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Abstract

The paper presents an ongoing research project that uses Logic
Programming, Linear Logic Programming, and their related techniques
for executable specifications and rapid prototyping of Multi-Agent Sys-
tems. The MAS paradigm is an extremely rich one and we believe that
Logic Programming will play a very effective role in this area, both as a
tool for developing real applications and as a semantically well founded
language for basing program analysis and proof of properties on.

1 Introduction

During the last few years Multi-Agent Systems (MAS) [WJ95, NN97] have
certainly been one of the most debated approaches to software development.
The main reason for this great interest is the intriguing way a software system
i1s viewed in the MAS setting i.e. as a set of autonomous, intelligent and
interacting entities that either cooperate to achieve a common goal or that
compete to satisfy personal interests. MAS allow a cognitive vision of the
systemn and provide the ability to abstract from details thus making them an
ideal tool for Software Engineering [Pre94]. Furthermore, MAS technology is
strictly related to two fundamental aspects of modern software products i.e.
distribution of computational entities and resources and integration of legacy
software and data.

Given the high complexity of a MAS, it would be desirable to have a
clear methodology supporting the whole development process, from the first
informal requirement specification to the final implementation. In order to be
applicable, this refinement process should preserve the correctness of the in-
termediate specifications w.r.t. the original requirements. An automatic tool
supporting formal specification methods and providing ezecutable specifica-
tions might greatly help verify correctness constraints when passing through
the different refinement steps. It should allow the user to write, execute and



test specifications of agent behaviour, agent architecture, communication pro-
tocols and interaction between agents. It should also support integration with
existing software products and the automatic translation of the agent specific-
ation into existing programming languages.

To achieve this goal, an approach based on Logic Programming (LP)
would be rather suitable for several reasons. First of all, LP is a power-
ful paradigm for rapid prototyping based on a very high-level syntax. As a
consequence, the use of an LP-based formalism can provide a noteworthy
reduction in software development time, a clear description of software func-
tionalities, easy code maintenance and re-usability. Furthermore, the large
amount of theoretical effort spent studying verification, analysis, and trans-
formation of logic programs could be applied to develop automatic tools that
validate the produced specification.

In this paper we present a framework that includes two different ways
of applying LP-based technologies to the development of MAS. This is di-
vided into two phases, supported by different specification and programming
languages, both of which are based on the LP paradigm. In the preliminary
phase, we use a high-level LP language to specify an application, to simulate
the effect of a concurrent execution of the agents, and to check it for correct-
ness. This phase is useful for the construction and validation of the conceptual
structure of the system. In a subsequent phase, a “traditional” LP language,
extended with communication primitives, is used to produce a more concrete
software prototype, to be simulated and tested in a real distributed envir-
onment. The first phase concerns the study of a particular communication
protocol between agents and the preliminary verification of the agents’ beha-
viour in that context. The next phase provides an effective implementation of
the communication protocol and of the agents’ code, and faces the problem
of the external software integration.

The paper is organized as follows. In the next section we present the
main concepts underlying the MAS paradigm and we explain the choice of
the LP languages that we use to develop MAS. Section 3 presents a general
agent architecture, subsuming some existing models. Some ideas on how an
LP-based specification language for this architecture could be structured are
described in Section 4. Section 5 concerns a methodology for the specification
of a MAS prototype, from informal requirements to implementation. It is
applied on a simple toy example. Finally, Section 6 presents conclusions and
future work.

2 Why and which LP languages for MAS development?

Logic Programming, which in the 1980s had been identified as the best tech-
nology to implement knowledge intensive applications on highly parallel com-
puter architectures, is today relegated to a secondary role in industrial soft-
ware development. Languages like C, C++ and Java are undoubtedly more



known and used than Prolog. Imperative languages are adopted for reasons
of efficiency while object-orientation 1s today perceived as the possible new
unifying paradigm for computing. However, efficiency is not always a real
issue and extensions and integrations of LP with other paradigms fill the gaps
of the first LP proposals. Moreover, some peculiarities of LP make it compet-
itive or even better than imperative or object-oriented paradigms for facing
particular kinds of applications. In particular, as remarked in [IKKS98, Wag97],
LP is closely connected to the design and development of MAS. We will ana-
lyze which features make LP an ideal tool for specifying and prototyping
MAS-based applications after having introduced the concepts of “agent” and
“MAS”.

2.1 A conceptual framework for agents and Multi-Agent Systems

The clearer and the more operationally usable the term “agent” 1is, the more
generally accepted the definition of what an agent and a MAS are will be. At
the moment there 1s no completely satisfactory definition of agent. However,
the weak definition of agency [WJ95] is the most widely accepted among
researchers. According to this definition an (artificial) agent is a computer
system (both hardware or software) characterized by:

e autonomy: agents work largely independent of human intervention;

e social ability: agents communicate with each other, usually by means of
some agent communication language;

e reactivity: agents perceive the external world, including other agents,
and react to the incoming information accordingly;

e pro-activeness: agents are able to show goal-directed behaviour by tak-
ing the initiative to achieve their goals.

A “Multi-Agent System” is a collection of interacting agents which cooperate
and coordinate with each other to achieve personal or common goals.

Agents usually need to symbolically represent the state of the world in
which they are situated and thus are usually provided with an internal state
to contain this piece of information. Beliefs and goals can be first order objects,
explicitly represented in the state. In this case, according to [KS96], we mean
rational agents. Otherwise, what the agents aim at is implicitly coded into
the behaviour they are given.

From a practical applications point of view, the main types of agents
[NN97] can be roughly classified as:

e collaborative agents: emphasize autonomy and cooperation; they are typ-
ically static and large and may have to negotiate to achieve acceptable
agreements;



e personal assistance agents: support and provide pro-active assistance to
users struggling with complex application programs;

e mobile agents: are software processes that can roam wide-area networks
such as the world-wide web, interacting with foreign hosts, acting on
behalf of their owner and returning ‘home’ having achieved their goals;

e information agents: are pro-active, dynamic, adaptive and cooperative
information managers that manipulate or collate information from many
distributed resources.

Even though some authors do define non-autonomous agents (see [LD95]), we
believe that “computational” autonomy is a fundamental property for agents.
It allows us to have awake computational entities in which a programmable
task control, definable at the meta-level, can manipulate different kinds of
behaviour. These kinds of behaviour are determined by the agent’s features
besides autonomy and social ability, thus resulting in various agent classes'.

Reactive agents are characterized by behaviour determined by rules ex-
pressing what has to be done when external input is received. This input can
be either a message from another agent or a signal coming from the envir-
onment and intercepted by the agent’s sensors. Reactive agents do not have
a symbolic representation of beliefs or goals and thus do not perform reas-
oning about them. This does not mean that a reactive agent does not have
an internal state, but only that goal-oriented “intelligent” behaviour is an
emergent property (see [Bro91]).

Pro-active agents exhibit active behaviour to achieve their goals. The dif-
ference with respect to reactive agents is that the actions the agent carries
out are not directly driven by an external event (message or signal), but the
agent can independently decide which action to perform. Also for this agent’s
class goals remain hard-wired into the behaviour of the agents and are not
explicitly represented in their internal state.

On the other hand rational agents have an explicit knowledge base, encom-
passing beliefs and goals. Goal-oriented “intelligent” behaviour is explicitly
“coded” into the agents (a typical example is [RG91]). An agent can usually
exploit many different plans to achieve the goals that have been ascribed to
it. A plan is chosen on the basis of the current beliefs and goals of the agent
and can be dynamically modified if the beliefs and/or the goals change.

2.2 Logic Programming and Multi-Agent Systems.

A language for specification and programming of agents must be able to ex-
press the ideas underlying the concept of agent and to allow an easy model-
ling of them. The following observations naturally lead us to the choice of LP
paradigms:

!The classification is not standard, but it is an attempt by the authors to identify
some interesting classes of agents.



o MAS execution: the evolution of a MAS consists of non deterministic
succession of events; from an abstract point of view an LP language is
a non deterministic language in which computation occurs via a search
process.

e Meta-reasoning capabilities: agents need to dynamically modify their
behaviour so as to adapt it to changes in the environment. Thus, the
possibility given by LP of viewing programs as data is very important
in this setting. This feature is useful also for integrating external het-
erogeneous software; this is a fundamental aspect in MAS applications.

e Rationality and reactiveness of agents: the declarative and the opera-
tional interpretation of logic programs are strictly related to the main
characteristics of agents, i.e., rationality and reactiveness. In fact, we
can think of a pure logic program as the specification of the rational
component of an agent and we can use the operational view of logic
programs (e.g. left-to-right execution, use of non-logical predicates) to
model the reactive behaviour of an agent. The adoption of LP for com-
bining reactivity and rationality is carefully described in [KS96].

The above observations represent a good starting point to consider LP as
a theoretical and practical foundation for the designing and development of
MAS. However, as already remarked, traditional LP languages do not fulfill
all requirements arising during the MAS development. In particular, though
useful to specify a single agent (e.g. [KS98]), they do not provide facilities for
modelling collections of distributed and communicating agents. In this paper
we propose two extension in this sense:

e from a theoretical point of view, we will consider more powerful spe-
cification languages, namely linear logic programming languages;

e from a practical point of view we will propose new extensions of LP-
based systems with features specific to the development of MAS.

Linear Logic Programming for MAS specification. Given the com-
plexity of MAS, a good specification language should help specify many dif-
ferent operational aspects in a uniform and natural way. Extensions of Logic
Programming based on Linear Logic seem particularly well-suited for this
task. Linear Logic [Gir87] enriches the operational interpretation of classical
logic in that formulas can be treated as resources. This idea has been in-
corporated in recent extensions of Logic Programming, the so-called Linear
Logic Programming (LLP) paradigm [Mil95]. Tt has been successfully ap-
plied to formalize important programming aspects such as data management
[HM94, BDM97], object-orientation [AP90, DM95, BDLM96], state-based
computations [Chi95], and aspects of concurrency [Mil93, MMP96].

These features make LLP a suitable framework for specifying distributed
systems and agent systems in particular. The notion of state in LLP has a



natural correspondence with the notion of state and beliefs of an agent. The
possibility of using resources during a computation is a natural means to
support dynamic changes in the behaviour of an agent. Besides being very
powerful specification languages, linear logic-based frameworks can also be
used as programming languages as shown in [AP90, HM94, HPW96, Del97].

For our purposes, we will adopt the language Exp¢ proposed in [Del97]. It
is based on a particular subset of Forum [Mil96], a presentation of higher-order
linear logic in terms of goal-driven proofs. £, extends previous proposals
like [AP90, HM94] and is defined in a higher-order setting, thus facilitating
the development of applications based on meta-programming. In Sections 4
and 5 we briefly discuss the role of £,p in the specification methodology of
our framework.

Logic Programming for MAS implementation. Even though it is ex-
ecutable, the LLP specification is too high level to produce a final agent-
based software product. In fact, in writing an £,y MAS specification, some
important issues must be neglected. For example, an interface between an
Enny specification and existing software cannot be provided since this issue
is abstracted away at the specification level and the integration of external
modules and data is not supported by the language. Moreover, performance
reasons suggest using a more efficient language than & for the actual im-
plementation of a MAS prototype.

We are addressing these issues by means of CaselL P (Complex Application
Specification Environment based on Logic Programming [MMZ97, MMZ98]),
a prototyping tool for agent-based software realized in the Constraint Lo-
gic Programming language ECLiPSe [ACDT95]. Our tool provides an agent-
oriented extension of ECLiPSe that is used to build a more concrete imple-
mentation of the MAS. Our implementation language has a number of pro-
gramming features making the resulting prototype more efficient and easier
to integrate with other technologies. CaselP is described in Section 3, where
it 1s analyzed as a simplified realization of a more general and flexible archi-
tecture.

3 A general Multi-Agent System architecture

Agent architectures should be flexible enough to support the amalgamation
of the different kinds of agents we have listed in Section 2 so as to give origin
to hybrid agents with different degrees of reactivity, pro-activeness and ra-
tionality. Based on well-known agent architectures we propose a framework
where reactive, pro-active and rational components are integrated, as shown in
Figure 1. Dotted arrows represent the atomic actions that the various compon-
ents can perform, while thin, continuous arrows represent the input that the
components use to perform their actions. The environment, which is sensed
through sensors and modified through effectors (the thick arrows at the top
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Figure 1: The general architecture of an agent.

of the figure) is outside of the rectangle containing the agent’s components.
Interaction with other agents occurs via asynchronous point-to-point message
passing. More precisely, the main components of an agent are:

The event queue. Events can be either “communication” or “perception”
events. The former consist in the reception of messages coming from an-
other agent, while the latter consist in the perception of the environment
through sensors.

The meta-goal queue. An agent can respond to external stimuli or to state
changes in a simple and immediate manner, but it can also respond in
a more complex way by identifying a meta-goal which requires some
sophisticated plan to be achieved. The meta-goals generated by the re-
active and pro-active components are put into a meta-goal queue and
are handled by the rational component, which can add meta-goals to the
meta-goal queue as well. This happens, for example, when the rational
component interrupts its execution and records a meta-goal describing
what 1t has to do later.

The knowledge base. It reflects the beliefs of the agent at a given moment.
It must be expressed in a language (such as first order logic ground



facts) that the rational component is able to perform high level reasoning
on. In the following we will refer to it as “state” or “knowledge base”
indifferently.

The reactive component. It bases its behaviour on event-condition-action
rules. The reaction cycle of this component is:

1. pick one event from the event queue and remove it;
2. check the current state;

3. according to the current event and the current state

e update the state and/or
o perform actions on the environment and/or
e send messages to other agents and/or

e put one or more meta-goals into the meta-goal queue.

The action of putting a meta-goal into the meta-goal queue is performed
when the reaction to the event needs to be a complex task which requires
some sort of reasoning. It represents a link between the reactive and the
rational components.

The pro-active component. This component acts similarly to the reactive
one, but does not take the event queue into account. Its behaviour is
defined by a set of condition-action rules. The pro-action cycle is the
same as the reactive component one, except for picking one event from
the event queue and considering it during condition evaluation.

The rational component. This component applies some form of reasoning
to achieve its current meta-goal. Its execution cycle is:

pick one meta-goal from the event queue and remove it;

check if the meta-goal still needs to be executed;

if 1t 18, construct one or more plans to satisfy the meta-goal;

select a plan from the possible alternatives;

U= W N =

execute a certain number of atomic actions of the plan.

After the meta-goal has been chosen (step 1), a control is needed to
verify if it must still be executed (step 2). In the agent’s current situ-
ation, which is determined by its knowledge base content, performing
the meta-goal may have become useless. After the agent’s rational com-
ponent has executed a certain number of atomic actions of the plan
(step b), the meta-level task control can decide to interrupt it. A meta-
goal, representing the state of the plan execution, is then posted in the
meta-goal queue to resume later on.



The execution of these three components is a question of the task control oper-
ating at the meta-level and regulating their interactions. The policy might vary
from a very constrained sequential execution of the three activation cycles to
a completely asynchronous one. In any case strategies to ensure the coherence
of the state must be provided, together with some time-constrained evaluation
method of the condition in event-condition-action and condition-action rules.
This evaluation must not take too long, otherwise the advantage of the imme-
diate action execution given by event-condition-action and condition-action
rules is lost.

3.1 Four particular cases of the general architecture

The general architecture presented above should be expressive enough for
most of the software agent applications and 1t is the final target of our ongoing
research. Below some existing proposals related to this general abstract model
are presented.

Schroeder and Wagner’s Vivid Agents [SW].

Vivid agents are software controlled systems whose state comprises the men-
tal components of knowledge, perceptions, tasks and intentions and whose
behaviour is represented by means of action and reaction rules. The main
functionalities of vivid agents regard handling perception and communication
events via a perception system, updating and reasoning on a knowledge sys-
tem, and representing and performing reactions and actions in order to react
to events and to generate and execute plans.

It is easy to see that most of the features of the general agent architecture
are present in Schroeder and Wagner’s vivid agent. The pro-active behaviour
18 closely connected to the rational one and when there is no event in the event
queue, the agent goes on executing the actions of the current plan. The vivid
agents’ reactive and rational components act concurrently by interleaving the
plan execution with the reaction to incoming events. The two components
work over two distinct copies of the knowledge base. Strategies are adopted to
ensure the coherence of concurrent actions and the coherence between copies
of the knowledge base.

Kowalski and Sadri’s Unified Agent Architecture [KS96].

Kowalski and Sadri try to combine the rational and reactive behaviour of an
agent by giving a complete proof reduction procedure based on the observa-
tion that in many cases it is possible to replace a goal (G by an equivalent set
of condition-action rules R. Moreover, they face the problem of controlling
the reasoning process so that it works correctly with bounded resources. The
resulting execution cycle is the following:

1. observe any input coming from the environment at time 7T7;

2. record all input;
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3. resume the proof procedure of the current goal statement by first propagat-
ing the input?;

4. continue applying the proof procedure for a total of n inference steps;
5. select an atomic action respecting time constraints;

6. execute any such action and record the results.

This architecture and the more generic one described previously share the
same aim of allowing an agent to be both reactive and rational. While in the
general architecture the rational and reactive components are clearly separ-
ated, here they are collapsed into a single entity, whose behaviour is determ-
ined by the proof procedure and the resource bounding. The more the agent
is reactive, the less 1t 1s rational, and vice versa. This probably means less
flexibility of use, but easier implementation of the architecture.

Wooldridge’s Computational Multi-Agent System [Wo092].
In this approach the behaviour of an agent is described by the following
standard cycle:

1. interpret any message received;

2. update beliefs according to previous action and message interpretation;
3. derive deductive closure of belief set;

4. derive set of possible messages, choose one and send it;

5. derive set of possible actions, choose one and apply it.

Wooldridge defines two execution models for multi-agent systems: in the syn-
chronous one all the agents in the system begin and complete an execution
cycle together; in the more realistic asynchronous model, where execution is
interleaved, at most one agent is allowed to act at any fixed point of time.

Wooldridge’s architecture is a simplification of the general one. As in
Casel P described below, events are always communicative ones, and agents
are reactive ones. They receive a message and react to it, without having an
explicit representation of their goals and without adopting plans to achieve
them.

2The propagation of inputreplaces the current goal statement with a simpler one,
taking into account the observed input and the integrity constraints characterizing
the agent’s behaviour.
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Mavrtelli, Mascardi and Zini’s CaseLP [MMZ97, MMZ98].

Casel P (Complex Application Specification Environment based on Logic Pro-
gramming) is a prototyping and simulation environment for agent-based soft-
ware applications developed at the Computer and Information Science De-
partment of the University of Genova (Italy).

Casel P agents communicate via point-to-point message passing, with mes-
sages written in KQML [MLF95]. There are two types of agents in the model:
logical agents, which show capabilities of complex reasoning, and nterface
agents which only provide an interface between external modules® and the
agents in the system. The agents share a common architecture whose main
components are:

e an updatable set of facts, defining the state of the agent;
e a fixed set of rules,; defining the behaviour of the agent;
e a mail-box for public messages and

e an interpreter.

The interpreter is a peculiarity of interface agents. It translates the requests
for services that are provided by external modules into the appropriate pro-
cedure call and translates the results back into a syntax comprehensible to all
the agents in the system.

At the moment the system allows us to define awake reactive agents: every
agent is activated at the beginning of the prototype execution and remains
active until the end of the simulation. The behaviour of the agents consists in
the following cycle:

1. pick one message from the mail-box and remove it;
2. select one rule whose head unifies with the current message;
3. prove the body of the rule.

The last step is carried out by means of the ECLiPSe interpreter. The atomic
actions of updating the state and sending messages are carried out in the
Casel P setting by the assert_state, retract_state and send predicates which
operate in a safe way.

Also CaselP agents, like Wooldridge’s, are reactive, still adopting goal
reduction to find out what to do. The event queue is represented by the
mail-box and contains only communicative events. Even though CaselP is
currently a simplification of the general architecture described above, it has
the advantage of explicitly taking into account the integration of external
software carried out by the interface agents.

3 External modules are usually legacy passive service providers to be integrated

into the MAS.
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Casel P is an ongoing project that we plan to extend and improve on the
basis of new and more demanding applications. However, the present im-
plementation has already been successfully applied to some real-world case
studies. Two of them were related to transportation and logistic problems
[MMZ98]. One was developed in collaboration with F'S (the Ttalian railways)
and the other one was developed with Elsag Bailey, an international company
which provides service automation. CaseLP was successfully adopted for a
reverse engineering process in an application concerning the retrieval of med-
ical information in distributed databases [Per98]. Finally, the combination of
agent-oriented and constraint logic programming techniques has been used to
solve the transaction management problem on a distributed database [MM].

4 A Multi-Agent System specification language

Logical languages have often been adopted to specify agents and Multi-Agent
Systems [LLLT95, Rao96, MTF97]. In this section we propose the adoption
of Linear Logic Programming as a high-level specification language, and list
the reasons that make LLP a very suitable paradigm for these kinds of ap-
plications.

Agents combining reactive, pro-active and rational behaviour, such as the
ones previously outlined, can be described in an LP setting by a tuple con-
taining:

e the current state;

the event and meta-goal queues;

the event-condition-action rules driving the behaviour of the reactive
component;

the condition-action rules related to the pro-active component;

the high level rules defining how the rational component constructs and
executes plans.

We call this tuple a configuration of an agent. If we assume that the various
rules defining the reactive, pro-active and rational behaviour do not change
over time, they can be left out of the agent’s configuration. The configuration
of a MAS can simply be defined as the set of all the agents’ configurations.

When an agent performs an action in a certain MAS configuration, the
whole MAS reaches another configuration. If, for example, the action is send-
ing a message, the receiver of the message will change its configuration since
its event queue changes, thus leading to a MAS configuration change. A con-
figuration change is called transition.

The execution of a MAS can be described as the sequence of the various
configurations reached by the MAS. We can take all the configurations into

13



consideration, but we can also concentrate on configurations that are reached
after a complete execution cycle by a certain agent. This would involve many
intermediate transitions, one for every atomic action performed by the agent.
We could even consider only the configurations which are reached when every
agent in the system has completed at least one cycle of execution. The gran-
ularity of the MAS execution changes according to what we are interested in
observing.

4.1 The role of Linear Logic Programming

Linear Logic Programming allows us to characterize the form of computation
previously outlined at a high level of abstraction. In fact, as briefly discussed
in the introduction, LLP provides us with connectives to express concurrency
and synchronization primitives. When combined with some representation of
the agents, these primitives may be useful for simulating and testing a given
MAS specification. In order to give an idea of the approach based on LLP,
and in particular on the &, fragment, it is necessary to outline what a linear
logic program looks like.

The key point is to extend the syntax of clauses as defined in standard
Logic Programming so as to provide multi-conclusion clauses. More precisely,
Enng-programs are collection of clauses of the form:

Cond = A1 ®...R®A, o— Goal,

where the linear disjunction A; % ... % A, corresponds to the head of the
clause (A;’s are atomic formulas), Cond is a goal representing the guard of
the clause, and Goal is a goal representing the body of the clause. For the
sake of the reader, we have limited our considerations to conditions defined
by Horn programs.

The main peculiarity of such clauses is that the resources (formulas) they
need in order to be applied are consumed right after their execution. In a sense
multi-conclusion clauses resemble conditional multiset rewrite rules. Formally,
given a program P and a multiset of atomic formulas {2y, a resolution step
{20 — £ can be performed by applying a ground instance C' = A; ®... B
A, o— (G of a clause in the program P, provided:

e the multiset © consisting of the atoms Ay, ..., A, is contained in §2y;
e the condition ' is satisfied in P;

e (2 is obtained by removing © from {2y and by adding G to the resulting
multiset.

In the &ppp-interpreter, instantiation is replaced by unification. At this point,
since GG may be a complex formula, the search rules (i.e., the logical rules
of the connectives occurring in G) must be exhaustively applied in order to
proceed.

14



Such derivations can be used to model the evolution of a collection of
agents. For instance, let Agy,..., Ag, be atomic formulas describing a collec-
tion of agents. The clause

Cond= (Ag1 B ... B Ag,o— Ag] B ... B Ag)),

describes the evolution of the state of the agents (e.g. Ag; evolves in Ag})
provided the condition C'ond is satisfied. New components can be added to
the current state by using goal-formulas of the form G; ® G5. In fact, the goal
G1 % G5, A simply reduces to Gy, Gs, A. This description, which is poten-
tially non-terminating, can be used to observe the evolution of the simulated
agent system, or, by using backward analysis, to detect potential violations
of the specification requirements.

4.2 A syntax for the general architecture

For the sake of clarity, introducing an abstract, high-level and readable syntax
to describe the behaviour of agents and to specify their different components
(the reactive part, the pro-active one, and the rational one) will suffice.

As a matter of fact, the syntax we present has a direct mapping onto
linear logic formulas, therefore the translation from the high-level language
into linear logic clauses could be provided automatically through a compil-
ation process. The only delicate point concerns the implementation of some
kind of mechanism that guarantees the right interactions among the different
components of an agent and among the agents in the system. At the moment,
however, we have not committed ourselves to a particular model of task con-
trol, thus this mechanism has not been specified and the syntax we present
below must simply be considered as an example?.

We start the specification of the agents’ components from the reactive
part. This is specified through simple event-condition-action rules, which can
be written as follows:

on event event

check st_query
update st_update_list
perform action_list
try meta-goal list

The meaning of each line is in agreement with the description in Section 3.
In addition, sub-languages must be provided to describe events, state queries
and updates, actions, and meta-goals. We do not deal with these issues here,
but in Section 5.1 we do give an example. The syntax for the pro-active part

*The code of the examples given in the paper is available by anonymous ftp at
the address ftp://ftp.disi.unige.it/pub/person/BozzanoM/Terzo.
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i1s similar to the previous one except for the first line, which is not present
since the pro-active component does not perceive external events. Lastly, the
syntax for the rational component might look like

on goal goal
check st_query
generate plan

A simple case-study. We consider a syntax for the case study which is
explained in more detail in Section 5.1. The case study involves agents which
show a purely reactive behaviour. In fact they simply react to incoming events
by updating their state and generating new events depending on the current
state. Events only include sending and receiving messages, and the commu-
nication protocol is based on asynchronous message passing: each agent may
be thought of as owning a mailbox for incoming messages. In this case, we can
specialize the syntax previously described for specifying the agents’ behaviour.

on receiving message

check st_query
update st_update_list
send message_list

In the syntax above, message is an incoming message, st_query is a query on
the current state, st_update_list is the list of state updates, and message_list
is the list of new messages sent by the agent.

Each message can be an “ask” (a service request sent to another agent) or
a “reply” (a response sent for a given request). Accordingly, we will represent
a message with a term like

type((content(C))
(sender(.5)),
(receiver(R)))

where type may be ask or reply. We will also assume that every agent has
a simple state consisting of ground facts, and a simple language for state
modification based on the primitives assert(Fact) and retract(Fact).

5 Towards a specification methodology

In this section we analyze the different phases which make up the specification
methodology of our framework, trying to outline the different contributions
given to the development process by each phase. OQur approach can be com-
pared with the classical development cycle for software prototypes given in

[Predd].
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1. Identification of the set of agents and their interconnecting
structure. In this step the specification developer decides the static
structure of the system and identifies the kind of agents the application
requires. He/she also chooses the interconnection topology, i.e. which
communication channels will be needed among them. This phase is quite
informal, allowing different choices in the number and kind of agents
required.

2. Choice of the communication protocol among each pair of com-
municating agents. This step consists in choosing the communication
protocol between each pair of connected agents. As for the previous
step, there is room for different choices, depending on what kind of
information the agents need to exchange and on the synchronization
mechanism.

3. Specification of the behaviour of each agent in the system.
This step consists in specifying the behaviour of the agents, namely
what each agent is able to do and how it performs its tasks. This is
where Linear Logic Programming comes into play. This is the first phase
that achieves some degree of formalization, by building an executable
specification written in &p;. It is important to notice that the whole
process including steps 1 through 3 may be repeated more than once,
either because the testing phase (step 4) reveals some flaws in the initial
choices, or because the developer wishes to refine the specification by
using a greater degree of granularity. The concept of granularity of a
specification is fundamental. The developer often needs to study the
execution of a Multi-Agent System at different levels of abstraction,
progressively refining the specification as he/she is convinced of the
design correctness. The &,p; specification language seems to be quite
suitable for this kind of design.

4. Testing of the system. This phase concerns testing the system in
order to verify how much the prototype corresponds to the desired re-
quirements. This may lead to changing, improving or refining the design.
Using a logical language like £,p; in this phase has great advantages
since:

e It is possible to evaluate a goal step by step, following the evolution
of a particular system in detail. Various abstraction levels are pos-
sible, for instance observing only the messages exchanged between
the agents, and/or observing the behaviour of a single agent, and
SO on.

e Through backtracking it is possible to follow all the different evol-
utions of a given system, depending for example on the order of
arrival of the various messages. It is therefore possible to simu-
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late a distributed environment, where the order in which messages
arrive may not correspond to the order in which they were sent.

e It is possible to verify whether a particular computation may be
carried out, or, more importantly, that every computation starting
from a given configuration leads to a final state satisfying a given
property, independently of the order of arrival of the messages and
the order of execution by the agents. To this aim 1t suffices to run
the desired computation together with a goal negating the desired
property of the final state, and then to check whether the global
goal fails.

e It may be possible to employ standard techniques for proving pro-
gram properties that have been developed in the logic programming
context. Extending these techniques to the linear logic setting is
part of our future work (see Section 6).

5. Implementation of the prototype. In this step each agent specific-
ation 1is firstly translated into executable code, then the MAS is built,
creating a unique executable specification embedding all the defined
agents. This step and the following one can be dealt with using CaselP
as a prototyping environment. Casel P provides facilities for automat-
ically translating an agent specification written in an extended logic
language into an executable piece of code. It also allows the user to load
these agents into a unique Multi-Agent System for further execution.

6. Execution of the obtained prototype. The last step tests the im-
plementation choices, checking if the system behaves as expected. Any
specification error or misbehaviour discovered in this step may imply
a revision of the choices made in the first 3 steps. CaselP allows us to
initialize the mail-boxes of some agents with initial messages and then
starting the MAS execution. In this phase CaselP uses a round-robin
scheduler which recursively activates each agent in the MAS. The activ-
ated agent inspects 1ts mail-box looking for new messages and manages
them according to the rules defining its reactive behaviour. When an
agent has managed its messages, the scheduler passes to the following
one. The scheduler activity stops when all the mail-boxes of the agents
are empty. It is possible to monitor the execution of the system thanks
to on-line and off-line text visualization of the exchanged messages. The
Casel P Visualizer [Ped98] provides the user with an interface which al-
lows him/her to initialize the system, integrate external software, start
and monitor the execution in a user-friendly graphic fashion.

5.1 An example: student data retrieval

We present a very simple example in which agents, based on the Casel P
architecture, are described by the syntax presented at the end of Section 4.
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This will serve as an illustration of the specification methodology previously
presented.

The problem. Suppose a user wants some information about students and
marks of some courses at the University of Genova. The possible queries
include the best, worst and average marks of each course, and the names of the
students who got the marks. An external database contains this information.
Three C procedures, min, max and avg, used to evaluate the minimum,
maximum and average element of an integer array, could be linked to produce
the final system.

This problem can be faced by developing a Multi-Agent System according
to the given methodology. The third and fourth steps are described rather
carefully, while the other ones are treated quite briefly. More details can be

found in [MMZ98].

Step 1: identification of the set of agents and their interconnecting
structure. An application of this type could be simulated using four agents:
user, a logical agent which asks for information about the courses; course
information provider (cip), a logical agent which receives the user request
and executes it; mathematical function provider (mfp), an interface agent
which is interfaced with the C procedures min, max and avg, and course data
provider (edp), an interface agent which is interfaced with the database of
University courses.

User is capable of sending requests to and receiving answers from cip
which is the “core” of the system. It exchanges messages with both interface
agents that are only able to communicate only with cip. Figure 2 depicts the
structure of the MAS.

Figure 2: Agents in the “Student data retrieval” example.

Step 2: choice of the communication protocol among each pair of
communicating agents. Communication takes place via the protocol de-
scribed at the end of Section 4. Each pair of agents communicate using asyn-
chronous message passing, where a message can have ask or reply type.
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Step 3: specification of the behaviour of each agent in the system.
The behaviour of the agents can be explained in natural language as follows.
User simulates an external user, asking questions to cip and receiving answers
from it. Cip receives a request from the user and behaves on the basis of the
type of request. If, for instance, user wants to know the best, worst, or average
marks of a course, cip asks edp to get the list of marks for that course. When
the answer arrives, it asks mfp to evaluate the maximum, minimum or average
value of the list. The result provided by mfp is then sent back to user.

This kind of behaviour by the cip agent is illustrated by the clauses in
Figure 3, written according to the high-level syntax presented in Section 4.
The first clause applies when cip receives a message requesting the best mark

on receiving

ask(content(best_mark(Course)), sender(S), receiver(cip))
check
req-id(Id), Id1 is Id + 1
update
retract(req-id(Id)), assert(req-id(1d1)),
assert(associated(Id1, best_mark(Course),S))
send
ask(content(marks(Course, 1d1)), sender(cip), receiver(cdp)).

on receiving

reply(content (marks(Mark_List,Course, Id)), sender(cdp), receiver(cip))
check

associated(Id, best_mark(Course),S))
update

send
ask(content(max(Mark_List,Id)), sender(cip), receiver(mfp)).

on receiving
reply(content (max(Max,Id) sender(mfp), receiver(cip))
check
associated(Id, best_mark(Course),S))
update
retract(associated(Id, best_mark(Course),S))
send

reply(content (best_mark(Course, Max)), sender(cip), receiver(S)).
Figure 3: Code for cip using the abstract syntax for agents.

of a given course. This request is managed by sending a message to cdp
asking for the list of marks for that particular course. In order to keep track
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of pending requests, the cip agent associates every request with a unique
identifier and stores this piece of information in its internal state. The second
clause applies when the corresponding reply from cdp arrives. By consulting
its internal state, cip realizes that the request was to calculate the maximum
mark of the list it received from edp, therefore it contacts mfp to carry out this
task. When the corresponding answer from mfp finally arrives, cip consults
its internal state and forwards the result to S (third clause). The remaining
clauses for cip and for the other agents in the system can be written similarly.

Remark. To get an idea of how a program written in this high-level syntax can
be mapped into a linear logic program, we present the translation of the first
clause of Figure 3. It must be recalled that a linear logic program is basically
a collection of conditional multiset rewrite rules. The multi-conclusion clause
for the considered rule is defined as follows:

[dlisIld +1 =
on_receiving(ask(content (best_mark(Course)),sender(3), receiver(cip))) %
ag(cip) Breq-id(ld) o—
ag(cip) % reqid(Id1) % associated(Id1,best_mark(Course),3))%}
send(ask(content(marks(Course,Id1)),sender(cip),receiver(cdp)).

The effect of such a clause is to rewrite the components of the current global
state in agreement with the specification associated with the considered event.

Note that agents and events are represented by atomic formulas. The con-
dition defined in the check part of the rule is handled in a special way. More
precisely, the part of the condition which does not involve the global state
(e.g. Id1 is Id+1) becomes a condition in the corresponding multi-conclusion
rule, whereas, the part that involves the global state (e.g. req-id(Id)) becomes
part of the head of the clause. In this way, req_id(Id) is automatically removed
from the current state and substituted by req_id(Id1). The new information
associated(..) and the new goal send(..) are asserted by simply including them
in the body of the rule. The event on_receiving is generated as soon as an
agent removes a message from its mailbox. We can specify this behaviour as
follows:

receive(Msg, Ag) % mailbox([Msg|T], Ag) % ag(Ag) o—
ag(Ag) % on_receiving(Msg) 2 mailbox(T, Ag).

Again, note that the content of the mailbox is modified by rewriting the old
list of messages into the new one.

The system 1s completely specified once the agents in the system and the
initial state of each agent are specified. For instance, in the case of the cip
agent, we have to specify what the initial value of req_id is. The prototype
can then be tested starting from a particular configuration, i.e., a particular
initialization of the agents’ mail-boxes. Note that more than one agent can
share the same behaviour. We should assume, for example, that more than
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one cdp agent 1s available to simulate a replicated database. In this case the
behaviour is defined just once.

Another feature of this specification framework that we have previously
insisted on is the possibility to refine the specification using different levels of
abstraction. For instance, in this particular example it would be possible to
firstly define the behaviour of the cdp agent in a very simple manner without
implementing the actual mechanism which accomplishes a particular task.
The set of clauses for this purpose would look like

on receiving
ask(content(marks(course,ld)), sender(S), receiver(cdp))

send
reply(content(marks(course, [28,30,...])), sender(cdp), receiver(S)).

for each course under consideration. Once the system has been tested and
the interactions among the agents has been proved correct, the specification
might be refined by describing the exact manner in which cdp accesses the
database and finds an answer to a query.

Step 4: Testing the system. It is possible to test the system and verify
its correctness with respect to the given requirements by executing the spe-
cification written in the previous step. To this aim, the &5 interpreter can
be used to execute the code for this example. The user can set up an initial
configuration, made up of some agents and some initialization messages, and
follow how one computation proceeds. He/she can impose that the end of the
computation correspond, for instance, to the situation in which all messages
have been processed by the agents. He/she can then observe the final config-
uration, i.e. the agents and their corresponding states. Variable bindings, as
usual in LP, can return values as well. For instance, it is possible to prove a
goal like the following (“||” means concurrent execution):

ag cdp || ag cip || ag user || ag mfp ||
req-id cip O ||
send(ask(
content (best_mark(data_base),Best),
sender(user),
receiver(cip)),cip)

The output of the simulation is the final configuration

ag cdp || ag cip || ag user || ag mfp ||
reqad cip 1

together with the variable binding Best = 30.

22



The execution of a goal may be observed at various levels of granularity.
The interpreter supports both a trace level, which allows us to observe low
level details of the computation, and a debug level, which allows us to observe
the interactions among the agents.

Another possibility is to exploit backtracking in order to follow all pos-
sible computations starting from a given configuration. By doing so a user can
verify how the order in which the messages are exchanged affects the computa-
tion (this is crucial in distributed simulation). It is possible to verify whether
a given property is satisfied independently of all possible orders of message
exchanging and of all possible solutions for variable bindings. This is done by
negating the property to be satisfied and proving that the corresponding goal
necessarily fails. For instance, the failure of the following goal

(ag cdp || ag cip || ag user || ag mfp ||
req-id cip O ||
send(ask(
content (best_mark(Course,Best),
sender(user),

receiver(cip)),cip)),
Best < 28.

proves that for each course the best mark is greater or equal to 28.

Step 5: Implementation of the prototype. In this step we use CaselP to
describe the agent behaviour by means of logical rules. Figure 4 shows some
fragments of the cip agent code. The correspondence between this code and
the first clause of Figure 3 i1s quite easy to see. Activation defines what the

Activation
activate :- receive_all.

Initial state
request_identifier(0).

Behaviour
ask(content(best_mark(Course)), sender(S), receiver(cip)) :-
req-id(Id), retract_state(req-id(Id)), Id1 is Id + 1,
assert_state(req-id(Id1)),
assert_state(associated(Id1, best_mark(Course), S)),
send(ask( content(marks(Course, 1d1)), sender(cip), receiver(cdp)), cdp)

Figure 4: Code for cip in CaselP.
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agent does when it is activated by the system scheduler i.e. it gets all the
messages in its public mail-box. Initial state defines the initial state of
the agent. Behaviour comprises the logic rule describing how to reply to a
“best_mark” query.

In CaselLP implementation, cdp and mfp have been realized as interface
agents. They share simple behaviour and are interfaced respectively to an
ECLiPSe database and a C module via two different interpreters.

Step 6: Execution of the obtained prototype. CaselP provides a tool
(CaselP Visualizer) that allows the user to load agents and external modules
into the simulation environment and to visualize the execution of the MAS by
means of a simple GUIL. In our example the four agents, the ECLiPSe database
and the C module are first loaded.

To start the simulation the mail-boxes of some agents are to be initial-
ized, putting some messages into them. The CaselP Visualizer provides an
appropriate window for this aim, as illustrated in Figure 5.

7] Simulation
SPECIFY THE INITIAL MESSAGE
MESSAGE TYPE

4 ask
~ tell

LANGUAGE

ONTOLOGY

SENDER

RECEIVER

|||||L

CONTENT

S

Figure 5: CaselP Visualizer: initialization window.

While the execution is running, windows for each loaded agent appear on
the screen. Information about state changes and exchanged messages is visu-
alized for each agent. Figure 6 presents a snapshot of the MAS execution.
After the execution has ended, it is possible to see a more detailed visualiz-
ation of the occurred events, as illustrated in Figure 7. Exchanged messages
and state updates are shown for each agent. Clicking on an event, 1t is possible
to see more details, as shown in Figure 8. The figure represents an answer
received by the agent user. Both the on-line and off-line visualization modal-
ities provided by the CaselP Visualizer are useful to monitor and verify the
behaviour of the prototype, in order to check whether it behaves correctly.
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Figure 7: CaselLP Visualizer: off-line tracing of execution.

6 Conclusions and future work

In the paper Agent Based Software Engineering [Woo97], M. Wooldridge con-

siders

“the problem of building a Multi-Agent System as a software
engineering enterprise [involving three main issues]: how agents
might be specified; how these specifications might be refined or
otherwise transformed into efficient implementations; and how im-
plemented agents and Multi-Agent Systems might subsequently be

verified.”

The aim of our paper was to suggest a potential answer to these three ques-
tions, assuming that the target of the implementation is a MAS prototype
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= event_details
i

fz) EVENT DESCRIPTION

Agent user —IUK
Receive a reply: best_student /2 from agent cip
Event Number: 18 A

Time: 13

Predicate:

receive(reply(content{best_student{data_bases [[fossi,andrea],
[berti,anna]])), language(eclipse), ontology(students), sendet{cip),
receiver(user)))

Figure 8: CaselLP Visualizer: details of an event.

instead of a final software product. In a prototype we do not need great
efficiency, therefore it can be realized using more formal but less efficient
technology. The role of a declarative language like Logic Programming is im-
portant. We can keep the first specification closer to implementation and this
can be very useful in automatizing the whole prototyping process.

In fact, we use two logical languages to specify a Multi-Agent System at
different refinement levels. The first language is Linear Logic Programming,
suitable for an initial stage of the specification process. It can be easily used to
describe the behaviour of systems where agents need to synchronize and run
concurrently. An important aspect that is neglected in the LLP specification is
the actual integration of external software. The behaviour of external modules
is in fact simulated by LLP agents. We can directly execute the LLP abstract
specification by means of the &5 interpreter and in this phase we can prove
that the MAS is correct with respect to some original requirements expressed
as a set of linear formulas.

The LLP specification is subsequently transformed into a more efficient
LP program. Thanks to the meta-programming techniques that are easy to
use in a logic programming paradigm, LP provides a tool for integrating
existing external software modules in quite an easy, natural way. LP seems
to be appropriate for a second phase of the specification and prototyping
process, when the developer has an idea of the general mechanisms regulating
the system under development and he/she wants to actually integrate some
external modules. The LP specification is executed by means of the Casel P
prototyping environment. CaselP allows us to follow what happens to the
agents as if they were really distributed communicating entities. It gives the
feeling of how MAS execution could go on by allowing us to change the initial
conditions (the initial messages put into the mail-boxes before the simulation
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starts), and providing a certain nondeterminism by randomly delaying the
messages sent by the agents. Moreover, it allows real integration of existing
software, thus permitting the building of a system which is partly simulated
and partly already implemented.

In this paper we have stressed the methodological aspects of building a
MAS, rather than the analysis of an existing system. The ideal system, in fact,
should support the MAS developer in all the steps pointed out in Section 5
and should allow the specification of reactive, pro-active and rational agents.
Such a system would provide facilities for debugging the specification, for in-
tegrating external software modules and agents written in different languages,
for supporting different communication protocols, and for checking properties
at different levels. We could obtain this kind of system only by taking into
account the different approaches we have outlined throughout this paper, and
integrating them into a more general, multi-purpose system.

A proposal comes from the ARPEGGIO project, outlined in [DKMT].
ARPEGGIO (Agent based Rapid Prototyping Environment Good for Global
Information Organization) aims to become a general open framework for
the specification, rapid prototyping, and engineering of agent-based software.
This framework will include contributions from the Department of Computer
Science at the University of Maryland (USA) for aspects concerning the integ-
ration of multiple data sources and reasoning systems, from the Department
of Computer Science at the University of Melbourne (Australia) for the work
on animation of specifications, and from the Department of Computer and In-
formation Science at the University of Genova (Italy) for the work on Casel P
and ghhf .

Lastly, an improvement in CaseLP and &, functionalities is surely desir-
able. We could start by working on the following issues:

LLP specification. The efficiency and user-friendliness of the &y inter-
preter for linear logic formulas could be improved. Furthermore, a tool
for the automatic translation of a high level syntax, like the one of Sec-
tion 4.2, into linear formulas and possibly into Casel P clauses would be
desirable.

Testing. It would be interesting to analyze how to extend standard LP test-
ing techniques (symbolic model checking, partial evaluation, abstract
interpretation) to support an automatic property verification of pro-
grams, and how to integrate these techniques with more traditional
testing methods.

CaseLP implementation. We need to extend the range of languages/tools
to which Casel P can be interfaced. Currently we can integrate C, Tel/Tk,
the ECLiPSe Data and Knowledge Base and obviously ECLiPSe modules,
but we would like to support other programming languages, thus provid-
ing a really multi-language specification tool.
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System execution. In Casel P we only simulate the distribution of the agents.

We need a scheduler, and all the MAS execution runs over a single pro-
cessor. We are studying how to actually distribute CaseLP agents over
different machines, and are evaluating the use of CORBA [OHE97] for
this purpose.
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