
COMPASS 3.0?

Marco Bozzano1, Harold Bruintjes2, Alessandro Cimatti1, Joost-Pieter Katoen2,
Thomas Noll2, and Stefano Tonetta1

1 Embedded Systems Unit, Fondazione Bruno Kessler, Trento, Italy
2 Software Modeling and Verification Group, RWTH Aachen University, Germany

Abstract. COMPASS (COrrectness, Modeling and Performance of
AeroSpace Systems) is an international research effort aiming to en-
sure system-level correctness, safety, dependability and performability of
on-board computer-based aerospace systems. In this paper we present
COMPASS 3.0, which brings together the results of various develop-
ment projects since the original inception of COMPASS. Improvements
have been made both to the frontend, supporting an updated modeling
language and user interface, as well as to the backend, by adding new
functionalities and improving the existing ones. New features include
Timed Failure Propagation Graphs, contract-based analysis, hierarchical
fault tree generation, probabilistic analysis of non-deterministic models
and statistical model checking.

1 Introduction

The COMPASS toolset provides an integrated model-based approach for System-
Software Co-Engineering in the aerospace domain. It uses formal verification
techniques, notably model checking, and originates from an ESA initiative dating
back to 2008 [6]. Over the past eight years, various projects followed which
extended the toolset. In a recent effort funded by ESA, the results of this work
have been thoroughly consolidated into a single release, which is now available.

COMPASS 3.0 includes features originally included in distinct tool releases
that diverged from the original development trunk3. The AUTOGEF and FAME
projects focused on Fault Detection, Identification, and Recovery (FDIR) require-
ments modeling and development, and on fault propagation analysis; HASDEL
extended formal analysis techniques to deal with the specific needs of launcher
systems, with a strong focus on timed aspects of the model; and finally CATSY
had the goal of improving the requirements specification process.

This paper presents an overview of the toolset, as well as a description of
the enhancements made since its last official release in 2013 (v2.3). For a more
detailed description of the (pre-)existing features and capabilities, we refer to [5,6].

? This work has been funded by the European Space Agency (ESA-ESTEC) under
contract 4000115870/15/NL/FE/as.

3 See www.compass-toolset.org

www.compass-toolset.org

2 Toolset Overview

The COMPASS toolset can be divided into the user facing side (the frontend),
and the verification engines used (the backend). The frontend provides a GUI that
offers access to all the analysis functions of the toolset, as well as command-line
scripts. The backend tools are chosen and invoked by the toolset automatically.

Nominal Model Error Model Fault Injection Properties

Extended Model

Symbolic
Transition System

Markov Chain Logic Formulas

Fault Management

- Fault detection
- Fault isolation
- Fault recovery
- Diagnosability
- TFPG analyses and
synthesis

Property Validation

- Consistency check
- Possibility check
- Assertion check
- Contract-based
specification,
refinement and
tightening

Dependability
Analysis

- Dynamic Fault Tree
analysis (FTA)
- Dynamic Failure
Modes and Effects
Analysis (FMEA)
- Hierarchical FTA
- Probabilistic
Evaluation

Performability
Analysis

- Probabilistic FTA
verification and
evaluation
- Performability
evaluation
- Monte Carlo
simulation

Functional
Correctness

- Model checking
(discrete/hybrid)
- Simulation
- Deadlock checking
- Zeno and clock
divergence detection

OCRA nuXmv xSAP
MRMC/IMCA

slimsim

Input models

Generated
Model

Generated
Formal Models

Functionalities

- Analyses
- New analyses

Tools

Fig. 1. Overview of the COMPASS toolset

The functionalities of COMPASS are summarized in Fig. 1, where arrows
represent I/O relationships for model transformations, and link models with the
corresponding analyses. User inputs are models written in a dialect of AADL [18]
and properties. COMPASS is based on the concept of model extension, i.e., the
possibility to automatically inject faults into a nominal model, by specifying error
models and a set of fault injections. The extended model is internally converted
into a symbolic model amenable to formal verification and to a Markov chain
(for probabilistic analyses). Properties are automatically translated into temporal
logic formulas. Given the models and the properties, COMPASS provides a full
set of functionalities, including property validation, functional correctness, fault
management, dependability and performability analyses.

The analyses are supported by the following verification engines: nuXmv [9]
for correctness checking; OCRA [10] for contract-based analysis; IMCA [19] and
MRMC [20] for performance analysis by probabilistic model checking; slimsim [8]
for statistical model checking and xSAP [1] for safety analysis.

COMPASS is licensed under a variant of the GPL license, restricted to ESA
member states. It is distributed on a pre-configured and ready-to-use virtual
machine, or as two different code bundles.

2

In a typical workflow, one would start with both a nominal and an error
specification of the system and then use simulation to interactively explore its
dynamic behavior. In a next step, verification of functional correctness based on
user-defined properties can be performed, followed by more specialized analyses
as indicated in Fig. 1. For a complete overview of the COMPASS toolset, we
refer to the COMPASS tutorial [15] and user manual [16].

3 Input Language

Input models for COMPASS use a variant of the AADL language [18], named
SLIM. AADL is standardized and used in e.g., the aerospace and automotive
industries. SLIM provides extensions for behavior and error specification. A
model is described in terms of components, which may specify subcomponents,
forming a component hierarchy. Components interact with each other by means
of ports, which send either discrete events or data values. Components may
furthermore specify modes, which may render subcomponents active or inactive,
thus enabling system reconfiguration. Error behavior is specified in terms of error
components, which define error states, (probabilistic) events and propagations
which may trigger a synchronization between error components. The impact of
faults occurring in the error model onto the nominal model is described by means
of fault injections, which specify the fault effect by update operations on data
components. This has been extended by supporting specifications that can inhibit
certain events from occurring, or specifying a set of modes that is available in a
certain failure state. The language’s semantics and syntax are described in [14].

Language Updates COMPASS 3.0 supports the property system used by AADL.
This makes it possible to annotate various elements in the model by using
SLIM specific attributes, and makes the language more compatible with the core
AADL specification, improving interoperability. New features also include timed
error models (that is, error components may contain clocks), non-blocking ports
and separation of configuration and behavior. The latter entails that composite
components can only specify modes and cannot change data values or generate
events by means of transitions, whereas atomic components may specify states.

Property Specification Properties can be specified in three different ways. The
first two options are simpler to use, since they hide the details of the underlying
temporal logic, but less expressive. Design attributes [3] represent a specific
property of a model’s element, such as the delay of an event or the invariant of
a mode. They are directly associated to model elements. Formal properties are
automatically derived based on the Catalogue of System and Software Properties
(CSSP) [3]. The pattern-based system uses pre-defined patterns with placeholders
to define formal properties. Time bounds and probabilities can optionally be
specified. As a last option, the user can encode properties directly using logical
expressions. This enables the modeler to exploit the full power of the underlying
temporal logics, and offers the highest expressivity.

3

4 New Functionalities in COMPASS 3.0

In this section, we discuss the main functionalities of the COMPASS 3.0 toolset.

Correctness Checking COMPASS supports checking for correctness of the model
by providing properties. The toolset indicates for each property whether it holds
or not, and gives a counter example in the latter case. Verification relies on edge
technologies based on BDD- and SAT-based model checking, including K-liveness
verification [12]. In order to assist the user in the specification of timed models,
COMPASS 3.0 offers functionality to check the timed correctness of the model
w.r.t. Zenoness and clock divergence. The former is caused by cycles in the
system’s state space that do not require progressing of time. The latter is caused
by clocks that can attain an arbitrarily large value. The toolset can automatically
check Zenoness for all modes in the system, and divergence for all clocks.

Contract-Based Analysis COMPASS 3.0 offers the possibility to perform contract-
based analysis [11]. Contracts must be specified in the model and attached
to components. Each contract consists of an assumption (a property of the
environment of the component) and a guarantee (a property of the implementation
of the component, which must hold as long as the assumption holds). In order to
perform compositional analysis, a contract refinement must be further specified,
which links a contract to a set of contracts of the subcomponents. COMPASS 3.0
supports the following analyses. Validation is performed on assumptions and
guarantees. The user can choose a subset of these properties and check consistency
or entailment. Refinement checking verifies whether the contract refinements
are correct. Namely, that whenever the implementations of the subcomponents
satisfy their contracts and the environment satisfies its assumption, then the
guarantee of the supercomponent and the assumptions of its subcomponents are
satisfied. Finally, tightening looks for a weakening and/or strengthening of the
assumptions/guarantees, respectively, such that the refinement still holds.

Fault Trees COMPASS 3.0 can generate fault trees associated with particular
error states in the model. Standard fault trees are flat in nature (being two- or
three-leveled), hiding some of the nested dependencies. Contract-based analysis
can be used to generate a hierarchical fault tree, which captures the hierarchy
of the model. This approach makes use of the specified contracts, and checks
which events may cause them to be invalidated. COMPASS 3.0 offers further
alternatives to analyze fault trees. Static probabilities can be calculated for the
entire tree by specifying the probabilities of basic events. Fault Tree Evaluation
calculates the probability of failure for a given time span. Finally, Fault Tree
Verification checks a probabilistic property specified for the fault tree.

Performability COMPASS 3.0 offers two model checking approaches to probabilis-
tic analysis (which, using a probabilistic property, determine the probability of
failure within a time period): using numerical analysis or using Monte-Carlo sim-
ulation. The former originally only supported Continuous Time Markov Chains

4

(CTMCs) using the MRMC [20] tool. This has now been extended to Interactive
Markov Chains (IMCs) using IMCA [19], which makes it possible to analyze
continuous-time stochastic models which exhibit non-determinism. However,
neither approach supports hybrid models containing clocks. For the analysis of
these models, statistical model checking techniques [7,8] are employed, which use
Monte-Carlo simulation to determine, within a certain margin of likelihood and
error, the probability of quantitative properties.

Timed Failure Propagation Graphs Timed Failure Propagation Graphs (TF-
PGs) [2] support various aspects of diagnosis and prognosis, such as modeling
the temporal dependency between the occurrence of events and their dependence
on system modes. A TFPG is a labeled directed graph where nodes represent
either fault modes or discrepancies, which are off-nominal conditions that are
effects of fault modes. COMPASS 3.0 supports three kinds of analyses based
on TFPGs: synthesis, where a TFPG is automatically derived from the model,
behavioral validation, which checks whether a given TFPG is complete (i.e., a
faithful abstraction) w.r.t. the model; and effectiveness validation, which checks
whether the TFPG is sufficiently accurate for allowing diagnosability of failures.

5 Related Work and Conclusion

Closely related to COMPASS is the TASTE toolset, dedicated to the development
of embedded, real-time systems. It focuses on the integration of heterogeneous
technologies for modeling and verification (including AADL), code generation
and integration (e.g., written in C and ADA) and deployment. Another ESA
initiative is COrDeT-2, part of which defines OSRA (On-board Software Reference
Architecture), which aims to improve software reuse by defining a standardized
architecture. Security extensions in COMPASS 3.0 have been added as part of
the D-MILS project [21], enabling reasoning on data security.

Various case studies have been performed using COMPASS 3.0. The first one
was targeting at the Preliminary Design Review stage of a satellite’s design [17].
The study lasted for six months and encompassed a model of about 90 compo-
nents. A second case study followed during the Critical Design Review stage,
focusing on modeling practices and diagnosability [4], with a scale twice the size
of [17]. A smaller scale case study was later performed as part of the HASDEL
project [8]. Recently, the CubETH nano-satellite was represented as a model
with 82 components and analyzed using COMPASS 3.0 [7].

The case studies demonstrate that the key benefit of the COMPASS approach
is the culmination of a single comprehensive system model that covers all aspects
(discrete, real-time, hybrid, probabilistic). This ensures consistency of the analyses,
which is a major benefit upon current practices where various (tailored) models
are constructed each covering different aspects. For further directions, we refer
to the COMPASS roadmap [13], which thoroughly discusses goals for the toolset
as well as the development process, research directions, community outreach and
further integration with other ESA initiatives.

5

References

1. Bittner, B., Bozzano, M., Cavada, R., Cimatti, A., Gario, M., Griggio, A., Mattarei,
C., Micheli, A., Zampedri, G.: The xSAP safety analysis platform. In: Proc. TACAS.
LNCS, vol. 9636, pp. 533–539. Springer (2016)

2. Bittner, B., Bozzano, M., Cimatti, A.: Automated synthesis of timed failure propa-
gation graphs. In: Proc. IJCAI. pp. 972–978 (2016)

3. Bos, V., Bruintjes, H., Tonetta, S.: Catalogue of system and software properties.
In: Proc. SAFECOMP. LNCS, vol. 9922, pp. 88–101. Springer (2016)

4. Bozzano, M., Cimatti, A., Katoen, J.P., Katsaros, P., Mokos, K., Nguyen, V.Y.,
Noll, T., Postma, B., Roveri, M.: Spacecraft early design validation using formal
methods. Reliability Engineering and System Safety 132, 20–35 (2014)

5. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: Safety,
dependability and performance analysis of extended AADL models. The Computer
Journal 54(5), 754–775 (2011)

6. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M., Wimmer,
R.: A model checker for AADL. In: Proc. CAV. LNCS, vol. 6174, pp. 562–565.
Springer (2010)

7. Bruintjes, H.: Model-Based Reliability Analysis of Aerospace Systems. Ph.D. thesis,
RWTH Aachen University (2018)

8. Bruintjes, H., Katoen, J.P., Lesens, D.: A statistical approach for timed reachability
in AADL models. In: Proc. DSN. pp. 81–88. IEEE (2015)

9. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover,
S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Proc. CAV.
LNCS, vol. 8559, pp. 334–342. Springer (2014)

10. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: A tool for checking the refinement
of temporal contracts. In: Proc. ASE. pp. 702–705 (2013)

11. Cimatti, A., Tonetta, S.: Contracts-refinement proof system for component-based
embedded systems. Sci. Comput. Program. 97, 333–348 (2015)

12. Claessen, K., Sörensson, N.: A liveness checking algorithm that counts. In: Proc.
FMCAD. pp. 52–59 (2012)

13. COMPASS Consortium: COMPASS roadmap. Tech. rep. (2016), available from
http://www.compass-toolset.org/docs/compass-roadmap.pdf

14. COMPASS Consortium: SLIM 3.0 – syntax and semantics. Tech. rep. (2016), avail-
able from http://www.compass-toolset.org/docs/slim-specification.pdf

15. COMPASS Consortium: COMPASS tutorial – version 3.0.1. Tech. rep. (2018),
available from http://www.compass-toolset.org/docs/compass-tutorial.pdf

16. COMPASS Consortium: COMPASS user manual – version 3.0.1. Tech. rep. (2018),
available from http://www.compass-toolset.org/docs/compass-manual.pdf

17. Esteve, M.A., Katoen, J.P., Nguyen, V.Y., Postma, B., Yushtein, Y.: Formal
correctness, safety, dependability and performance analysis of a satellite. In: Proc.
ICSE. pp. 1022–1031. ACM and IEEE (2012)

18. Feiler, P.H., Gluch, D.P.: Model-based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley (2012)

19. Guck, D., Han, T., Katoen, J.P., Neuhäußer, M.R.: Quantitative timed analysis
of interactive Markov chains. In: Proc. NFM. LNCS, vol. 7226, pp. 8–23. Springer
(2012)

20. Katoen, J.P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and
outs of the probabilistic model checker MRMC. Perf. Eval. 68(2), 90–104 (2011)

21. van der Pol, K., Noll, T.: Security type checking for MILS-AADL specifications. In:
Int. MILS Workshop. Zenodo (2015), http://mils-workshop-2015.euromils.eu/

6

http://www.compass-toolset.org/docs/compass-roadmap.pdf
http://www.compass-toolset.org/docs/slim-specification.pdf
http://www.compass-toolset.org/docs/compass-tutorial.pdf
http://www.compass-toolset.org/docs/compass-manual.pdf
http://mils-workshop-2015.euromils.eu/

	COMPASS 3.0
	Introduction
	Toolset Overview
	Input Language
	New Functionalities in COMPASS 3.0
	Related Work and Conclusion

