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Abstract The verification of safety requirements is fundamental in many safety-
critical domains. In order to reach the highest level of required safety assurance,
system engineers design components with a variety of safety mechanisms. The
resulting potential combination and sequence of operational modes may become
very complex and requires automated analysis support.

In this paper, we propose new formal methods, based on minimal cut sets, to
generate explanations for operational mode transitions, in terms of causes defined
as combinations of basic events, namely faults and recovery actions. The problem
is quite subtle, as it requires to consider events occurring before, and in between,
the source and target operational modes, identifying those that are necessary to
bring the system into the source mode. We implemented the approach on top
of the xSAP safety analysis platform, and evaluated it on an industrial design,
namely an electronic control unit of a power steering system with redundancy
and multiple safety mechanisms.

1 Introduction

The increasing level of autonomy and complexity of networked systems and system
of systems in automotive as well as in other safety-critical domains augments the re-
quired level of functional safety and reliability of Electronic Components and Systems
(ECS) [9]. In turn, the growing requirements in terms of functional safety and relia-
bility push the development of new design technologies to analyze the safety of ECS.
Fail-operational architectures include various safety mechanisms such as redundancies
and fault detection components inside a single control unit. The interplay of multiple
faults and mechanisms for fault masking and fault recovery may become very complex
and requires automated methods and tools for its analysis.

In this paper we tackle the problem of analyzing the various faults, or in general
events, that may lead a system from an operational mode to another. The system usu-
ally runs in nominal mode and switches to different backup or degraded modes upon the
occurrence of faults or recovery actions. Due to the presence of different components
and overlay of various redundancies and monitors, the system can switch to an oper-
ational mode for various reasons. We propose a model-based approach to the analysis
of these mode transitions building on symbolic model-based safety analysis techniques
for minimal cut sets and fault-tree generation [4].



The problem is quite subtle because the transition from mode m; to mode mgy can
be caused by events that occurred before m; but due to some propagation have effect
with some delay or the effect is enabled by the new operational mode m;. At the same
time, we should not consider the events before m; that caused the system to go to m;.
We propose a formulation that takes into account these aspects and reduce the problem
to parameter synthesis for temporal logic [7].

We implemented the approach on top of the XSAP tool [2] and evaluated the results
on the architecture of an automotive Electronic Control Unit. This includes a dynami-
cally redundant dual channel, each channel with a dual fail-safe core, extended with a
watchdog that may trigger the recovery of a passive channel. The results are very use-
ful to understand the interplay of events that cause the mode transitions and show the
scalability of the approach.

The rest of this paper is structured as follows. In Section 2 we discuss related work.
We describe the case study in Section 3. In Section 4 we discuss some background
notions. In Section 5 we discuss our formal approach. The experimental evaluation is
presented in Section 6. Finally, we conclude and discuss future work in Section 7.

2 Related Work

The problem addressed in this paper builds upon, and extends previous work on Fault
Tree Analysis (FTA), namely generation of minimal cut sets (MCSs) for a given top
level event (TLE). The semantics of MCSs is given in terms of fault events occurring
on a trace reaching the TLE [4,14]. The problem of computing the cut sets can be re-
duced to reachability analysis and solved using Binary Decision Diagrams as in [4], or
using satisfiability (SAT)-based techniques for parameter synthesis [6]. The region of
cut sets can be minimized to obtain the MCSs using classical routines for minimiza-
tion of Boolean functions [8]. In [3] the SAT-based approach is extended with several
enhancements based on the specific features of the problem, such as on-the-fly mini-
mization and layered computation of the MCSs for increasing cardinality.

In this work, the trace-based semantics for MCSs is extended to encompass the
case of generic (fault and recovery) events that explain the transitions between different
system modes, rather than a TLE. The problem is reduced to parameter synthesis on a
property expressed in LTL, and solved using techniques that build upon those in [3].

A qualitative analysis of the EPS case study has been carried out in [1] using FTA.
The author performed the analysis by manually inspecting all possible states and tran-
sitions, and demonstrated that the order of events causing the mode transitions can be
neglected. However, manual analysis is error-prone and does not scale up when addi-
tional channels or states are considered. In this paper, we give a formal definition of the
problem and solve it using a formal approach, based on model-checking.

In [11] a methodology is presented, based on Hip-Hops, to construct fault trees
structured in terms of a set of (critical and non-critical) modes organized into a mode
chart. The methodology is focused on the investigation of failure propagation, based on
the annotation of system components with their (dynamic) mode-based behavior. In our
case, instead, we are interested in synthesizing the mode-based (failure propagation)
behavior automatically from a given behavioral model of the system.
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Figure 1: EPS case study: assembly view with the electronic control unit (ECU) circled
in red (left) and schematic overview (right).

The concept of events triggering mode transitions is related with the notions of
causality as given, e.g., in the theory of counterfactual causality [10]. The latter is de-
fined using structural equations, but can be readily re-formulated for transition sys-
tems [5]. However, the notion of causality is more fine-grained, in that it aims at distin-
guishing the notions of causality and temporal correlation, and addresses concepts such
as responsibility and blame. Moreover, we are interested in sets of events that are nec-
essary to explain a mode transition in all possible scenarios, whereas classical causality
focuses on identifying such causes in a given scenario of interest. Finally, in our setting
a cause may not be sufficient to trigger a mode transition — an additional side condition,
a contingency in causality terminology, may be needed to make it sufficient.

3 Motivating Case Study

As case study, we selected an electronic power steering (EPS) system designed for
highly-automated driving vehicles, as shown in Fig. 1. The system is not only able to
support the driver in steering, but also to steer the vehicle without any input from the
driver, by receiving steering commands from a redundant vehicle bus. Hence, the EPS
system has high safety, reliability, and availability requirements.

3.1 ECU Design

In this case study, we focus only on the electronic control unit (ECU) of the EPS sys-
tem, circled in red in Fig. 1 (left). A schematic overview of the EPS ECU is given in
Fig. 1 (right). The ECU includes two separate channels, named primary and secondary
channel in the following. Each channel has its own and independent power supply and
connection to an individual vehicle bus. Both channels can communicate with each
other by redundant intra-ECU communication channels. Each channel contains a lock-
stepped microcontroller with an external watchdog and is able to drive 2 electric motors.
The lock-stepped microcontroller contains two cores that compute the same instructions



in parallel. At each cycle, a comparator circuit inside the controller compares the state
of both cores. The microcontroller shows fail-silent behavior, so in case the two core
states are not equal no result is forwarded. In order to check whether the comparator is
working correctly, an external watchdog sends challenges to the comparator and checks
the correctness of the response. If the challenge is answered incorrectly or if a timeout
error occurs, the entire microcontroller is reset.

3.2 System Modes

Each channel is either in mode master, slave, or passive. In master mode, the channel
calculates the torque for its two motors and sends a request to the other channel in
slave mode to set the same torque to its connected motors, so all four motors provide
the same torque. In slave mode, the channel awaits the torque requests from the other
channel and sets the torque as described before. If the torque request is not received,
the channel in slave mode has to assume that the other channel has failed silently, hence
it becomes master and calculates the required torque itself. Since one channel and its
directly connected two motors are sufficient to steer the vehicle, the EPS system is still
available even if one channel fails.

3.3 Expected Faults and their effects

A channel has fail-silent behavior, therefore it enters the passive state only when an
internal error occurs and it is detected, e.g. by the lock-step comparator or the watchdog.
In passive state, the channel does not send any torque to its two motors anymore. A
fault in the power supply of a channel leads to it entering the passive mode. When an
erroneous or missing message is received from the vehicle bus connected to a channel,
the channel switches or stays in slave mode, relying on the torque requests from the
other channel in master mode. A fault in the communication between the channels is
critical, as the torque requests cannot be exchanged anymore. For this reason, this intra-
ECU inter-channel communication is implemented by heterogeneously redundant links.
A fault in the microcontroller and its core, respectively, is very likely to be detected by
the comparator circuit. A fault in the comparator itself is critical, for this reason it is
implemented in hardware directly. In order to ensure the correct functionality of the
comparator circuit, a watchdog, which is external to the microcontroller, monitors it
by a challenge-response protocol. In case the comparator does not provide the correct
response in time, the entire microcontroller is reset by the watchdog. A fault in the
watchdog itself is critical again, as it potentially resets the microcontroller.

The individual faults have different occurrence probabilities, depending e.g. on the
complexity of the hardware or the employed level of redundancy. In order to argue the
safety of the entire EPS system and its ECU specifically, it is indispensable to analyze
the combination and probability of faults that lead to unwanted behavior of the system.
In general, the EPS system can exhibit unwanted behavior whenever no channel is in
master mode and one of them is in slave mode. Given three modes per channel, overall
nine modes exist in the system. Not all nine system modes are equally critical, e.g. one
channel being in master mode and the other channel being in passive mode is accept-
able for a specific duration. On the contrary, both channels being in master mode and



potentially calculating opposite torque request is very critical and it potentially leads to
steering in the wrong direction and even hinders the driver to overrule the system.

4 Background

In this section we present some background, in particular we introduce transitions sys-
tem, temporal logic, model checking, parameter synthesis, and minimal cut sets.

4.1 Symbolic Transition Systems

The system under analysis is a reactive system, whose behavior is characterized by
a (possibly infinite) sequence of state changes triggered by events. In this paper, we
adopt a standard symbolic representation of the system, where the system states are
represented by a finite set V" of variables and the state transitions by symbolic formulas
that specify how the values of V' change [13]. This is usually obtained by using a copy
v’ of each variable v € V to represent the next value of v after a transition. We denote
by V" the set of next versions v’ of the variables in V. We also use a finite set E of event
variables to label the transitions and represent the events that triggered a state change.
For simplicity, we assume that the variables have all a Boolean domain, but this can be
easily lifted and the tool implementation of the approach considers also more complex
and infinite-domain variables.
Formally, a Transition System (TS) is a tuple S = (V, E/, I, T') where:

V' is a set of state variables;

FE is a set of event variables;

I is a formula over V/, representing the initial states;

T is a formula over V U E' U V’, representing the transitions.

A state of S is an assignment to the variables in V. Similarly, an event is an assign-
ment to the variables in F. A trace of S is an infinite sequence o = sg, g, S1, €1, .. . of
states and events such that so = I and s;, €;, s;41 = T forevery i > 0.

4.2 LTL model checking

We use Linear-time Temporal Logic (LTL) [15] with future and past operators (see for
example [12]) to represent sets of traces. Givena TS S = (V, E, I, T'), the set of Linear
Temporal Logic (LTL) formulas is inductively defined as

pu=p|p|leVve | Xe|eUp|Ye|epSe

with p € V U E. Here X stands for next, U for until, Y for previous, and S for since.
Other logical constants and operators like T, L, A, — and <« are used as syntactic sugar
with the standard meaning. The following abbreviations for temporal operators are also
used: Fo:=TUp, Gy :=-F-p,0p: =TSy, Hp :=-0-p, Zy =Y.

Given a trace 0 = sg, €, $1,€1, ... of S and ¢ > 0, we define the relation o, |= ¢
as follows:
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- ifop=peE, theno,i = piffe; =p

- if o =g, theno,i = iff o,i & ¢

—-ifp=¢Vi,theno,il=piffo,i = ¢oro,if=1

- if p=X¢, theno,i |Eypiffo,i+1F ¢

- if ¢ = ¢ Uy, then 0,7 = ¢ iff for some j > i, 0,j E ¢ and forall i < k < j,
o,k E ¢.

- ifp=Y¢, theno,i = piffi >0ando,i — 1 | ¢

— if ¢ = ¢S, then o,i | ¢ iff for some 5,0 < j < i, 0,7 | % and for all
j<k<i,0kEo.

The (universal) model checking problem is the problem to check if o, 0 = ¢ holds
for every trace o of S (denoted by S =y ¢ or simply S' |= ¢). The existential model
checking problem is the dual problem of checking if o, 0 |= ¢ holds for some trace o
of S (denoted by S =3 ). Note that S =3 ¢ iff S = —¢.

4.3 Parameter Synthesis

In parametric systems, formulas can include also parameters, which are rigid symbols
whose value does not change along the execution of the system [7]. Let U be the set of
parameters. A parameter valuation is an assignment to the parameters. Given a proposi-
tional or an LTL formula ¢ and a parameter valuation v, we denote by (¢) the formula
obtained from ¢ by replacing each parameter in U with the assignment given by 7.

A parametric transition system S is atuple S = (U, V, E, I, T) where U is the set of
parameters, V' is the set of state variables, F is the set of event variables, I (U, V) is the
initial formula, and T'(U, V, E, V") is the transition formula. Each parameter valuation
7 induces a transition system S, = (V, E,v(I),v(T)).

In the scope of this paper, we are interested in the parameter synthesis for LTL
existential model checking, i.e., given an LTL formula ¢ over U U V U F, the problem
of finding all parameter valuations  such that S, =3 (). We denote by p(U, S, ¢)
the set of all such parameter evaluations. This set can be computed effectively with a
sequence of incremental model checking problems [7].

4.4 Minimal Cut Sets

Minimal Cut Sets (MCS) analysis produces all possible configurations of system faults
(called fault configurations) that cause the reachability of an unwanted condition, called
the Top Level Event (TLE). More formally, given a transition system (V, E, I, T) and a
set of faults represented as event variables F C F, we call fault configuration a subset
FC CF.

A cut set represents a fault configuration that may cause the top event. Formally, we
generalize the definition in [4] as follows. Let S = (V, E, I, T) be a TS and let TLE
be a propositional formula over V. We say that F'C'is a cut set of TLE in S, written
FC € CS(S, TLE, F), iff there exists a trace o of .S such that:

1. 0,j | TLE for some j > 0;



2. FC C Fandforall f € FC there exists 4, 0 < i < j such that 0,7 |= f.

Intuitively, a cut set corresponds to the set of faults that occur along a trace reach-
ing the TLE. Minimal cut sets (MCSs), written MCS(S, TLE, F), are those that are
minimal in terms of faults: MCS(S, TLE, F) = {cs € CS(S,TLE,F) | Ves' €
CS(S,TLE,F) (cs' C cs — ¢s’ = ¢s)}. When S and F are clear from the context,
we just use the notation CS(TLE) and MCS(TLE).

In practice, MCS are of interest since they represent the simpler (and more probable)
explanations for a given TLE. The monotonicity assumption (i.e, if cs is a cut set, then
any superset cs’ D c¢s is also a cut set) is commonly adopted, since most systems are
monotonic and for non-monotonic systems, the assumption leads to a conservative (and
accurate) over-approximation of the unreliability of the TLE. Non-monotonic analysis
can be addressed by generalizing the concept of MCS to the one of prime implicant [8].

4.5 Computing MCSs Using Parameter Synthesis

Given a transition system S = (V, E,I,T) and a set of event variables 7 C F, the
region of cut sets can be computed via parameter synthesis [3]. Let us consider a param-
eter p, for every event e € F and the LTL formula ¥rr g := (A, z(e = pe)) U TLE
(see also similar approach in [14]). Then the set of cut sets is given by p(U, S, ¥rLE).

The set of MCSs can be computed as the set of minimal such valuations, i.e. the set
of valuations v € p(U) such that for each v’ € p(U), v’ C ~ implies 7' = 7 (where
we define 7/ C ~ iff v/(u) implies v (u) for each v € U). This can be computed with
standard BDD-based operations.

5 Formal Problem and Solution

5.1 Formalization of Modes and Mode Transitions

An operational mode can be considered from the formal point of view as a macro state,
i.e. a set of concrete states. For example, in the EPS case study described above, the
master-slave mode, where the primary channel is in master mode and the backup chan-
nel is in slave mode, includes various states where the power may or may not be supplied
to the channels, the data has been provided or not, the cores are processing the data, the
comparator state represents the consistency of the cores’ output, etc.

On this line, a mode transition is achieved with a sequence of state transitions. For
example, in order to switch from master-slave to master-passive, the system performs
different state transitions, where for example a core of the backup channel fails, the
comparator silences the output torque, and the channel goes to passive mode.

Formally, we define a mode of a system S = (V, E, I, T) as a set of states of S. A
mode can be therefore represented by a propositional formula over the state variables
V. With abuse of notation, given a formula m over V, the mode m refers to the set of
states satisfying m.

Given two modes my and ms, a mode transition from my to mo is a sequence of
S0, - - - ,Sn such that n > 0 and there exists a trace o of S and 7 > 0 such that



Figure 2: States and transitions for the system in Example 1.

— fork,0 < k <n, 0,41 = sk (the sequence is part of the trace o of S);

- fork, 0 < k < n, sy Emy and s,, = my (the sequence leads from m4 to mo);

-4 = 0oro;—1 E —m (the sequence is maximal as it is either the first mode
transition of o or is preceded by another mode transition leading to m).

5.2 Model Checking Mode Transitions

It is easy to prove that S has a mode transition from m; to my (denoted by S =3 m; =
mo) iff S' =3 F(m1 A Xmg). In fact, one can see that the definition is one-to-one with
the LTL formula F(Z—m; Ami AX(m; Ums)). We proved also with a model checker
that this formula is equivalent to F(Z—mj Am; U(mi AXmsy)) and to F(mq AXms).

We can also generate with parameter synthesis the set of events that occur in mode
transitions between mj and ms. Let us introduce a parameter p. for every event e € E
and define the formula ¢ g as ¥ := /\.cp e — pe. Then, we build the LTL formula:

5.3 Discussion

The analysis discussed in the previous section is quite related to the problem of under-
standing which events cause a mode transition. A deeper look at the problem shows that
it is not what we need.

Example 1. Consider for example the transition system shown in Figure 2 formalized
by ({b1,b2,b3},{e1,e2,e3}, b1 A —ba A —bs, T1), where T7 is a disjunction of con-
juctions representing the set of transitions (for example, the transition from state 000 to
state 100 is represented by —bg A —by A by A eg A —eg A —es A bl A —bj A —bj). In the
figure, the states are labeled by the value of the variables by, bo, b3. Thus for example,
the state 001 assigns b; and b, to false and b3 to true.

Suppose we are interested in the transitions from mode m; = by A—bz and mo = b3,
which correspond to the central and right dashed boxes respectively. The mode transi-
tions are two: 110, 111 and 100, 110, 111. The events that occur in these transitions are
ez and ey, e3. Thus, it seems that the cause of the mode transition is e3 (since it labels
the only incoming transition into ms). However, also es is necessary to reach my, but
not necessarily to reach mq: in some traces es occurs before entering mode m4. Hence
this interpretation is not captured by the definition in Section 5.2.



5.4 Problem Definition

Intuitively, given a transition system (V, E, I, T) and two modes m; and mq, we are
interested in the sets of events in E that are necessary to go from m; to msy. We call
such set of events Minimal Transition Cut Set (MTCS) for m; = ms and we denote
by MTCS(mq,ms) the set of all MTCSs for m; = mgy. For simplicity, we assume
that an event can occur only once. The framework can be extended to consider multiple
occurrences of the same event. Note that: 1) a MTCS for m; = ms should not contain
the events needed to reach m;; 2) the event in a MTCS for m; = ms may occur even
before m.
We formalize the definition of Transition Cut Sets (TCSs) and MTCSs as follows:

Definition 1. F' € TCS(mq,ms2) iff F' C E and there exist a trace o and i,j € N s.t.

1. i < j,0(j) E ma, and o(k) = my forall k, i < k < j (i.e., it contains a mode
transition from m1 to ms);

2. there exists C € MCS(my) such that C N F = () and for each e € C there exists
k, 0 < k < i, such that o(k) = e (ie, F does not contain a MCS necessary to
reach mq);

3. foreach e € E\ C, if there exists k, 0 < k < j, such that o(k) |= e, thene € F
(i.e., F contains all other events occurring until ms).

The set MTCS(my, m2) is the set of cut sets in TCS(my,mz) that are minimal:
MTCS(my,ma) := {F € TCS(my, ms) |VF' € TCS(m1,me) (F' CF — F' =F)}

5.5 Solution Based on Parameter Synthesis

In this section, we reduce the problem of finding MTCS(my,m2) to a parameter syn-
thesis problem. We first compute M CS(m,). We introduce a parameter p. for every
event e € F. Finally, we build the LTL formula:

U(my, mg) := \/ Fim AY /\ Of AX(m1 U(ma ANYH /\ e—pe)))
CeMCS(m1) fec egC

Theorem 1. Givena TS S = (V, E, I, T) and two modes my and myg,
TCS(ml,mg) = {F Q E | S |:3 VF(SP(ml,mg))}
where Y is an assignment to parameters defined as follows: vr(p.) = T iff e € F.

Proof. Given F C E, we prove that F' € TCS(m1, ms) iff S =3 v (W (my, mo)).

Note that, for any trace o of S, o |= vr (¥ (mq, m2)) iff there exists C € MCS(m;)
ando EF(mi AY Njee Of AX(ma Ulma AYHA oo e = vr(pe))))-

Thus, o = vr (¥ (mq,ma)) iff there exists C € MCS(mq), i > 0 such that 0,4 |=
miando,i =Y N Of,00i+1Emi Ume AYHA 40 e = yr(pe)).

Thus, 0 = vp(¥(m1, ms)) iff there exists C' € MCS(mq), i,5 > 0 such that 1)
i<jando,j = miandforallk,i < k < j,o,i Emy;2) 0,1 E Y/\feCOf, 3)
0, jYH A 4o € = vr(pe)). These are the three conditions of Definition 1. In fact, 3)
holds iff o, k |= e for some k, 0 < k < j implies yr(pe)).

Once we obtain the set tcs of Transition Cut Sets, we can compute the minimal ones
(MTCS) as described in Section 4.5.



6 Experimental Evaluation

6.1 Implementation

We have implemented the solution for computing MTCS described in Section 5.5 as a
command in the xSAP tool [2]. A model in XSAP is written in the SMV language; it
can be manually specified or it can be the result of fault injection (the functionality to
automatically extend a nominal model with the fault specification — see [2] for more de-
tails). Modes can be specified as Boolean expressions, or implicitly as a set of discrete
domain state variables (in the latter case, modes correspond to all the possible evalua-
tions of the given variables). The user can either choose to compute MTCS for one pair
of given modes m; and mg or for all pairs of distinct modes taken from a given set of
modes.

For each event to be considered in the analysis, a corresponding parameter is cre-
ated. For each mode my, MCS(m) is computed using parameter synthesis and stored
for the computation of MTCS(m1, ms), for all target modes my. For each pair of modes
(m1, ma), the LTL formula ¥ (mq, ms) described in Section 5.5 is constructed and used
for the parameter synthesis. The output of the parameter synthesis problem is a region,
i.e. a Boolean formula over the set of parameters. Each parameter is replaced by the
corresponding event and the corresponding minimal models are computed and printed.
The command provides an option to print all modes and transitions in dot format.

6.2 Application to the EPS Case Study

We modeled the EPS system informally described in Section 3 in SMV language'. We
separately defined the nominal model and the xSAP fault extension instructions. Then,
using fault injection, we created the extended (faulty) model, on which we ran the MTCS
computation routine. We created two variants of the EPS (nominal) models, a simple
and a complex one. The simple model does not contain internal components of the
channels. The behavior of the model is also simplified by ignoring the possibility of a
channel reset. The complex model, on the other hand, also models cores, a comparator,
a watchdog and the reset action of the channels. We first focus on the simple model to
demonstrate the functionality of our approach. Then, we analyze its scalability using
the complex model.

The simple model is composed of two channels pd and sd, the energy supply and
vehicle bus for each channel pdEnergy, sdEnergy, pdBus, sdBus, and a redundant com-
munication com. The modules representing these components interact as described in
Section 3. In our analysis, we are interested in all events that can cause the system mode
to change, namely the fault events described in Section 3 and the take-over of a channel
in slave mode (i.e., when it fails to receive a torque request from the other channel and
assumes that the other channel has failed). The list of all events for the simple model is
shown in the middle column of Table 1.

We carried out the MTCS analysis on all system modes of the simple model. The
modes, along with their criticality, are shown in Fig. 3. We ran the parameter synthe-
sis routine for all pairs of distinct modes and obtained a set of minimal cut sets over

! Available at https://es-static.fbk.eu/people/vvozarova/Transition Analysis/



Table 1: The events of the EPS system.

le model complex model
energy supply faults pdEnergy.fault pdEnergy.fault
sdEnergy.fault sdEnergy.fault
vehicle bus faults pdBus.fault pdBus.fault
sdBus.fault sdBus.fault
communication faults com.request_to_pd_fault com.can.request_to_pd_fault
com.request_to_sd_fault com.can.request_to_sd_fault

com.uart.request_to_pd_fault
com.uart.request_to_sd_fault
channel faults pd.fault pd.corel fault

sd.fault pd.core2.fault
pd.comparator.compare_fault
pd.comparator.forward_fault
sd.corel.fault

sd.core2.fault
sd.comparator.compare_fault
sd.comparator.forward_fault

channel take-over recovery pd.takes_over pd.takes_over
sd.takes_over sd.takes_over
channel reset recovery pd.reset
sd.reset

the events. For illustration purposes, Fig. 4a shows a few selected transitions between
modes master-slave, slave-master, master-master and slave-slave. The edge labels cor-
respond to the sets of events found by our analysis for the respective transitions. The
graph shows that pdBus.fault is necessary to reach slave-master mode. In case no other
fault occurs, the sd channel takes over in the following cycle. If the communication link
to the sd channel fails at the same time as pdBus, the system reaches slave-master mode
in one cycle. If the communication fails, the sd channel wrongly assumes that pd has
failed and goes to the critical master-master mode.

Notice that if we used the formula presented in Sec. 5.2, that monitors only events
that occur in m;, different cut sets would be found. This is possible because some
faults take one cycle to propagate. For example, there is a sequence of mode transitions
containing transition from master-slave to slave-slave on which no fault occurs. The
sequence is visualized in Fig. 4b. The effect of each fault is visible in the next cycle.
The communication fault causes sd to go to master. The sd vehicle bus fault causes

master-master master-slave master—passive
.................... '

slave-master * slave-slave  : . slave-passive

passive-master . passive-slave : . passive-passive

Figure 3: Possible combinations of channel modes. The green mode (solid border) is a
nominal functional mode. The orange modes (dashed) are modes with degraded nomi-
nal function, but acceptable for a specific duration. The red modes (dotted) are critical
and can lead to erroneous behaviour.
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com.request_to_sd_fault & com.request_to_sd_fault
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Figure 4: Found MTCS (left) and occured events (right) in selected mode transitions.

sd to go back to slave, analogously pd vehicle bus fault causes pd to go to slave. As a
result, only one minimal cut set for master-slave to slave-slave transition is found, and
that is an empty set.

To test the scalability of our procedure, we created a more complex model with more
detailed communication and channel. Specifically, we modeled the redundancy of the
communication by introducing two submodules com.can and com.uart with the same
functionality as the original module. The communication fails only if both submodules
fail. The channel is extended by adding two core modules corel and core2, comparator
and watchdog. The comparator ensures that if a core fails, the channel goes to passive
mode. However, if the comparator is faulty, the channel can either wrongly stay in
the nominal mode or go to passive even when both cores are working correctly. If the
watchdog recognizes that either a core or the comparator is faulty, it resets the channel
to its initial mode. The list of all events is given in the last column of Table 1. The
communication faults are replaced by faults in com.can and com.uart, the channel faults
are replaced by core and comparator faults, and we additionally monitor the reset event
of the channel.

6.3 Scalability Results

We tested the implemented procedure for both simple and complex model. The simple
model contains 10 events and 7 nominal modules (more modules are introduced after
the fault extension). The complex model contains 20 events and 17 nominal modules.
We ran the experiments on a machine with Intel(R) Core(TM) i5 CPU and 16GB RAM.
The results are in Table 2. The results show that the procedure is applicable for models
with many events and complex behaviour. Table 3 shows numbers of found minimal cut
sets and their cardinality for all mode transitions.



Table 2: Outcome of the MTCS analysis for both the simple and complex models. We
report used memory and time, and the number of generated MTCS for all transitions
between distinct modes (72 in total).

simple model complex model
time (s) mem (MB) MTCSs time (s) mem (MB) MTCSs
56.56 392.1 63 621.84 1047.0 354

Table 3: Number of MTCS found for each transition from one mode (left) to another
(top) for the EPS system. Cells with dash ’-’ are self loops on which the analysis was
skipped. Cells with "x’ are transitions with no cut sets found (the transition is not feasi-

ble). The number of cut sets is followed by the cardinality of the sets in parentheses.
simple model

MM MS MP SM SS SP PM PS PP
MM - 1(1) 2(1) 1(2) 2(2) 2(2) 2(1) 2(2) 4(2)
MS| 1) - 2(1) 1) 1(1) 2(2) 2(3) 2(1) 4(2)
MP X X - X X 1(1) X X 2(1)
SM X X X - 1(1) 2(1) 2(1) 2(2) 4(2)
SS X X X 1(1) - 2(1) 2(2) 2(1) 4(2)
SP X X X X X - X X 2(1)
PM X X X X X X - 1(1) 2(1)
PS X X X X X X 1(1) - 2(1)
PP X X X X X X X X -
complex model
MM MS MP SM SS SP PM PS PP
MM - 1(1), 4(1) 1(0) 1(1), 4(1) 1(0) 1(1), 4(1)
1(2), 1(2), 1(2),
2(3) 23 2(3)
MS| 1), - 4(1) 2 (4), 1(1) 4(2) 54), 4(1) 16 (2)
44 205 2(5)
MP X 4(2) - X 4 (3) 1(1) X 16 (3) 4(1)
SM| 1), 1(3), 4 (3), - 1(1), 4(1) 4(1) 4(2), 16 (2)
2(3) 34), 84 1(2), 4(3),
4 (5), 2(3) 8(4)
4(6)
SS | 1), 1(2), 4 (3), 1(1) - 4(1) 4(2) 4(1) 16 (2)
24 2(3) 84
SP X 4 (4), 1(2), X 4(2) - X 16 (3) 4(1)
8(5) 2(3)
PM| 4(1) 4(2), 16 (2) X X X - 1(1), 4(1)
4 (3), 1(2),
84 2(3)
PS| 403 4(2) 16 (3) X X X 1(1) - 4(1)
PP X 16 (4) 4(2) X X X X 4(2) -




7 Conclusions

In this paper, we extended model-based safety analysis techniques to consider the transi-
tion between operational modes in complex systems. We propose new techniques based
on parameter synthesis and symbolic model checking. We evaluated the approach in an
industrial automotive case study describing the architecture of an ECU implementing
multiple safety mechanisms for functional safety.

The directions for future development are manifold: 1. to investigate optimization
techniques to increase the scalability; 2. to extend the method to consider the negation
of events (when an event must not occur in the mode transition, thus going beyond the
monotonic case and MCS); 3. to extend the method to consider multiple occurences of
an event; 4. to extend the method to consider more general notions of causality; 5. to in-
vestigate how ordering of events influences mode transitions; 6. to embed the techniques
in system and safety engineering processes involving the design of fault detection and
recovery components and the specification of safety contracts on components.
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