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Logic Programming & Multi-Agent Systems: aSynergic Combination for Applications andSemanticsMarco Bozzano(1) Giorgio Delzanno(2) Maurizio Martelli(1)Viviana Mascardi(1) Floriano Zini(1)AbstractThe paper presents an ongoing research project that uses LogicProgramming, Linear Logic Programming, and their related techniquesfor executable speci�cations and rapid prototyping of Multi-Agent Sys-tems. The MAS paradigm is an extremely rich one and we believe thatLogic Programming will play a very e�ective role in this area, both as atool for developing real applications and as a semantically well foundedlanguage for basing program analysis and proof of properties on.1 IntroductionDuring the last few years Multi-Agent Systems (MAS) [WJ95, NN97] havecertainly been one of the most debated approaches to software development.The main reason for this great interest is the intriguing way a software systemis viewed in the MAS setting i.e. as a set of autonomous, intelligent andinteracting entities that either cooperate to achieve a common goal or thatcompete to satisfy personal interests. MAS allow a cognitive vision of thesystem and provide the ability to abstract from details thus making them anideal tool for Software Engineering [Pre94]. Furthermore, MAS technology isstrictly related to two fundamental aspects of modern software products i.e.distribution of computational entities and resources and integration of legacysoftware and data.Given the high complexity of a MAS, it would be desirable to have aclear methodology supporting the whole development process, from the �rstinformal requirement speci�cation to the �nal implementation. In order to beapplicable, this re�nement process should preserve the correctness of the in-termediate speci�cations w.r.t. the original requirements. An automatic toolsupporting formal speci�cation methods and providing executable speci�ca-tions might greatly help verify correctness constraints when passing throughthe di�erent re�nement steps. It should allow the user to write, execute and2



test speci�cations of agent behaviour, agent architecture, communication pro-tocols and interaction between agents. It should also support integration withexisting software products and the automatic translation of the agent speci�c-ation into existing programming languages.To achieve this goal, an approach based on Logic Programming (LP)would be rather suitable for several reasons. First of all, LP is a power-ful paradigm for rapid prototyping based on a very high-level syntax. As aconsequence, the use of an LP-based formalism can provide a noteworthyreduction in software development time, a clear description of software func-tionalities, easy code maintenance and re-usability. Furthermore, the largeamount of theoretical e�ort spent studying veri�cation, analysis, and trans-formation of logic programs could be applied to develop automatic tools thatvalidate the produced speci�cation.In this paper we present a framework that includes two di�erent waysof applying LP-based technologies to the development of MAS. This is di-vided into two phases, supported by di�erent speci�cation and programminglanguages, both of which are based on the LP paradigm. In the preliminaryphase, we use a high-level LP language to specify an application, to simulatethe e�ect of a concurrent execution of the agents, and to check it for correct-ness. This phase is useful for the construction and validation of the conceptualstructure of the system. In a subsequent phase, a \traditional" LP language,extended with communication primitives, is used to produce a more concretesoftware prototype, to be simulated and tested in a real distributed envir-onment. The �rst phase concerns the study of a particular communicationprotocol between agents and the preliminary veri�cation of the agents' beha-viour in that context. The next phase provides an e�ective implementation ofthe communication protocol and of the agents' code, and faces the problemof the external software integration.The paper is organized as follows. In the next section we present themain concepts underlying the MAS paradigm and we explain the choice ofthe LP languages that we use to develop MAS. Section 3 presents a generalagent architecture, subsuming some existing models. Some ideas on how anLP-based speci�cation language for this architecture could be structured aredescribed in Section 4. Section 5 concerns a methodology for the speci�cationof a MAS prototype, from informal requirements to implementation. It isapplied on a simple toy example. Finally, Section 6 presents conclusions andfuture work.2 Why and which LP languages for MAS development?Logic Programming, which in the 1980s had been identi�ed as the best tech-nology to implement knowledge intensive applications on highly parallel com-puter architectures, is today relegated to a secondary role in industrial soft-ware development. Languages like C, C++ and Java are undoubtedly more3



known and used than Prolog. Imperative languages are adopted for reasonsof e�ciency while object-orientation is today perceived as the possible newunifying paradigm for computing. However, e�ciency is not always a realissue and extensions and integrations of LP with other paradigms �ll the gapsof the �rst LP proposals. Moreover, some peculiarities of LP make it compet-itive or even better than imperative or object-oriented paradigms for facingparticular kinds of applications. In particular, as remarked in [KS98, Wag97],LP is closely connected to the design and development of MAS. We will ana-lyze which features make LP an ideal tool for specifying and prototypingMAS-based applications after having introduced the concepts of \agent" and\MAS".2.1 A conceptual framework for agents and Multi-Agent SystemsThe clearer and the more operationally usable the term \agent" is, the moregenerally accepted the de�nition of what an agent and a MAS are will be. Atthe moment there is no completely satisfactory de�nition of agent. However,the weak de�nition of agency [WJ95] is the most widely accepted amongresearchers. According to this de�nition an (arti�cial) agent is a computersystem (both hardware or software) characterized by:� autonomy : agents work largely independent of human intervention;� social ability : agents communicate with each other, usually by means ofsome agent communication language;� reactivity : agents perceive the external world, including other agents,and react to the incoming information accordingly;� pro-activeness: agents are able to show goal-directed behaviour by tak-ing the initiative to achieve their goals.A \Multi-Agent System" is a collection of interacting agents which cooperateand coordinate with each other to achieve personal or common goals.Agents usually need to symbolically represent the state of the world inwhich they are situated and thus are usually provided with an internal stateto contain this piece of information.Beliefs and goals can be �rst order objects,explicitly represented in the state. In this case, according to [KS96], we meanrational agents. Otherwise, what the agents aim at is implicitly coded intothe behaviour they are given.From a practical applications point of view, the main types of agents[NN97] can be roughly classi�ed as:� collaborative agents: emphasize autonomy and cooperation; they are typ-ically static and large and may have to negotiate to achieve acceptableagreements; 4



� personal assistance agents: support and provide pro-active assistance tousers struggling with complex application programs;� mobile agents: are software processes that can roam wide-area networkssuch as the world-wide web, interacting with foreign hosts, acting onbehalf of their owner and returning `home' having achieved their goals;� information agents: are pro-active, dynamic, adaptive and cooperativeinformationmanagers that manipulate or collate information frommanydistributed resources.Even though some authors do de�ne non-autonomous agents (see [LD95]), webelieve that \computational" autonomy is a fundamental property for agents.It allows us to have awake computational entities in which a programmabletask control, de�nable at the meta-level, can manipulate di�erent kinds ofbehaviour. These kinds of behaviour are determined by the agent's featuresbesides autonomy and social ability, thus resulting in various agent classes1 .Reactive agents are characterized by behaviour determined by rules ex-pressing what has to be done when external input is received. This input canbe either a message from another agent or a signal coming from the envir-onment and intercepted by the agent's sensors. Reactive agents do not havea symbolic representation of beliefs or goals and thus do not perform reas-oning about them. This does not mean that a reactive agent does not havean internal state, but only that goal-oriented \intelligent" behaviour is anemergent property (see [Bro91]).Pro-active agents exhibit active behaviour to achieve their goals. The dif-ference with respect to reactive agents is that the actions the agent carriesout are not directly driven by an external event (message or signal), but theagent can independently decide which action to perform. Also for this agent'sclass goals remain hard-wired into the behaviour of the agents and are notexplicitly represented in their internal state.On the other hand rational agents have an explicit knowledge base, encom-passing beliefs and goals. Goal-oriented \intelligent" behaviour is explicitly\coded" into the agents (a typical example is [RG91]). An agent can usuallyexploit many di�erent plans to achieve the goals that have been ascribed toit. A plan is chosen on the basis of the current beliefs and goals of the agentand can be dynamically modi�ed if the beliefs and/or the goals change.2.2 Logic Programming and Multi-Agent Systems.A language for speci�cation and programming of agents must be able to ex-press the ideas underlying the concept of agent and to allow an easy model-ling of them. The following observations naturally lead us to the choice of LPparadigms:1The classi�cation is not standard, but it is an attempt by the authors to identifysome interesting classes of agents. 5



� MAS execution: the evolution of a MAS consists of non deterministicsuccession of events; from an abstract point of view an LP language isa non deterministic language in which computation occurs via a searchprocess.� Meta-reasoning capabilities: agents need to dynamically modify theirbehaviour so as to adapt it to changes in the environment. Thus, thepossibility given by LP of viewing programs as data is very importantin this setting. This feature is useful also for integrating external het-erogeneous software; this is a fundamental aspect in MAS applications.� Rationality and reactiveness of agents: the declarative and the opera-tional interpretation of logic programs are strictly related to the maincharacteristics of agents, i.e., rationality and reactiveness. In fact, wecan think of a pure logic program as the speci�cation of the rationalcomponent of an agent and we can use the operational view of logicprograms (e.g. left-to-right execution, use of non-logical predicates) tomodel the reactive behaviour of an agent. The adoption of LP for com-bining reactivity and rationality is carefully described in [KS96].The above observations represent a good starting point to consider LP asa theoretical and practical foundation for the designing and development ofMAS. However, as already remarked, traditional LP languages do not ful�llall requirements arising during the MAS development. In particular, thoughuseful to specify a single agent (e.g. [KS98]), they do not provide facilities formodelling collections of distributed and communicating agents. In this paperwe propose two extension in this sense:� from a theoretical point of view, we will consider more powerful spe-ci�cation languages, namely linear logic programming languages;� from a practical point of view we will propose new extensions of LP-based systems with features speci�c to the development of MAS.Linear Logic Programming for MAS speci�cation. Given the com-plexity of MAS, a good speci�cation language should help specify many dif-ferent operational aspects in a uniform and natural way. Extensions of LogicProgramming based on Linear Logic seem particularly well-suited for thistask. Linear Logic [Gir87] enriches the operational interpretation of classicallogic in that formulas can be treated as resources. This idea has been in-corporated in recent extensions of Logic Programming, the so-called LinearLogic Programming (LLP) paradigm [Mil95]. It has been successfully ap-plied to formalize important programming aspects such as data management[HM94, BDM97], object-orientation [AP90, DM95, BDLM96], state-basedcomputations [Chi95], and aspects of concurrency [Mil93, MMP96].These features make LLP a suitable framework for specifying distributedsystems and agent systems in particular. The notion of state in LLP has a6



natural correspondence with the notion of state and beliefs of an agent. Thepossibility of using resources during a computation is a natural means tosupport dynamic changes in the behaviour of an agent. Besides being verypowerful speci�cation languages, linear logic-based frameworks can also beused as programming languages as shown in [AP90, HM94, HPW96, Del97].For our purposes, we will adopt the language Ehhf proposed in [Del97]. Itis based on a particular subset of Forum [Mil96], a presentation of higher-orderlinear logic in terms of goal-driven proofs. Ehhf extends previous proposalslike [AP90, HM94] and is de�ned in a higher-order setting, thus facilitatingthe development of applications based on meta-programming. In Sections 4and 5 we brie
y discuss the role of Ehhf in the speci�cation methodology ofour framework.Logic Programming for MAS implementation. Even though it is ex-ecutable, the LLP speci�cation is too high level to produce a �nal agent-based software product. In fact, in writing an Ehhf MAS speci�cation, someimportant issues must be neglected. For example, an interface between anEhhf speci�cation and existing software cannot be provided since this issueis abstracted away at the speci�cation level and the integration of externalmodules and data is not supported by the language. Moreover, performancereasons suggest using a more e�cient language than Ehhf for the actual im-plementation of a MAS prototype.We are addressing these issues by means of CaseLP (Complex ApplicationSpeci�cation Environment based on Logic Programming [MMZ97, MMZ98]),a prototyping tool for agent-based software realized in the Constraint Lo-gic Programming language ECLiPSe [ACD+95]. Our tool provides an agent-oriented extension of ECLiPSe that is used to build a more concrete imple-mentation of the MAS. Our implementation language has a number of pro-gramming features making the resulting prototype more e�cient and easierto integrate with other technologies. CaseLP is described in Section 3, whereit is analyzed as a simpli�ed realization of a more general and 
exible archi-tecture.3 A general Multi-Agent System architectureAgent architectures should be 
exible enough to support the amalgamationof the di�erent kinds of agents we have listed in Section 2 so as to give originto hybrid agents with di�erent degrees of reactivity, pro-activeness and ra-tionality. Based on well-known agent architectures we propose a frameworkwhere reactive, pro-active and rational components are integrated, as shown inFigure 1. Dotted arrows represent the atomic actions that the various compon-ents can perform, while thin, continuous arrows represent the input that thecomponents use to perform their actions. The environment, which is sensedthrough sensors and modi�ed through e�ectors (the thick arrows at the top7
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Figure 1: The general architecture of an agent.of the �gure) is outside of the rectangle containing the agent's components.Interaction with other agents occurs via asynchronous point-to-point messagepassing. More precisely, the main components of an agent are:The event queue. Events can be either \communication" or \perception"events. The former consist in the reception of messages coming from an-other agent, while the latter consist in the perception of the environmentthrough sensors.The meta-goal queue. An agent can respond to external stimuli or to statechanges in a simple and immediate manner, but it can also respond ina more complex way by identifying a meta-goal which requires somesophisticated plan to be achieved. The meta-goals generated by the re-active and pro-active components are put into a meta-goal queue andare handled by the rational component, which can add meta-goals to themeta-goal queue as well. This happens, for example, when the rationalcomponent interrupts its execution and records a meta-goal describingwhat it has to do later.The knowledge base. It re
ects the beliefs of the agent at a given moment.It must be expressed in a language (such as �rst order logic ground8



facts) that the rational component is able to perform high level reasoningon. In the following we will refer to it as \state" or \knowledge base"indi�erently.The reactive component. It bases its behaviour on event-condition-actionrules. The reaction cycle of this component is:1. pick one event from the event queue and remove it;2. check the current state;3. according to the current event and the current state� update the state and/or� perform actions on the environment and/or� send messages to other agents and/or� put one or more meta-goals into the meta-goal queue.The action of putting a meta-goal into the meta-goal queue is performedwhen the reaction to the event needs to be a complex task which requiressome sort of reasoning. It represents a link between the reactive and therational components.The pro-active component. This component acts similarly to the reactiveone, but does not take the event queue into account. Its behaviour isde�ned by a set of condition-action rules. The pro-action cycle is thesame as the reactive component one, except for picking one event fromthe event queue and considering it during condition evaluation.The rational component. This component applies some form of reasoningto achieve its current meta-goal. Its execution cycle is:1. pick one meta-goal from the event queue and remove it;2. check if the meta-goal still needs to be executed;3. if it is, construct one or more plans to satisfy the meta-goal;4. select a plan from the possible alternatives;5. execute a certain number of atomic actions of the plan.After the meta-goal has been chosen (step 1), a control is needed toverify if it must still be executed (step 2). In the agent's current situ-ation, which is determined by its knowledge base content, performingthe meta-goal may have become useless. After the agent's rational com-ponent has executed a certain number of atomic actions of the plan(step 5), the meta-level task control can decide to interrupt it. A meta-goal, representing the state of the plan execution, is then posted in themeta-goal queue to resume later on.9



The execution of these three components is a question of the task control oper-ating at the meta-level and regulating their interactions. The policymight varyfrom a very constrained sequential execution of the three activation cycles toa completely asynchronous one. In any case strategies to ensure the coherenceof the state must be provided, together with some time-constrained evaluationmethod of the condition in event-condition-action and condition-action rules.This evaluation must not take too long, otherwise the advantage of the imme-diate action execution given by event-condition-action and condition-actionrules is lost.3.1 Four particular cases of the general architectureThe general architecture presented above should be expressive enough formost of the software agent applications and it is the �nal target of our ongoingresearch. Below some existing proposals related to this general abstract modelare presented.Schroeder and Wagner's Vivid Agents [SW].Vivid agents are software controlled systems whose state comprises the men-tal components of knowledge, perceptions, tasks and intentions and whosebehaviour is represented by means of action and reaction rules. The mainfunctionalities of vivid agents regard handling perception and communicationevents via a perception system, updating and reasoning on a knowledge sys-tem, and representing and performing reactions and actions in order to reactto events and to generate and execute plans.It is easy to see that most of the features of the general agent architectureare present in Schroeder and Wagner's vivid agent. The pro-active behaviouris closely connected to the rational one and when there is no event in the eventqueue, the agent goes on executing the actions of the current plan. The vividagents' reactive and rational components act concurrently by interleaving theplan execution with the reaction to incoming events. The two componentswork over two distinct copies of the knowledge base. Strategies are adopted toensure the coherence of concurrent actions and the coherence between copiesof the knowledge base.Kowalski and Sadri's Uni�ed Agent Architecture [KS96].Kowalski and Sadri try to combine the rational and reactive behaviour of anagent by giving a complete proof reduction procedure based on the observa-tion that in many cases it is possible to replace a goal G by an equivalent setof condition-action rules R. Moreover, they face the problem of controllingthe reasoning process so that it works correctly with bounded resources. Theresulting execution cycle is the following:1. observe any input coming from the environment at time T ;2. record all input; 10



3. resume the proof procedure of the current goal statement by �rst propagat-ing the input2;4. continue applying the proof procedure for a total of n inference steps;5. select an atomic action respecting time constraints;6. execute any such action and record the results.This architecture and the more generic one described previously share thesame aim of allowing an agent to be both reactive and rational. While in thegeneral architecture the rational and reactive components are clearly separ-ated, here they are collapsed into a single entity, whose behaviour is determ-ined by the proof procedure and the resource bounding. The more the agentis reactive, the less it is rational, and vice versa. This probably means less
exibility of use, but easier implementation of the architecture.Wooldridge's Computational Multi-Agent System [Woo92].In this approach the behaviour of an agent is described by the followingstandard cycle:1. interpret any message received;2. update beliefs according to previous action and message interpretation;3. derive deductive closure of belief set;4. derive set of possible messages, choose one and send it;5. derive set of possible actions, choose one and apply it.Wooldridge de�nes two execution models for multi-agent systems: in the syn-chronous one all the agents in the system begin and complete an executioncycle together; in the more realistic asynchronous model, where execution isinterleaved, at most one agent is allowed to act at any �xed point of time.Wooldridge's architecture is a simpli�cation of the general one. As inCaseLP described below, events are always communicative ones, and agentsare reactive ones. They receive a message and react to it, without having anexplicit representation of their goals and without adopting plans to achievethem.2The propagation of input replaces the current goal statement with a simpler one,taking into account the observed input and the integrity constraints characterizingthe agent's behaviour. 11



Martelli, Mascardi and Zini's CaseLP [MMZ97, MMZ98].CaseLP (Complex Application Speci�cation Environment based on Logic Pro-gramming) is a prototyping and simulation environment for agent-based soft-ware applications developed at the Computer and Information Science De-partment of the University of Genova (Italy).CaseLP agents communicate via point-to-point message passing, with mes-sages written in KQML [MLF95]. There are two types of agents in the model:logical agents, which show capabilities of complex reasoning, and interfaceagents which only provide an interface between external modules3 and theagents in the system. The agents share a common architecture whose maincomponents are:� an updatable set of facts, de�ning the state of the agent;� a �xed set of rules, de�ning the behaviour of the agent;� a mail-box for public messages and� an interpreter.The interpreter is a peculiarity of interface agents. It translates the requestsfor services that are provided by external modules into the appropriate pro-cedure call and translates the results back into a syntax comprehensible to allthe agents in the system.At the moment the system allows us to de�ne awake reactive agents: everyagent is activated at the beginning of the prototype execution and remainsactive until the end of the simulation. The behaviour of the agents consists inthe following cycle:1. pick one message from the mail-box and remove it;2. select one rule whose head uni�es with the current message;3. prove the body of the rule.The last step is carried out by means of the ECLiPSe interpreter. The atomicactions of updating the state and sending messages are carried out in theCaseLP setting by the assert state, retract state and send predicates whichoperate in a safe way.Also CaseLP agents, like Wooldridge's, are reactive, still adopting goalreduction to �nd out what to do. The event queue is represented by themail-box and contains only communicative events. Even though CaseLP iscurrently a simpli�cation of the general architecture described above, it hasthe advantage of explicitly taking into account the integration of externalsoftware carried out by the interface agents.3External modules are usually legacy passive service providers to be integratedinto the MAS. 12



CaseLP is an ongoing project that we plan to extend and improve on thebasis of new and more demanding applications. However, the present im-plementation has already been successfully applied to some real-world casestudies. Two of them were related to transportation and logistic problems[MMZ98]. One was developed in collaboration with FS (the Italian railways)and the other one was developed with Elsag Bailey, an international companywhich provides service automation. CaseLP was successfully adopted for areverse engineering process in an application concerning the retrieval of med-ical information in distributed databases [Per98]. Finally, the combination ofagent-oriented and constraint logic programming techniques has been used tosolve the transaction management problem on a distributed database [MM].4 A Multi-Agent System speci�cation languageLogical languages have often been adopted to specify agents and Multi-AgentSystems [LLL+95, Rao96, MTF97]. In this section we propose the adoptionof Linear Logic Programming as a high-level speci�cation language, and listthe reasons that make LLP a very suitable paradigm for these kinds of ap-plications.Agents combining reactive, pro-active and rational behaviour, such as theones previously outlined, can be described in an LP setting by a tuple con-taining:� the current state;� the event and meta-goal queues;� the event-condition-action rules driving the behaviour of the reactivecomponent;� the condition-action rules related to the pro-active component;� the high level rules de�ning how the rational component constructs andexecutes plans.We call this tuple a con�guration of an agent. If we assume that the variousrules de�ning the reactive, pro-active and rational behaviour do not changeover time, they can be left out of the agent's con�guration. The con�gurationof a MAS can simply be de�ned as the set of all the agents' con�gurations.When an agent performs an action in a certain MAS con�guration, thewhole MAS reaches another con�guration. If, for example, the action is send-ing a message, the receiver of the message will change its con�guration sinceits event queue changes, thus leading to a MAS con�guration change. A con-�guration change is called transition.The execution of a MAS can be described as the sequence of the variouscon�gurations reached by the MAS. We can take all the con�gurations into13



consideration, but we can also concentrate on con�gurations that are reachedafter a complete execution cycle by a certain agent. This would involve manyintermediate transitions, one for every atomic action performed by the agent.We could even consider only the con�gurations which are reached when everyagent in the system has completed at least one cycle of execution. The gran-ularity of the MAS execution changes according to what we are interested inobserving.4.1 The role of Linear Logic ProgrammingLinear Logic Programming allows us to characterize the form of computationpreviously outlined at a high level of abstraction. In fact, as brie
y discussedin the introduction, LLP provides us with connectives to express concurrencyand synchronization primitives. When combined with some representation ofthe agents, these primitives may be useful for simulating and testing a givenMAS speci�cation. In order to give an idea of the approach based on LLP,and in particular on the Ehhf fragment, it is necessary to outline what a linearlogic program looks like.The key point is to extend the syntax of clauses as de�ned in standardLogic Programming so as to provide multi-conclusion clauses. More precisely,Ehhf -programs are collection of clauses of the form:Cond ) A1 ............................................................................................... : : : ............................................................................................... An ��Goal;where the linear disjunction A1 ............................................................................................... : : : ............................................................................................... An corresponds to the head of theclause (Ai's are atomic formulas), Cond is a goal representing the guard ofthe clause, and Goal is a goal representing the body of the clause. For thesake of the reader, we have limited our considerations to conditions de�nedby Horn programs.The main peculiarity of such clauses is that the resources (formulas) theyneed in order to be applied are consumed right after their execution. In a sensemulti-conclusion clauses resemble conditional multiset rewrite rules. Formally,given a program P and a multiset of atomic formulas 
0, a resolution step
0 ! 
1 can be performed by applying a ground instance C ) A1 ............................................................................................... : : : ...............................................................................................An ��G of a clause in the program P , provided:� the multiset � consisting of the atoms A1; : : : ; An is contained in 
0;� the condition C is satis�ed in P ;� 
1 is obtained by removing � from
0 and by adding G to the resultingmultiset.In the Ehhf -interpreter, instantiation is replaced by uni�cation. At this point,since G may be a complex formula, the search rules (i.e., the logical rulesof the connectives occurring in G) must be exhaustively applied in order toproceed. 14



Such derivations can be used to model the evolution of a collection ofagents. For instance, let Ag1; : : : ; Agn be atomic formulas describing a collec-tion of agents. The clauseCond) (Ag1 ............................................................................................... : : : ............................................................................................... Agn �� Ag01 ............................................................................................... : : : ............................................................................................... Ag0n);describes the evolution of the state of the agents (e.g. Agi evolves in Ag0i)provided the condition Cond is satis�ed. New components can be added tothe current state by using goal-formulas of the formG1 ............................................................................................... G2. In fact, the goalG1 ............................................................................................... G2;� simply reduces to G1; G2;�. This description, which is poten-tially non-terminating, can be used to observe the evolution of the simulatedagent system, or, by using backward analysis, to detect potential violationsof the speci�cation requirements.4.2 A syntax for the general architectureFor the sake of clarity, introducing an abstract, high-level and readable syntaxto describe the behaviour of agents and to specify their di�erent components(the reactive part, the pro-active one, and the rational one) will su�ce.As a matter of fact, the syntax we present has a direct mapping ontolinear logic formulas, therefore the translation from the high-level languageinto linear logic clauses could be provided automatically through a compil-ation process. The only delicate point concerns the implementation of somekind of mechanism that guarantees the right interactions among the di�erentcomponents of an agent and among the agents in the system. At the moment,however, we have not committed ourselves to a particular model of task con-trol, thus this mechanism has not been speci�ed and the syntax we presentbelow must simply be considered as an example4.We start the speci�cation of the agents' components from the reactivepart. This is speci�ed through simple event-condition-action rules, which canbe written as follows: on event eventcheck st queryupdate st update listperform action listtry meta-goal listThe meaning of each line is in agreement with the description in Section 3.In addition, sub-languages must be provided to describe events, state queriesand updates, actions, and meta-goals. We do not deal with these issues here,but in Section 5.1 we do give an example. The syntax for the pro-active part4The code of the examples given in the paper is available by anonymous ftp atthe address ftp://ftp.disi.unige.it/pub/person/BozzanoM/Terzo.15



is similar to the previous one except for the �rst line, which is not presentsince the pro-active component does not perceive external events. Lastly, thesyntax for the rational component might look likeon goal goalcheck st querygenerate planA simple case-study. We consider a syntax for the case study which isexplained in more detail in Section 5.1. The case study involves agents whichshow a purely reactive behaviour. In fact they simply react to incoming eventsby updating their state and generating new events depending on the currentstate. Events only include sending and receiving messages, and the commu-nication protocol is based on asynchronous message passing: each agent maybe thought of as owning a mailbox for incoming messages. In this case, we canspecialize the syntax previously described for specifying the agents' behaviour.on receiving messagecheck st queryupdate st update listsend message listIn the syntax above, message is an incoming message, st query is a query onthe current state, st update list is the list of state updates, and message listis the list of new messages sent by the agent.Each message can be an \ask" (a service request sent to another agent) ora \reply" (a response sent for a given request). Accordingly, we will representa message with a term like type((content(C))(sender(S)),(receiver(R)))where type may be ask or reply. We will also assume that every agent hasa simple state consisting of ground facts, and a simple language for statemodi�cation based on the primitives assert(Fact) and retract(Fact).5 Towards a speci�cation methodologyIn this section we analyze the di�erent phases which make up the speci�cationmethodology of our framework, trying to outline the di�erent contributionsgiven to the development process by each phase. Our approach can be com-pared with the classical development cycle for software prototypes given in[Pre94]. 16



1. Identi�cation of the set of agents and their interconnectingstructure. In this step the speci�cation developer decides the staticstructure of the system and identi�es the kind of agents the applicationrequires. He/she also chooses the interconnection topology, i.e. whichcommunication channels will be needed among them. This phase is quiteinformal, allowing di�erent choices in the number and kind of agentsrequired.2. Choice of the communication protocol among each pair of com-municating agents. This step consists in choosing the communicationprotocol between each pair of connected agents. As for the previousstep, there is room for di�erent choices, depending on what kind ofinformation the agents need to exchange and on the synchronizationmechanism.3. Speci�cation of the behaviour of each agent in the system.This step consists in specifying the behaviour of the agents, namelywhat each agent is able to do and how it performs its tasks. This iswhere Linear Logic Programming comes into play. This is the �rst phasethat achieves some degree of formalization, by building an executablespeci�cation written in Ehhf . It is important to notice that the wholeprocess including steps 1 through 3 may be repeated more than once,either because the testing phase (step 4) reveals some 
aws in the initialchoices, or because the developer wishes to re�ne the speci�cation byusing a greater degree of granularity. The concept of granularity of aspeci�cation is fundamental. The developer often needs to study theexecution of a Multi-Agent System at di�erent levels of abstraction,progressively re�ning the speci�cation as he/she is convinced of thedesign correctness. The Ehhf speci�cation language seems to be quitesuitable for this kind of design.4. Testing of the system. This phase concerns testing the system inorder to verify how much the prototype corresponds to the desired re-quirements. This may lead to changing, improving or re�ning the design.Using a logical language like Ehhf in this phase has great advantagessince:� It is possible to evaluate a goal step by step, following the evolutionof a particular system in detail. Various abstraction levels are pos-sible, for instance observing only the messages exchanged betweenthe agents, and/or observing the behaviour of a single agent, andso on.� Through backtracking it is possible to follow all the di�erent evol-utions of a given system, depending for example on the order ofarrival of the various messages. It is therefore possible to simu-17



late a distributed environment, where the order in which messagesarrive may not correspond to the order in which they were sent.� It is possible to verify whether a particular computation may becarried out, or, more importantly, that every computation startingfrom a given con�guration leads to a �nal state satisfying a givenproperty, independently of the order of arrival of the messages andthe order of execution by the agents. To this aim it su�ces to runthe desired computation together with a goal negating the desiredproperty of the �nal state, and then to check whether the globalgoal fails.� It may be possible to employ standard techniques for proving pro-gram properties that have been developed in the logic programmingcontext. Extending these techniques to the linear logic setting ispart of our future work (see Section 6).5. Implementation of the prototype. In this step each agent speci�c-ation is �rstly translated into executable code, then the MAS is built,creating a unique executable speci�cation embedding all the de�nedagents. This step and the following one can be dealt with using CaseLPas a prototyping environment. CaseLP provides facilities for automat-ically translating an agent speci�cation written in an extended logiclanguage into an executable piece of code. It also allows the user to loadthese agents into a unique Multi-Agent System for further execution.6. Execution of the obtained prototype. The last step tests the im-plementation choices, checking if the system behaves as expected. Anyspeci�cation error or misbehaviour discovered in this step may implya revision of the choices made in the �rst 3 steps. CaseLP allows us toinitialize the mail-boxes of some agents with initial messages and thenstarting the MAS execution. In this phase CaseLP uses a round-robinscheduler which recursively activates each agent in the MAS. The activ-ated agent inspects its mail-box looking for new messages and managesthem according to the rules de�ning its reactive behaviour. When anagent has managed its messages, the scheduler passes to the followingone. The scheduler activity stops when all the mail-boxes of the agentsare empty. It is possible to monitor the execution of the system thanksto on-line and o�-line text visualization of the exchanged messages. TheCaseLP Visualizer [Ped98] provides the user with an interface which al-lows him/her to initialize the system, integrate external software, startand monitor the execution in a user-friendly graphic fashion.5.1 An example: student data retrievalWe present a very simple example in which agents, based on the CaseLParchitecture, are described by the syntax presented at the end of Section 4.18



This will serve as an illustration of the speci�cation methodology previouslypresented.The problem. Suppose a user wants some information about students andmarks of some courses at the University of Genova. The possible queriesinclude the best, worst and average marks of each course, and the names of thestudents who got the marks. An external database contains this information.Three C procedures, min, max and avg, used to evaluate the minimum,maximumand average element of an integer array, could be linked to producethe �nal system.This problem can be faced by developing a Multi-Agent System accordingto the given methodology. The third and fourth steps are described rathercarefully, while the other ones are treated quite brie
y. More details can befound in [MMZ98].Step 1: identi�cation of the set of agents and their interconnectingstructure. An application of this type could be simulated using four agents:user, a logical agent which asks for information about the courses; courseinformation provider (cip), a logical agent which receives the user requestand executes it; mathematical function provider (mfp), an interface agentwhich is interfaced with the C procedures min, max and avg, and course dataprovider (cdp), an interface agent which is interfaced with the database ofUniversity courses.User is capable of sending requests to and receiving answers from cipwhich is the \core" of the system. It exchanges messages with both interfaceagents that are only able to communicate only with cip. Figure 2 depicts thestructure of the MAS.
MFP CIP CDP

USERFigure 2: Agents in the \Student data retrieval" example.Step 2: choice of the communication protocol among each pair ofcommunicating agents. Communication takes place via the protocol de-scribed at the end of Section 4. Each pair of agents communicate using asyn-chronous message passing, where a message can have ask or reply type.19



Step 3: speci�cation of the behaviour of each agent in the system.The behaviour of the agents can be explained in natural language as follows.User simulates an external user, asking questions to cip and receiving answersfrom it. Cip receives a request from the user and behaves on the basis of thetype of request. If, for instance, user wants to know the best, worst, or averagemarks of a course, cip asks cdp to get the list of marks for that course. Whenthe answer arrives, it asks mfp to evaluate the maximum,minimumor averagevalue of the list. The result provided by mfp is then sent back to user.This kind of behaviour by the cip agent is illustrated by the clauses inFigure 3, written according to the high-level syntax presented in Section 4.The �rst clause applies when cip receives a message requesting the best markon receivingask(content(best mark(Course)), sender(S), receiver(cip))checkreq id(Id), Id1 is Id + 1updateretract(req id(Id)), assert(req id(Id1)),assert(associated(Id1, best mark(Course),S))sendask(content(marks(Course, Id1)), sender(cip), receiver(cdp)).on receivingreply(content(marks(Mark List,Course, Id)), sender(cdp), receiver(cip))checkassociated(Id, best mark(Course),S))updatesendask(content(max(Mark List,Id)), sender(cip), receiver(mfp)).on receivingreply(content(max(Max,Id) sender(mfp), receiver(cip))checkassociated(Id, best mark(Course),S))updateretract(associated(Id, best mark(Course),S))sendreply(content(best mark(Course, Max)), sender(cip), receiver(S)).Figure 3: Code for cip using the abstract syntax for agents.of a given course. This request is managed by sending a message to cdpasking for the list of marks for that particular course. In order to keep track20



of pending requests, the cip agent associates every request with a uniqueidenti�er and stores this piece of information in its internal state. The secondclause applies when the corresponding reply from cdp arrives. By consultingits internal state, cip realizes that the request was to calculate the maximummark of the list it received from cdp, therefore it contacts mfp to carry out thistask. When the corresponding answer from mfp �nally arrives, cip consultsits internal state and forwards the result to S (third clause). The remainingclauses for cip and for the other agents in the system can be written similarly.Remark. To get an idea of how a program written in this high-level syntax canbe mapped into a linear logic program, we present the translation of the �rstclause of Figure 3. It must be recalled that a linear logic program is basicallya collection of conditional multiset rewrite rules. The multi-conclusion clausefor the considered rule is de�ned as follows:Id1 is Id + 1 )on receiving(ask(content(best mark(Course)),sender(S), receiver(cip)))...............................................................................................ag(cip) ............................................................................................... req id(Id) ��ag(cip) ............................................................................................... req id(Id1) ............................................................................................... associated(Id1,best mark(Course),S))...............................................................................................send(ask(content(marks(Course,Id1)),sender(cip),receiver(cdp)).The e�ect of such a clause is to rewrite the components of the current globalstate in agreement with the speci�cation associated with the considered event.Note that agents and events are represented by atomic formulas. The con-dition de�ned in the check part of the rule is handled in a special way. Moreprecisely, the part of the condition which does not involve the global state(e.g. Id1 is Id+1) becomes a condition in the corresponding multi-conclusionrule, whereas, the part that involves the global state (e.g. req id(Id)) becomespart of the head of the clause. In this way, req id(Id) is automatically removedfrom the current state and substituted by req id(Id1). The new informationassociated(..) and the new goal send(..) are asserted by simply including themin the body of the rule. The event on receiving is generated as soon as anagent removes a message from its mailbox. We can specify this behaviour asfollows: receive(Msg, Ag) ............................................................................................... mailbox([MsgjT], Ag) ............................................................................................... ag(Ag) ��ag(Ag) ............................................................................................... on receiving(Msg) ............................................................................................... mailbox(T, Ag).Again, note that the content of the mailbox is modi�ed by rewriting the oldlist of messages into the new one.The system is completely speci�ed once the agents in the system and theinitial state of each agent are speci�ed. For instance, in the case of the cipagent, we have to specify what the initial value of req id is. The prototypecan then be tested starting from a particular con�guration, i.e., a particularinitialization of the agents' mail-boxes. Note that more than one agent canshare the same behaviour. We should assume, for example, that more than21



one cdp agent is available to simulate a replicated database. In this case thebehaviour is de�ned just once.Another feature of this speci�cation framework that we have previouslyinsisted on is the possibility to re�ne the speci�cation using di�erent levels ofabstraction. For instance, in this particular example it would be possible to�rstly de�ne the behaviour of the cdp agent in a very simple manner withoutimplementing the actual mechanism which accomplishes a particular task.The set of clauses for this purpose would look likeon receivingask(content(marks(course,Id)), sender(S), receiver(cdp))sendreply(content(marks(course, [28,30,: : : ])), sender(cdp), receiver(S)).for each course under consideration. Once the system has been tested andthe interactions among the agents has been proved correct, the speci�cationmight be re�ned by describing the exact manner in which cdp accesses thedatabase and �nds an answer to a query.Step 4: Testing the system. It is possible to test the system and verifyits correctness with respect to the given requirements by executing the spe-ci�cation written in the previous step. To this aim, the Ehhf interpreter canbe used to execute the code for this example. The user can set up an initialcon�guration, made up of some agents and some initialization messages, andfollow how one computation proceeds. He/she can impose that the end of thecomputation correspond, for instance, to the situation in which all messageshave been processed by the agents. He/she can then observe the �nal con�g-uration, i.e. the agents and their corresponding states. Variable bindings, asusual in LP, can return values as well. For instance, it is possible to prove agoal like the following (\k" means concurrent execution):ag cdp k ag cip k ag user k ag mfp kreq id cip 0 ksend(ask(content (best mark(data base),Best),sender(user),receiver(cip)),cip)The output of the simulation is the �nal con�gurationag cdp k ag cip k ag user k ag mfp kreq id cip 1together with the variable binding Best = 30.22



The execution of a goal may be observed at various levels of granularity.The interpreter supports both a trace level, which allows us to observe lowlevel details of the computation, and a debug level, which allows us to observethe interactions among the agents.Another possibility is to exploit backtracking in order to follow all pos-sible computations starting from a given con�guration. By doing so a user canverify how the order in which the messages are exchanged a�ects the computa-tion (this is crucial in distributed simulation). It is possible to verify whethera given property is satis�ed independently of all possible orders of messageexchanging and of all possible solutions for variable bindings. This is done bynegating the property to be satis�ed and proving that the corresponding goalnecessarily fails. For instance, the failure of the following goal(ag cdp k ag cip k ag user k ag mfp kreq id cip 0 ksend(ask(content (best mark(Course,Best),sender(user),receiver(cip)),cip)),Best < 28.proves that for each course the best mark is greater or equal to 28.Step 5: Implementation of the prototype. In this step we use CaseLP todescribe the agent behaviour by means of logical rules. Figure 4 shows somefragments of the cip agent code. The correspondence between this code andthe �rst clause of Figure 3 is quite easy to see. Activation de�nes what theActivationactivate :- receive all.Initial staterequest identi�er(0).Behaviourask(content(best mark(Course)), sender(S), receiver(cip)) :-req id(Id), retract state(req id(Id)), Id1 is Id + 1,assert state(req id(Id1)),assert state(associated(Id1, best mark(Course), S)),send(ask( content(marks(Course, Id1)), sender(cip), receiver(cdp)), cdp)Figure 4: Code for cip in CaseLP.23



agent does when it is activated by the system scheduler i.e. it gets all themessages in its public mail-box. Initial state de�nes the initial state ofthe agent. Behaviour comprises the logic rule describing how to reply to a\best mark" query.In CaseLP implementation, cdp and mfp have been realized as interfaceagents. They share simple behaviour and are interfaced respectively to anECLiPSe database and a C module via two di�erent interpreters.Step 6: Execution of the obtained prototype. CaseLP provides a tool(CaseLP Visualizer) that allows the user to load agents and external modulesinto the simulation environment and to visualize the execution of the MAS bymeans of a simple GUI. In our example the four agents, the ECLiPSe databaseand the C module are �rst loaded.To start the simulation the mail-boxes of some agents are to be initial-ized, putting some messages into them. The CaseLP Visualizer provides anappropriate window for this aim, as illustrated in Figure 5.
Figure 5: CaseLP Visualizer: initialization window.While the execution is running, windows for each loaded agent appear onthe screen. Information about state changes and exchanged messages is visu-alized for each agent. Figure 6 presents a snapshot of the MAS execution.After the execution has ended, it is possible to see a more detailed visualiz-ation of the occurred events, as illustrated in Figure 7. Exchanged messagesand state updates are shown for each agent. Clicking on an event, it is possibleto see more details, as shown in Figure 8. The �gure represents an answerreceived by the agent user. Both the on-line and o�-line visualization modal-ities provided by the CaseLP Visualizer are useful to monitor and verify thebehaviour of the prototype, in order to check whether it behaves correctly.24



Figure 6: CaseLP Visualizer: on-line visualization of execution.
Figure 7: CaseLP Visualizer: o�-line tracing of execution.6 Conclusions and future workIn the paper Agent Based Software Engineering [Woo97], M. Wooldridge con-siders\the problem of building a Multi-Agent System as a softwareengineering enterprise [involving three main issues]: how agentsmight be speci�ed; how these speci�cations might be re�ned orotherwise transformed into e�cient implementations; and how im-plemented agents and Multi-Agent Systems might subsequently beveri�ed."The aim of our paper was to suggest a potential answer to these three ques-tions, assuming that the target of the implementation is a MAS prototype25



Figure 8: CaseLP Visualizer: details of an event.instead of a �nal software product. In a prototype we do not need greate�ciency, therefore it can be realized using more formal but less e�cienttechnology. The role of a declarative language like Logic Programming is im-portant. We can keep the �rst speci�cation closer to implementation and thiscan be very useful in automatizing the whole prototyping process.In fact, we use two logical languages to specify a Multi-Agent System atdi�erent re�nement levels. The �rst language is Linear Logic Programming,suitable for an initial stage of the speci�cation process. It can be easily used todescribe the behaviour of systems where agents need to synchronize and runconcurrently. An important aspect that is neglected in the LLP speci�cation isthe actual integration of external software. The behaviour of external modulesis in fact simulated by LLP agents. We can directly execute the LLP abstractspeci�cation by means of the Ehhf interpreter and in this phase we can provethat the MAS is correct with respect to some original requirements expressedas a set of linear formulas.The LLP speci�cation is subsequently transformed into a more e�cientLP program. Thanks to the meta-programming techniques that are easy touse in a logic programming paradigm, LP provides a tool for integratingexisting external software modules in quite an easy, natural way. LP seemsto be appropriate for a second phase of the speci�cation and prototypingprocess, when the developer has an idea of the general mechanisms regulatingthe system under development and he/she wants to actually integrate someexternal modules. The LP speci�cation is executed by means of the CaseLPprototyping environment. CaseLP allows us to follow what happens to theagents as if they were really distributed communicating entities. It gives thefeeling of how MAS execution could go on by allowing us to change the initialconditions (the initial messages put into the mail-boxes before the simulation26



starts), and providing a certain nondeterminism by randomly delaying themessages sent by the agents. Moreover, it allows real integration of existingsoftware, thus permitting the building of a system which is partly simulatedand partly already implemented.In this paper we have stressed the methodological aspects of building aMAS, rather than the analysis of an existing system. The ideal system, in fact,should support the MAS developer in all the steps pointed out in Section 5and should allow the speci�cation of reactive, pro-active and rational agents.Such a system would provide facilities for debugging the speci�cation, for in-tegrating external software modules and agents written in di�erent languages,for supporting di�erent communication protocols, and for checking propertiesat di�erent levels. We could obtain this kind of system only by taking intoaccount the di�erent approaches we have outlined throughout this paper, andintegrating them into a more general, multi-purpose system.A proposal comes from the ARPEGGIO project, outlined in [DKM+].ARPEGGIO (Agent based Rapid Prototyping Environment Good for GlobalInformation Organization) aims to become a general open framework forthe speci�cation, rapid prototyping, and engineering of agent-based software.This framework will include contributions from the Department of ComputerScience at the University of Maryland (USA) for aspects concerning the integ-ration of multiple data sources and reasoning systems, from the Departmentof Computer Science at the University of Melbourne (Australia) for the workon animation of speci�cations, and from the Department of Computer and In-formation Science at the University of Genova (Italy) for the work on CaseLPand Ehhf .Lastly, an improvement in CaseLP and Ehhf functionalities is surely desir-able. We could start by working on the following issues:LLP speci�cation. The e�ciency and user-friendliness of the Ehhf inter-preter for linear logic formulas could be improved. Furthermore, a toolfor the automatic translation of a high level syntax, like the one of Sec-tion 4.2, into linear formulas and possibly into CaseLP clauses would bedesirable.Testing. It would be interesting to analyze how to extend standard LP test-ing techniques (symbolic model checking, partial evaluation, abstractinterpretation) to support an automatic property veri�cation of pro-grams, and how to integrate these techniques with more traditionaltesting methods.CaseLP implementation. We need to extend the range of languages/toolsto which CaseLP can be interfaced. Currently we can integrate C, Tcl/Tk,the ECLiPSe Data and Knowledge Base and obviously ECLiPSe modules,but we would like to support other programming languages, thus provid-ing a really multi-language speci�cation tool.27
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