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Abstract. In this paper, we report on the design of a complex con-
trol system, namely the Automatic Train Operation (ATO), which aims
at enhancing the Grade of Automation in train operations (passenger
transportation, infrastructure monitoring) in high-speed lines. The de-
velopment of ATO is being conducted as an industrial project, with
contributions from different research teams. The design of the system
is complex in terms of architecture, functionality, safety and reliability
requirements to be fulfilled, and geographical distribution of the devel-
opment teams. Formal methods and model-based design are used to
master the complexity of the design and of the system integration. Our
approach is based on formal tools for system specification and validation,
which support automatic code generation, early design validation, testing
and simulation, and runtime verification. Moreover, we structured the
development process in different phases and configurations, correspond-
ing to increasing functionality of the system and different deployment
configurations. The project is at an advanced stage of execution. In this
paper, we demonstrate the effectiveness of the proposed approach and
methodology, we discuss our experience and the lessons learned.

1 Introduction

The steady progress of the Information and Communication Technology and the
limited efficiency of manual drive, which is mainly based on training and human
experience, lead to the need for an automated management and control for railway
traffic, which can best perform and react to different operating conditions or
sudden changes. According to the International Association of Public Transport,
there are five Grade of Automation (GoA) [8] that go from 0, which means
absence of automation, up to 4, which indicates a fully automated train control
and management without any staff on board.

In this context, Automatic Train Operation (ATO) systems aim to transferring
the responsibility of train management from the driver to an automated control
system, optimizing the driving performances due to the characteristics and
conditions of the track, the energy consumption and the passenger comfort and



quickly reacting to unsafe situations. An additional protection level is guaranteed
by the constant supervision of a vital computer (EVC) which interfaces with
the infrastructure monitoring system following the ERTMS/ETCS standard for
high-speed railway lines [5]. ETCS, with its direct connection to the braking
system, protects the vehicle from some critical situations such as violating speed
limits or running through places where it is not allowed.

In this paper, we report on the development of an ATO control system,
which is carried out as an industrial project, with contributions from different
research teams throughout the Italian territory (RFI, FBK and the Universities
of Naples, Salerno and Bari, for a total of 4-6 persons per team). The design of
the system is complex in terms of architecture, functionality, safety and reliability
requirements to be fulfilled. In order to master the complexity of the design
and of the system integration, we based our approach on the use of formal
methods and model based-design for system specification and validation, which
support automatic code generation, early design validation, testing, simulation
and runtime verification.

ATO is currently at the stage of a prototype, but it will eventually evolve
into a product. The objective is to have a GoA4 ATO operating on a prototype
light-vehicle, equipped with devices for the infrastructure monitoring, running
on an ERTMS/ETCS Italian high-speed line. This eventually could be the
first step on the way to meet the challenge of adapting the design and control
techniques from this prototype domain to applications on the high-speed mainline
railway. The ATO project is at an advanced stage of execution. In this paper,
we demonstrate the effectiveness of our design approach and methodology and
discuss our experience and lessons learned.

The rest of the paper is structured as follows. In Section [2] we describe the
ATO system, its architecture and requirements. In Section [3| we discuss the design
challenges. In Section [ we present our formal approach to the development
and verification of ATO. In Section [5] we discuss the lessons learned. Finally, in
Section |6l we draw some conclusions and outline directions for future work.

Related Work. For metropolitan railway lines, several approaches have been
proposed to optimize train operation and energy consumption with autonomous
driving [9], by combining high-level and low-level control of the ATO [I0] or
dealing also with train load and delays of the line [6]. However, the challenge
of autonomous driving is still open for high-speed lines. Detailed modeling of
high-speed trains is one of the most demanding research issues together with
the development of powerful simulation platforms. Formal methods have been
extensively applied in various industrial domains, including transportation [IT],
see e.g. [7] for a recent survey on the application to railway systems.

2 The ATO Control System

ATO consists of two cooperating systems: ATO Track Side (TS) and ATO On
Board (OB). ATO-TS collects and forwards data on trains, tracks and timetables



concerning the train journey, while ATO-OB receives such data and uses them to
control and drive the train. ATO can be operated by a remote driver, who is re-
sponsible for activating autonomous driving. The architecture of ATO is described
in Fig.[I] In the rest of this section, we focus on ATO-OB. The Interface Manager
allows ATO to interface with the different modules such as ATO-TS, ETCS, SMO
(Speed Monitoring and Odometry), SCS (Supervision and Control System) and
TIU (Train Interface Unit). The Controller implements the main finite state ma-
chine for the different ATO functional operating modes. Track Database Manager
uses odometry data to lo-
calize the train on the line
and validates the journey re-
ceived from the trackside be-
fore the start of the mission.
Autonomous Driving Func-
tions receives the track and
journey profile data from the
Track Database Manager and
uses them to generate an op-
timal speed profile, and the
brake and traction commands
to forward to TIU. The En-
ergy Manager uses the battery e
?pd fuel data and the traq
lion system status to moni- i
tor the energy level and eval- —1— = >
uate the consumption needed
to achieve the current mission.
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sider the nominal scenario

with a train stopped at a

charging point. When the train is selected by an ATO-TS remote driver, ATO-OB
verifies that its database version matches with the trackside one and performs
some internal system tests. The remote driver plans the journey profile to be
sent on board, and waits for an acknowledgment. When ETCS mode evolves to
full supervision and other engagement conditions are fulfilled (e.g., ETCS and
ATO are not applying full service or emergency brake, ATO-OB is localized on a
specific Segment Profile sent by trackside, and train direction is forward), the
remote driver can engage ATO-OB enabling autonomous driving. In such drive
mode, the train reaches the final destination of the journey, respecting the related
timetable of the assigned timing points and stopping points. An example of non-
nominal scenario consists in using an autonomous vehicle equipped with ATO to
rescue another vehicle that is blocking a high-speed line, due to a breakdown.

The design of ATO is subject to complex requirements. In order to meet
specific project goals, we had to review and customize the functional and interface
requirements defined by standard UNISIG subset, and add or discard some of



them. For example, we provided train localizing function data on board, moving
it from trackside; we discarded all the requirements related to doors management
since the prototype light-vehicle has none; we added camera requirements to
mitigate the absence of driver on board and we customized the interface protocol
in order to manage the data for the new functions we added.

3 Challenges

The design of ATO is very challenging, due to the complexity of the system and
of the associated requirements. The ATO system is distributed. It consists of on-
board controller (ATO-OB) and a trackside counterpart (ATO-TS) which, in turn,
are composed of several modules realizing different functions, and connecting to
external systems, such as ETCS. ATO is composed of heterogeneous components,
specifically it includes components that interact directly with the underlying
HW, e.g., those commanding braking or traction of the train. Such components
rely on models of the HW which are inherently continuous (e.g., specified using
differential equations). For this reason, ATO relies on heterogeneous design tools,
based on different specification languages (e.g., Scade, Simulink, C).

The specification of ATO relies on a complex and evolving set of (functional,
safety and performance) requirements, therefore the design process needs to be
robust against changes and adaptations, and support system evolution. Moreover,
the architecture of ATO, its control logic and modules must be designed to
match the Safety Integrity Levels (SIL) requirements, according to the EN50128
standard. A Preliminary Hazard Analysis is in progress to assign SIL to the
product. It is expected that different ATO modules will be assigned different SIL,
with the highest levels assigned to the most critical components.

Finally, the design process of ATO must take into account the distribution of
the development teams. This makes system integration a particularly challenging
task, which calls for suitable verification and validation and testing strategies.

4 Formal Design of ATO

The software specification and design of ATO is based on formal methods. The
V-Model, as specified in the CENELEC EN-50128 [2] standard guides the software
development process from the definition of the system requirements to testing,
integration and validation phases. Model-based design takes advantage of co-
design strategies and interdisciplinary effort, favoring cooperation between teams
with skills in different disciplinary sectors.

Given the high assurance requirements of ATO, we based the design on tools
such as ANSYS SCADE Suiteﬂ and Architectﬂ which offer qualifiable/certified
code generation capabilities and interoperability with other development tools
and platforms. The use of SCADE meets the production standards for SIL

3 https://www.ansys.com/products/embedded-software/ansys-scade-suite
4 https://www.ansys.com/products/embedded-software /ansys-scade-architect



ATO_OB

53 ATO_08_Controller

[5% ATO_0B_Radio_Connection Manager

(TimeProvider <>

—| 5] imtetace Contrller ConfgurationLoader

Interface_Controller_ETCSManager <}

ace_RadioConnectionManager VehicleLogic
-

(_Controller <

Interface Radi

ETCSManager (<3}

Interface_Controller

|25] itetace Contrter VehicteLogic

Interface_Controller AutonomousDrivingFunctions <

terface EnergyMgr_Controller s

ace_EnergyMgr ADF

B negy Manager !

Interface EnergyMy_TackOBMgr (€3]

Interface EnergyMgr Vehiclelogic (<]

3 Autonomous_Drving_Functions
L1<5] interface ADF_Controler Interface_ADF_EnergyMr

Interface ADF_TrackDBMgr

——[03] Inteface ADF_CouplingFunctions

Interface_ADF_ETCSMgr [<y—)

Interface_ADF VehicleLagic

<

[¢3] nterface.

O[] Interfac

Interface Vehiclelogic EnergyManager (<>

T
Interface VehicleLogic_TrackDBManager <))

cleLogic ETCSManager [¢>}-

Inteface VehicieLogic, RAININTERFACE. <5}

Interface.

icleLogic_TimeProvider

Application
Code

Adaptor

Protocols

0s

« Veicttogc AOF ‘

Fig. 2. An excerpt of an IBD for ATO-OB (left) and ATO process layers (right)

3/4 SW, since it is compliant with the required metrics and constraints. Our
approach integrates the capabilities offered by SCADE with other functionality
for verification and validation implemented in our proprietary tool chain based
on the nuXmv model checker [I]. In this section, we discuss how these solutions
address the challenges outlined in Section [3]

4.1 Requirements and Architecture

The development of ATO is guided by an evolving set of requirements, and
by a set of operational scenarios specifying some real case missions the system
must fulfill. We grouped requirements by functionality and we identified the
corresponding modules responsible for taking into account the set of assigned
features. We further split requirements into those allocated to ATO-OB and
those allocated to ATO-TS. Requirements have been analyzed to extract a
hierarchical representation of ATO and the corresponding logical architecture.
The architecture has been modeled using SCADE Architect, resulting in several
Block Decision Diagrams (BDD) and Internal Block Diagrams (IBD). As an
example, in Fig. 2| (left) we present (part of) an IBD focusing on a subset of
ATO-OB. Since the design is distributed, it is of utmost importance to design a
robust and stable architecture, in which interfaces between different modules are
well defined and shared with all the involved teams. In this respect, scenarios have
been formalized into sequence diagrams, which strictly refer to the architectural
decomposition, and have then been used to guide the implementation of the
components and to derive test suites to perform unit and integration testing.
The layered architecture of an ATO process is depicted in Figure [2] (right):
(a) Application Code Layer is a pure C function which computes abstrac

5 We use the term abstract for protocol-independent data
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outputs from abstract inputs and current internal state. The layer is run at
each execution cycle, (b) Adaptor Layer is in charge to periodically invoke the
Application Code and to route abstract data from/to the layer below, (¢) Protocols
Layer handles incoming/outgoing data frames performing encoding/decoding
operations mapping protocol data from/to abstact data, (d) Device Drivers Layer
is in charge to cope with connected devices hiding communication details to the
upper layers, finally (e) the underlying OS Layer provides required services such
as scheduling and access to disks, network and other peripherals.

4.2 Development Process

Development life-cycle. The system is developed following a process that can
be described as a phased V-Model (Figure . To face the challenges implied by
the novelty of the project, such as instability of requirements and variability of
components interfaces, the process extends the classical V-Model with aspects
borrowed from the Agile philosophy.

In details, the classical V-model is extended along two dimensions: phases
and configurations. Phases concern functionalities and target a subset of system
features. In a phase, the V-model is iterated refining requirement analysis, system
architecture, implementation, unit and integration test until stability is reached.
Once the last phase is terminated, the system will undergo a final system testing
activity. Three phases were identified: remote operations, autonomous driving, and
the full ATO system. Orthogonally, a configuration specifies which layers of the
system are involved in the integration testing activities and, consequently, which
running environment tests are run on. We identify three main configurations: (a)
Configuration 1 involves the Application Code Layer only. The code is tested
in the simulation/testing environment of SCADE Suite (see next section for
details), (b) Configuration 2 extends Configuration 1 with the Adaptor and
Protocols layers. The code is run on host, introducing asynchronous execution of
subsystems and the interaction with services, e.g. logging service. Communication



with devices is simulated, (¢) Configuration 3 adds the Device Layer and the
Target OS Layer. Each subsystem is run on the proper target using real devices.
Configuration 3 actually is subdivided in a set of subconfigurations (3a, 3b, etc.)
that more and more integrate larger parts of the final physical system.

System architecture, component design and implementation. The development
process follows the model-based approach, where a machine-readable formal
representation of a system is built as the main project’s artifact. Such a represen-
tation (model) is the input for all the downstream development activities, most
notably allowing for formal verification of the properties of the system, i.e. model
checking [4], certified source code and documentation generation. In details, the
system architecture is specified in SCADE Architect using the SysML language.
A SysML architectural model typically comprises hierarchical decomposition of
the system, connections, interfaces and data types. SCADE Architect provides
validation tools for early identification of flaws (see Section . Using the model
generator provided by SCADE Architect, for each subcomponent we generate
a skeletal behavioral model written in SCADE Suite language. The majority of
subsystems/components are implemented using the SCADE Suite language. One
subsystem is implemented using MathWorks Symulink and one data-intensive
component is manually written in C. In total, the SW for ATO-OB contains
about 75K lines of code. SCADE Suite comprises a code generator for translating
models into C code which is certified under EN 50128:2011 at T3/SIL 3/4. The
ratio of the C code we automatically generated for ATO-OB using Scade is about
75% of the whole code (including manually written code, and code generated by
other means). Certification implies that unit/component testing activities can be
performed on models instead of on generated code, reducing certification times
and costs (the reduction is estimated in the order of 50%).

Moreover, to develop the Protocol Layer, we used ASN.1 as the interface
description language, due to its flexibility, widespread use, and extensible format.
In particular, we used ASN.1 to generate an intermediate formal specification
to support component interaction. This approach can accommodate different
communication protocols, including ad-hoc protocols described in textual or
tabular form. Given that the protocols are constantly evolving and that the
manual implementation of ASN specifications is time-consuming and error-prone,
we generate them from tabular description for one protocol and from SCADE
components based on textual description for others.

System Integration. When managing distributed teams and heterogeneous com-
ponents, system integration becomes a highly important task. ATO contains
some modules implemented using the SCADE language natively, while others
are designed in different formats, e.g. Simulink and C. Source code generated
from such models is linked to the rest of the code by means of a SCADE Suite
language feature called ‘external operators’, i.e., operators whose interface is
mapped to the interface of the corresponding external module via some glue
code. We require a test suite associated to each module which must invoke all
its nominal behaviors. Each test is then replicated in the SCADE framework so



that we can mimic the same actions and prove that we obtain the same results
even with the integrated system. Operational scenarios are then used to derive
some integration test cases that are intended to simulate interactions between
components and to prove that ATO behaves as expected. In order to avoid non
regression failures, we followed a continuous-integration approach by designing
a custom framework based on the python package ‘pytest’. Moreover, we rely
on the ‘git’ versioning tool to share the SW development effort among different
teams and to freeze system implementation at specific milestones.

4.3 Verification and Validation

We used multiple and complementary ways to formally verify and validate the
design and implementation of ATO. First, we used SCADE to perform early
model validation. SCADE of-
fers some checkers that can be
used to validate the hierarchi-
cal composition of the archi- MO | [ ABRV
tecture, in particular the com-  Possible ' Possible
patibility of the component in-
terfaces, and to check that se-
quence diagrams refer to valid
data. This allows us to guar- /
antee that the formalization
of the scenarios is compliant
with the architecture, before

moving to the implementation.
Then. we used SCADE Suite Fig. 4. Our approach to property-based formal veri-
’ fication
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to design, simulate and test
the system by means of sce-
nario validation, i.e. by speci-
fying values on input ports and checking that the outputs are as expected. We
performed this task starting from component level up to system level. In case of
unit testing we also made use of the model coverage feature, which allows to high-
light which (if any) paths of the model are not stimulated by tests; in this case,
we enriched the test suite in order to reach the highest possible coverage. When
scenarios need to be modified or we want to verify other sets of requirements (for
instance when moving to a subsequent development phase), the same process is
replicated, starting from the architecture up to system integration testing.

The ATO outcomes can be visualized and verified after executing a scenario
by means of logging. A separate component (called ATOLOG) records all the
relevant diagnostic information. It consists of: a server that receives and saves log
packets from the log clients (written in C and Python) of other ATO components;
a log client that provides an API for sending log packets; and various tools for
decoding, analyzing, and visualizing raw binary data collected by the server. The
collected diagnostic information is represented by the messages exchanged among



components, and it can be processed with various tools to verify that the scenario
execution results correspond to the expected behavior.

Finally, once system integration is consolidated and all the individual sub-
modules have been validated, we used model checking (MC) techniques to perform
property-based (runtime) verification. Namely, we used a custom tool-chain
based on the nuXmv model checker [I] and NuRV, an extension of NuXmv
for runtime verification [3], and we implemented a (in-house) translation from
SCADE to nuXmv. Our approach is described in Fig. [l The system to be verified
is split into one part which is formally modeled in SCADE, hence amenable
to formal verification, and one which is not. In the first case, we used model
checking to automatically verify system-level properties. In the second case,
we used techniques based on Assumption Based Runtime Verification (ABRV)
to automatically generate monitors that can be used as test oracles, see [3].
Interestingly, this process is completely automatic and requires just a small effort
to connect the generated monitors to the rest of the system, before conducting the
tests. In this way, many verifiers can be generated from the properties, while the
effort required for refactoring, when the module interface evolves, is negligible.

5 Lessons Learned

The design of ATO has raised many challenges, due to its inherent complexity,
and the distribution of the development effort. The main problem we had to
address was how to effectively split the work among different teams. Continuous
integration, supported by custom strategies for testing and by versioning tools,
was the natural choice to address the complexity of system integration, along
with ad-hoc strategies to deal with system evolution, e.g. to deal with updates to
the interfaces of the subsystems allocated to external development teams. In this
respect, we were forced to agree with partners not only about the definition of
the high-level interfaces, but also about the precise semantics of individual fields.

The phased V-model allowed us to progressively design and implement the
functionality of the system in two different respects. First, it enabled us to
streamline the support for different operational scenarios, concentrating on one
scenario at a time. Second, it enabled us to test the implementation of the
integrated system on different deployment configurations (using a simulator; on
one or more hosts; on the final OS with the target HW in the loop), making it
possible to progressively release the deployed system on different targets, as soon
as the latter become available in the course of the project.

Finally, we have carried out verification and validation using a mix of strategies
and tools, integrating the support given by tools such as Ansys Scade Suite and
Architect, simulators, and our proprietary tool chain for formal verification, based
on model checking. Particularly effective was our choice to use both design-time
model verification, and custom techniques for runtime monitoring, in combination
with testing. The latter enabled us to cover — via testing — the verification of
system-level properties that were out of reach for model checking, due to the
complexity of the models and the state explosion problem.



Based on our experience, the formal approach proved to be effective and gave
numerous benefits. Indeed, most of the flaws we encountered during system inte-
gration were located in components that had been outsourced, and were designed
and tested using traditional methodologies, without using formal methods.

6 Conclusions and Future Work

In this paper we discussed the design of a complex control system, the Automatic
Train Operation, and we presented a formal methods approach, which guides the
ATO development throughout all the development phases.

Currently, ATO is at the stage of a prototype. We estimate to execute first
chassis dynamometer tests by March 2022 and then field tests by June 2022 on
the Bologna San Donato railway test circuit, the first fully equipped laboratory
in the field throughout Europe. ATO is designed on a single-unit unmanned
prototype light-vehicle which does not require the presence of on board driver,
cabin staff or passengers, with all the implications that such specific design brings.
So far, possible future developments concern the design of an ATO which is able
to control and drive a multiple-unit high-speed train, with passengers on board.
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