
Formal Design of
Fault Detection and Identification Components

using Temporal Epistemic Logic

Marco Bozzano, Alessandro Cimatti, Marco Gario, and Stefano Tonetta

Fondazione Bruno Kessler, Trento, Italy
{bozzano, cimatti, gario, tonettas}@fbk.eu

Abstract. Automated detection of faults and timely recovery are fun-
damental features for autonomous critical systems. Fault Detection and
Identification (FDI) components are designed to detect faults on-board,
by reading data from sensors and triggering predefined alarms.
The design of effective FDI components is an extremely hard problem,
also due to the lack of a complete theoretical foundation, and of precise
specification and validation techniques.
In this paper, we present the first formal framework for the design of
FDI for discrete event systems. We propose a logical language for the
specification of FDI requirements that accounts for a wide class of prac-
tical requirements, including novel aspects such as maximality and non-
diagnosability. The language is equipped with a clear semantics based on
temporal epistemic logic. We discuss how to validate the requirements
and how to verify that a given FDI component satisfies them. Finally,
we develop an algorithm for the synthesis of correct-by-construction FDI
components, and report on the applicability of the framework on an in-
dustrial case-study coming from aerospace.

1 Introduction

The correct operation of complex critical systems (e.g., trains, satellites, cars)
increasingly relies on the ability to detect when and which faults occur during op-
eration. This function, called Fault Detection and Identification (FDI), provides
information that is vital to drive the containment of faults and their recovery.
This is especially true for fail-operational systems, where the occurrence of faults
should not compromise the ability to carry on critical functions, as opposed to
fail-safe systems, where faults are typically handled by going to a safe state. FDI
is typically carried out by dedicated modules, called FDI components, running
in parallel with the system. An FDI component processes sequences of observa-
tions, made available by predefined sensors, and is required to trigger a set of
predefined alarms in a timely and accurate manner. The alarms are then used
by recovery modules to autonomously guarantee the survival of the system.

Faults are often not directly observable, and their occurrence can only be
inferred by observing the effects that they have on the observable parts of the
system. Moreover, faults may have complex dynamics, and may interact with
each other in complex ways. For these reasons, the design of FDI components

is a very challenging task, as witnessed by a recent Invitation To Tender issued
by the European Space Agency [1]. The key reasons are the lack of a clear and
complete theoretical foundation, supported by clear and effective specification
and validation techniques. As a consequence, the design often results in very con-
servative assumptions, so that the overall system features suboptimal behaviors,
and is not trusted during critical phases.

In this paper, we propose a formal foundation to support the design of FDI by
introducing a pattern based language for the specification of FDI requirements.
Intuitively, an FDI component is specified by stating which are the observable
signals (the inputs of the FDI component), the desired alarms (in terms of the
unobservable state), and defining the relation between the two. The language
supports various forms of delay (exact, finite, bounded) between the occurrence
of faults, and the raising of the corresponding alarm. The patterns are provided
with an underlying formal semantics expressed in epistemic temporal logic [2],
where the knowledge operator is used to express the certainty of a condition,
based on the available observations. The formalization encodes properties such
as alarm correctness (whenever an alarm is raised by the FDI component, then
the associated condition did occur), and alarm completeness (if an alarm is
not raised, then either the associated condition did not occur, or it would have
been impossible to detect it, given the available observations). Moreover, we
precisely characterize two aspects that are important for the specification of FDI
requirements. The first one is the diagnosability of the plant, i.e., whether the
sensors convey enough information to detect the required conditions. We explain
how to deal with non-diagnosable plants by introducing the more fine grained
concept of trace diagnosability, where diagnosability is localized to individual
traces. The second is the maximality of the diagnoser, that is, the ability of the
diagnoser to raise an alarm as soon as and whenever possible.

Within our framework, we cover the problems of (i) validation of a given spec-
ification, (ii) verification of a given diagnoser with respect to a given specification,
and (iii) automated synthesis of a diagnoser from a given specification, using a
synchronous and perfect-recall semantics for the epistemic operator. Moreover,
we provide formal proofs for the correctness of the synthesis algorithm, we show
that the specification language correctly captures the formal semantics and we
clearly define the relation between diagnosability, maximality and correctness.
The framework has been validated on an industrial setting, in a project funded
by the European Space Agency [1]. The framework provides the conceptual foun-
dation underlying a design toolset, which has been applied to the specification,
verification and synthesis of an FDI component for a satellite.

It is important to remark the deep difference between the design of FDI com-
ponents and diagnosis. A diagnosis system can benefit from powerful computing
platform, it can provide partial diagnoses, and can possibly require further (post-
mortem) inspections. This is typical of approaches that rely on logical reasoning
engines (e.g., SAT solvers [3]). An FDI component, on the contrary, runs on-
board (as part of the on-line control strategy) and is subject to restrictions such
as timing and computation power. FDI design thus requires a deeper theory,

which accounts for the issues of delay in raising the alarms, trace diagnosability,
and maximality. Furthermore, a consistency-based approach [3] is not applica-
ble to the design of FDI: in order to formally verify the effectiveness of an FDI
component as part of an overall fault-management strategy, a formal model of
the FDI component (e.g., as an automaton) is required.

This paper is structured as follows. Section 2 provides some introductory
background. Section 3 formalizes the notion of FDI. Section 4 presents the spec-
ification language. In Section 5 we discuss how to validate the requirements,
and how to verify an FDI component with respect to the requirements. In Sec-
tion 6 we present an algorithm for the synthesis of correct-by-construction FDI
components. The results of evaluating our approach in an industrial setting are
presented in Section 7. Section 8 compares our work with previous related works.
Section 9 concludes the paper with a hint on future work.

2 Background

Plants and FDIs are represented as transition systems. A transition system is a
tuple S = 〈V, Vo,W,Wo, I, T 〉, where V is the set of state variables, Vo ⊆ V is
the set of observable state variables; W is the set of input variables, Wo ⊆W is
the set of observable input variables; I is a formula over V defining the initial
states, T is a formula over V , W , V ′ (with V ′ being the next version of the state
variables) defining the transition relation.

A state s is an assignment to the state variables V . We denote with s′ the
corresponding assignment to V ′. An input i is an assignment to the input vari-
ables W . The observable part obs(s) of a state s is the projection of s on the
subset Vo of observable state variables. The observable part obs(i) of an input i
is the projection of i on the subset Wo of observable input variables. Given an
assignment a to a set of variables X and X1 ⊆ X, we denote the projection of a
over X1 with a|X1

. Thus, obs(s) = s|V o and obs(i) = i|Wo.
A trace of S is a sequence π = s0, i1, s1, i2, s2, . . . of states and in-

puts such that s0 satisfies I and, for each k ≥ 0, 〈sk, ik+1, sk+1〉 satis-
fies T . W.l.o.g. we consider infinite traces only. The observable part of π is
obs(π) = obs(s0), obs(i1), obs(s1), obs(i2), obs(s2), Given a sequence π =
s0, i1, s1, i2, s2, . . . and an integer k ≥ 0, we denote with σk the finite prefix
s0, i1, . . . , sk of π containing the first k+1 states. We denote with π[k] the k+1-
th state sk. We say that s is reachable in S iff there exists a trace π of S such
that s = π[k] for some k ≥ 0. We say that S is deterministic if i) there are no
two initial states s0 and s′0 s.t. obs(s0) = obs(s′0) ii) there are no two transi-
tions 〈s, i1, s′1〉 and 〈s, i2, s′2〉 from a reachable state s s.t. obs(i1) = obs(i2) and
obs(s′1) = obs(s′2).

Let S1 = 〈V 1, V 1
o ,W

1,W 1
o , I

1, T 1〉 and S2 = 〈V 2, V 2
o ,W

2,W 2
o , I

2, T 2〉 be two
transition systems with ∅ = (V 1\V 1

o)∩V 2 = V 1∩(V 2\V 2
o) = (W 1\W 1

o)∩W 2 =
W 1 ∩ (W 2 \W 2

o). We define the synchronous product S1 × S2 as the transition
system 〈V 1 ∪ V 2, V 1

o ∪ V 2
o ,W

1 ∪W 2,W 1
o ∪W 2

o , I
1 ∧ I2, T 1 ∧ T 2〉. Every state s

of S1 × S2 can be considered as the product s1 × s2 such that s1 = s|V 1 is a
state of S1 and s2 = s|V 2 is a state of S2.

We say that S1 is compatible with S2 iff i) for every initial state s2 of S2,
there exists an initial state s1 of S1 such that s1|V 1

o ∩V 2
o

= s2|V 1
o ∩V 2

o
and ii) for every

reachable state s1×s2 of S1×S2, for every transition 〈s2, i2, s′2〉 of S2, there exists
a transition 〈s1, i1, s′1〉 such that i1|W 1

o∩W 2
o

= i2|W 1
o∩W 2

o
and s′1|V 1

o ∩V 2
o

= s′2|V 1
o ∩V 2

o
.

3 Formal Framework

3.1 Diagnoser

A diagnoser is a machine D that synchronizes with observable traces of the plant
P . D has a set A of Boolean alarm variables that are activated in response to
the monitoring of P . We use diagnoser and FDI component interchangeably,
and call system the composition of the plant and the FDI component.

Formally, given a set A of alarms and a plant transition system P =
〈V P , V Po ,WP ,WP

o , I
P , TP 〉, a diagnoser is a deterministic transition system

D(A, P) = 〈V D, V Do ,WD,WD
o , I

D, TD〉 such that: V Po ⊆ V Do , WP
o ⊆ WD

o ,
A ⊆ V Do and D(A,P) is compatible with P ; when clear from the context, we
use D to indicate D(A, P). Given a trace πP of P we denote with D(πP) the
trace of D matching πP . Only observable variables can be shared among the two
systems and used to perform synchronization. This gives raise to the problem of
partial observability: the diagnoser cannot perfectly track the evolution of the
original system. This makes the diagnoser synthesis problem hard.

3.2 Detection, Identification, and Diagnosis Conditions

The first element for the specification of the FDI requirements is given by the
conditions that must be monitored. Here, we distinguish between detection and
identification, which are the two extreme cases of the diagnosis problem; the first
deals with knowing whether a fault occurred in the system, while the second tries
to identify the characteristics of the fault. Between these two cases there can be
intermediate ones: we might want to restrict the detection to a particular sub-
system, or identification among two similar faults might not be of interest.

For example, a data acquisition system composed of a sensor and a filter
might have several possible faults: the sensor might fail in a single way (sdie)
while the filter might fail in two ways (fdiehigh or fdielow). The detection task
is the problem of understanding when (at least) one of the two components has
failed. The identification task tries to understand exactly which fault occurred.
Similarly, e.g., if we can replace the filter whenever it fails, it might suffice to
know that one of fdiehigh or fdielow occurred (this is sometimes called isolation).

FDI components are generally used to recognize faults. However, there is
no reason to restrict our interest to faults. Recovery procedures might differ
depending on the current state of the plant, therefore, it might be important to
consider other unobservable information of the system.

We call the condition of the plant to be monitored diagnosis condition, de-
noted with β. We assume that for any point in time along a trace execution of

β

ExactDel(A, β, 2)

BoundDel(A, β, 4)

FiniteDel(A, β)

Fig. 1: Examples of alarm responses to the diagnosis condition β.

the plant (and therefore also of the system), β is either true or false based on
what happened before that time point. Therefore, β can be an atomic condi-
tion (including faults), a sequence of atomic conditions, or Boolean combination
thereof. If β is a fault, the fault must be identified; if β is a disjunction of faults,
instead, it suffices to perform the detection, without identifying the exact fault.

3.3 Alarm Conditions

The second element of the specification of FDI requirements is the relation be-
tween a diagnosis condition and the raising of an alarm. This also leads to the
definition of when the FDI is correct and complete with regard to a set of alarms.

An alarm condition is composed of two parts: the diagnosis condition and
the delay. The delay relates the time between the occurrence of the diagnosis
condition and the corresponding alarm; it might be the case that the occurrence
of a fault can go undetected for a certain amount of time. It is important to
specify clearly how long this interval can be at most. Interaction with industrial
experts led us to identify three patterns of alarm conditions, which we denote
with ExactDel(A, β, n), BoundDel(A, β, n), and FiniteDel(A, β):

1. ExactDel(A, β, n) specifies that whenever β is true, A must be triggered
exactly n steps later and A can be triggered only if n steps earlier β was true;
formally, for any trace π of the system, if β is true along π at the time point i,
then A is true in π[i + n] (Completeness); if A is true in π[i], then β must be
true in π[i− n] (Correctness).

2. BoundDel(A, β, n) specifies that whenever β is true, A must be triggered
within the next n steps and A can be triggered only if β was true within the
previous n steps; formally, for any trace π of the system, if β is true along π at
the time point i then A is true in π[j], for some i ≤ j ≤ i+n (Completeness); if A
is true in π[i], then β must be true in π[j′] for some i−n ≤ j′ ≤ i (Correctness).

3. FiniteDel(A, β) specifies that whenever β is true, A must be triggered
in a later step and A can be triggered only if β was true in some previous step;
formally, for any trace π of the system, if β is true along π at the time point i
then A is true in π[j] for some j ≥ i (Completeness); if A is true in π[i], then β
must be true along π in some time point between 0 and i (Correctness).

Figure 1 provides an example of admissible responses for the various alarms
to the occurrences of the same diagnosis condition β; note how in the case of
BoundDel(A, β, 4) the alarm can be triggered at any point as long as it is within
the next 4 time-steps. FiniteDel(A, β) is of particular theoretical interest since
it captures the idea of diagnosis as defined in previous works [4].

An alarm condition is actually a property of the whole system since it relates
a condition of the plant with an alarm of the diagnoser. Thus, when we say that
a diagnoser D of P satisfies an alarm condition, we mean that the traces of the
system D × P satisfy it.

Considering our previous example of the data acquisition system, we can
define the following toy specification. β1 = (sdie ∨ fdiehigh ∨ fdielow) indicates
the fault detection condition, therefore we define the FiniteDel(A1, β1) as the
finite-delay fault detection. Another example could be identification of the sensor
death (β2 = sdie) within a bound: BoundDel(A2, β2, 5). Finally, we could be
interested in knowing that some fault occurred in the filter with some precise
delay information: ExactDel(A3, (fdiehigh ∨ fdielow), 2).

3.4 Diagnosability

Given an alarm condition, we need to know whether it is possible to build a
diagnoser for it. In fact, there is no reason in having a specification that cannot
be realized. This property is called diagnosability and was introduced in [5].

In this section, we define the concept of diagnosability for the different types
of alarm conditions. We proceed by first giving the definition of diagnosability in
the traditional way (à la Sampath) in terms of observationally equivalent traces
w.r.t. the diagnosis condition. Then, we prove that a plant P is diagnosable iff
there exists a diagnoser that satisfies the specification. In the following, we will
not provide definitions for finite-delay since they can be obtained by generalizing
the ones for bounded-delay.

Definition 1 Given a plant P and a diagnosis condition β, we say that
ExactDel(A, β, d) is diagnosable in P iff for any pair of traces σ1,σ2 and
for all i ≥ 0, if obs(σi+d1) = obs(σi+d2) then σ1, i |= β iff σ2, i |= β.

Definition 2 Given a plant P and a diagnosis condition β, we say that
BoundDel(A, β, d) is diagnosable in P iff for any pair of traces σ1,σ2 and for
all i ≥ 0 there exists a j, i ≤ j ≤ i + d, s.t. if obs(σj1) = obs(σj2) and σ1, i |= β
then σ2, k |= β for some k, j − d ≤ k ≤ j.

An exact-delay alarm condition is not diagnosable in P iff there exists a pair
of traces that violates the conditions of Definition 1: this would be a pair of
traces σ1 and σ2 such that for some i ≥ 0, σ1, i |= β, obs(σi+d1) = obs(σi+d2), and
σ2, i 6|= β. We call such a pair a critical pair. Definition 2 is a generalization of
Sampath’s definition of diagnosability:

Theorem 1. Let α be a propositional formula and βα a condition that holds
in a point of a trace if α holds in some point of its prefix, then α is d-delay
diagnosable (as in [5]) in P iff BoundDel(A, βα, d) is diagnosable in P .

The following theorem shows that if a component satisfies the diagnoser
specification then the monitored plant must be diagnosable for that specification.
In Section 6 on synthesis we will show also the converse, i.e., if the specification
is diagnosable then a diagnoser exists.

Theorem 2. Let D be a diagnoser for P . If D satisfies an alarm condition then
the alarm condition is diagnosable in P .

The above definition of diagnosability might be stronger than necessary, since
diagnosability is defined as a global property of the plant. Imagine the situation
in which there is a critical pair and after removing this critical pair from the
possible executions of the system, our system becomes diagnosable. This suggests
that the system was “almost” diagnosable, and an ideal diagnoser would be
able to perform a correct diagnosis in all the cases except one (i.e., the one
represented by the critical pair). To capture this idea, we redefine the problem of
diagnosability from a global property expressed on the plant, to a local property
(expressed on points of single traces).

Definition 3 Given a plant P , a diagnosis condition β and a trace σ1 such that
for some i ≥ 0 σ1, i |= β, we say that ExactDel(A, β, d) is trace diagnosable
in 〈σ1, i〉 iff for any trace σ2 such that obs(σi+d1) = obs(σi+d2) then σ2, i |= β.

Definition 4 Given a plant P , a diagnosis condition β, and a trace σ1 such that
for some i ≥ 0 σ1, i |= β, we say that BoundDel(A, β, d) is trace diagnosable
in 〈σ1, i〉 iff there exists j, i ≤ j ≤ i + d such that, for any trace σ2 such that
obs(σj1) = obs(σj2) then σ2, k |= β for some j − d ≤ k ≤ j.

A specification that is trace diagnosable in a plant along all points of all
traces is diagnosable in the classical sense, and we say it is system diagnosable.

3.5 Maximality

As shown in Figure 1, bounded- and finite-delay alarms are correct if they are
raised within the valid bound. However, there are several possible variations of
the same alarm in which the alarm is active in different instants or for different
periods. We address this problem by introducing the concept of maximality.
Intuitively, a maximal diagnoser is required to raise the alarms as soon as possible
and as long as possible (without violating the correctness condition).

Definition 5 D is a maximal diagnoser for an alarm condition with alarm A
in P iff for every trace πP of P , D(πP) contains the maximum number of points
i such that D(πP), i |= A in the sense that if D(πP), i 6|= A then there does not
exist another correct diagnoser D′ of P such that D′(πP), i |= A.

4 Formal Specification

In this section, we present the Alarm Specification Language with Epistemic
operators (ASLK). This language allows designers to define requirements on the
FDI alarms including aspects such as delays, diagnosability and maximality.

Diagnosis conditions and alarm conditions are formalized using LTL with
past operators [6] (from here on, simply LTL). The definitions of trace diagnos-
ability and maximality, however, cannot be captured by using a formalization

based on LTL. Therefore, in order to capture these two concepts, we rely on
temporal epistemic logic. The intuition is that this logic enables us to reason
on set of observationally equivalent traces instead that on single traces (like in
LTL). We assume the familiarity of the reader to LTL, but we provide a brief
introduction to temporal epistemic logic, and then show how it can be used to
verify diagnosability, define requirements for non-diagnosable cases and express
the concept of maximality.

4.1 Temporal Epistemic Logic

Epistemic logic has been used to describe and reason about knowledge of agents
and processes. There are several ways of extending epistemic logic with temporal
operators. We use the logic KL1 [2] and extended it with past operators.

A formula in KL1 is defined as β ::= p | β∧β | ¬β| Oβ | Y β | Fβ | Xβ | Kβ.
Note how this is an extension of LTL on the past, with the addition of the epis-
temic operator K. The intuitive semantics of Oβ is that β was true in the past,
while Y β means that in the previous state β was true; the intuitive semantics of
Kβ is that the diagnoser knows that β holds in the current execution. The formal
semantics of the epistemic operator K is given on indistinguishable traces:

σ1, n |= Kβ iff ∀σ2, obs(σn1) = obs(σn2)⇒ σ2, n |= β.

Therefore, Kβ holds at time n in a trace σ1, if β holds in all traces that are obser-
vational equivalent to σ1 at time n. This definition implicitly forces perfect-recall
in the semantics of the epistemic operator, since we define the epistemic equiva-
lence between traces and not between states. Moreover, the traces are compared
with a synchronous semantics. Therefore, the semantics of our transition system
is synchronous and with perfect-recall (compare [2]).

4.2 Diagnosis and Alarm Conditions as LTL Properties

Let P be a set of propositions representing either faults or elementary conditions
for the diagnosis. The set DP of diagnosis conditions over P is any formula β
built with the following rule: β ::= p | β ∧ β | ¬β | Oβ | Y β with p ∈ P. We use
the abbreviations Y nφ = Y Y n−1φ (with Y 0φ = φ), O≤nφ = φ∨ Y φ∨ · · · ∨ Y nφ
and F≤nφ = φ ∨Xφ ∨ · · · ∨Xnφ.

We define the Alarm Specification Language (ASL) in Figure 2, where we
associate to each type of alarm condition an LTL formalization encoding the
concepts of correctness and completeness. Correctness, the first conjunct, intu-
itively says that whenever the diagnoser raises an alarm, then the fault must
have occurred. Completeness, the second conjunct, intuitively encodes that
whenever the fault occurs, the alarm will be raised. In the following, for sim-
plicity, we abuse notation and indicate with ϕ both the alarm condition and
the associated LTL; for an alarm condition ϕ, we denote with Aϕ the asso-
ciated alarm variable A, and with τ(ϕ) the following formulae: τ(ϕ) = Y nβ
for ϕ = ExactDel(A, β, n); τ(ϕ) = O≤nβ for ϕ = BoundDel(A, β, n);
τ(ϕ) = Oβ for ϕ = FiniteDel(A, β).

Alarm Condition LTL Formulation

ExactDel(A, β, n) G(A→ Y nβ) ∧G(β → XnA)

BoundDel(A, β, n) G(A→ O≤nβ) ∧G(β → F≤nA)

FiniteDel(A, β) G(A→ Oβ) ∧G(β → FA)

Fig. 2: Alarm conditions as LTL (ASL)

Alarm Condition Diagnosability condition

ExactDel(A, β, n) G(β → XnKY nβ)

BoundDel(A, β, n) G(β → F≤nKO≤nβ)

FiniteDel(A, β) G(β → FKOβ)

(a) Diagnosability Property.

β

KO≤4β
A (Maximal)

A (Non-Maximal)

(b) Example of Maximality.

Fig. 3: Diagnosability and Maximality.

4.3 Diagnosability as Epistemic Property

We can write the diagnosability tests for the different alarm conditions directly
as epistemic properties that can be verified on single points of the traces (trace
diagnosability) or on the entire plant (system diagnosability) (Figure 3.a). For
example, the diagnosability test for ExactDel(A, β, n) says that it is always
the case that whenever β occurs, exactly n steps afterwards, the diagnoser knows
that n steps before β occurred. Since K is defined on observationally equivalent
traces, the only way to falsify the formula would be to have a trace in which
β occurs, and another one (observationally equivalent at least for the next n
steps) in which β did not occur; but this is in contradiction with the definition
of diagnosability (Definition 1).

4.4 Maximality as Epistemic Property

The property of maximality says that the diagnoser will raise the alarm as soon
as it is possible to know the diagnosis condition, and the alarm will stay up as
long as possible. The property Kτ(ϕ)→ A encodes this behavior:

Theorem 3. D is maximal for ϕ in P iff D × P |= G(Kτ(ϕ)→ Aϕ).

Whenever the diagnoser knows that τ(ϕ) is satisfied, it will raise the alarm. For
bounded- and finite-delay alarms, this guarantees also that the alarm will stay
up if possible, since Kτ(ϕ) → XKY τ(ϕ). An example of maximal and non-
maximal alarm is given in Figure 3.b. Note that according to our definition, the
set of maximal alarms is a subset of the non-maximal ones.

4.5 ASLK Specifications

The formalization of ASLK (Figure 4) is obtained by extending ASL (Figure 2)
with the concepts of maximality and diagnosability, defined as epistemic proper-
ties. When maximality is required we add a third conjunct following Theorem 3.

Template maximality = False maximality = True

d
ia
g

=
S
y
st
em ExactDel

G(A→ Y nβ) ∧G(β → XnA) G(A→ Y nβ) ∧G(β → XnA) ∧
G(KY nβ → A)

BoundDel
G(A→ O≤nβ) ∧G(β → F≤nA) G(A→ O≤nβ) ∧G(β → F≤nA) ∧

G(KO≤nβ → A)

FiniteDel
G(A→ Oβ) ∧G(β → FA) G(A→ Oβ) ∧G(β → FA) ∧

G(KOβ → A)

d
ia
g

=
T
ra
ce

ExactDel
G(A→ Y nβ) ∧ G(A→ Y nβ) ∧
G((β → XnKY nβ) → (β → XnA)) G((β → XnKY nβ) → (β → XnA)) ∧

G(KY nβ → A)

BoundDel
G(A→ O≤nβ) ∧ G(A→ O≤nβ) ∧
G((β → F≤nKO≤nβ) → (β → F≤nA)) G((β → F≤nKO≤nβ) → (β → F≤nA)) ∧

G(KO≤nβ → A)

FiniteDel
G(A→ Oβ) ∧ G(A→ Oβ) ∧
G((β → FKOβ) → (β → FA)) G((β → FKOβ) → (β → FA)) ∧

G(KOβ → A)

Fig. 4: ASLK specification patterns.

When diag = trace instead, we precondition the completeness to the trace diag-
nosability (as defined in Figure 3.a); this means that the diagnoser will raise an
alarm whenever the diagnosis condition is satisfied and the diagnoser is able to
know it. The formalizations presented in the table can be simplified, but are left
as-is to simplify their comprehension. For example, in the case diag = trace, we
do not need to verify the completeness due to the following result:

Theorem 4. Given a diagnoser D for a plant P and a trace diagnosable alarm
condition ϕ, if D is maximal for ϕ, then D is complete.

A similar result holds for ExactDel in the non-maximal case, that becomes:
G(A→ Y nβ)∧G(KY nβ → A). Finally, the implications for the completeness in
the trace diagnosability case can be rewritten as, e.g., G((β∧FKOβ)→ (FA)).
Another interesting result is the following:

Theorem 5. Given a diagnoser D for a plant P and a system diagnosable con-
dition ϕ, if D is maximal for ϕ and ϕ is diagnosable in P then D is complete.

An ASLK specification is built by instantiating the patterns defined in Fig-
ure 4. For example, we would write ExactDelK(A, β, n, trace, True) for an
exact-delay alarm A for β with delay n, that satisfies the trace diagnosability
property and is maximal. An introductory example on the usage of ASLK for
the specification of a diagnoser is provided in [7].

5 Validation and Verification of ASLK Specifications

Thanks to the formal characterization of ASLK , it is possible to apply formal
methods for the validation and verification of a set of FDI requirements. In
validation we verify that the requirements capture the interesting behaviors and
exclude the spurious ones, before proceeding with the design of the diagnoser.
In verification, we check that a candidate diagnoser fulfills a set of requirements.

Validation In the following we focus on the validation of an alarm specification,
but the same ideas can be applied to a set of diagnosis conditions. We consider
a set of environmental assumptions E and a specification AP . The environment
assumption E may include both assumption on the plant’s input and an abstrac-
tion of the plant. It can vary in a spectrum starting from trivially no assumption
(E = >), to some LTL properties, to a detailed model of the plant, going through
several intermediate levels. The idea is that throughout the different phases of
the development process, we have access to better versions of the plant model,
and therefore the analysis can be refined. For example, it might be possible to
provide some assumption on the maximum number of faults in the system, or
on their dynamics, before a complete description of the subsystems is available.

Known techniques for requirements validation (e.g.,[8]) include checking their
consistency, their compatibility with some possible scenarios, whether they en-
tail some expected properties and if they are realizable, i.e., if there exists an
implementation satisfying the requirements. In the following we instantiate these
checks for the alarm specification.

In Section 6, we prove that we can always synthesize a diagnoser satisfying
AP , with the only assumption that if AP contains some system diagnosable
alarm condition, then that condition is diagnosable in the plant. This means that
any specification AP is consistent by construction (just consider a diagnosable
plant). Moreover, the check for realizability reduces to checking that the plant
is diagnosable for the system diagnosable conditions in AP . The diagnosability
check can be performed via epistemic model-checking (Section 4.3) or it can be
reduced to an LTL model-checking problem using the twin-plant construction [9].

As check of possible scenarios, we would like that alarms should eventually
be activated, but also that alarms are not always active. This means that for
a given alarm condition ϕ ∈ AP , we are interested in verifying that there is a
trace π ∈ E and a trace π′ ∈ E s.t. π |= FAϕ and π′ |= F¬Aϕ. This can be
done by checking the unsatisfiability of (E ∧ϕ)→ G¬Aϕ and (E ∧ϕ)→ GAϕ .

As check of entailed properties, it is interesting to understand whether there
is some correlation between alarms in order to simplify the model, or to guarantee
some redundancy requirement. To check whether Aϕ′ is a more general alarm
than Aϕ (subsumption) we verify that (E ∧ ϕ ∧ ϕ′) → G(Aϕ → Aϕ′) is a
tautology. A trivial example of subsumption of alarms is given by the definition of
maximality: any non-maximal alarm is subsumed by its corresponding maximal
version. Finally, we can verify that two alarms are mutually exclusive by checking
the validity of (E ∧ϕ∧ϕ′)→ G¬(Aϕ ∧Aϕ′). In general, the validation of alarm
conditions requires reasoning in temporal epistemic logic, however, the validation
of diagnosis condition only requires reasoning on LTL with past.

Verification The verification of a system w.r.t. a specification can be performed
via model-checking techniques using the semantics of the alarm conditions:

Definition 6 Let D be a diagnoser for alarms A and plant P . We say that D
satisfies a set AP of ASLK specifications iff for each ϕ in AP there exists an
alarm Aϕ ∈ A and D × P |= ϕ.

To perform this verification steps, we need in general a model checker for KL1

with synchronous perfect recall such as MCK [10]. However, if the specification
falls in the pure LTL fragment (ASL) we can verify it with an LTL model-checker
such as NuSMV [11] thus benefiting from the efficiency of the tools in this area.
Moreover, a diagnoser is required to be compatible with the plant. Therefore,
we need to take care that the synchronous composition of the plant with the
diagnoser does not reduce the behaviors of the plant. This would imply that
there is a state and an observation that are possible for the plant, but not taken
into account by the diagnoser. Compatibility can be checked with dedicated tools
such as Ticc [12] based on game theory. However, here we require compatibility in
all environments and therefore, compatibility can be checked by model checking
by adding a sink state to the diagnoser, so that if we are in a state and we receive
an observation that was not covered by the original diagnoser, we go to the sink
state. Once we modified the diagnoser, we verify that D × P |= G¬SinkState.

6 Synthesis of a Diagnoser from an ASLK Specification

In this section, we sketch an algorithm to synthesize a diagnoser that satisfies
a given specification AP . The algorithm considers the most expressive case of
ASLK (maximal/trace diagnosable), satisfying, therefore all other cases.

The idea of the algorithm is to generate an automaton that encodes the set
of possible states in which the plant could be after each observations. The result
is achieved by generating the power-set of the states of the plant, and defining
a suitable transition relation among the elements of this set that only considers
the observable information. We call the sets in the power-set belief states. Each
belief state of the automaton can be annotated with the alarms that are satisfied
in all the states of the belief state, obtaining the diagnoser.

Our algorithm resembles the construction by Sampath [5] and Schumann [13].
The main differences are that we consider LTL Past expression as diagnosis
condition, and not only fault events as done in previous works. Moreover, instead
of providing a set of possible diagnosis, we provide alarms: we need to be certain
that the alarm condition is satisfied in all possible diagnosis in order to raise the
alarm. This gives raise to a 3-valued alarm system, in which we know that the
fault occurred, know that the fault did not occurred or are uncertain.

Given a plant P = 〈V P , V Po ,WP ,WP
o , I

P , TP 〉, let S be the set of states
of P . The belief automaton is defined as B(P) = 〈B,E,B0, R〉 where B = 2S ,

E = 2W
P
o ∪V

P
o and B0 ⊆ B and R : (B × E)→ B are defined as follows.

We define B0 = {b | there exists u ∈ 2V
P
o s.t. for all s ∈ b, s |= IP and

obs(s) = u}: we assume that the diagnoser can be initialized by observing the
plant, and each initial belief state must, therefore, be compatible with one of the
possible initial observations on the plant. The transition function R is defined as
follows R(b, e) = {s′ | ∃s ∈ b s.t. 〈s, i, s′〉 |= TP , obs(s′) = e|V P

o
, obs(i) = e|WP

o
}:

the belief state b′ = R(b, e) is a successor of b iff all the states in b′ are compatible
with the observations from a state in b.

The diagnoser is obtained by annotating each state of the belief automaton
with the corresponding alarms. To do this we explore the belief automaton,
and annotate with Aϕ all the states b that satisfy the temporal property τ(ϕ):
b |= Aϕ iff ∀s ∈ b.s |= τ(ϕ). It might occur that neither Kτ(ϕ) nor K¬τ(ϕ)
hold in a state. In this case there is at least a state in the belief state in which
Kτ(ϕ) holds and one in which it does not hold. This pair of states represents
uncertainty, and are caused by non-diagnosabile traces.

We define Dϕ as the diagnoser for ϕ. For the propositional case τ(ϕ) = p,

Dϕ = 〈V Dϕ , V
Dϕ
o ,WDϕ ,W

Dϕ
o , IDϕ , TDϕ〉 is a symbolic representation of B(P)

with V
Dϕ
o = V Po ∪{Aϕ},W

Dϕ
o = WP

o and such that every state b ofDϕ represents
a state in B (with abuse of notation we do not distinguish between the two) and,

for all v ∈ V Dϕ
o , v ∈ obs(b) iff for all s ∈ b, v ∈ s, and such that every observation

e of Dϕ represents an observation in E and obs(e) = e|WDϕ
o

. The following holds:

Theorem 6 (Compatibility). Dϕ is compatible with P .

Theorem 7 (Correctness, Completeness and Maximality). Dϕ is correct
(i.e. Dϕ × P |= G(Aϕ → τ(ϕ))), maximal (i.e. Dϕ × P |= G(K(τ(ϕ)) → Aϕ))
and complete (under the assumption that if ϕ is system diagnosable, then ϕ is
diagnosable in P).

All other alarm conditions can be reduced to the propositional case. We build
a new plant P ′ by adding a monitor variable τ to P s.t., P ′ = P×(G(τ(ϕ)↔ τ)),
where we abuse notation to indicate the automaton that encodes the monitor
variable. By rewriting the alarm condition as ϕ′ = ExactDel(Aϕ, τ , 0), we
obtain that D × P |= ϕ iff D × P ′ |= ϕ′.

7 Industrial Experience

The framework described in this paper has been motivated by, and used in, the
AUTOGEF project [1], funded by the European Space Agency. The main goal
of the project was the definition of a set of requirements for an on-board Fault
Detection, Identification and Recovery (FDIR) component and its synthesis. The
problem was tackled by synthesizing the Fault Detection (FDI) and Fault Recov-
ery (FR) components separately, with the idea that the FDI provides sufficient
diagnosis information for the FR to act on.

The AUTOGEF framework was evaluated using scalable benchmark exam-
ples. Moreover, Thales Alenia Space evaluated AUTOGEF on a case study based
on the EXOMARS Trace Gas Orbiter. This case-study is a significant exemplifi-
cation of the framework described in this paper, since it covers all the phases of
the FDIR development process. The system behavior (including faulty behavior)
was modeled using a formal language and table- and pattern-based description
of the mission phases/modes and observability characteristics of the system. The
specification of FDIR requirements by means of patterns greatly simplified the
accessibility of the tool to engineers that were not experts in formal methods.
Specification of alarms was carried out in the case of finite delay, under the

assumption of trace diagnosability and maximality of the diagnoser. Moreover,
different faults and alarms were associated with specific mission phase/mode and
configurations of the system, which enabled generation of specific alarms (and
recoveries) for each configuration. The specification was validated, by performing
diagnosability analysis on the system model. The synthesis routines were run on
a system composed of 11 components, with 10 faults in total, and generated an
FDI component with 754 states. Finally, the correctness of the diagnoser was
verified by using model-checking routines. Synthesis and verification capabilities
have been implemented on top of the NuSMV model checker. We remark that
the ability to define trace diagnosable alarms was crucial for the synthesis of the
diagnoser, since most of the modeled faults were not system diagnosable.

Successful completion of the project, and positive evaluations from the in-
dustrial partner and ESA, suggest that a first step towards a formal model-based
design process for FDIR was achieved.

8 Related Work

Previous works on formal FDI development have considered the specification
and synthesis in isolation. Our approach differs with the state of the art because
we provide a comprehensive view on the problem. Due to the lack of specification
formalism for diagnosers, the problem of verifying their correctness, completeness
and maximality was, to the best of our knowledge, unexplored.

Concerning specification and synthesis [14] is close to our work. The authors
present a way to specify the diagnoser using LTL properties, and present a
synthesis algorithm for this specification. However, problems such as maximality
and trace diagnosability are not taken into account. Interesting in [14] is the
handling of diagnosis condition with future operators.

Some approaches exist that define diagnosability as epistemic properties.
Two notable examples are [15] and [16], where the latter extends the definition
of diagnosability to a probabilistic setting. However, these works focus on finite-
delay diagnosability only, and do not consider other types of delays and the
problem of trace diagnosability.

Finally, we extend the results on diagnosability checking from [9] in order to
provide an alternative way of checking diagnosability and redefine the concept
of diagnosability at the trace level.

9 Conclusions and Future Work

This paper presents a formal framework for the design of FDI components,
that covers many practically-relevant issues such as delays, non-diagnosability
and maximality. The framework is based on a formal semantics provided by
temporal epistemic logic. We covered the specification, validation, verification
and synthesis steps of the FDI design, and evaluated the applicability of each
step on a case-study from aerospace. To the best of our knowledge, this is the
first work that provides a formal and unified view to all the phases of FDI design.

In the future, we plan to explore the following research directions. First,
we will extend FDI to deal with asynchronous and infinite-state systems. In
this work we addressed the development of FDI for finite state synchronous
systems only. However, it would be of practical interest to consider infinite state
systems and timed/hybrid behaviors. Another interesting line of research is the
development of optimized ad-hoc techniques for reasoning on the fragment of
temporal epistemic logic that we are using, both for verification and validation,
and evaluating and improving the scalability of the synthesis algorithms. Finally,
we will work on integrating the FDI component with the recovery procedures.

References

1. European Space Agency: ITT AO/1-6570/10/NL/LvH “Dependability Design Ap-
proach for Critical Flight Software”. Technical report (2010)

2. Halpern, J.Y., Vardi, M.Y.: The complexity of reasoning about knowledge and
time. lower bounds. Journal of Computer and System Sciences 38(1) (1989) 195–
237

3. Grastien, A., Anbulagan, A., Rintanen, J., Kelareva, E.: Diagnosis of discrete-event
systems using satisfiability algorithms. In: AAAI - Vol. 1. (2007) 305–310

4. Rintanen, J., Grastien, A.: Diagnosability testing with satisfiability algorithms. In
Veloso, M.M., ed.: IJCAI. (2007) 532–537

5. Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., Teneketzis, D.C.:
Ieee transactions on control systems technology. Volume 4. (1996) 105–124

6. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In Parikh, R., ed.:
Logics of Programs. Volume 193. Springer Berlin Heidelberg (1985) 196–218

7. Bozzano, M., Cimatti, A., Gario, M., Tonetta, S.: Formal Specification and Synthe-
sis of FDI through an Example. In: Workshop on Principles of Diagnosis (DX’13).
(2013) Available at URL https://es.fbk.eu/people/gario/dx2013.pdf.

8. Cimatti, A., Roveri, M., Susi, A., Tonetta, S.: Validation of requirements for
hybrid systems: A formal approach. ACM Transactions on Software Engineering
and Methodology 21(4) (2012) 22

9. Cimatti, A., Pecheur, C., Cavada, R.: Formal Verification of Diagnosability via
Symbolic Model Checking. In: IJCAI. (2003) 363–369

10. Gammie, P., Van Der Meyden, R.: Mck: Model checking the logic of knowledge.
Computer Aided Verification (2004) 256–259

11. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri,
M., Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic
Model Checking. In: CAV. (2002) 359–364

12. Adler, B., de Alfaro, L., da Silva, L., Faella, M., Legay, A., Raman, V., Roy, P.:
Ticc: A Tool for Interface Compatibility and Composition. In: CAV. (2006) 59–62

13. Schumann, A.: Diagnosis of discrete-event systems using binary decision diagrams.
Workshop on Principles of Diagnosis (DX’04) (2004) 197–202

14. Jiang, S., Kumar, R.: Failure diagnosis of discrete event systems with linear-time
temporal logic fault specifications. In: IEEE Transactions on Automatic Control.
(2001) 128–133

15. Ezekiel, J., Lomuscio, A., Molnar, L., Veres, S.: Verifying Fault Tolerance and Self-
Diagnosability of an Autonomous Underwater Vehicle. In: IJCAI. (2011) 1659–1664

16. Huang, X.: Diagnosability in concurrent probabilistic systems. In: Proceedings of
the 2013 International Conference on Autonomous Agents and Multi-agent Sys-
tems. (2013)

