

xi = x′
i −OccA(ai) ∧ xi ≥ 0.

The constraint ρA models the removal of the occurrences
of A from all elements of the denotation of B. Similarly,
[[B + A]], for a given multiset A, is represented as the con-
straint

ϕ[[B+A]] = ∃x′.(ϕ[[B]][x
′/x] ∧ αA(x,x′)),

where

αA(x,x′) ≡
n̂

i=1

xi = x′
i +OccA(ai).

In order to give a semantics for LO1, we need to add a
class of constraints for representing multisets which are not
upward-closed (i.e. which are not ideals). This is due to the
fact that introducing the constant 1 breaks down the mono-
tonicity property given by Prop. 3.1, so that the abstraction
based on ideals cannot be used anymore. Given a multiset
A, we can simply represent it as the linear constraint

ϕA ≡
n

^

i=1

xi = OccA(ai).

The operations over linear constraints discussed previously
extend smoothly when adding this new class of equality con-
straints. In particular, given two constraints ϕ and ψ, their
conjunction ϕ ∧ ψ still plays the role that the operation
• (least upper bound of multisets) had in Def. 5.4, while
∃x′.(ϕ[x′/x] ∧ ρA(x,x′)), for a given multiset A, plays the
role of multiset difference. The reader can compare Def. 5.4
with Def. 7.2. Based on these ideas, we can define a bottom-
up evaluation procedure for LO1 programs via an extension
S1

P of the operator SP .

In the following we will use the notation bc, where c =
〈c1, . . . , cn〉 is a solution of a constraint ϕ (i.e. an assign-
ment of natural numbers to the variables x which satisfies
ϕ), to indicate the multiset over Σ = {a1, . . . , an} which
contains ci occurrences of every propositional symbol ai (i.e.
according to the notation introduced above, c is the unique
solution of ϕbc). We extend this definition to a set C of

constraint solutions by bC = {bc | c ∈ C}. We then de-
fine the denotation of a given constraint ϕ, written [[ϕ]]1,
as the set of multisets corresponding to solutions of ϕ, i.e.,
[[ϕ]]1 = {bc | x = c satisfies ϕ}.

We introduce an equivalence relation ≃ over constraints,
given by ϕ ≃ ψ if and only if [[ϕ]]1 = [[ψ]]1 , i.e., we identify
constraints with the same set of solutions. For the sake of
simplicity, in the following we will identify a constraint with

its equivalence class, i.e., we will simply write ϕ instead of
[ϕ]≃.

Let LCΣ be the set of (equivalence classes of) of linear con-
straints over the variables x = 〈x1, . . . , xn〉 associated to the
signature Σ = {a1, . . . , an}. The operator S1

P is defined on
constraint interpretations consisting of sets (disjunctions) of
(equivalence classes of) linear constraints. The denotation
[[I]]1 of a constraint interpretation I extends the one for con-
straints as expected: [[I]]1 = {[[ϕ]]1 | ϕ ∈ I}. Interpretations
form a complete lattice with respect to set inclusion.

Definition 7.1 (Constraint Interpretation). We
say that I ⊆ LCΣ is a constraint interpretation. Constraint
interpretations form a complete lattice C = 〈P(LCΣ),⊆〉
with respect to set inclusion.

We obtain then a new notion of satisfiability using opera-
tions over constraints as follows. In the following definitions
we assume that the conditions apply only when the con-
straints are satisfiable (e.g. x = 0∧ x ≥ 1 has no solutions
thus the following rules cannot be applied to this case).

Definition 7.2 (Satisfiability in LO1). Let I ∈ C,
then is defined as follows:

I 1[ϕ] where ϕ ≡ x1 = 0 ∧ . . . ∧ xn = 0;

I ⊤,A[ϕ] where ϕ ≡ x1 ≥ 0 ∧ . . . ∧ xn ≥ 0;

I A[ϕ] where ϕ ≡ ∃x′.(ψ[x′/x] ∧ ρA(x,x′)), ψ ∈ I ;

I G1
..
..
........
.
..
.
......
.
....
..
.........
..
.
..
..
..
..
..
..
..
.
..
.
..
..
...
...........

..

.

..

.

............ G2,∆[ϕ] if I G1, G2,∆[ϕ];

I G1 &G2,∆[ϕ1 ∧ ϕ2] if I G1,∆[ϕ1], I G2,∆[ϕ2].

The relation satisfies the following properties.

Lemma 7.3. Given I, J ∈ C,

1. if I ∆[ϕ], then [[I]]1 |= ∆[A] for every A ∈ [[ϕ]]1;

2. if [[I]]1 |= ∆[A], then there exists ϕ such that I ∆[ϕ]
and A ∈ [[ϕ]]1;

3. if I ⊆ J and I ∆[ϕ], then J ∆[ϕ];

4. given a chain of constraint interpretations I1 ⊆ I2 ⊆
. . . , if

S∞
i=1 Ii ∆[ϕ] then there exists k s.t. Ik

∆[ϕ].

We are now ready to define the extended operator S1

P .

Definition 7.4 (Symbolic Fixpoint Operator S1

P).
Given an LO1 program P , the operator S1

P is defined as fol-
lows:

S1

P (I) = { ϕ | H ◦−G ∈ P, I G[ψ],
ϕ ≡ ∃x′.(ψ[x′/x] ∧ α bH

(x,x′))}

The new operator satisfies the following property.

Proposition 7.5. The operator S1

P is monotonic and
continuous over the lattice C.

Furthermore, it is a symbolic version of the ground operator
T 1

P , as stated below.

Proposition 7.6. Let I ∈ C, then [[S1

P (I)]]1 = T 1

P ([[I]]1).

Corollary 7.7. [[lfp(S1

P)]]1 = lfp(T 1

P).

Now, let SymbF1(P) = lfp(S1

P), then we have the following
main theorem that shows that S1

P can be used (without
termination guarantee) to compute symbolically the set of
logical consequences of an LO1 program.

Theorem 7.8 (Soundness and completeness).
Given an LO1 program P , O1(P) = F1(P) = [[SymbF1(P)]]1.

8. BOTTOM-UP EVALUATION FOR LO 1

Using a constraint-based representation for LO1 provable
multisets, we have reduced the problem of computing O1(P)
to the problem of computing the reachable states of a sys-
tem with integer variables. As shown by Prop. 6.1, the
termination of the algorithm is not guaranteed a priori. In
this respect, Theorem 5.10 gives us sufficient conditions that
ensure its termination.

The symbolic fixpoint operator S1

P introduced in section 7 is
defined over the lattice C = 〈P(LCΣ),⊆〉, with set inclusion
being the partial order relation and set union the least upper
bound operator. When we come to a concrete implementa-
tion of S1

P , it is worth considering a weaker ordering relation
between interpretations, namely pointwise subsumption. Let
4 be the partial order between (equivalence classes of) con-
straints given by ϕ 4 ψ if and only if [[ψ]]1 ⊆ [[ϕ]]1. Then
we say that an interpretation I is subsumed by an interpre-
tation J , written I ⊑ J , if and only if for every ϕ ∈ I there
exists ψ ∈ J such that ψ 4 ϕ.

As we do not need to distinguish between different inter-
pretations representing the same set of solutions, we can
consider interpretations I and J to be equivalent in case
both I ⊑ J and J ⊑ I hold. In this way, we get a lattice of
interpretations ordered by ⊑ and such that the least upper
bound operator is still set union. This construction is the
natural extension of the one of Section 5. Actually, when
we limit ourselves to considering LO programs (i.e. without
the constant 1) it turns out that we need only consider con-
straints of the form x ≥ c, which can be abstracted away by
considering the upward closure of bc, as we did in Section 5.
The reader can note that the 4 relation defined above for
constraints is an extension of the multiset inclusion relation
we used in Section 5.

The construction based on ⊑ can be directly incorporated
into the semantic framework presented in Section 7, where,
for the sake of simplicity, we have adopted an approach
based on ⊆. Of course, relation ⊆ is stronger than ⊑, there-
fore a computation based on ⊑ is correct and it terminates

every time a computation based on ⊆ does. However, the
converse does not always hold, and this is why a concrete
algorithm for computing the least fixpoint of S1

P relies on
subsumption. Let us see an example.

Example 8.1. We calculate the fixpoint semantics for
the following LO1 program made up of six clauses:

1. a ◦− 1

2. a
..
..
.........
.
..
.....
..
....
..
.........
..
.
..
..
..
...
..
..
..
.
.
..
..
..
.............

.

..

.

..

............ b ◦− ⊤
3. c

..

..

........
.
..
.
......
.
....
..
.........
..
.
..
..
..
..
..
..
..
.
..
.
..
..
...
...........

..

.

..

.

............ c ◦− ⊤
4. b

..

..
........
..
.
......
.
....
.
..
.........
..
.
..
..
..
..
..
..
..
.
.
..
.
..
..
..............

.

..

.

............. b ◦− a
5. a ◦− b
6. c ◦− a& b

Let Σ = {a, b, c} and consider constraints over the variables
x = 〈xa, xb, xc〉. We have that SP↑0= ∅ 1[xa = 0 ∧ xb =
0 ∧ xc = 0], therefore, by the first clause, ϕ ∈ SP ↑1, where
ϕ = ∃x′.(x′

a = 0 ∧ x′
b = 0 ∧ x′

c = 0 ∧ xa = x′
a + 1 ∧ xb =

x′
b∧xc = x′

c), which is equivalent to xa = 1∧xb = 0∧xc = 0.
From now on, we leave to the reader the details concerning
equivalence of constraints. By reasoning in a similar way,
using clauses 2. and 3. we calculate SP↑1 (see Fig. 3).

We now compute SP ↑2. By 4., as SP ↑1 a[xa = 0 ∧ xb =
0 ∧ xc = 0], we get xa = 0 ∧ xb = 2 ∧ xc = 0, and, similarly,
we get xa ≥ 0 ∧ xb ≥ 3 ∧ xc ≥ 0. By 5., we have xa ≥
2 ∧ xb ≥ 0 ∧ xc ≥ 0, while clause 6. is not (yet) applicable.
Therefore, modulo redundant constraints (i.e. constraints
subsumed by the already calculated ones) the value of SP↑2

is given in Fig. 3.

Now, we can compute SP ↑3. By 4. and xa ≥ 2 ∧ xb ≥
0 ∧ xc ≥ 0 ∈ SP ↑2 we get xa ≥ 1 ∧ xb ≥ 2 ∧ xc ≥ 0, which
is subsumed by xa ≥ 1 ∧ xb ≥ 1 ∧ xc ≥ 0. By 5. and
xa = 0 ∧ xb = 2 ∧ xc = 0, we get xa = 1 ∧ xb = 1 ∧ xc = 0,
subsumed by xa ≥ 1∧ xb ≥ 1∧ xc ≥ 0. Similarly, by 5. and
xa ≥ 0 ∧ xb ≥ 3 ∧ xc ≥ 0 we get redundant information. By
6., from xa ≥ 1∧xb ≥ 1∧xc ≥ 0 and xa = 0∧xb = 2∧xc = 0
we get xa = 0∧xb = 1∧xc = 1, from xa ≥ 1∧xb ≥ 1∧xc ≥ 0
and xa ≥ 0∧xb ≥ 3∧xc ≥ 0 we get xa ≥ 0∧xb ≥ 2∧xc ≥ 1,
and finally from xa ≥ 2∧xb ≥ 0∧xc ≥ 0 and xa ≥ 1∧xb ≥
1∧xc ≥ 0 we have xa ≥ 1∧xb ≥ 0∧xc ≥ 1. The reader can
verify that no additional provable multisets can be obtained.
It is somewhat tedious, but in no way difficult, to verify that
clause 6. yields only redundant information when applied to
every possible couple of constraints in SP↑3. We have then
SP ↑4= SP ↑3= SymbF1(P), so that in this particular case
we achieve termination. We can reformulate the operational
semantics of P using the more suggestive multiset notation
(we recall that [[A]] = {B | A 4 B}, where 4 is multiset
inclusion):

O1(P) = F1(P) = {{a}, {b, b}, {b, c}} ∪
[[{a, b}, {c, c}, {b, b, b}, {a, a}, {b, b, c}, {a, c}]]

2

It is often not the case that the symbolic computation of
LO1 program semantics can be carried out in a finite num-
ber of steps. Nevertheless, it is important to remark that
viewing the bottom-up evaluation of LO1 programs as a least
fixpoint computation over infinite-state integer systems al-
lows us to apply techniques and tools developed in infinite-

state model checking (see e.g. [1, 9, 12, 14, 19]) and program
analysis [11] to compute approximations of the least fixpoint
of S1

P .

9. RELATED WORKS
Our work is inspired to the general decidability results for
infinite-state systems based on the theory of well-quasi or-
derings given in [1, 14]. In fact, the construction of the least
fixpoint of SP and S1

P can be viewed as an instance of the
backward reachability algorithm for transition systems pre-
sented in [1]. Differently from [1, 14], we need to add special
rules (via the satisfiability relation) to handle formulas
with the connectives & , ⊤ and 1.

Other sources of inspiration come from linear logic program-
ming. In [18], Harland and Winikoff present an abstract de-
ductive system for the bottom-up evaluation of linear logic
programs. The left introduction plus weakening and cut
rules are used to compute the logical consequences of a given
formula. The satisfiability relations we use in the defini-
tion of the fixpoint operators correspond to top-down steps
within their bottom-up evaluation scheme. The framework
is given for a more general fragment than LO. However, they
do not provide an effective fixpoint operator as we did in the
case of LO and LO1, and they do not discuss computability
issues for the resulting derivability relation.

In [6], Andreoli, Pareschi and Castagnetti present a par-
tial evaluation scheme for propositional LO (i.e without 1).
Given an initial goal G, they use a construction similar to
Karp and Miller’s coverability graph [22] for Petri Nets to
build a finite representation of a proof tree for G. During
the top-down construction of the graph for G, they apply in
fact a generalization step that works as follows. If a goal,
say B, that has to be proved is subsumed by a node already
visited, say A, (i.e. B = A + A′), then the part of proof
tree between the two goals is replaced by a proof tree for
A + (A′)∗; A + (A′)∗ is a finite representation of the union
of A with the closure of A′. They use Dickson’s Lemma to
show that the construction always terminates. In the case of
LO, the main difference with our approach is that we give a
goal independent bottom-up algorithm. Technically, another
difference is that in our fixpoint semantics we do not need
any generalization step. In fact, in our setting the computa-
tion starts directly from (a representation of) upward-closed
sets of contexts. This simplifies the computation as shown in
Example 5.12 (we only need to test 4). Finally, differently
from [6], in this paper we have given also a formal semantics
for the extension of LO with the constant 1.

The partial evaluation scheme of [6] is aimed at compile-time
optimizations of abstractions of Linlog programs. Another
example of analysis of concurrent languages based on lin-
ear logic is given in [23], where the authors present a type
inference procedure that returns an approximation of the
number of messages exchanged by HACL processes.

In [10] Cervesato shows how to encode Petri Nets in LO,
Lolli and Forum by exploiting the different features of these
languages. We use some of these ideas to prove Prop. 6.1.

Finally, our semantics for LO shares some similarities with
the bottom-up semantics for disjunctive logic programs of

SP↑1 = { xa = 1 ∧ xb = 0 ∧ xc = 0, xa ≥ 1 ∧ xb ≥ 1 ∧ xc ≥ 0, xa ≥ 0 ∧ xb ≥ 0 ∧ xc ≥ 2 }

SP↑2 = { xa = 1 ∧ xb = 0 ∧ xc = 0, xa ≥ 1 ∧ xb ≥ 1 ∧ xc ≥ 0, xa ≥ 0 ∧ xb ≥ 0 ∧ xc ≥ 2,
xa = 0 ∧ xb = 2 ∧ xc = 0, xa ≥ 0 ∧ xb ≥ 3 ∧ xc ≥ 0, xa ≥ 2 ∧ xb ≥ 0 ∧ xc ≥ 0 }

SP↑3 = { xa = 1 ∧ xb = 0 ∧ xc = 0, xa ≥ 1 ∧ xb ≥ 1 ∧ xc ≥ 0, xa ≥ 0 ∧ xb ≥ 0 ∧ xc ≥ 2,
xa = 0 ∧ xb = 2 ∧ xc = 0, xa ≥ 0 ∧ xb ≥ 3 ∧ xc ≥ 0, xa ≥ 2 ∧ xb ≥ 0 ∧ xc ≥ 0,
xa = 0 ∧ xb = 1 ∧ xc = 1, xa ≥ 0 ∧ xb ≥ 2 ∧ xc ≥ 1, xa ≥ 1 ∧ xb ≥ 0 ∧ xc ≥ 1 }

Figure 3: Symbolic fixpoint computation for the program in Example 8.1

Minker, Rajasekar and Lobo [29]. In a disjunctive logic pro-
gram, the head of a clause is a disjunction of atomic formu-
las, whereas the body is a conjunction of atomic formulas.
In the semantics of [29] interpretations are collections of
sets (disjunctions) of atomic formulas. Only minimal (wrt.
set inclusion) sets are kept at each fixpoint iteration. In
contrast, in our setting we need to consider collections of
multisets of formulas. Therefore, in the propositional case
in order to prove the convergence of the fixpoint iteration,
we need an argument (Dickson’s lemma) stronger than the
finiteness of the extended Herbrand base of [29] (collection
of all minimal sets).

10. CONCLUSIONS AND FUTURE WORK
In this preliminary work we have defined a bottom-up se-
mantics for LO [4] enriched with the constant 1. In the
propositional case, we have shown that without 1 the fix-
point semantics is finitely computable. Our fixpoint opera-
tor is defined over constraints and gives us an effective way to
evaluate bottom-up (abstractions of) linear logic programs.

To conclude, let us discuss the directions of research related
to our work that we find more promising.

Linear Logic Programming. It would be interesting to ex-
tend the techniques we presented in this paper to larger
fragments of linear logic. In particular, it would be inter-
esting to define a bottom-up evaluation for languages like
Lolli[20] and Lygon[17], and to study techniques for first-
order formulation for all these languages.

Verification. In [12], Delzanno and Podelski show that prop-
erties of concurrent systems expressed in temporal logic can
be defined in terms of fixpoint semantics of logic programs.
To give some ideas about this connection, let us note that
we can check if a safety property 2F holds (i.e. F holds
in every reachable state), exploring the set of states of the
transition system taken into consideration that are back-
ward reachable from the set of states that don’t satisfy F .
This procedure corresponds to the computation of the fix-
point semantics of a logic program that encodes a concurrent
system (e.g. Petri Nets in Theorem 6.1) starting from a set
of facts that encodes F . Note that in [12] synchronization
between processes is achieved via shared variables, whereas
in linear logic synchronization can be expressed via multiple
headed clauses. Thus, our semantics might be a first step
towards the extension of the metaphor of [12] to concurrent
systems in which synchronization is expressed at the logical
level. The other way round, through the connection between
semantics and verification, techniques used for infinite-state
systems with integer variables (see e.g. [12, 9, 19]) can be
re-used in order to compute a static analysis of linear logic
programs.

Proof Theory. The connection we establish in this paper
indicates a potential connection between the general decid-
ability results for infinite-state systems of [1, 14] and prov-
ability in sub-structural logics like LO and affine linear logic.
Viewing the provability relation as a transition relation, it
might be possible to find a notion of well-structured proof
system (paraphrasing the notion of well-structured transi-
tion systems of [1, 14]), i.e., a general notion of provability
that ensures the termination of the bottom-up generation of
valid formulas.

11. ACKNOWLEDGMENTS
The authors would like to thank Maurizio Gabbrielli for his
encouragement, and the anonymous referees for helpful com-
ments and for pointing out to us the reference [29] we were
not aware of.

12. REFERENCES
[1] P. A. Abdulla, K. Cerāns, B. Jonsson and Y.-K. Tsay.

General Decidability Theorems for Infinite-State
Systems. In Proc. of LICS 96, pages 313-321, 1996.

[2] J. M. Andreoli. Logic Programming with Focusing
Proofs in Linear Logic. Journal of Logic and
Computation, 2(3):297-347, 1992.

[3] J. M. Andreoli. Coordination in LO. In Coordination
Programming: Mechanisms, Models and Semantics.
Imperial College Press, London, 1996.

[4] J. M. Andreoli and R. Pareschi. Linear Objects:
Logical Processes with Built-In Inheritance. New
Generation Computing, 9(3+4):445-473, 1991.

[5] J. M. Andreoli and R. Pareschi. Communication as Fair
Distribution of Knowledge. In Proc. of OOPSLA ’91,
pages 212-229, 1991.

[6] J. M. Andreoli, R. Pareschi and T. Castagnetti. Static
Analysis of Linear Logic Programming. New
Generation Computing, 15(4), 1997.

[7] A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The
s-Semantics Approach: Theory and Applications.
Journal of Logic Programming 19-20: 149-197, 1994.

[8] M. Bozzano, G. Delzanno and M. Martelli. A
Bottom-up Semantics for LO: Preliminary Results.
Technical Report DISI-00-06, Università di Genova,
March 2000.

[9] T. Bultan, R. Gerber, and W. Pugh. Symbolic Model
Checking of Infinite-state Systems using Presburger
Arithmetics. In Proc. of CAV’97, LNCS 1254, pages
400-411. Springer-Verlag, 1997.

[10] I. Cervesato. Petri Nets and Linear Logic: a Case
Study for Logic Programming. In Proc. of
GULP-PRODE’95, pages 313-318, 1995.

[11] P. Cousot and N. Halbwachs. Automatic Discovery of
Linear Restraints among Variables of a Program. In
Proc. of POPL’78, pages 84-96, 1978.

[12] G. Delzanno and A. Podelski. Model Checking in
CLP. In Proc. of TACAS’99, LNCS 1579, pages
223-239, 1999.

[13] J. Esparza and M. Nielsen. Decibility Issues for Petri
Nets - a Survey. Journal of Informatic Processing and
Cybernetics, 30(3):143-160, 1994.

[14] A. Finkel and P. Schnoebelen. Well-structured
Transition Systems Everywhere! Technical Report
LSV-98-4, Laboratoire Spécification et Vérification,
ENS Cachan, April 1998. To appear in Theoretical
Computer Science, 1999.

[15] M. Gabbrielli, M. G. Dore and G. Levi. Observable
Semantics for Constraint Logic Programs. Journal of
Logic and Computation, 5(2): 133-171, 1995.

[16] J. Y. Girard. Linear Logic. Theoretical Computer
Science, 50:1-102, 1987.

[17] J. A. Harland, D. Pym, and M. Winikoff.
Programming in Lygon: An Overview. In Proc. of
AMAST’96, LNCS 1101, pages 391-405, 1996.

[18] J. Harland and M. Winikoff. Making Logic Programs
Reactive. In Proc. of JICSLP’98 Workshop
Dynamics’98, pages 43-58, 1998.

[19] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi.
HyTech: a Model Checker for Hybrid Systems. In
Proc. of CAV’97, LNCS 1254, pages 460-463, 1997.

[20] J. S. Hodas and D. Miller. Logic Programming in a
Fragment of Intuitionistic Linear Logic. Information
and Computation, 110(2):327-365, 1994.

[21] J. Jaffar and M. J. Maher. Constraint Logic
Programming: A Survey. Journal of Logic
Programming, 19-20:503-582, 1994.

[22] R. M. Karp and R. E. Miller. Parallel Program
Schemata. Journal of Computer and System Sciences,
3, pages 147-195, 1969.

[23] N. Kobayashi, M. Nakade, and A. Yonezawa. Static
Analysis of Communication for Asynchronous
Concurrent Programming Languages. In Proc. of
SAS’95, LNCS 983, pages 225-242, 1995.

[24] N. Kobayashi and A. Yonezawa. Asynchronous
Communication Model based on Linear Logic. Formal
Aspects of Computing, 7:113-149, 1995.

[25] A. P. Kopylov. Propositional Linear Logic with
Weakening is Decidable. In Proc. of the 10th Annual
IEEE Symposium on Logic in Computer Science, San
Diego, California, 1995.

[26] J. W. Lloyd. Foundations of Logic Programming.
Springer-Verlag, 1987.

[27] D. Miller. Forum: A Multiple-Conclusion Specification
Logic. Theoretical Computer Science, 165(1):201-232,
1996.

[28] D. Miller. A Survey of Linear Logic Programming.
Computational Logic: The Newsletter of the European
Network in Computational Logic, 2(2):63-67, 1995.

[29] J. Minker, A. Rajasekar, and J. Lobo. Theory of
Disjunctive Logic Programs. In Computational Logic:
Essays in honor of Alan Robinson. MIT Press, 1991.

