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ABSTRACT
In this paper we investigate the applicability of a bottom-up
evaluation strategy for a first order fragment of linear logic [7]
for the purposes of automated validation of authentication
protocols. Following [11], we use multi-conclusion clauses to
represent the behaviour of agents in a protocol session, and
we adopt the Dolev-Yao intruder model and related mes-
sage and cryptographic assumptions. Also, we use universal
quantification to provide a logical and clean way to express
creation of nonces. Our approach is well suited to verify
properties which can be specified by means of minimality
conditions. Unlike traditional approaches based on model-
checking, we can reason about parametric, infinite-state sys-
tems, thus we do not pose any limitation on the number of
parallel runs of a given protocol. Furthermore, our approach
can be used both to find attacks and to prove correctness of
protocols. We present some preliminary experiments which
we have carried out using the above approach. In particular,
we analyze the ffgg protocol introduced by Millen [30]. This
protocol is a challenging case study in that it is free from se-
quential attacks, whereas it suffers from parallel attacks that
occur only when at least two sessions are run in parallel.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Veri-
fication—Model checking ; D.3.2 [Software Engineering]:
Language Classifications—Constraint and logic languages;
D.4.6 [Software Engineering]: Security and Protection—
Authentication

General Terms
Security, Languages, Verification
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1. INTRODUCTION
Linear logic [20] provides a logical characterization of con-

cepts and mechanisms peculiar to concurrency like locality,
recursion, non-determinism in the definition of a process [3,
22], and synchronization. Following the paradigm of proofs
as computations proposed in [2, 28], provability in fragments
of linear logic can be used then as a formal tool to reason
about behavioural aspects of concurrent systems (see e.g.
[31]). In other paradigms for concurrency like the theory of
Petri Nets there exist however a number of consolidated al-
gorithmic techniques for the validation of system properties.
In [5, 6], we made a first attempt of relating these techniques
with propositional fragments of linear logic, and, more pre-
cisely, with the linear logic programming language called
LO [3]. LO was originally introduced as a theoretical foun-
dation for extensions of logic programming languages. The
appealing feature of this fragment, however, is that it can
also be viewed as a rich specification language for protocols
and concurrent systems. In fact, specification languages like
Petri Nets and multiset rewriting can be naturally embed-
ded into propositional LO[12]. In [5], we established a con-
nection between provability in LO and reachability of Petri
Nets via the definition of an effective procedure to compute
the set of linear logic goals (multisets of atomic formulas)
that are consequences of a given propositional program. In
other words we defined a bottom-up1 evaluation procedure
for propositional programs. Our construction is based on the
backward reachability algorithm of [1] used to decide the so
called control state reachability problem of Petri Nets. The
algorithm presented in [5] is defined, however, for the more
general case of propositional LO specifications (i.e. with
nested conjunctive and disjunctive goals).

In our setting, a natural way of augmenting the expres-
sivity of the specification language is to consider first order
fragments of linear logic. First order formulas can be used, in
fact, to color the internal state of processes with structured
data [3, 28]. The combination between first order formulas
and linear connectives provides a well-founded interpreta-
tion of the dynamics in the evolution of the internal state
of a process [3, 27, 28]. First order quantification in goal
formulas has several interesting interpretations here: it can
be viewed either as a sort of hiding operator in the style of
π-calculus [27], or as a mechanism to generate fresh names
as in [11].

1According to the usual terminology in logic programming,
bottom-up evaluation is intended to denote derivation of log-
ical consequences of a program, starting from the axioms



In [10, 7] we defined a procedure for the bottom-up evalu-
ation of first order LO programs with universally quantified
goals. Via the connection between provability and reachabil-
ity established in [5], we can view such an evaluation proce-
dure as a validation technique for colored specifications. The
bottom-up evaluation procedure is based on an effective fix-
point operator and on a symbolic and finite representation
of a potentially infinite collection of first-order provable LO
goals (multisets of atoms). The use of this symbolic repre-
sentation is crucial when trying to prove properties of pa-
rameterized systems, i.e., systems in which the number of in-
dividual processes is left as a parameter of the specification
like for multi-agent protocols with multiple parallel sessions.

In this paper we investigate the applicability of the bottom-
up evaluation strategy of [7] for the purposes of automated
validation of authentication protocols. The design and imple-
mentation of cryptographic protocols are difficult and error-
prone. Authentication protocols should be reliable enough
to be used in a potentially compromised environment. While
cryptographic primitives are a common means to achieve
these goals, they are not sufficient to ensure authentication.
Exchanging nonces, i.e. fresh values, is a commonly used
technique which is exploited in combination with cryptog-
raphy to achieve authentication. Different approaches have
been followed to specify and analyze protocols. An incom-
plete list include for instance using belief logics [4], rewriting
techniques [17, 11, 14], theorem proving [33], logic program-
ming [26, 16, 8], and model-checking [23, 25, 34].

Following [11], as specification language we will use multi-
conclusion clauses to represent a given set of agents (called
principals) executing parallel protocol sessions by exchang-
ing messages over a network. We will use the Dolev-Yao
intruder model and related message and cryptographic as-
sumptions. Also, enriching linear logic specifications with
universal quantification in goal formulas will provide a log-
ical and clean way to express creation of new values like
nonces.

In order to reason about security properties, we will ap-
ply our general purpose bottom-up evaluation scheme for
first order linear logic. Our approach is well suited to verify
properties which can be specified by means of minimality
conditions (e.g., a given state is unsafe if there are at least
two principals which have completed the execution of a pro-
tocol and a given shared secret has been unintentionally dis-
closed to a third malicious agent). The resulting verification
method has connections both with (symbolic) model check-
ing [1] and with theorem proving [2]. Unlike traditional
approaches based on model-checking, we can reason about
parametric, infinite-state systems, thus we do not pose any
limitation on the number of parallel runs of a given protocol
(we also allow a principal to take part into different sessions
at the same time, possibly with different roles).

We have built a prototype, written in standard ML, to
implement the bottom up evaluation of LO programs. We
present some preliminary experiments which we have car-
ried out using the above approach. In particular, we will
focus our attention on the validation of the ffgg protocol in-
troduced by Millen [30]. This protocol is a challenging case
study for the following reasons. First, the protocol is free
from sequential attacks, whereas it suffers from parallel at-
tacks that occur only when at least two sessions are run in
parallel. Secondly, the scheme underlying ffgg can be gener-
alized so as to obtain higher order attacks (i.e. attacks that

need at least k sessions in parallel). Since with our bottom-
up evaluation scheme we do not need to put a bound on the
number of parallel sessions, the application of our method
is sound for any instance of the protocol. In this paper we
will discuss the experiments obtained on the original formu-
lation presented in [30]. Furthermore, we will present exper-
imental results obtained for a corrected version of Needham-
Schroeder, and for the Otway-Rees protocol [15]. Although
much work remains to be done, experiments show that our
methodology can be effective to analyze interesting aspects
of authentication such as secrecy or confidentiality.

Structure of the paper. The rest of this paper is structured
as follows. In Section 2 we introduce the language LO with
universally quantified goals, and in Section 3 we briefly dis-
cuss the bottom-up evaluation scheme for this language. In
Section 4 we explain how authentication protocols can be en-
coded in linear logic and we present our case-study, namely
Millen’s ffgg protocol. In Section 5 we discuss the applica-
tion of our bottom-up evaluation algorithm for the verifica-
tion of security properties of authentication protocols, and
we show some experimental results. Finally, in Section 6 we
discuss related work and draw some conclusions.

2. THE FRAGMENT LO∀

LO [3] is a logic programming language based on a frag-
ment of LinLog [2]. Its mathematical foundations lie on a
proof-theoretical presentation of a fragment of linear logic
defined over the linear connectives −◦ (linear implication,
we use the reversed notation H ◦− G for G −◦ H), & (ad-
ditive conjunction),

.................................................
............
.................................. (multiplicative disjunction), and the

constant > (additive identity). In this section we present the
proof-theoretical semantics, corresponding to the usual top-
down operational semantics for traditional logic program-
ming languages, for an extension of LO. First of all, we
consider a slight extension of LO which admits the constant
⊥ in goals and clause heads. More importantly, we allow
the universal quantifier to appear, possibly nested, in goals.
This extension is inspired by multiset rewriting with univer-
sal quantification [11]. The resulting language will be called
LO∀ hereafter.

Following [3], we give the following definitions. Let Σ be
a signature with predicates including a set of constant and
function symbols L and a set of predicate symbols P, and
let V be a denumerable set of variables. An atomic formula
over Σ and V has the form p(t1, . . . , tn) (with n ≥ 0), where
p ∈ P and t1, . . . , tn are (non-ground) terms in TVΣ . We
denote the set of such atomic formulas as AVΣ, and the set
of ground (i.e., without variables) atomic formulas as AΣ.
Finally, given a formula F , we denote by FV (F ) the set of
free variables of F .

The classes of G-formulas (goal formulas), and D-formulas
(multi-headed clauses) over Σ and V are defined by the fol-
lowing grammar:

G ::= G
.................................................

............
.................................. G | G & G | ∀x.G | A | > | ⊥

H ::= A
.................................................

............
.................................. . . .

.................................................
............
.................................. A | ⊥

D ::= ∀ (H ◦− G)

where A stands for an atomic formula over Σ and V, and
∀ (H◦−G) stands for ∀x1 . . . xk. (H◦−G), with {x1, . . . , xk} =
FV (H ◦−G).



P `Σ>,∆
>r

P `Σ G1, G2,∆

P `Σ G1
.................................................

............
.................................. G2,∆

.................................................
............
..................................
r

P `Σ G1,∆ P `Σ G2,∆

P `Σ G1 &G2,∆
& r

P `Σ ∆

P `Σ⊥,∆
⊥r

P `Σ,c G[c/x],∆

P `Σ ∀x.G,∆
∀r (c 6∈ Σ)

P `Σ G,A

P `Σ
bH,A bc (H ◦−G ∈ Gnd(P ))

Figure 1: A proof system for LO∀

An LO∀ program over Σ and V is a set of D-formulas over
Σ and V. A multiset of goal formulas will be called a con-
text hereafter. In the following we usually omit the universal
quantifier in D-formulas, i.e., we consider free variables as
being implicitly universally quantified.

Let ΣP be a signature with predicates and V a denumerable
set of variables. An LO∀ sequent has the form

P `Σ G1, . . . , Gk,

where P is an LO∀ program over ΣP and V, G1, . . . , Gk is
a context (i.e., a multiset of goals) over Σ and V, and Σ is
a signature such that ΣP ⊆ Σ. In the following we will use
SigP to denote the set of all possible extensions of ΣP .

2.1 Top-down Provability
We now define provability in LO∀. Let Σ be a signature

with predicates and V a denumerable set of variables. Given
an LO∀ program P over Σ and V, the set of ground instances
of P , denoted Gnd(P ), is defined as follows:

Gnd(P ) = {(H ◦−G) θ | ∀ (H ◦−G) ∈ P},

where θ is a grounding substitution for H ◦−G (i.e., it maps
variables in FV (H ◦−G) to ground terms in TΣ). The ex-
ecution of a multiset of G-formulas G1, . . . , Gk in P cor-
responds to a goal-driven proof for the LO∀ sequent P `
Σ G1, . . . , Gk. According to this view, the operational se-
mantics of LO∀ is given via the uniform (focusing) [2] proof
system presented in Figure 1, where P is a set of clauses,
A is a multiset of atomic formulas, and ∆ is a multiset of

G-formulas. We have used the notation bH, where H is a
linear disjunction of atomic formulas a1

.................................................
............
.................................. . . .

.................................................
............
.................................. an, to de-

note the multiset a1, . . . , an (by convention, b⊥ = ε, where
ε is the empty multiset). We say that G is provable from
P if there exists a proof tree, built over the proof system
of Figure 1, with root P `Σ G, and such that every branch
is terminated with an instance of the >r axiom. The proof
system of Figure 1 is a specialization of more general uni-
form proof systems for linear logic like Andreoli’s focusing
proofs [2] and Forum [28]. Rule bc is analogous to a reso-
lution step in traditional logic programming languages. By
the uniformity of the proof system, it can be executed only
if the right-hand side of the current LO∀ sequent consists
of atomic formulas. Consider now a branch of a proof ter-
minated by the sequent P `Σ B,A. When a backchaining

step over a clause H ◦− >, bH = B, is possible, we immedi-
ately obtain an instance of the axiom >r, i.e., a successful
(branch of) computation independently of the current con-
text A. This observation is formally stated in the following
proposition, where 4 denotes the multiset inclusion relation.

Proposition 1. Given an LO∀ program P and two mul-
tisets of goals ∆,∆′ such that ∆ 4 ∆′, if P ` Σ ∆ then
P `Σ ∆′.

Finally, rule ∀r can be used to dynamically introduce new
names during the computation. The initial signature Σ must
contain at least the constant, function, and predicate sym-
bols of a given program P , and it can dynamically grow
thanks to rule ∀r. Namely, every time rule ∀r is fired, a
new constant c is added to the current signature, and the
resulting goal is proved in the new one. The idea is that all
terms appearing on the right-hand side of a sequent are im-
plicitly assumed to range over the relevant signature. This
behaviour is standard in logic programming languages [32].

Example 2. Let Σ be a signature with a constant symbol
a, a function symbol f and predicate symbols p, q, r, s. Let
P be the program consisting of the clauses

1. r(w) ◦− q(f(w))
.................................................

............
.................................. s(w)

2. s(z) ◦− ∀x.p(f(x))

3. ⊥ ◦− q(u) & r(v)

4. p(x)
.................................................

............
.................................. q(x) ◦− >

The goal s(a) is provable from P . The corresponding proof

is shown in Figure 2 (where bc(i) denotes backchaining rule
over clause number i of P ). Notice that the notion of ground
instance is relative to the current signature. For instance,
backchaining over clause 3 is possible because the correspond-
ing signature contains the constant c, and therefore ⊥ ◦−
q(f(c)) & r(c) is a valid instance of clause 3. 2

In the rest of the paper we will focus our attention on an
observational semantics that captures the provability of a
restricted form of LO∀ goals, namely goals consisting of a
multiset of ground atomic formulas. Specifically, given a
program P we define its top-down operational semantics as

O(P ) = { A | A multiset of ground
atoms in AΣP , P `ΣP A }

Notice that a multiset A = A1, . . . , Ak (in the r.h.s. of
a sequent) is logically equivalent to the multiplicative dis-
junction A1

.................................................
............
.................................. . . .

.................................................
............
.................................. Ak.

3. BOTTOM-UP EVALUATION FOR LO∀

In this section we introduce the basic ideas underlying the
bottom-up evaluation scheme of LO∀ programs. For more
details, the reader may refer to [10, 7]. As anticipated in
the previous section, we are interested in observing the set
of disjunctive atomic goals that are provable in a given pro-
gram P . By the admissibility of weakening, we observe that
if A ∈ O(P ) then A + C ∈ O(P ) for any multiset C (of



P `Σ,c>
>r

P `Σ,c p(f(c)), q(f(c))
bc(4)

P `Σ,c>, s(c)
>r

P `Σ,c p(f(c)), q(f(c)), s(c)
bc(4)

P `Σ,c p(f(c)), q(f(c))
.................................................

............
.................................. s(c)

.................................................
............
..................................
r

P `Σ,c p(f(c)), r(c)
bc(1)

P `Σ,c p(f(c)), q(f(c)) & r(c)
& r

P `Σ,c p(f(c))
bc(3)

P `Σ ∀x.p(f(x))
∀r

P `Σ s(a)
bc(2)

Figure 2: An example of LO∀ proof

atomic formulas). In other words, O(P ) is upward closed
w.r.t. multiset inclusion. We can exploit this property in
order to “finitely” represent sets of provable goals by using
the following idea. We will consider interpretations consist-
ing of multisets of non-ground formulas and we will lift their
denotation to the upward closure of their ground instances.
Formally, given an LO∀ program P , the (non-ground) Her-
brand base of P , denoted HB (P ), is given by the set of mul-
tisets built over the signature ΣP associated to the program
P . An interpretation I is any subset of HB (P ). An inter-
pretation I is ground whenever all multisets A ∈ I consists
of ground atomic formulas.

Given an interpretation I, its denotation [[I]] is the family of
ground interpretations {[[I]]Σ}Σ∈SigP

defined as follows:

[[I]]Σ = UpΣ(InstΣ(I)),

where the operator InstΣ is defined as

InstΣ(I) = {Aθ | A ∈ I, θ subst. over Σ}
and the operator UpΣ is defined as

UpΣ(I) = {A+ C | A ∈ I, C multiset over AΣ}.
Here we assume the substitution θ and the multiset C to be
defined over Σ. Notice that, in the definition of [[·]]Σ the op-
erations of instantiation and upward-closure are performed
for every possible signature Σ ∈ SigP .

Given an LO∀ goal G, we need to define a notion of satis-
fiability w.r.t. to our definition of interpretation. For this
purpose, in Fig 3 we introduce the satisfiability judgment

I Σ ∆ I C I θ,

where I is an interpretation, ∆ is a multiset of goal formulas
(a context), C is an output multiset of atomic formulas, and
θ is an output substitution. In Figure 3 A \ B denotes the
multiset difference between A and B, |A| denotes the car-
dinality of A, FV (A, C) denotes the set of free variables in
A+C, and 4 (as mentioned in the previous section) denotes
multiset inclusion.

The judgment is used to compute the set of resources C (I
denotes its upward closure) and the corresponding variable
bindings that are needed for ∆ to be provable in I. Intu-
itively, if I Σ ∆ I C I θ holds then the sequent P, P ′ `ΣP

∆θγ, Cθγ, γ being a grounding substitution, is provable by

augmenting P with the program P ′ consisting of clauses
like A ◦− > for any A ∈ [[I]]. Technically, the idea behind
the definition is that the output multiset C and the output
substitution θ are minimal so that they can be computed
effectively given a program P , an interpretation I, and a
signature Σ. The output substitution θ is needed in order
to deal with clause instantiation, and its minimality is en-
sured by using most general unifiers in the definition.

Note: The notation I Σ ∆ I C I θ requires that ∆, C, and θ
are defined over Σ. As a consequence, the newly introduced
constant c in the ∀-case of the Σ definition below cannot
be exported through the output parameters C or θ. This
way, universal quantification is always resolved locally. For
simplicity, in Fig 3 we present only the formal definition of
the judgement for goals without conjunction (see [7] for the
complete definition). We recall that two multisets in general
may have more than one (not necessarily equivalent) most
general unifier and that using the notation m.g.u.(B′,A′) we
mean any unifier which is non-deterministically picked from
the set of most general unifiers of B′ and A′.
We are now ready to define the symbolic fixpoint operator
SP working on our notion of interpretation. Given an inter-
pretation I, the operator is defined as follows:

SP (I) = {( bH + C) θ | (H ◦−G) ∈ Vrn(P ),
I ΣP GI C I θ }.

Here, + denotes multiset union. Furthermore, given H =

A1
.................................................

............
.................................. . . .

.................................................
............
.................................. Ak, we recall that bH is the multiset A1, . . . , Ak.

Finally, Vrn(P ) denotes the set of clauses that are variant
(renamed with fresh variables) of clauses in P .

Example 3. Let us consider a signature with a function
symbol f and predicate symbols p, q, r, s. Let I be the inter-
pretation consisting of the multiset {p(x), q(x)} (for simplic-
ity, hereafter we omit brackets in multiset notation), and P
the program

1. r(w) ◦− q(f(w))

2. s(z) ◦− ∀x.p(f(x))

Let’s consider (a renaming of) the body of the first clause,
q(f(w′)), and (a renaming of) the element in I, p(x′), q(x′).
Using the atomic clause for the ΣP judgment, with A =



axiom : I Σ >,∆ I εInil; anti : I Σ ⊥,∆ I C I θ, if I Σ ∆ I C I θ;

par : I Σ G1
.................................................

............
.................................. G2,∆ I C I θ, if I Σ G1, G2,∆ I C I θ;

forall : I Σ ∀x.G,∆ I C I θ, if I Σ,c G[c/x],∆ I C I θ, with c 6∈ Σ

atomic multiset : I Σ AI C I θ, if there exist B ∈ I (variant), B′ 4 B, A′ 4 A, |B′| = |A′|,
C = B\B′, and θ = m.g.u.(B′,A′)|FV (A,C).

Figure 3: Satisfiability judgement for LO∀ goals with
.................................................

............
.................................. , >, ⊥, and ∀.

A′ = q(f(w′)), B = p(x′), q(x′), B′ = q(x′), we get

I ΣP q(f(w′)) I p(x′) I [x′ 7→ f(w′)].

Thus, the multiset p(f(w′)), r(w′) ∈ SP (I) (in fact, any of
its instances is provable in P enriched with p(x)

.................................................
............
.................................. q(x) ◦−

>). This is not the only possible result of applying SP . In
fact we can apply the first clause to I by choosing A′ =
B′ = ε in the atomic case of ΣP . Thus, the multiset
A = p(x′), q(x′), r(w) belongs to ∈ SP (I), too. Notice that
the latter multiset denotes redundant information w.r.t. the
denotations of B = p(x′), q(x′). In fact [[{A}]] ⊆ [[{B}]].

Let’s consider now (a renaming of) the body of the second
clause, ∀x.p(f(x)), and another renaming of the single el-
ement in I, p(x′′), q(x′′). From the ∀-case of ΣP defini-
tion, I ΣP ∀x.p(f(x)) I C I θ if I ΣP ,c p(f(c)) I C I θ,
with c 6∈ ΣP .

Now, we can apply the atomic clause for ΣP ,c. Unfortu-
nately, we can’t choose A′ to be p(f(c)) and B′ to be p(x′′).
In fact, by unifying p(f(c)) with p(x′′), we should get the
substitution θ = [x′′ 7→ f(c)] and the output multiset q(x′′)
(notice that x′′ is a free variable in the output multiset) and
this is not allowed because the substitution θ must be defined
on ΣP , in order for I ΣP ∀x.p(f(x)) I C I θ to be meaning-
ful. It turns out that the only way to use the second clause
for ΣP ,c is to choose A′ = B′ = ε. In fact, notice that goals
of the form p(c1), r(c2) are not provable in P enriched with
the axiom p(x)

.................................................
............
.................................. q(x) ◦− >. 2

Notice that the SP operator is defined using the judgment
ΣP . This corresponds to the idea that we are interested
in observing only provable goals that are visible outside the
scope of programs with universal quantification. The con-
stants that are introduced during a derivation, in fact, can-
not be exported outside the scope of the corresponding sub-
derivation. The operator SP is monotonic and continuous
over the set of interpretations ordered with respect to inclu-
sion of their denotations [7]. The fixpoint semantics F(P ) of
an LO∀ program P is defined then as the least fixpoint of the
operator SP . Furthermore, the following property (proved
in [7]) holds.

Theorem 4 (Soundness and Completeness). For
every LO∀ program P , O(P ) = [[F(P )]]ΣP .

An effective subsumption test (defined in accordance with
rich denotations) between multisets of non-ground goals can
be defined using multiset operations as follows: A entails B
if there exists B′ 4 B such that A is more general than a
permutation of B′ (here they are both viewed as a list of
terms). This effective test can be used as a symbolic termi-
nation test for the least fixpoint computation built on top

of the effective operator SP . The resulting machinery repre-
sents then the core of our bottom-up evaluation procedure
for LO∀ programs. Sufficient conditions for termination are
discussed in detail in [7].

4. SPECIFYING AUTHENTICATION PRO-
TOCOLS

In Section 5, we will discuss the specification and analysis
of different examples of protocols. Our specification lan-
guage has a natural correspondence with multiset rewriting
systems proposed in [11]. In this section we introduce, rather
informally, some generalities about the way we will use to
specify protocols in Section 5.

First of all, we need a representation for the entities (e.g.
principals and messages) involved. In particular, we will use
a notation like

pr(id, s)

to denote a principal with identifier id and internal state s.
The internal state s can store information about an ongoing
execution of any given protocol (for instance, the identifier
of another principal, which step of the protocol has been
executed, the role of the principal, and so on). Typically,
the state s will be a term like init (indicating the initial
state of a principal, before protocol execution), or a term
like

stepi(data),

where the constructor stepi denotes which is the last step
executed and data represents the internal data of a given
principal. In general, we allow more than one atom pr(id, )
inside a given configuration. In this way, we can model the
possibility of a given principal to take part into different
protocol runs, possibly with different roles. Messages sent
over a given network can in turn be represented by terms
like

n(mess content),

where mess content is the content of the message. Depend-
ing on the particular protocol under consideration, we can
fix a specific format for messages. For instance, a message
encrypted with the public key of a principal a could be rep-
resented as the term enc(pubk(a),mess content).

Finally, we will use the Dolev-Yao intruder model (see
[11]) and the associated assumptions. In particular, we need
a way to store the intruder knowledge. We will use terms
such as

m(inf)

to represent the information in possession of the intruder
(m stands for the internal memory of the intruder). At any



p1) pr(A, init)
.................................................

............
.................................. pr(B, init) ◦− pr(A, step1(B))

.................................................
............
.................................. pr(B, init)

.................................................
............
.................................. n(plain(A))

p2) pr(B, init)
.................................................

............
.................................. n(plain(A)) ◦− ∀N1.∀N2.(pr(B, step2(A,N1))

.................................................
............
.................................. n(plain(N1, N2)))

p3) pr(A, step1(B))
.................................................

............
.................................. n(plain(N1, N2)) ◦− ∀S.(pr(A, step3(B,S))

.................................................
............
..................................

n(enc(pubk(B), N1, N2, S)))

p4) pr(B, step2(A,N1))
.................................................

............
.................................. n(enc(pubk(B), N1, X, Y )) ◦− pr(B, step4(A))

.................................................
............
..................................

n(plain(N1, X), enc(pubk(B), X, Y,N1))

Figure 4: Specification of the ffgg protocol

given instant of time, we can think of the current state of a
given system as a multiset of atoms representing principals
and messages currently on the network, and the intruder
knowledge. Following [11], we represent the environment in
which protocol execution takes place by means of: a protocol
theory, which includes rules for every protocol role (typically,
one rule for every step of the protocol), and an intruder the-
ory, which formalizes the set of possible actions of a mali-
cious intruder who tries to break the protocol. In addition,
it is possible to have additional rules for the environment.
Rules assume the general format

F1
.................................................

............
.................................. . . .

.................................................
............
.................................. Fn ◦− ∀X1 . . .∀Xk.(G1

.................................................
............
.................................. . . .

.................................................
............
.................................. Gm)

where Fi, Gi are atomic formulas (representing e.g. prin-
cipals or messages) and Xi are variables. As explained in
Section 2, the standard semantics for the universal quanti-
fier requires new values to be chosen before application of
a rule. We use this behaviour to encode nonce generation
during protocol runs. As a result, we get for free the as-
sumption (required by the Dolev-Yao model) that nonces
are not guessable. In the following we will use these nota-
tional conventions: free variables inside a rule are always
implicitly universally quantified, and variables are written
as upper-case identifiers.

As far as the specification of the initial states is concerned,
we allow a partial specification of the initial states. This
strategy is more flexible in that it may help us to find ad-
ditional hypotheses under which a given attack might take
place. As a general rule, the partial specification of the ini-
tial states we have chosen requires every principal to be in
his/her initial state (represented by the term init) at the
beginning of protocol execution.

Finally, we conclude this section by collecting together
some rules which are common to all the examples presented
in Section 5. In particular, we have two rules for the envi-
ronment:

e1) ⊥ ◦− ∀ID.(pr(ID, init))
e2) pr(Z, S) ◦− pr(Z, S)

.................................................
............
.................................. pr(Z, init)

The first one allows the non-deterministic creation of new
principals (we use the universal quantifier to generate new
identifiers for them), whereas the second rule allows creation
of a new instance of a given principal (this allows a principal
to start another execution of a given protocol with a new and
possibly different role). Both rules can be fired at run-time,
i.e., during the execution of a given protocol. Thus, we will
always work in an open environment with multiple sessions
running in parallel between several agents. We use the term
init to denote the initial state of any given principal. We

also have the following two rules for the intruder theory:

t1) pr(Z, S) ◦− pr(Z, S)
.................................................

............
.................................. m(Z)

t2) ⊥ ◦− ∀N.(m(N))

The first one allows the intruder to store the identifier of any
principal, whereas the second rule formalizes the capability
of the intruder to generate new values (e.g. nonces). Be-
fore explaing what kind of properties we can reason about
using the bottom-up evaluation scheme, let us describe the
specification of our main case-study.

4.1 Millen’s ffgg protocol
Although an artificial protocol, Millen’s ffgg protocol [30]

provides an example of a parallel session attack, which re-
quires running at least two processes for the same role. It
has been proved (see [30]) that no serial attacks exist, i.e.,
the protocol is secure if processes are serialized. The proto-
col is described informally as follows.

1. A→ B : A
2. B → A : N1, N2

3. A→ B : {N1, N2, S}Kb%{N1, X, Y }Kb

4. B → A : N1, X, {X,Y,N1}Kb

N1 and N2 stand for nonces, created by principal B and
included in message 2. The m%m′ notation, introduced
in [24], used in message 3 represents a message which has
been created by the sender according to format m, but is
interpreted as m′ by the receiver. In this case, the intuition
is that upon receiving message 3, B checks that the first
component does correspond to the first of the two nonces
previously created, while no check at all is performed on the
second component of the message. In message 3, S stands for
a secret, of the same length as a nonce, which is in possession
of A. The security property one is interested to analyze is
whether the secret S can be disclosed to a malicious intruder.

We have implemented the ffgg protocol through the spec-
ification shown in Figure 4, while the intruder theory is pre-
sented in Figure 5.

The specification consists of a set of protocol rules (rules
p1 through p4 in Figure 4) and an intruder theory (rules i1
through i8 in Figure 5). We remind the reader that the four
rules e1, e2, t1 and t2 discussed in Section 4 are in addition
to the present rules.

Protocol rules directly correspond to the informal descrip-
tion of the ffgg protocol previously presented. We have fol-
lowed the conventions outlined in Section 4 to model the
internal state of principals. In particular, we have a term
init denoting the initial state of a principal, and the con-
structors step1, step2, step3 and step4 to model the different
steps of a protocol run. At every step, each principal needs
to remember the identifier of the other principal he/she is



i1) n(plain(X)) ◦− m(plain(X))

i2) n(plain(X,Y )) ◦− m(plain(X))
.................................................

............
.................................. m(plain(Y ))

i3) n(enc(X,Y, Z,W )) ◦− m(enc(X,Y, Z,W ))

i4) n(plain(X,Y ), enc(U, V,W,Z)) ◦− m(plain(X))
.................................................

............
.................................. m(plain(Y ))

.................................................
............
..................................

m(enc(U, V,W,Z))

i5) m(plain(X)) ◦− m(plain(X))
.................................................

............
.................................. n(plain(X))

i6) m(plain(X))
.................................................

............
.................................. m(plain(Y )) ◦− m(plain(X))

.................................................
............
.................................. m(plain(Y ))

.................................................
............
.................................. n(plain(X,Y ))

i7) m(enc(X,Y, Z,W )) ◦− m(enc(X,Y, Z,W ))
.................................................

............
.................................. n(enc(X,Y, Z,W ))

i8) m(plain(X))
.................................................

............
.................................. m(plain(Y ))

.................................................
............
.................................. m(enc(U, V,W,Z)) ◦− m(plain(X))

.................................................
............
..................................

m(plain(Y ))
.................................................

............
.................................. m(enc(U, V,W,Z))

.................................................
............
.................................. n(plain(X,Y ), enc(U, V,W,Z))

Figure 5: Intruder theory for the ffgg protocol

u) pr(alice, step3(bob, S))
.................................................

............
.................................. pr(bob, step4(alice))

.................................................
............
.................................. m(plain(S)) ◦− >

Figure 6: A logical representation of an infinire set of unsafe configuration for the ffgg protocol.

executing the protocol with. In addition, at step 2 the re-
sponder stores the first nonce created (in order to be able to
perform the required check, see rule p4), and at step 3 the
initiator of the protocol remembers the secret S. We have
modeled the secret S using the universal quantifier, as for
nonces. In this way, we can get for free the requirement that
the secret initially is only known to the principal who pos-
sesses it. Finally, we have term constructors plain(. . .) and
enc(. . .) (to be precise, we should say a family of term con-
structors, we find it convenient to overload the same symbol
with different arities) to distinguish plain messages from en-
crypted messages.

The intruder theory is made up of rules i1 through i8
in Figure 5. It is an instance of the general Dolev-Yao in-
truder theory (see e.g. [11]). Let us discuss it in more detail.
Rules i1 through i4 are decomposition rules, whereas rules
i5 through i8 are composition rules. We have four rules for
each of the two different kinds (composition and decomposi-
tion) of messages, dealing with the different formats of mes-
sages used in the ffgg protocol. For instance, rule i1 deals
with decomposition of plain messages with one component,
whereas rule i4 deals with decomposition of messages with
two plain components and one encrypted component, and
so on. Clearly, the intruder cannot furtherly decompose en-
crypted components, which are stored exactly as they are,
whereas plain messages are decomposed into their atomic
constituents. The intruder theory we have presented is an
instance of the general Dolev-Yao intruder theory, in that
intruder rules have been tailored to the particular form of
messages used in the specific protocol under consideration,
an optimization often taken by verification methods [21].
This hypothesis can be relaxed (as we did for the analysis
of Needham-Schroeder protocol, see Section 5). The present
specification is sufficient for our purposes.

5. VERIFICATION OF SECURITY PROP-
ERTIES

In order to understand how to apply our bottom-up eval-
uation strategy for the analysis of security protocols, we first
need the following general observation. Several practical ex-

amples of safety properties present the following interesting
feature: their negation can be represented by means of the
upward closure of a collection of minimal violations, e.g.,
as for mutual exclusion properties of communication proto-
cols [1]. Thanks to this property, it often becomes possible
to finitely represent infinite collections of unsafe configura-
tions. Symbolic procedures can be applied then in order to
saturate the set of predecessor states (by iteratively apply-
ing a transition relation backwards2). Using this method and
assuming that a fixpoint is eventually reached, it is possible
then to establish which initial states lead to violations of the
property.

This observation can be applied in our setting in order to
specify interesting security properties. As an example, in the
ffgg protocol we consider a configuration unsafe if there exist
at least two honest principals, say alice and bob, who have
run the protocol to completion (i.e., they have completed,
respectively, step 4 and step 3) and the secret S has been
disclosed to the intruder (i.e., it is eventually stored in the
intruder’s internal memory). In our setting a configuration
is represented as a multiset of atomic formulas. In order to
symbolically represent all possible configurations in which a
violation might occur, we can use then the LO∀ clause in
Figure 6. Every top-down derivation leading from an ini-
tial goal (state) to an instance of the axiom >r obtained
by applying the rule u will represent a possible attack to
the protocol security. It is important to note that, by the
admissibility of weakening, the previous LO∀ rule can be
used to represent unsafe configurations for any number of
principals involved in sessions running in parallel with the
session carried over by alice and bob. Exploring all possible
top-down derivations however corresponds to an exhaustive
search of the state space of the specification and it would
force us to fix a given initial configuration.

Contrary, by evaluating bottom-up the LO∀ program ob-
tained by merging the protocol and intruder theory with

2Given that sets of unsafe configurations are encoded via
logical axioms, computing the backward reachability set of a
transition relation amounts to evaluating the corresponding
logic program bottom-up
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Figure 7: A parallel session attack to the ffgg protocol: al=alice; pi
d:principal p after execution of step i with

internal data d; pinit principal in initial state; we have omitted the plain term constructor for plain messages;
we have noted encrypted messages using the usual protocol notation; M(x, y, . . .) stands for the multiset
m(x),m(y), . . .; finally, Σ1 = Σ, n1, n2, Σ2 = Σ, n1, n2, n3, n4, and Σ3 = Σ, n1, n2, n3, n4, s.

the symbolic representation of unsafe states like the clause
u, we obtain the same effect using backward reachability for
a complex specification (with quantification and so on) car-
ried over in a completely open environment. Furthermore,
if a fixpoint is reached (this is not guaranteed in general)
we can derive conditions on the initial states under which
unsafe configurations will not be reached. In other words
we can establish the following connection between bottom-
up evaluation (i.e., the semantics F(P ) defined in Section 3)
of an LO∀ specification of an authentication protocol and
verification of security properties. Let Iinit be a collection
of multisets of ground atomic formulas (the initial states
of a protocol), Tp be the LO∀ theory encoding a protocol
P, Ti the LO∀ intruder theory, and let U be a collection of
LO∀ clauses A1 ◦−>, . . .Ak ◦−> (the minimal violations of
a security property S). Furthermore, let T = Tp ∪ Ti ∪ U .

Proposition 5 (Ensuring Security). The protocol
P is secure w.r.t. the intruder with capabilities Ti, ini-
tial configurations Init, and the property S, if and only if
Init ∩ [[F(T )]] = ∅.

We remark that an if and only if condition holds in the pre-
vious proposition, i.e. the bottom-up evaluation algorithm
is correct and complete. As a corollary, we get the follow-
ing property (only if direction in the previous proposition),
useful for debugging purposes.

Proposition 6 (Proving Insecurity). If there exists
A such that A ∈ Init ∩ [[F(T )]], then there exists an attack
that leads from the initial configuration A to an unsafe con-
figuration B ∈ [[U ]].

5.1 Some Practical Experiments
A simple prototype which implements the bottom-up eval-

uation procedure for LO∀ programs has been implemented
in SML as described in [10]. Running our bottom-up eval-
uation algorithm on the ffgg specification, we automatically
find a violation to the security property of Figure 6.

As in traditional model checking, counterexamples traces
can be automatically generated whenever a violation is found.
In particular, the trace corresponding to the above attack
is shown in Figure 7 (we only post-processed the output of



our verification tool to show the trace in a more human-
readable form). The trace in Figure 7 corresponds to an
LO∀ derivation which leads from an initial state to a state
violating the security property of Figure 6. The attack is
exactly the parallel session one described in [30]. We note
that this attack is also an example of a type flaw attack, in
that it relies on the secret S be passed as a nonce (under
the hypothesis that the lengths of the respective fields are
the same).

In order to let the reader better understand the connec-
tion between bottom-up evaluation used by our verification
algorithm and the top-down derivation shown in Figure 7, we
present below some of the steps performed by the bottom-up
evaluation algorithm. In the following we follow the same
syntactical notations as in Figure 7. Bottom-up evaluation
starts from axiom u, i.e. we assert the following provable
multiset:

m1) al3bob,S , bob
4
al,m(S),

where S is a free variable. Different clauses are applicable
at this point. Among them, decomposition rule i4. We can
apply a variant of i4, let it be

n(X ′, Y ′, {V ′,W ′, Z′}KU ) ◦− m(X ′)
.................................................

............
.................................. m(Y ′)

.................................................
............
.................................. m({V ′,W ′, Z′}KU )

to m1, in the following manner: unify S with Y ′ (hence uni-
fying m(S) in the multiset with m(Y ′) in the clause body)
and consider the other two atoms in the body (i.e. m(X ′)
and m({V ′,W ′, Z′}KU )) as being implicitly contained in m1

(remember that interpretations are to be considered upward-
closed). By applying the resulting clause backwards (i.e. the
body is replaced by the head) we get the multiset

m2) al3bob,S , bob
4
al, n(X ′, S, {V ′,W ′, Z′}KU ).

Multiset m2 is accumulated into the current set of provable
goals (other multisets can be obtained by applying the re-
maining program clauses). Now, consider the application of
a variant of protocol rule p4, let it be

(B′′)2
A′′,N1′′

.................................................
............
.................................. n({N1′′, X ′′, Y ′′}KB′′ ) ◦− (B′′)4

A′′
.................................................

............
..................................

n(N1′′, X ′′, {X ′′, Y ′′, N1′′}KB′′ )

to m2, in the following way: unify N1′′ with X ′ and Z′,
X ′′ with S and V ′, Y ′′ with W ′, and B′′ with U (thus
unifying the atom n(N1′′, X ′′, {X ′′, Y ′′, N1′′}KB′′ ) with the
atom n(X ′, S, {V ′,W ′, Z′}KU )). Furthermore, assume the
atom (B′′)4

A′′ to be implicitly contained in m2. We get the
multiset

m3) al3bob,S , bob
4
al, (B

′′)2
A′′,N1′′ , n({N1′′, S, Y ′′}KB′′ )

which is in turn accumulated as a provable goal. We in-
vite the reader to observe the correspondence between the
bottom-up construction we are sketching and the top-down
construction illustrated in Figure 7. Notice that the se-
quence of rules we are applying is the same but in the re-
versed order, i.e. axiom u, then rules i4 and p4, and so
on (clearly, we are illustrating only one among the possi-
ble bottom-up derivations). Furthermore, every atom that
we described as implicitly contained in the current multiset
corresponds to one of the atoms in the top sequent of Fig.
7. In other words, the bottom-up computation starts from
a multiset representing the minimal violations of the secu-
rity property under consideration (i.e., axiom u), whereas
any additional atom that turns out to be involved in the

proof (see top-sequent in Fig. 7) is (implicitly) added, so
to say, in a lazy manner as the bottom-up construction pro-
ceeds. Variable bindings can also be (implicitly) enforced
during the bottom-up construction. For instance, the atom
(B′′)4

A′′ (which we assumed to be implicitly contained in m2)
corresponds to the atom bob4al in the top sequent of Fig. 7.
Eventually, variable B′′ (which is contained, e.g., in m3) will
be unified with bob, and similarly, A′′ will be unified with al.
We conclude the illustration of the bottom-up construction
with an example of application of a clause involving univer-
sal quantification. Proceeding as above, eventually we get
(a variant) of the multiset

m6) al3bob,S , bob
2
al,N′ , bob2A,N′′ , n({N ′, N ′′, S}Kbob).

Now, we can apply a variant of protocol rule p3 (see the
corresponding inference in Fig. 7), let it be

(A′)1
B′

.................................................
............
.................................. n(N1′, N2′) ◦− ∀S′. ((A′)3

B′,S′
.................................................

............
..................................

n({N1′, N2′, S′}KB′ ))

to m6, by unifying A′ with al, B′ with bob, S′ with S, N ′

with N1′ and N ′′ with N2′′. We get the following multiset:

m7) al1bob, bob
2
al,N′ , bob2A,N′′ , n(N ′, N ′).

Notice that the bottom-up inference requires a new constant,
let it be c, to be introduced in place of the universally quan-
tified variable S′ in the body of the above clause. According
to rule forall for the satisfiability judgment (see Figure 3) a
static check must be performed in order to ensure that the
output multiset and unifier do not contain the constant c.
This check is successfully passed, thus the above inference
is perfectly legal. The bottom-up construction goes on in
this way until the multiset alinit, bobinit (corresponding to
the bottom sequent in Figure 7) is reached.

We conclude by mentioning that we have also performed
some further experiments regarding Millen’s ffgg protocol,
which we don’t discuss in detail. In particular, we wanted
to ascertain the role of the two nonces N1 and N2 in the
ffgg protocol. According to the informal notation for the
protocol introduced at the beginning of this section, prin-
cipal B only checks that the first component of message T
is the nonce N1, whereas no check is performed for the sec-
ond component. We have verified that imposing the check
on the second component, the ffgg protocol is safe w.r.t.
the security property and the intruder theory we have pre-
sented, while removing all checks, as expected, introduces
serial attacks.

We think that this example is a good illustration of the
capabilities of our general framework. In fact, using the
backward evaluation strategy championed in this paper, we
are able to automatically find a parallel session attack, with-
out enforcing any particular search strategy of our evaluation
algorithm (i.e. the same algorithm can be used to find serial
or parallel attacks). Furthermore, according to [30] the ffgg
protocol can be generalized to protocols which only admit
higher-order parallel attacks (i.e., attacks which take place
only in presence of three or more concurrent roles for the
same principal). Using the same algorithm, and the same
protocol and intruder theories as before, we can automat-
ically find such attacks, if any exists. This distinguishes
our methodology from most approaches based on model-
checking, which operate on a finite-state abstraction of a
given protocol, and require the number of principals and
the number of roles to be fixed in advance.



Protocol Invar Steps Size MSize Time Verified

Millen’s ffgg 14 306 677 1335 attack
Millen’s ffgg 14 27 810 2419 yes
(corrected)

Needham-Schroeder 13 294 323 45 attack
(strong correctness)
Needham-Schroeder 13 304 755 516 yes
(weak correctness)

√
12 299 299 63 yes

Corrected Needham-Schroeder 14 1575 1575 791 yes
(strong correctness)

√
9 402 402 31 yes

Otway-Rees 5 10339 10339 4272 attack

Figure 8: Analysis of authentication protocols: experimental results

Another advantage of using backward reasoning is related
to the generation of fresh nonces. Forward exploration needs
to explicity manage generation of fresh names. The back-
ward application of LO∀ rules allows us instead to observe
only formulas defined over the signature of the original pro-
gram. In fact, suppose that a rule body contains universally
quantified variables that have to be matched with an inter-
pretation computed during the bottom-up evaluation of a
program. By the definition of the satisfiability judgement
(Fig. 3) and of the SP operator, we can restrict ourselves to
a local top-down derivation in which we simplify the body
of the clause (see rule forall and par of Fig. 3) and then
we match the resulting multiset of formulas against the cur-
rent interpretation (see rule atomic multiset of Fig. 3). In
the end a static check is made in order to ensure that the
output multiset and the resulting unfier do not contain the
constants which have been introduced. In other words the
effect of quantification in the body of a clause is simply that
of restricting the set of possible predecessor configurations.
Notice that, on the contrary, using top-down evaluation, the
current signature is enriched by adding a new constant every
time the rule for the universal quantifier is used.

In addition to Millen’s protocol we have used our method
to study other more classical examples of authentication
protocols. As an example we have analyzed the Needham-
Schroder protocol (discovering Lowe’s attack [23]), verified
the corresponding corrected version, and analyzed the Otway-
Rees protocol. We stress that our algorithm can be used
either to find attacks of given protocols, or to prove that
no attacks may exist (clearly, w.r.t. a given protocol theory
and a given intruder theory). In other words, the bottom-up
evaluation algorithm presented in Section 3 is correct and
complete: is no proof is found (w.r.t. to the given protocol
and intruder theories), then no proof at all may exist.

All the experiments (performed on a Pentium II 233MhZ
under Linux 2.0.32, running Standard ML of New Jersey,
Version 110.0.7) are summarized in Figure 8. The tag In-
var indicates the use of invariant strengthening (the set of
unsafe states is enriched with the negation of other invari-
ants), a conservative technique that can speed up the fix-
point computation. Furthermore, Size denotes the number
of multisets inferred during the evaluation, MSize the max-
imal number of multisets computed at any step, and Time
the execution time in seconds. More details on these exper-
iments can be found in [10] (available on the first author’s
web page http://www.disi.unige.it/person/BozzanoM/).

6. CONCLUSIONS AND RELATED WORK
In this paper we have presented security protocols as a

possible application field for our methodology based on a
linear logic-based specification language and on a bottom-up
evaluation strategy. Our verification procedure is tailored to
study security violations which can be specified by means of
minimality conditions. While this may rule out interesting
properties, e.g. questions of belief [4], the proposed approach
can be used to study secrecy and confidentiality properties.
No artificial limit is imposed on the number of simultaneous
sessions we are able to analyze.

We have performed some experiments on different authen-
tication protocols which show that the methodology we pro-
pose can be effective either to find attacks or to validate
existing protocols. We plan to overcome some current limi-
tations of our approach, in particular we plan to refine and
automatize the specification phase of protocols and of the in-
truder theory. Specifically, we want to study a (possibly au-
tomatic) translation between the usual informal description
of protocols and our representation. As shown in the pa-
per, a one-to-one translation (one rule for every step) could
be enough, provided we have a way to store the information
about the internal state of principals. For efficiency reasons,
it could also be worth to investigate some optimizations, in
particular to the intruder theory (concerning, e.g., the rules
for composition and decomposition). We plan to use tech-
niques like folding / unfolding to automatize this process.

Another topic we would like to investigate is typed mul-
tiset rewriting [13], which extends multiset rewriting with
a typing theory based on dependent types with subsort-
ing. Dependent types can be used to enforce dependency
between an encryption key and its owner. The paper [13]
also presents some extensions which increase the flexibility
of multiset rewriting specifications, e.g. using memory pred-
icates to remember information across role executions.

Finally, an open question is that of non-termination. In
the few examples we have presented, our algorithm is al-
ways terminating, even without invariant strengthening. Al-
though secrecy has been proved to be undecidable, even for
finite-length protocols with data of bounded complexity [11],
one may ask if a more restricted subclass of protocols exists,
for which the verification algorithm presented here is always
terminating.

We conclude by discussing some related work. A wide re-
search area in security protocol analysis is related to rewrit-
ing. For instance, we mention [14], which specifies secu-
rity protocols as rewriting theories which can be executed



in the ELAN system. A similar approach is followed in [17],
where the target executable language is instead Maude. Per-
haps the more interesting work in this class is [21]. This
work presents an automatic compilation process from se-
curity protocol descriptions into rewrite rules. The result-
ing specifications are then executed using the daTac theo-
rem prover. As a difference with [17], which is based on
matching, the execution strategy of [21] relies on narrow-
ing and AC unification. Our approach, based on multiset
unification, is clearly closer to the latter approach, although
currently we do not support equational theories. All of the
above approaches are limited to protocol debugging, there-
fore they can find attacks mounted on a given protocol, but
they cannot be used to analyze correctness. Also, a crucial
difference is that all the above works are based on a for-
ward breadth-first-search strategy, while effectiveness of our
verification algorithm strongly relies on a backward search
strategy. Another approach which shares some similarity
with ours is [16], where a specification for security protocols
based on rewriting and encoded in a subset of intuitionistic
logic is presented. The author uses universal quantification
to generate nonces, like us, and embedded implication to
store the knowledge of agents. This approach is still limited
to protocol debugging.

An alternative approach to verifying security protocols
is based on model checking. For instance, the FDR model
checking tool was used by Lowe [23] to analyze the Needham-
Schroeder public-key protocol. Other works which fall into
this class are [25, 34]. All these approaches have in com-
mon the use of some kind of abstraction to transform the
original problem into a finite-state model-checking problem,
which is then studied by performing a forward reachability
analysis. Using a finite-state approximation has the advan-
tage of guaranteeing termination, however it only allows one
to analyze a fixed number of concurrent protocol runs, an
approach which is infeasible as this number increases. As a
difference, we use a symbolic representation for infinite sets
of states and a backward reachability verification procedure,
which avoid putting limitations on the number of parallel
sessions we are able to analyze.

Theorem proving techniques are used in [33], where pro-
tocols are inductively defined as sets of traces, and formally
analyzed using the theorem prover Isabelle. Here, analysis is
a semi-automatic process which can take several days. The
NRL protocol analyzer [26] provides a mixed approach. It is
based on protocol specifications given via Prolog rules, and
enriched via a limited form of term rewriting and narrow-
ing to manage symbolic encryption equations. Similarly to
us, verification is performed by means of a symbolic model-
checker which relies on a backward evaluation procedure
which takes as input a set of insecure states. The analyzer
needs to be fed with some inductive lemmas by the user, in
the same way theorem provers need to be guided by the user
during the proof search process.

In [8], the author proposes an optimized specification of
security protocols based on an “attacker view” of protocol
security, specified by means of Prolog rules, as in [26]. The
approach is effective, and has been applied to prove correct-
ness of a number of real protocols. The verification algo-
rithm performs a backward depth-first search, which seems
to be closely related to our evaluation strategy, and uses an
intermediate code optimization using a technique similar to
unfolding, which we plan to study as future work. On the

other hand, we think that the multiset rewriting formalism
which we use is more amenable to an automatic translation
from the usual protocol notation. Ensuring faithfulness be-
tween the intended semantics of a protocol and its specifica-
tion is necessary to prove correctness. Also, with respect to
[8], we use a cleaner treatment for nonces, and we don’t have
to use approximations (which may introduce false attacks)
except for invariant strengthening, which can be controlled
by the user.

Finally, we mention some works concerning the process of
translation from the usual informal notation for protocols,
which we plan to study as part of our future work. Existing
approaches include Casper [24], a compiler from protocol
specifications into the CSP process algebra, oriented towards
verification in FDR, and CAPSL [29], a specification language
which can be compiled into an intermediate language and
used to feed tools like Maude [17] or the NRL analyzer [26].
Finally, [21] presents an automatic compilation process into
rewriting rules which is able to manage infinite-state models.

Concerning the application of linear logic to verification,
we would like to mention the work in [18], where phase se-
mantics is used to prove properties of specification of con-
current constraint programs. The phase semantics for LO
proposed by Andreoli could be the possible connection be-
tween the manual ‘semantic-driven’ method of [18] and our
automated ‘syntactic-driven’ method that could be interest-
ing to investigate.

The technical details of the bottom-up evaluation strat-
egy for LO∀ programs is described in [7] (as practical exam-
ple, in [7] we have studied a parameterized mutual exclusion
protocol). The first author’s PhD thesis [10] also contains
a detailed presentation and proofs for the results presented
in this paper, and all the details of the experimental results
mentioned in Section 5.1. Some preliminary results (e.g.
Needham-Schroeder protocol) were also discussed in [9].
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