
VMT-LIB Format Specification

Version 0.1

The VMT format is an extension of the SMT-LIBv2 [1] (SMT2 for short)
format to represent symbolic transition systems. This document describes
the syntax of a VMT file and its semantics.

1 Theoretical Background and Definitions

Our setting is many-sorted first order logic. We use the standard notions
of theory, satisfiability, validity, and logical consequence. We refer to the
SMT-LIB specifications [1] for more details. We denote generic theories as
T . We write ϕ |=T ψ to denote that the formula ψ is a logical consequence
of ϕ in the theory T ; when clear from context, we omit T and simply write
ϕ |= ψ.

We refer to 0-arity predicates as Boolean variables, and to 0-arity unin-
terpreted functions as (theory) variables.

Given a set of variables X, a signature Σ, a domain M , an interpretation
function I of the symbols in Σ on the domain M , an assignment σ to the
variables in X on the domain M , and a σ-formula φ(X) with free variables
in X, the satisfaction relation 〈M, I〉 |= φ is defined in the usual way.

For each variable x, we assume that there exists a corresponding variable
x′, called the primed version of x. If X is a set of variables, X ′ is the set
obtained by replacing each element x with its primed version (X ′ = {x′ |
x ∈ X}). ϕ′ is the formula obtained by replacing each occurrence variable
in ϕ with the corresponding primed.

In the following, the signature Σ and the theory T are implicitly given.
A transition system (TS) S is a tuple 〈X, I(X), T (Y,X,X ′)〉 where X is a
set of state variables, I(X) is a formula representing the initial states, and
T (Y,X,X ′) is a formula representing the transitions, where Y is a set of
input variables.

1



2 Syntax

VMT exploits the capability offered by the SMT2 language of attaching
annotations to terms and formulas in order to specify the components of
the transition system and the properties to verify. More specifically, the
following annotations are used:

:next name is used to represent state variables. For each variable x in the
model, the VMT file contains a pair of variables, xc and xn, represent-
ing respectively the current and next version of x. The two variables
are linked by annotating xc with the attribute :next xn. All the
variables that are not in relation with another by means of a :next

attribute are considered inputs.

:init true is used to specify the formula for the initial states of the model.
This formula should contain neither next-state variables nor input vari-
ables. (The “dummy” value true in the annotation is needed because
the current SMT2 standard requires annotations to always have an
associated value.)

:trans true is used to specify the formula for the transition relation.

:invar-property idx is used to specify invariant properties, i.e. formulas
of the formGp, where p is the formula annotated with :invar-property.
The non-negative integer idx is a unique identifier for the property.

:live-property idx is used to specify an LTL property of the form FGp,
where p is the formula annotated with :live-property. The non-
negative integer idx is a unique identifier for the property.

In a VMT file, only annotated terms and their sub-terms are meaningful.
Any other term is ignored. Moreover, only the following commands are
allowed to occur in VMT files: set-logic, set-option, declare-sort,
define-sort, declare-fun, define-fun.(For convenience, an additional
(assert true) command is allowed to appear at the end of the file.)
The following example shows a simple model in the syntax of nuXmv (left)
and its corresponding VMT translation (right).

2



nuXmv VMT

-- this is a comment

MODULE main

VAR x : integer;

IVAR b : boolean;

INIT x = 1;

TRANS

next(x) = b ? x + 1 : x;

INVARSPEC x > 0;

LTLSPEC FG x > 10;

; this is a comment

(declare-const x Int)

(declare-const x.next Int)

(define-fun sv.x () Int (! x :next x.next))

(declare-const b Bool)

(define-fun init () Bool

(! (= x 1) :init true))

(define-fun trans () Bool

(! (= x.next (ite b (+ x 1) x)) :trans true)

(define-fun p1 () Bool

(! (> x 0) :invar-property 1))

(define-fun p2 () Bool

(! (> x 10) :live-property 2))

Since the SMT2 format (and thus also the VMT one that inherits from
SMT2) does not allow to annnotate the declaration of variables, it is a good
practice to insert immediately after the declaration of the variables a set
of defines to specify the relations among variables. See for instance the
define sv.x in the example above that introduces the relation between x

and x.next.

3 Semantics

Given a transition system S =̇ 〈X, I(X), T (Y,X,X ′)〉 over a background
theory T with a signature Σ and an interpretation I, a state s of S is
an interpretation of the state variables X. A (finite) path of S is a finite
sequence π=̇s0, s1, . . . , sk of states, with the same domain and interpretation
of symbols in the signature Σ, such that I, s0 |= I(X) and for all i, 0 ≤ i < k,
I, si, s′i+1 |= ∃Y.T (Y,X,X ′). We say that a state s is reachable in S iff there
exists a path of S ending in s.

Invariant Properties

An invariant property p is a symbolic representation of a set of states that
must be a superset of the reachable states of S. In other words, S |= p iff
∀s.s is reachable in S, s |= p. Consequently, a counterexample for p is a
finite path s0, . . . , sk of S such that sk |= ¬p.

3



Live Properties

A live property p represents a set of states that is eventually invariant. In
LTL syntax, it would be denoted with FGp. More formally, S |= p iff for
all paths s0, . . . , si, . . ., ∃i.∀j > i.sj |= p. (Notice that finite paths s0, . . . , sk
vacuously satisfy a live property, because we can always take i = k to satisfy
the previous definition.) Consequently, a counterexample for p is an infinite
path s0, . . . , si, . . . of S such that ∀i.∃j > i.sj |= ¬p.

References

[1] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-
LIB Standard: Version 2.6. https://smtlib.cs.uiowa.edu/papers/
smt-lib-reference-v2.6-r2017-07-18.pdf

4


