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Abstract. Parallel SAT solvers can be categorized into cooperative and
competitive approaches. Over the past few years, competitive SAT sol-
vers have been researched and improved by clause sharing heuristics and
other information sharing. In the meanwhile, cooperative approach had
been receiving a little attention. This work attempts to revisit cooperative
approach using a not-so-new promising technique called iterative partitio-
ning [HJN11] and a novel clause sharing technique [LM13]. By improving
iterative partitioning, we have shown that cooperative approach is compa-
rable, in terms of performance, to state-of-the-art competitive SAT solvers.
Our solver SplitterGluLA based on cooperative approach, on a bench-
mark of 880 instances and with a time limit of 7200 seconds, solves 10
additional instances than Plingeling (a competitive approach based sol-
ver and winner of SAT competition 2011 -parallel track), but solves 22 less
instances than PeneLoPe (another competitive approach based solver
and runner-up of SAT challenge 2012 -parallel track). We have also shown
that SplitterGluLA scales (when more resources are added) slightly
better than PeneLoPe (currently best known scalable competitive SAT
solver).
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1. Introduction

1. Introduction

The propositional satisfiability problem (often abbreviated as the SAT problem) is
one of the most researched NP-complete problem in theoretical computer science. It
is a problem of deciding if there exists a truth assignment under which a proposi-
tional formula evaluates to true. The SAT problem is of great importance, as it is
the best known example of NP-complete problem [Coo71] and it is considered to be
the key for the still open P vs NP problem (Millennium Prize Problem) from Clay
Mathematics Institute. The SAT problem in principle is hard to solve, yet mod-
ern state-of-the-art SAT solvers (procedures that solve the SAT problem) solve real
life instances quite efficiently. For example, SAT solvers are used in planning [KS92],
scheduling [GHM+12] [CP89], vehicle routing [Goe10], hardware and software verifica-
tion [BCCZ99] [DKW08], bioinformatics [LMS06] and configuration [ABL+10]. SAT
solvers are used as a black box by encoding the problem from application domain to
the SAT problem. This paradigm of encoding a problem to the SAT problem is often
called declarative problem solving. This paradigm relieves a programmer from the
algorithm design, as this part is done by SAT solvers, and the programmer has to
work on encoding. Figure 1 shows an example of the usage of SAT solvers. Any given
problem from application domain like planning or bioinformatics, is encoded (shown
by Encoder in the figure) into the SAT problem which is then given to a SAT solver.
It is job of the SAT solver to give the solution, which is translated back from the SAT
problem to application domain (shown by Decoder in the figure).
SAT solvers can be categorized in two main types: stochastic and systematic. SAT

solvers in the stochastic type are based on the local search algorithms [SK93] which
are incomplete algorithm, e.g. random walk; while SAT solvers in systematic type
are based on backtracking search algorithm like Davis Putnam Logemann Loveland
(DPLL) algorithm [DP60] [DLL62], which is a complete algorithm. For a given
instance of the SAT problem, complete SAT solvers can return yes if there exists
a satisfying variable assignment, or return no if no such assignment exists.
Over the last two decades, a lot of improvements have been made to SAT solvers

and can be seen in the yearly SAT competitions [sat]. This success is more evident
in the sequential SAT solvers (using one CPU) and quite less in parallel ones (using
more than one CPU). With the technological shift from single core CPU to muti-core
CPUs, parallel SAT solvers require more attention than before. This work focuses on
developing a (systematic) complete parallel SAT solver.

Planning
...

Bioinformatics

Encoder Decoder

SAT solver

Problem

Formula Solution

Solution

Figure 1: Example - Applications of SAT solver

1



1.1. Related Work

1.1. Related Work
The first successful attempt to build a complete parallel SAT solver was based on the
concept of dividing the search space of a complete SAT solver into sub-search spaces
and solve each sub-search space in parallel [ZBP+96]. This approach is called search
space partitioning and more specifically plain partitioning [HJN11]. This was the
most prominent approach until the year 2008, when ManySAT [HJS08] emerged as
the winner of parallel track of SAT race 2008. ManySAT uses a different approach;
it runs several different SAT solvers in parallel for the same problem and wait for
the first answer. This approach is called portfolio approach. We categorize search
space partitioning approach as cooperative and portfolio approach as competitive, for
parallel SAT solving. Since the success of ManySAT, most of the research in par-
allel SAT solvers has been focused on portfolio approach. This is evident from the
solvers participating in the yearly SAT competitions, as the number of parallel SAT
solvers based on portfolio approach has increased while other parallel SAT solvers has
decreased significantly, e.g. in SAT challenge 2012, 17 out of 19 parallel SAT solvers
were based on portfolio approach.

The reason for slower performance of search space partitioning approach w.r.t. port-
folio approach has been given in [HJN09], which proves that search space partitioning
suffers from a theoretical slowdown. Later the author proposed a new search space
partitioning approach called iterative partitioning [HJN11], which does not suffer from
slowdown. The idea of iterative partitioning is similar to plain partitioning as both
divide the search space into sub-search spaces, but the former solves the original search
space with the sub-search spaces in parallel, but the latter only solves the sub-search
spaces in parallel. Based on the idea of iterative search space partitioning, an effort
has been made to build a parallel SAT solver Splitter [HM12a] [HM12b]. Splitter
performed poorly in SAT challenge 2012 and was placed at the last position in the
parallel track.

1.2. Contributions
Although iterative partitioning have strong theoretical results [HM12a], but Splitter
(parallel solver based on iterative partitioning) did not perform up to expectation in
SAT challenge 2012. This work tries to find reasons for the difference in theoretical
vs practical results. The goal of this work is:

• to develop a complete parallel SAT solver based on iterative partitioning approach
that is competitive with the parallel SAT solvers based on portfolio approach.

• to apply the recent techniques used in sequential SAT solver to the parallel SAT
solver based on iterative partitioning approach.

• to explore the concept diversification and intensification, used by portfolio based
SAT solvers, in the parallel SAT solvers based on iterative partitioning.

• to check if the solvers based on iterative partitioning approach scale better than
the solver based on portfolio approach.
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1.3. Structure of this report

1.3. Structure of this report
The structure of this report is as follows: we will start with the basic background
knowledge about propositional logic and SAT solving in Section 2. In Section 3, we
will discuss the recent improvements in SAT solving, particularly in sequential SAT
solving. We will discuss in detail the concepts in parallel SAT solving, in Section 4.
Section 5 will focus on the contributions of this work. In Section 6, we provide
a detailed evaluation of iterative partitioning based parallel SAT, i.e. performance,
scalability, and comparison with portfolio based parallel SAT solvers. In the end, we
give conclusion and future direction of this work in Section 7.
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2. Preliminaries

2. Preliminaries
In this section, we provide the necessary background knowledge and notations used
in this report so that you find the report easy to understand. Whenever we introduce
a new concept, we either provide its definition with example or where we can not
provide definition or example, we give you references for details.
In the section 2.1, we introduce the notions of propositional logic. As most SAT

solvers take formulas only in conjunctive normal form (CNF), we restrict the descrip-
tion to CNF. For further reading, you can refer to the chapter 2 of the Handbook
of Practical Logic and Automated Reasoning [Har09]. We discuss the basic Davis-
Putnam-Logemann-Loveland (DPLL) algorithm for solving the SAT problem in Sec-
tion 2.2.

2.1. Propositional Logic
We start with some basic definitions. You should note that some of the notions
introduced here are more specific than the notions found in literature.

Definition 2.1. The set of atomic propositions AP is a countably infinite set of
symbols.

We also call atomic propositions as atoms or propositional variables or simply vari-
ables. Propositional variables can be assigned the truth value either true or false, we
represent true by > and false by ⊥. We have unary opertion negation on AP and
the operation is represented by ¬. We also have binary operations disjunction and
conjunction on AP and these operations are represented by ∨ and ∧, respectively.

Definition 2.2. A literal L is an atomic proposition A or its negation ¬A.

Definition 2.3. A clause is a disjunction of literals.

Definition 2.4. A CNF formula F is a conjunction of clauses.

We represent a clause by a finite set of literals, and CNF formula by a set of clauses.
A clause is called a valid clause: if it contains a complementary pair of literals. Size
of a clause is defined as the number of literals in the clause, and we denote the size
of clause C by |C|. A clause C is called a unit clause, or binary clause, or ternary
clause: if and only if |C| = 1, or |C| = 2, or |C| = 3, respectively.

Example 2.5. Consider the following CNF formula:

(1 ∨ ¬2) ∧ (3) ∧ (4 ∨ ¬5 ∨ ¬7)

we represent the given CNF formula in the set notation, presented in this section;
let F be the CNF formula:

F = {{1,¬2}, {3}, {4,¬5,¬7}}

4



2.1. Propositional Logic

you should note that the clauses are represented as a set of literals and the CNF
formula is represented as set of set of literals; also note that {3} a unit clause,
and {1,¬2} is a binary clause, and {4,¬5,¬7} is a ternary clause.

We call the polarity of a literal L to be positive if L = A, or negative if L = ¬A,
where A ∈ AP . In order to change the polarity of a literal, we define a function,
complement of a literal. Given a literal L, we define complement of literal, represented
as L, as:

L :=
{
¬A , if L = A ∈ AP
A , if L = ¬A, where A ∈ AP

We say that a pair of literals is a complementary pair of literals: if, in the pair, the
first literal is L and the second literal is L.

Definition 2.6. An interpretation is a (partial or total) assignment of propositional
variables to truth value.

We represent interpretation by a sequence of literals such that there are no duplicate
literals and no complementary pair of literals in the sequence. Before introducing the
notion of reduct, we first define the complement of a set of literals. The complement
of a set of literals S, represented by S, is defined as:

S = {L | L ∈ S}

Example 2.7. Consider the following set S, a set of literals: S = {4,¬5,¬7}
then the complement of S is the set: S = {¬4, 5, 7}

Now, we define the notion of reduct. Given a clause C and an interpretation J , let
s(J) be the set of all the elements in J , then, we get the reduct of clause C w.r.t. J ,
denoted C|J , by the following definition:

C|J =
{
> , if C ∩ s(J) 6= ∅
C \ s(J) , otherwise

we extend the notion of reduct for CNF formula. Given an interpretation J and a
CNF formula F , the reduct of CNF formula F |J of F w.r.t. J is a CNF formula:

F |J = {C|J , such that C ∈ F and C|J 6= >}

We say an interpretation J satisfies a clause C, if and only if C|J = >. Let F be a
CNF formula, then we call J a model for F , in symbols J |= F , if and only if F |J = { }.
Conversely, we say that J falsifies F , in symbols J 6|= F , if and only if { } ∈ F |J . In
the latter case, J is called conflict for F .

Lemma 2.8. Let F be a CNF formula, and J an interpretation, then J |= F , if and
only if J satisfies every clause in F .

5



2.2. SAT Solving

Example 2.9. We consider a CNF formula:

F = {{1,¬2}, {3}, {4,¬5}}

and an interpretation:
J = (1,¬3, 5)

then to obtain the reduct of F w.r.t. J , we first remove clauses from F : the
clauses whose intersection with the set of J , s(J) = {1,¬3, 5}, is not an empty
set; secondly, we remove the complement of the literals present in the set of J ,
s(J) = {¬1, 3,¬5}, from the clauses in F . Thus, we obtain the reduct of F w.r.t.
J :

F |J = {{ }, {4}}

You should note that the interpretation J falsifies F and is called conflict for F
because there exists an empty clause (an empty set) in F |J . In the same way, if
we have an interpretation J1 = (1, 3, 4, 5), then J1 satisfies F because F |J1 is an
empty set. In this case J1 is called model for F .

We have now every notion that is needed to define the satisfiability problem.

Definition 2.10. Given a CNF formula F , the propositional satisfiability prob-
lem or briefly SAT is the problem to decide whether F is satisfiable, i.e. if there
exist an interpretation for F such that it satisfies F .

We say a CNF formula F is unsatisfiable if it is not satisfiable. We give now some
other notions that will be used in this document. Let F , G be CNF formulas, then
we say G is a semantic consequence of F , denoted as F |= G, if and only if for every
interpretation J :

J |= F implies J |= G

Let F , G be CNF formulas. Then F and G are semantically equivalent, in symbols
F ≡ G, if and only if:

F |= G and G |= F

Let C1 be the clause containing literal L and C2 be the clause containing literal L,
then the (propositional) resolvent of C1 and C2 with respect to L is defined as:

{C1 \ {L}} ∪ {C2 \ {L}}

A clause C is said to be resolvent to C1 and C2, if and only if there exists a literal L
such that C is the resolvent of C1 and C2 with respect to L.

2.2. SAT Solving

Solving the SAT problem is commonly termed as SAT solving and a computer program
that solves the SAT problem is called SAT solver. The history of SAT solving goes way
back to mid of the last century, but most noticeably is the work [DP60] and [DLL62],

6



2.2. SAT Solving

where the latter is improved version of the first. The algorithm given in [DLL62] to
solve the SAT problem is known as the DPLL algorithm and it is named after the
authors Davis, Putnam, Logemann, and Loveland. Today, most of the modern SAT
solvers are based on the DPLL algorithm.
We define a helping function atom, for describing DPLL algorithm. Given a literal

L, atom returns its underlying propositional variable, formally we define it as:

atom(L) =
{
A , if L = A ∈ AP
A , if L = ¬A, where A ∈ AP

We overload the function atom to handle clauses, i.e. given a clause C, atom will a
return set of propositional variables:

atom(C) =
{
∅ , if C = { }
atom(C ′) ∪ {atom(L)} , if C = C ′ ∪ {L}

Likewise, we also overload atom for CNF formula, i.e. given a CNF formula F then
atom returns the set of atoms present in the formula:

atom(F ) =
{
∅ , if F = { }
atom(F ′) ∪ atom(C) , if F = F ′ ∪ {C}

We explain the DPLL algorithm with the help of abstract reduction system. Let
R be a set and → be a binary relation R × R, then the pair (R,→) is defined to be
an abstract reduction system (ARS). The binary relation → is called reduction and
every pair (x, y) ∈→ is written as x → y. With →+, we represent the transitive
closure of →, and the reflexive and transitive closure of → is represented by →∗. We
suggest [BN98] for further reading about abstract reduction systems.

Definition 2.11. The DPLL abstract reduction system (DPLL ARS) is an ARS
(RDP LL,→DP LL), where:

• RDP LL is a set:

RDP LL ⊆ (CNFF × PA) ∪ {SAT,UNSAT}

such that CNFF is a set of CNF formulas, PA is a set of interpretations over the

(1) F :: J  SAT SAT iff F |J = ∅
(2) F :: J  UNSAT UNSAT iff { } ∈ F |J and level(J) = 0
(3) F :: J  DECIDE F :: J, L̇l iff L ∈ atom(F |J) ∪ atom(F |J) and

l = level(J) + 1
(4) F :: J  UNIT F :: J, Ll iff {L} ∈ F |J and l = level(J)
(5) F :: J, L̇l, P  NB F :: J, Ll−1 iff { } ∈ F |

J,L̇l,P

Figure 2: DPLL ARS

7



2.2. SAT Solving

set of propositional variables AP . For better representation, we write (F, J) ∈ R
as F :: J . The evaluation of the set F :: J is obtained by computing the reduct
F |J .

• The relation set →DP LL= { SAT, UNSAT, DECIDE, UNIT, NB}, and each
relation is a reduction rule, given in Figure 2. We put a natural number in
superscript which marks the level of each element in J . Here is a description of
the reduction rules:
1. SAT rule: is applicable if and only if all the clauses in F are satisfied.
2. UNSAT rule: is applicable if and only if there is an empty clause in F :: J

and the level of the interpretation J is zero. We define level in the next
rule description.

3. DECIDE rule: chooses a free variable from atom(F :: J) and its polarity,
and appends it to the interpretation J . A variable A ∈ atom(F ) is a free
variable, if and only if A ∈ atom(F |J), otherwise it is said to be assigned.
The level of J , in symbols level(J), is defined as the total number of
decisions literals in J . The literal L appended to interpretation J by the
DECIDE rule is called decision literal. We put a dot on the literal, i.e. L̇,
to represent a decision literal.

4. UNIT rule: is the heart of the DPLL ARS, as the rule is used most of the
time. This rule simply appends the literal appearing in a unit clause (unit
clause in the reduct of the given CNF formula w.r.t. the interpretation), to
the interpretation. This appended literal is called propagated literal under
current interpretation J , and has the same level(J). The unit rule is also
called unit propagation.

5. NB rule: stands for naive backtrack rule. This rule is applicable when
there is a conflict in F :: J , i.e. there is a empty clause in F :: J , then
the rule removes the last decision literal and the proceeding propagated
literals from the interpretation. It is worth mentioning here is that P in
the reduction does not contain any decision literal.

In practice, we use a preference order of the rules when there are more than one
option of the applicability of the rules. Here is the preference order ≺, such that a ≺ b
means a has less preference than b, of the applicability of the rules:

 DECIDE ≺  UNIT ≺  NB ≺  SAT ≺  UNSAT

The reduction rules  SAT and  UNSAT are simple rules for satisfiable and unsatisfi-
able results respectively. They are also the termination rules which stop the applica-
tion of any further reduction rules.
We define the notion of reason clause, that will be used in the sections to come. A

clause C is reason for a literal L in F :: J iff C ∈ F and there exists an interpretation
J1, L, J2 such that:

• J1, L, J2 = J and

8



2.2. SAT Solving

• C|J1 = {L}

A reason clause C for a literal L means that L is a propagated literal due C. The set
reasons(F :: J) contains all the reason clauses for the literals in J , and is defined as:

reasons(F :: J) = {C ∈ F | C is reason for literal L ∈ s(J)}

and is called the set of reason clauses of F w.r.t. the interpretation J .
Here is an example to explain how DPLL ARS works.

Example 2.12. Consider the following CNF formula:

F = {{1, 2}, {2,¬3}, {¬2,¬3, 4}, {¬1, 3}, {¬4}}

then the execution in DPLL ARS is:
F :: ()

 UNIT F :: (40) F |(40) = {{1, 2}, {2,¬3}, {¬2,¬3}, {¬1, 3}}
 DECIDE F :: (40, 1̇1) F |(40,1̇1) = {{2,¬3}, {¬2,¬3}, {3}}
 UNIT F :: (40, 1̇1, 31) F |(40,1̇1,31) = {{2}, {¬2}}
 UNIT F :: (40, 1̇1, 31, 21) F |(40,1̇1,31,21) = {{ }}
 NB F :: (40,¬10) F |(40,¬10) = {{2}, {2,¬3}, {¬2,¬3}}
 UNIT F :: (40,¬10, 20) F |(40,¬10,20) = {{¬3}}
 UNIT F :: (40,¬10, 20,¬30) F |(40,¬10,20,¬30) = { }
 SAT SAT

The execution of DPLL ARS starts from F :: ( ) (with empty interpretation).
Following the preference, we set earlier, for the application of reduction rules, we
apply the UNIT rule as there is a unit clause {4} in F . No other rule applies
except decide rule. We choose literal 1 as the decision literal. We apply unit rule
twice because of the unit clause {3} in F |(40,1̇1) and {2} in F |(40,1̇1,31). This leads
us to an empty clause in F |(40,1̇1,31,21). Now we apply naive backtrack to correct
the last decision, and change the it from decision literal to propagated literal. A
clause becomes a unit now in F |(40,¬10). Applying the unit rule three times, we
get an empty set and now we can apply the SAT rule, which says that the given
CNF formula F is satisfiable.

9



3. Modern SAT Solving

3. Modern SAT Solving
Most of the state-of-the-art SAT solvers are based on the simple DPLL algorithm,
but they have undergone many refinements and new ideas over the last twenty years.
We cover two prominent extensions of the DPLL algorithm: conflict driven clause
learning (CDCL) in Section 3.1 and lookahead in Section 3.2. In Section 3.3, we
briefly talk about preprocessing.

3.1. Conflict Driven Clause Learning
Conflict driven clause learning (CDCL) algorithm [SS96] is a major breakthrough
in SAT solving, and as mentioned earlier, it is based on DPLL algorithm. CDCL
gives the power to prune the search space early by learning new clauses, and as its
name suggests, it learns the new clause whenever it encounters a conflict (conflict
means that there is a empty clause in reduct of the given CNF formula w.r.t. given
interpretation). Another feature that it brings with clause learning is the power to
perform non-chronological backtracking.
We modify the DPLL ARS to explain the CDCL algorithm, resulting in the CDCL

ARS. The two features of CDCL, clause learning and non-chronological backtracking
when a conflict is encountered, is done by a single reduction rule. This rule is called the
CDBL rule. The CDCL ARS is obtained by removing the NB rule from the →DP LL

and adding the reduction rule CDBL rule, i.e.  CDBL. To explain the reduction
CDBL rule, we first define the notion of linear resolution derivation. Given a CNF
formula F and a clause C, such that C ∈ F , then a linear resolution derivation from
C w.r.t. F is a sequence S = (Ci | i ≥ 0) of clauses defined inductively as follows:

• C0 = C and

• Ci is the resolvent of Ci−1 and for some clause E ∈ F

If S is finite and Cn is the last element of the sequence, then it is called a linear
resolution derivation from C to Cn w.r.t. F .

Definition 3.1. The conflict driven backtrack learning (CDBL) reduction rule
is:

F :: J1, L̇l, J2  CDBL F ∪ {C1} :: J1, L
l−1
1

iff there exists C ∈ F such that C|J1,L̇,J2
= { } and there is a linear resolution

derivation from C to C1 w.r.t. reasons(F :: J1, L̇, J2) and C1|J1 = {L1} and l =
level(J1) + 1. C1 is called learnt clause.

The CDCL rule is applicable when reduct of F w.r.t. J1, L̇, J2 has an empty clause
(conflict), then the CDCL rule learns a new clause by performing a linear resolution
derivation w.r.t. the reason clauses of J1, L̇, J2, and add the new learnt clause to F .
The backtracking information (interpretation J1) is provided by the learnt clause C1,
such that the learnt clause becomes a unit clause in the reduct of F ∪ {C1} w.r.t. J1.
The CDCL rule can learn different clauses depending on the number of reason clauses
used in linear resolution derivation (this learning is often termed as learning schemes).

10



3.1. Conflict Driven Clause Learning

Most CDCL based SAT solver use a learning scheme called first unique implication
point (in short 1-UIP) [SS96]. We also use 1-UIP in our work, but we do not discuss
learning schemes in this work. You can refer to [MSLM09] for details.

3.1.1. Decision Heuristic

DPLL algorithm does give us the DECIDE rule, but does not give much information
about which literal we should choose. In this situation, heuristics help us out. Many
heuristics have been proposed by researchers over the years, but one that is most
successful and widely used is the variable select independent decay sum (VSIDS), orig-
inally proposed in [MMZ+01] and later improved in [Rya04]. According to [KSMS11],
VSIDS is the second most significant improvement after clause learning, in modern
SAT solvers.
The idea of the VSIDS decision heuristic is to assign activity score to each variable

based on its frequency in the formula, and this activity decays over time. Activity
score of a variable is increased with usage of the variable in the linear resolution
derivation of the learnt clause by the CDBL rule. Then the VSIDS picks the variable
with the highest activity score.

VSIDS heuristic tells us which variable to choose, but for the DECIDE rule, we
also need to know the polarity of the chosen variable. In modern SAT solvers, this
information is given by progress saving heuristic [PD07]. The idea is to store the
polarity information of variables when a backtracking is performed and choose the
saved polarity for the chosen variable by the VSIDS heuristic. If no saved information,
about polarity of a variable, is available then solver chooses negative polarity [Nik10].
This heuristic helps to avoid redoing work, which might get lost by non-chronological
backtracking. By saving the last used polarity of a variable, solver usually finds
solution faster [PD07].

3.1.2. Learnt Clauses Cleaning Policy

Modern SAT solvers use separate data structures for storing the given CNF formula
(original problem) and the clauses learned by the CDBL rule. In practice we have
limited memory in computers, so we can not keep all the learnt clauses in memory. To
handle this problem, SAT solvers keep important learnt clauses and periodically (after
certain number of conflicts) delete unimportant learnt clauses. They use different
heuristics for measuring the importance of a learnt clause. Two widely used heuristics
for learnt clause importance are: activity [GN02] and LBD [AS09].
Activity heuristic assigns an activity score to a learnt clause when it is learned.

This score over time is increased geometrically if the clause is used in linear resolution
derivation by the CDBL rule. According to this heuristic, a learnt clause has high
importance, if its activity score is high, and a clauses with low activity score are deleted
regardless of their size. SAT solver MiniSat [Nik10] uses the activity heuristic for
learnt clauses.
Literal block distance (LBD) of a clause w.r.t. an interpretation, is the number of

different decision levels of variables present in the clause. In practice, LBD heuris-
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3.1. Conflict Driven Clause Learning

tic performs better than the activity heuristic. SAT solver Glucose [AS09], which
is based on MiniSat, uses LBD heuristic. Glucose deletes learnt clauses more fre-
quently than MiniSat does, because the authors of Glucose claim that LBD is more
accurate than activity heuristic, and deleting more clauses improves the performance
of search and lowers the memory utilization. We now explain how the LBD of a learnt
clause is calculated. Let C be a clause, J be an interpretation, and s(J) be the set
of elements present in J , then we define a function lbd that calculated the LBD of
C w.r.t. J :

lbd(C) = |{l, such that Ll ∈ s(J) and atom(L) ∈ atom(C)}|

Here is an example of calculating LBD for a clause.

Example 3.2. Consider a clause C = {3,¬5,¬6} and an interpretation
J = (10,¬30, 4̇1, 5̇2,¬62) , then we have one literal in C of level 0, and two literals
in C of level 2. In total, we have two different levels in the clause C, so LBD of
C is two, lbd(C) = 2.

3.1.3. Restart Policy

Modern SAT solvers can efficiently solve the industrial SAT instances and we can see
its evidence in the yearly SAT competitions. These industrial SAT instances exhibit
a heavy-tailed phenomena [GSC97] [GSCK00], giving us the insight that different
decision variable ordering lead to different solving time of a SAT solvers. Due to
heavy-tailed phenomena, SAT solvers can have infinite median and infinite variance
for solving time. Modern SAT solvers use restarts [GSK98], to bound the solving time
median and variance. We add the RESTART rule in the CDCL ARS, and the rule is
given by:

F :: J  RESTART F :: ( )

The RESTART rule removes every literal from the interpretation, but keeps the deci-
sion heuristic information and the learnt clauses. This way solver can benefit from
the information (decision heuristic and learnt clauses) of the previous run (before
performing restart) and may choose a different decision variable order. Restart policy
is about deciding when to perform restart. We categorize restart policies into two:
static and dynamic. We discuss here one example of each category.
The most widely used static restart policy is based on the luby sequence [LSZ93],

that is:
(1, 1, 2, 1, 2, 4, 1, 2, 4, 8, 1, 2, 4, 8, 16, . . . , . . .)

MiniSat uses luby sequence with a constant factor (default is 100) for its restart
policy, e.g. after 100 conflicts a restart is performed, second restart is after another
100 conflicts again, third restart is performed after 200 conflicts. The luby sequence
guarantees that in a long run a large part of the search space is explored. This is due
to the increasing behavior of the sequence.

Glucose uses a dynamic restart policy [AS12b], that is based on LBD scores of a
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certain number of last learnt clauses. Glucose performs a restart if it is learning not
so important clauses, i.e. clauses with high LBD scores. It maintains a global average
of LBD scores, this average takes account of all the clauses learned so far since it
started solving. We denote this global average by avg∞LBD. Glucose keeps track
of the LBD scores of the last X number of the learnt clauses, in a bounded queue and
calculates running average of this bounded queue. We denote this average of bounded
queue by avgXLBD. GLUCOSE performs a restart, if

avgXLBD ∗K > avg∞LBD

where K is a magic constant. Default values used by Glucose are K = 0.8 and
X = 50. The value of X is kept small for aggressive restart policy, so that the wrong
decision made at top level can be corrected quickly. This dynamic restart policy shows
good results on unsatisfiable instances, but not encouraging results on satisfiable
instances, because of very aggressive restart policy it might the case the solver does
not get much chance to grow the size of interpretation for satisfiable instance. For
that reason, the authors of [AS12b] propose to postpone the restart if the solver has a
good chance to assign values to all the variables, i.e. size of interpretation is equal to
the number of variables in the given CNF formula F , in symbols, |s(J)| = |atom(F )|.
They model this chance by recording the moving average of the size of interpretation
at last five thousand conflicts, and if the size of the interpretation at that point of
time is significantly greater than this average, then the next restart is postponed. We
denote the moving average of size of interpretations by avg5000J , then the condition
to postpone a restart is given by:

|s(J)| > R ∗ avg5000J

where R is the significance parameter and the default value used by Glucose for this
parameter is R = 1.4.
SAT solvers do not throw away the learnt clauses while performing a restart, as

similar conflicts may arise again which lead to the learning of these learnt clauses.
They also use the same decision heuristic values before performing a restart, because
decision heuristics evolve with time and the solver can benefit from that.

3.2. Lookahead
Lookahead SAT solvers are also based on the DPLL algorithm, but the major dif-
ference from a CDCL SAT solvers is that lookahead SAT solver are heavily driven
by expensive decision heuristics. We discuss here some of these heuristics, but for
more detailed view on lookahead, we suggest [HvM09] for reading. We look at some
definitions that are important for further understanding.
The lookahead on F :: J with respect to L, in symbols lookahead(F :: J, L̇), is

defined as:

lookahead(F :: J, L̇l) =

> , if { } ∈ F |
J,L̇l,P

and F :: J, L ∗UNIT F :: J, L̇l, P

⊥ , if otherwise
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where P contains propagated literals only. Literal L is called a failed literal in F :: J
if lookahead(F :: J, L̇) = >, i.e. a conflict is found. The main idea of lookahead
SAT solvers is to perform lookahead on some interesting free variables, find failed
literals and choose a decision literal according to some heuristics (explained later in
this section). We call this process lookaheadDecide. To utilize the time efficiently,
it performs some reasoning techniques (also explained later in this section). For
explaining the Lookahead ARS, we modify the set RDP LL used in DPLL ARS (on
page 8). Now each clause C of F has a natural number in the superscript, which
denotes its level, i.e. the decision level at which C is locally learned (explained later
in Section 3.2.3).

Definition 3.3. Lookahead ARS (RLA,→LA) is defined as:

RLA = RDP LL

→LA= { SAT, UNSAT, DECIDE, UNIT, LA_BACK, LR, NB}

The reduction rules of Lookahead ARS are shown in Figure 3. The first four rules
in the figure are same as DPLL ARS, see explanation of these rules on page 8.

5. LA_BACK rule: stands for lookahead back, and is used by the procedure
lookaheadDecide only, heuristic to choose decision literal. This rule gives the
power to go back even without a conflict, that is required by lookaheadDecide.

6. LR rule: stands for local reasoning rule. This is also used by the procedure
lookaheadDecide only, and it adds clauses to the CNF formula based on some
reasoning techniques, we discuss these techniques later in this section. These
added clauses are called local learned clauses, which are locally valid at level l
(means they are valid as long as level(J) ≥ l).

7. NB rule: is a extended version of the NB rule from DPLL ARS; apart from
correcting the last decision, this extended version also deletes the locally learnt
clauses whose level is greater than the level of interpretation J .

Remark. For simplicity, we group together the clauses of same level into a CNF-
Formula, so F 0 denotes clauses of original problem and clauses learnt at level zero
while F 2 denotes the clauses learnt at level two. You should note that this grouping
is only for Lookahead ARS.

(1) F :: J  SAT F :: SAT iff F |J = { }
(2) F :: J  UNSAT F :: UNSAT iff { } ∈ F |J and level(J) = 0
(3) F :: J  DECIDE F :: J, L̇l iff L ∈ atom(F |J)∪atom(F |J) and l = level(J) + 1
(4) F :: J  UNIT F :: J, Ll iff {L} ∈ F |J and l = level(J)
(5) F :: J, L̇, P  LA_BACK F :: J iff { } /∈ F |J,L̇,P

(6) F :: J  LR F, F l :: J iff F |J |= F l|J and level(J) = l

(7) F 0, . . . , F l :: J, L̇, P  NB F 0, . . . , F l−1 :: J, L iff { } ∈ (F 0 ∪ . . . ∪ F l)|J,L̇,P

Figure 3: Lookahead ARS
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3.2.1. Lookahead Decision Heuristics

We discuss now the procedure lookaheadDecide, that is used by lookahead SAT
solvers for choosing a decision literal. The most simple and popular decision heuristic
which is still used in lookahead SAT solvers, is given in [Fre95]. This decision heuristic
chooses a variable which gives the most simplest sub-problems. One way for choosing
such a variable is to first calculate the difference (in short diff), each polarity of that
variable makes to a given problem, by performing one-step lookahead, and then com-
bining these two diff scores. This combined diff score is called mixdiff [HvM09].
There are different variations of diff based on how it is calculated. One such calcu-
lation is given in [Fre95], that counts the number of assigned variables, we call this
heuristic as diff1. Given a CNF formula F and a literal L, diff1 calculates the
number of assigned variables by performing lookahead on F with respect to L, if L
is not a failed literal. Mathematically diff1 is defined as:

diff1(F :: J, L̇) =


|atom(F )− atom(F |J,L̇,P )| , if F :: J, L̇ ∗UNIT F :: J, L̇, P

and lookahead(F :: J, L̇) = ⊥
0 , if lookahead(F :: J, L̇) = >

Another variation is to calculate the number of new binary clauses, denoted by diff2.

diff2(F :: J, L̇) =



|{C such that |C| = 2 and
C /∈ F |J and
C ∈ F |J,L̇,P }| , if lookahead(F, L̇) = ⊥ and

F :: J, L̇ ∗UNIT F :: J, L̇, P
0 , if lookahead(F, L̇) = >

I have used a mixture of both diff1 and diff2 in my previous work [Irf12], we denote
this mixed heuristic by diff3, which is defined as:

diff3(F :: J, L̇) = 0.3 ∗ diff1(F :: J, L̇) + 0.7 ∗ diff2(F :: J, L̇)

Given a CNF-Formula F , an interpretation J , and a literal L = A ∈ atom(F |J), we
define mixdiff as:

mixdiff(F :: J,A) =1024 ∗ diff(F :: J, L̇) ∗ diff(F :: J, L̇) + diff(F :: J, L̇)

+ diff(F :: J, L̇)

With the definition of mixdiff , we define decision heuristic as choosing the variable
which gives the maximum score mixdiff score, mathematically we represent as:

lookaheadDecide(F :: J) = arg maxA∈atom(F |J )mixdiff(F :: J,A)

The decision heuristic lookaheadDecide gives us a variable, but the DECIDE rule in
the Lookahead ARS requires also the polarity of the chosen variable. A simple way
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is to choose randomly, but that is often not how its done in lookahead SAT solvers.
We now look what different lookahead SAT solvers do for choosing the polarity.

Lookahead SAT solver Satz [LA97] always chooses positive polarity, another solver
kcnf [DD04] chooses the polarity which has higher frequency of the chosen decision
variable in the formula. Lookahead SAT solver march [HvM06] chooses the polarity
for which the diff score is lower. The reason given by author for choosing polarity
with lower diff score is that the lower diff score assigns less number of variables
than the the higher diff score does, thus has lower probability of making mistake and
higher probability of leading to a satisfiable solution; but on the other hand, polarity
with higher diff score can lead to less computation than polarity with lower diff
score.

3.2.2. Pre-selection Heuristic

Pre-selecting small number of variables to be used by lookaheadDecide can reduce
its computational cost. On the other hand, there is also a chance to degrade the
overall performance of a solver if the pre-selected variables do not contain the optimal
variable (the variable which would have been chosen by the decision heuristic without
performing the pre-selection of variables). Due to these reasons, pre-selection of the
variables is a crucial step. We discuss here one heuristic that we use for pre-selection
of variables, called recursive weighted heuristic.
Recursive weighted heuristic is presented in [MdWH10] as a decision heuristic for

CNF formulas of maximum clause size three, and [AF10] extends this heuristic for
CNF formulas of arbitrary size. We use this heuristic for pre-selecting variables,
because it can be cheaply computed. Recursive weighted heuristic is an iterative
model and accuracy of the heuristic increases with the number of iterations performed.
We present here the basic idea of this heuristic. The heuristic value hi(L) means the
tendency of the literal L being an element of the model for a given F :: J .
For each A ∈ atom(F |J):

h0(A) = h0(¬A) = 1

For each L ∈ atom(F |J) ∪ atom(F |J):

hi+1(L) =
∑

C∈F |J

(γ
k−|C|

µ
|C|−1
i

∏
L1∈C\{L}

hi(L1))

µi = 1
2 ∗ |atom(F )|

∑
A∈atom(F )

(hi(A) + hi(¬A))

where k is the maximum clause size, γ is the importance constant which is set to
5 by [AF10] and µi is the average heuristic value in iteration i. The importance
constant γ is used to give more weight to shorter clauses and the average heuristic
value µi to normalize the scores. The heuristic value for a literal is treated as diff
score and mixdiff is used to calculate the value of a free variable in F , and these
free variables are sorted in descending according to their mixdiff and then we can
pick some of the top variables. Usually, SAT solvers like march pick top 10% of the
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free variables, this strategy is called rank10%, but choosing always a static number
of pre-selection variables does not seem to be efficient, and [HDvZvM05] provides a
correlation between the number of pre-selection variables and number of failed literals.
They suggest to choose bigger number of pre-selection variables, when the solver finds
more failed literals. They provide a adaptive way of selecting this number, and call
this heuristic adaptive ranking, which is given as:

RankAdaptn = α+ β

n

n∑
i=1

#failedi

where α is the lower bound for number of pre-selected variables, β is a constant factor
which models the importance of failed literals, and #failedi denotes the number of
failed literals found while lookaheadDecide chooses ith decision literal, and n is the
total number of decision made by lookaheadDecide. The authors choose α = 5 and
β = 7, based on experiments.

3.2.3. Local Learning

The decision heuristic lookaheadDecide is computationally expensive process and to
get most out of it, lookahead SAT solvers apply some reasoning techniques during
that process. We explain here some of these techniques.
Let F be a CNF formula, J be an interpretation, and L be a literal in one of the

clause in F |J , then when we perform lookahead(F :: J, L̇), some literals e.g. L1 may
be propagated by the UNIT rule. This means that the literal L1 is implied by the
literal L and these relationships between two literals called either direct implications
or indirect implication otherwise. By direct implication, we mean that there exists
a clause C = {L,L1} in the CNF formula F , and indirect implication if C does not
exist in F . We save the indirect implications as binary clause, and assign a level of
the interpretation J to this binary clause. This addition of binary clauses is called
local learning [HvM09]. Consider the level(J) = l, then the indirect implications can
be added as binary clause e.g. {L,L1}l to the CNF formula F . As the name suggests,
these clauses are not globally valid and they must be removed when backtracking,
i.e. when level becomes less than l. The next example will make clear this property.
Before, we require the definition of iterative unit propagation. Given F :: J , the
function iterative unit propagation after deciding L, iup(F :: J, L̇) is defined as:

iup(F :: J, L̇) = s(P ) if F :: J, L̇ ∗UNIT F :: J, L̇, P

where s(P ) denotes the set of propagated literals present in P . Here is an example to
explain the difference between direct implications and indirect implications.

Example 3.4. Consider the following CNF formula:

F = {{¬1, 2}, {¬1,¬2, 3}, {¬1,¬3, 4}, {1, 3, 6}, {¬1, 4,¬5}, {1,¬6},
{4, 5, 6}, {5,¬6}}
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as interpretation J is empty, so level(J) = 0 and F 0 := F . We apply lookahead
on one of the literal, say 1, so lookahead chooses 1 as decision literal and applies
unit propagation:

F 0 :: ( )
 DECIDE F 0 :: (1̇1) F 0|(1̇1) = {{2}, {¬2, 3}, {¬3, 4}, {4,¬5},

{4, 5, 6}, {5,¬6}}
 UNIT F 0 :: (1̇1, 21) F 0|(1̇1,21) = {{3}, {¬3, 4}, {4,¬5}, {4, 5, 6},

{5,¬6}}
 UNIT F 0 :: (1̇1, 21, 31) F 0|(1̇1,21,31) = {{4}, {4,¬5}, {4, 5, 6}, {5,¬6}}
 UNIT F 0 :: (1̇1, 21, 31, 41) F 0|(1̇1,21,31,41) = {{5,¬6}}
 LA_BACK F 0 :: ( )

so, iup(F 0 :: (1̇1)) = {2, 3, 4} and the implication clauses are {¬1, 2}, {¬1, 3},
{¬1, 4}. The first implication clause is a direct implication while second and
third are indirect implications.

One problem with the local learned clauses is that they are too many (more than
the original number of clauses in the CNF-Formula) and they can degrade the per-
formance of unit propagation. A computationally cheap solution to this problem is
detection of necessary assignments, inspired from Stålmarcks’s proof procedure [SS98]
for propositional logic.

Definition 3.5. Given F :: J and we apply lookahead on literal L, then L1 is a
necessary assignment if and only if:

L1 ∈ iup(F :: J, L̇) ∩ iup(F :: J, L̇)

The detected necessary assignment can be added as a local learnt clause, we provide
to following example to elaborate that:

Example 3.6. Consider the CNF formula from the Example 3.4, we start from
where we finished it.

F = {{¬1, 2}, {¬1,¬2, 3}, {¬1,¬3, 4}, {1, 3, 6}, {¬1, 4,¬5}, {1,¬6},
{4, 5, 6}, {5,¬6}}

and iup(F 0 :: (1̇)) = {2, 3, 4}.
Now applying lookahead on ¬1, i.e. choosing ¬1 as the decision literal and apply-
ing unit propagation:

F 0 :: ( )
 DECIDE F 0 :: (¬1̇1) F 0|(¬1̇1) = {{3, 6}, {¬6}, {4, 5, 6}, {5,¬6}}
 UNIT F 0 :: (¬1̇1,¬61) F 0|(¬1̇1,¬61) = {{3}, {4, 5}}
 UNIT F 0 :: (¬1̇1,¬61, 31) F 0|(¬1̇1,¬61,31) = {{4, 5}}
 LA_BACK F 0 :: ( )

so, iup(F 0 :: (¬1̇)) = {3,¬6} and the literal 3 is a necessary assignment, because
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it 3 is present in both iup(F 0 :: (¬1̇)) and iup(F 0 :: (1̇)).
We apply the LR rule to add necessary assignment as a local learnt clause.
 LR F 0, {3}0 :: ( )

We have assigned level zero to the local learnt clause because the level of inter-
pretation is zero.

Another reasoning technique is to find equivalent literals, and add two binary impli-
cation clauses to local learnt clauses – one for each direction of equivalence. This
technique is called equivalence reasoning [Li03].

Definition 3.7. Given F :: J , we perform lookahead on L1 and L1, then L1 and L2
are equivalent literals if:

L2 ∈ iup(F :: J, L̇1) ∩ iup(F :: J, L̇1)

Here is an example of equivalent literals.

Example 3.8. Consider the following CNF formula:

F = {{¬1, 2}, {¬1, 4}, {1, 5}, {¬2, 3,¬4}, {¬3,¬5, 6}, {¬5,¬6}}

Applying lookahead on literal 1:
F 0 :: ( )

 DECIDE F 0 :: (1̇1) F |(1̇1) = {{2}, {4}, {¬2, 3,¬4}, {¬3,¬5, 6},
{¬5,¬6}}

 UNIT F 0 :: (1̇1, 21) F |(1̇1, 21) = {{4}, {3,¬4}, {¬3,¬5, 6},
{¬5,¬6}}

 UNIT F 0 :: (1̇1, 21, 41) F |(1̇1, 21, 41) = {{3}, {¬3,¬5, 6}, {¬5,¬6}}
 UNIT F 0 :: (1̇1, 21, 41, 31) F |(1̇1, 21, 41, 31) = {{¬5, 6}, {¬5,¬6}}
 LA_BACK F 0 :: ( )

So, iup(F :: (1̇)) = {2, 3, 4}, now applying lookahead on literal ¬1:
F 0 :: ( )

 DECIDE F 0 :: (¬1̇1) F |(¬1̇1) = {{5}, {¬2, 3,¬4}, {¬3,¬5, 6},
{¬5,¬6}}

 UNIT F 0 :: (¬1̇1, 51) F |(¬1̇1, 51) = {{¬2, 3,¬4}, {¬3, 6}, {¬6}}
 UNIT F 0 :: (¬1̇1, 51,¬61) F |(¬1̇1, 51,¬61) = {{¬2, 3,¬4}, {¬3}}
 UNIT F 0 :: (¬1̇1, 51,¬61,¬31) F |(¬1̇1, 51,¬61,¬31) = {{¬2,¬4}}
 LA_BACK F 0 :: ( )
iup(F :: (¬1̇)) = {5,¬6,¬3}
We get 1 and 3 as equivalent literals, because 3 ∈ iup(F :: (1̇)) ∩ iup(F :: (¬1̇)).
This equivalence between literals 1 and 3 can be saved as local learnt clauses.
 LR F 0, {¬1, 3}0, {1,¬3}0 :: ( )

We have assigned level zero to the local learnt clauses because the level of inter-
pretation is zero.
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3.2.4. Double Lookahead

The idea of double lookahead is to check if a literal gets a high diff score, because it
might be the case that this literal leads the search to a conflict. This check is done
by performing another lookahead, as also indicated by the name. The idea of double
lookahead is given in [Li99].

Definition 3.9. Given F :: J, L̇1, P then doubleLookahead is:
doubleLookahead(F :: J, L̇1, P )

=


> ,if lookahead(F :: J, L̇1, P, L̇2) = > and

lookahead(F :: J, L̇1, P, L̇2) = >
for some L2 ∈ atom(F |J,L̇1,P ) ∪ atom(F |J,L̇1,P )

⊥ ,otherwise

Double lookahead is successful (denoted by > in definition) if it finds conflict on
both polarities of a variable, otherwise unsuccessful (denoted by ⊥). Important point
is to know when to perform double lookahead, because lookaheadDecide is already
expensive w.r.t. computation, so we need some heuristic to tell the solver when to
perform double lookahead. We discuss one heuristic [HvM07] that is used in this work,
double lookahead is performed on F :: J, L̇ if:

diff(F :: J, L̇) > trigger

Value of trigger initialized with zero, and is updated to diff score value of L, if
double lookahead is not successful, otherwise the value is not changed. The value
of trigger2 is slightly reduced each time when lookaheadDecide chooses a decision
literal. Similar to lookahead, solver performs double lookahead on some interesting
free variables (pre-selected variables). While performing double lookahead, solver can
detect some failed literals and necessary assignments, which can be saved as binary
learnt clauses and these clauses are called double lookahead resolvents. For example,
consider that the double lookahead is performed on F :: J, L̇1, P and L2 is detected
as necessary assignment, then a binary clause {L1, L2}l can be added to the CNF
formula F , where l is the level of the learnt clause if level(J) = l.

3.3. Preprocessing
Most of the modern SAT solver, that take part in the SAT Competitions, use pre-
processor before they start solving. The job of preprocessor is to simply the input
CNF formula by applying some very fast techniques; time used to do preprocessing
is usually negligible compared to overall solving time. The techniques used by pre-
processors can be divided in to groups: model preserving and non-model preserving.
As the name suggest, model preserving techniques preserve the model of the formula,
while non-model preserving techniques do not.

We will use SatELite preprocessor [EB05] in our work; the techniques used by this
preprocessor are used in almost all modern preprocessor for SAT solvers. SatELite
uses techniques to remove variables and clauses from the input CNF formula. It
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has been shown in [EB05] that simplifying CNF formula by removing variables and
clauses decreases the solving time of a SAT solver. Solvers get improvement by using
preprocessor before starting the search is due to the speedup in unit propagation (less
clauses to check for unit propagation) and less variable for making decisions.
As preprocessing of a CNF formula is not focus of this work, we do not discuss

its details. Nevertheless, we use preprocessor for comparing our solver with other
state-of-the-art solvers.
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4. Parallel SAT Solving

In this section, we introduce different ways of parallelisms for SAT solving. We make
the introduction to the parallelism short and focus more on our approach for parallel
SAT solving. For a detailed overview of parallel SAT solving approached, we suggest
two readings, [Sin06] and [HMN+11]. Before we start discussing the different ways of
parallelism for SAT solving, we first introduce some notations.
Task is referred to some job that needs to be executed, i.e. solving a CNF formula.

We call an instance of a solver that solves a CNF formula, an incarnation of a solver.
Now, we define speedup and efficiency for parallelism.

Definition 4.1. Let Ts and Tp be the solving time of sequential and parallel algorithm,
respectively; let k be the processing units for parallel algorithm. Then speedup S is
the ratio of the sequential solving time to parallel solving time:

S = Ts

Tp

and efficiency E is defined as speedup divided by the number of processing units
(number of available resources):

E = S

n
= Ts

Tp ∗ k

we call the speedup of parallel algorithm as superlinear speedup, if S > k or E > 1.

We give a very basic knowledge of computer architecture here. A central processing
unit (CPU) is the hardware in a computer that carries out the computer instructions.
The number of tasks that can be run in parallel in a CPU is equal to the number
of cores inside CPU. There is a connection between CPU and main memory. There
are multi-CPU systems, which have multiple CPUs connected on the same board,
and each CPU has a private connection to main memory. One CPU can also access
the data from another CPU memory (remote), in a non-uniform way, and the access
time of remote memory is greater than the access time of private memory. There are
also multi-core systems, which have multiple cores in a CPU, and each core shares
the connection to main memory. Unlike multi-CPU systems, the memory access in
multi-core systems is uniform.
Parallel SAT solvers have been build for the last twenty years, at a slower pace

than the sequential SAT solvers, but due to the technological shift from single-core to
multi-core CPUs, attention to parallel SAT solving has increased for the last couple of
years. We see more than one core CPUs in different machines, like servers, desktops,
laptops, smart phone, etc. Our interest is build parallel SAT solver for a multi-core
system environment, so we will focus on multi-core systems. In this section and the
sections to follow, we assume the environment to be a multi-core systems environment,
whenever we talk about parallel SAT solvers.
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Figure 4: Example - Competitive Parallelism

4.1. Competitive Parallelism vs Cooperative Parallelism
In competitive parallelism, we simply run multiple incarnations on the same CNF
formula in a competitive environment, i.e. we get the answer when the first incarnation
solves the CNF formula. We call the parallel SAT solvers, which use competitive par-
allelism, as portfolio solvers. Figure 4 shows an example of a portfolio solver: Solver1,
Solver2, Solver3, Solver4 are different incarnations which have different solving time
of the same CNF formula F . We represent the solving time of each incarnation with a
dashed line and it is clear from the figure that Solver2 finishes earlier than the other
solvers. By making portfolio, shown in the figure as Portfolio4 of the solvers Solver1,
Solver2, Solver3, Solver4, we solve the CNF formula F (satisfiable or unsatisfiable)
with the best solving time among these solvers. We can formulate the solving time
property of portfolio solvers in the following proposition.

Proposition 4.2. Let k be the number of incarnations that can run in parallel and
Ti be the solving time of incarnation Solveri, then the expected solving time Tpfs of a
portfolio solver with k incarnations, is:

Tpfs = arg1≤i≤k min{Ti}

Since the success of ManySAT [HJS08], the research in parallel SAT solving has
been focused on competitive parallelism mostly: different approaches to share clauses
have been explored in [HS09] [HJS09a] [AHJ+12], concepts of diversification and inten-
sification [HS04] in the search has been investigated in [GHJS10]. We will discuss the
necessary details of these improvements in this section and Section 5.
On the other hand, in cooperative parallelism, we split the search space of the

CNF formula such that incarnations solve different parts of the search space. Splitting
of search space is done by a partitioning function. We call the parallel solvers, which
use cooperative parallelism, as search space partitioning solvers. We provide a very
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Figure 5: Example - Cooperative Parallelism

basic definition of partitioning function.

Definition 4.3. Given a CNF formula F , a partitioning function (pf) is defined as
a function that takes F as input and returns a set of CNF formulas. In symbols, we
represent pf as:

pf(F ) = {F1, F2, . . . , Fn}

such that:

• F is satisfiable if there exists Fi ∈ pf(F ) is satisfiable

• F is unsatisfiable if every Fi ∈ pf(F ) is unsatisfiable

Figure 5 shows an example of a search space partitioning solver: having four par-
titions F1, F2, F3, F4, and a incarnation Solver solves a partition (we will explain
in next subsection that how to produce partitions). Unlike competitive parallelism,
cooperative parallelism has different cases depending upon the CNF formula begin
satisfiable or unsatisfiable. We consider the search space partitioning solver shown
in Figure 5, and suppose that the CNF formula F is satisfiable, then the solving
time of the search space partitioning solver is equal to the solving time of the first
incarnation that solves the partition with result satisfiable, e.g. suppose Solver(F2)
finishes first with result unsatisfiable and Solver(F1) finishes second but with result
satisfiable, then the search space partitioning solver stops the incarnation Solver(F3)
and Solver(F4), and the solving time of the solver is equal to the solving time of
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Figure 6: Example - Simple Method for Creating Partitions

Solver(F1). In case of a CNF formula that is unsatisfiable, all the incarnations should
return result unsatisfiable, and the solving time of the search space partitioning solver
is equal to the incarnation which finishes last, e.g. in Figure 5, incarnation Solver(F3)
finishes last, so the solving time of the solver is equal to solving time of Solver(F3).
We put this property of cooperative parallelism into the following proposition.

Proposition 4.4. Let k be the number of incarnation that can run in parallel, and
F1, F2, . . . , Fk be the search partitions of the CNF formula F such that an incarnation
Solver solves each a partition. For 1 ≤ i ≤ k, let Solver(Fi) represent the incarnation
solving partition Fi and Ti be the solving time of Solver(Fi), then the solving time of
search space partitioning solver, represented by Tssp, is:

Tsps =


arg1≤i≤k min{Ti | Solver(Fi) SAT}

, if F is satisfiable instance and ∃Solver(Fi) SAT

arg1≤i≤k max{Ti | Solver(Fi) UNSAT}
, if F is unsatisfiable instance and ∀Solver(Fi) UNSAT

4.2. Parallel SAT Solving with Search Space Partitioning

We now show how we can make a search space partitioning SAT solver. The first
point to consider is to create partitions, that we discuss in Section 4.2.1. The idea
is to constraint the CNF formula by adding clauses to it, we call these additional
clauses as partitioning constraints. Then comes the part of solving these partitions,
we discuss in Section 4.2.2 and there we also introduce the plain partition and the
iterative partitioning. We discuss the iterative partitioning in more detail, because
our focus is to use iterative partitioning in this work. Although sharing information
among the partitions is optional, but it has been shown by researchers that sharing
information, like learnt clauses, can improve the performance of the solver. We discuss
about sharing information in Section 4.2.3.
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4.2.1. Creating Partitions

We create simple partitions from a search tree of arbitrary height, not necessarily a
balanced tree, such that the remaining search space of a leaf makes a partition. We
create this search tree by splitting on a complementary pair of literals. We call this
method simple method for creating partitions. We explain the simple method with
the help of the following example.

Example 4.5. We consider a CNF formula F for which we want to create search
partitions. Figure 6 shows the search tree of F . We split the root node, F , on
complementary pair of literals L1 and L1, the literals are shown on top of the
edges. The node that we created by choosing literal L1, we split it on comple-
mentary pair of literals L2 and L2, and similarly we split the node, created by
choosing literal L2, on complementary pair of literals L3 and L3. Now we create
a partition for each path from root to leaf, by adding the literals on the paths
as unit clauses in the CNF formula F . In the figure, we use F1, F2, F3, F4 for
partitions, that are defined as:

F1 = F ∪ {{L1}, {L2}}
F2 = F ∪ {{L1}, {L2}, {L3}}
F3 = F ∪ {{L1}, {L2}, {L3}}
F4 = F ∪ {{L1}}

For 1 ≤ i ≤ 4, Fi \ F are the partitioning constraints.

You should note that, in the earlier example, we use a unbalanced search tree
and the decision to choose a node that splits is not explained; there are heuristics
for choosing node. For further reading about heuristics for simple method, you can
refer to [Irf12]. Nevertheless, you can also use a balanced search tree for creating
partitioning using simple method. Another point to note here is that a leaf node, in
the search tree, can be a conflicting node, i.e. the reduct of CNF formula F w.r.t.
the literals on the path from root to the leaf node (these literals can be treated as
interpretation) contains an empty clause. Due to this scenario, we can not predict
the number of partitions that are created with the simple method.
A different approach called scattering method, for creating partitions, is pre-

sented in [HJN06]. The scattering method uses a biased search tree, that splits
a node on a complementary pair of cubes D1 and D1. A cube [HKWB12] is a
set of unit clauses. We define the complement of cube as follows. Given a cube
D = {{L1}, {L2}, . . . , {Lc}}, then we define a the function cube2clause(D) that
returns a clause containing all the literals in the cube:

cube2clause(D) = {L1, L2, . . . , Lc}

then complement of a cube D, in symbols D, is given by:

D = cube2clause(D) = {L1, L2, . . . , Lc}
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Figure 7: Example - Scattering Method for Creating Partitions

The search tree is biased in a sense that we can only split one node at each level of
the tree, so w.l.o.g. we always split the right most node. Here is an example:

Example 4.6. Figure 7 shows scattering method for creating partitions. The
right branch is a cube and the left branch is complement of the cube: a clause.
You can see that we split only one of the nodes, at each level, in to two nodes
using a complementary pair of cubes. Here are the partitions that are created by
scattering method:

F1 = F ∪D1

F2 = F ∪ {D1} ∪D2

F3 = F ∪ {D1} ∪ {D2} ∪D3

F4 = F ∪ {D1} ∪ {D2} ∪ {D3}

where D1, D2, D3 are cubes, and D1, D2, D3 are the complements of cubes. For
1 ≤ i ≤ 4, Fi \ F are the partitioning constraints.

The number of splits we perform in scattering method depends on the number of
partitions that we want to create, i.e. if we want to create 4 partitions, then we
would perform three split operations. A point to note here is that scattering method
provides a better control on the number of partitions than the simple method. The
next important question is: how can we make these cubes? In other words, what
should be the size of each cube i.e. the number of unit clauses in the cube? We
describe one heuristic, given in [Hyv11], that is used to determine the size of each
cube. Let k be the number of partitions we want to create, and let di be the size
of ith cube: the cube used to split the node at level i − 1, then the idea is choose
the values of di such that the partitions have the same expected solving time. We
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represent expected solving time of ith partition with Ti. To compute the values of di,
we use the following equations [Hyv11]:

di = argx∈Nmin|Ti − 2−x|

where Ti = 1
k − i+ 1

We explain the heuristic, to determine the size of cubes for scattering method, with
the help of the following example.

Example 4.7. Given F , we want to create four partitions: F1, F2, F3, F4. (see
Figure 7)
Starting from the root node, we want to create four partition, so we divide the
expected solving time by four, i.e. T1 = 1

4 . Now the remaining partitions are
three, so we divide the expected time by three, i.e. T2 = 1

3 . Similarly, we get
T3 = 1

2 and T4 = 1
1 = 1. By find the values of d1, d2, d3, d4, each partition would

look like the following:
T1 = 1

4 , d1 = 2, F1 = F ∪ {{L1}, {L2}}
T2 = 1

3 , d2 = 2, F2 = F ∪ {{L1, L2}} ∪ {{L3}, {L4}}
T3 = 1

2 , d3 = 1, F3 = F ∪ {{L1, L2}} ∪ {{L3, L4}} ∪ {{L5}}
T4 = 1, d4 = 0, F4 = F ∪ {{L1, L2}} ∪ {{L3, L4}} ∪ {{L5}}

4.2.2. Solving Partitions

Solving in search space partition is divided into two approaches [HJN10]: plain
partitioning and iterative partitioning. To explain the difference between the two
approaches, we first fix some notation. Some notation might look redundant now, but
will be helpful later. We represent the search space partition solver by a partition
tree, where each node φ is a tuple of the form (Formula,Result, State), such that:

• Formula : is a CNF formula

• Result : can be satisfiable, or unsatisfiable, or unknown and represent them by
symbols >, ⊥, ?, respectively

• State : can be running or stopped, represented by I, �, respectively. Running
means that the node is being solved by an incarnation and stopped means that
the node is not being solved.

The root node φ(F,R, S) represents the given problem, where F is the given CNF for-
mula that needs to be solved by search space partitioning solver. Each node φ′(F ′, R′, S′)
can be expanded by partitioning the F , such that each partition of F is a child node
of the node φ′(F ′, R′, S′). The key difference between the plain partitioning and the
iterative partitioning is: only the leaf nodes are running state in the plain partition-
ing, while nodes other than the leaf nodes can also be in running state in iterative
partitioning. We further explain the plain partitioning and the iterative partitioning
with the following example.
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F, ?,�
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Figure 8: Example - Plain Partitioning

F, ?,I
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Figure 9: Example - Iterative Partitioning

Example 4.8. Figure 8 shows an example of plain partitioning and Figure 9
shows an example of iterative partitioning. In both figures, we partition the
given CNF formula F (shown in the root node) into three partitions F1, F2, F3,
and we further partition F1 into three partition F11, F12, F13. The only difference
between the two is in the state of the nodes. In Figure 8, only leaf nodes are in
running state; note that we put in the nodes I symbol and � symbol for the
state running and the state stopped.

As in practice, solver have limited number of resources to run incarnations, so
in start, solver creates partitions according to the number of resources and then do
load balancing when a resource becomes idle. In plain partitioning, load balancing
can be done by guiding path. We will not cover the guiding path, you can refer to
the original paper [ZBP+96]. For iterative partitioning, it is quite easy to do load
balancing: solver just create new partitions in a breadth-first fashion of the partition
tree or solver creates enough partitions in advance.
Now we discuss the difference between plain partitioning and iterative partitioning,

on the basis of given CNF formula being satisfiable or unsatisfiable. In plain parti-
tioning, solver can show the satisfiability of a given CNF formula by just showing
the satisfiability of any leaf node φ′(F ′, R′, S′), i.e. the result R′ of the leaf node
is >. For showing unsatisfiability of a given CNF formula in plain partitioning, solver
needs to show that all leaf nodes are unsatisfiables, i.e. the result R′ of each leaf
node φ′(F ′, R′, S′) is ⊥. In iterative partitioning, for proving satisfiability of a given
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CNF formula, solver just need to show the satisfiability of any node φ′(F ′, R′, S′) in
the partition tree; and for proving unsatisfiability of the given CNF formula, solver
needs to show that there exist a node in every path from root to each leaf such that
the result of the node is unsatisfiable.
To give the advantage of iterative partitioning over plain partitioning, we define

two properties of a partitioning function: ideal and void.

Definition 4.9. Consider a CNF formula F with expected solving time T , and con-
sider a partitioning function that created k partitions, with expected solving time Ti

(for 1 ≤ i ≤ k). The partitioning function is called ideal, if the estimated solving time
of each partition is Ti = T

k . The partitioning function is called void, if the estimated
solving of each partition is Ti = T .

In [HJN09], the author argues that obtaining ideal partitioning function is very
difficult, but a partitioning function can be void more often, because modern SAT
solvers use heuristics which may ignore certain variables. If the partitioning function
chooses only these irrelevant variables for creating partitions, then the difficulty of
the original CNF formula does not decrease. His result about the slow down with
plain partitioning is given in the following proposition.

Proposition 4.10. [HJN09] Given a unsatisfiable CNF formula F with expected
solving time T , and plain partitioning approach with a void partition function, then
the expected solving Tplain of the search space partitioning solver is greater or equal to
the expected solving time of F , i.e. Tplain ≥ T .

Suppose that the partitioning function is void, then we can avoid the slow down
introduced by plain partitioning by using iterative partitioning, because in iterative
partitioning we are also solving the parents of the nodes; this result is due to [HJN10].
The iterative partitioning is originally used to solve the satisfiability problem in

grid environment, given in [HJN10] and [Hyv11]. In grid environment, each resource
is available for a certain time period, note that this time limit could be different for
different resource and for that reason, the authors of [HJN10] and [Hyv11] introduce
a limit on the solving time of each node in the partition tree, so when a time limit
of a node is reached then the state of node is changed from running I to stopped �
and the result of the node remains unknown. An effort has been made in [HM12a]
and [HM12b] to use the iterative partitioning for solving the satisfiability problem
in a multi-core environment and the authors also use a time limit on nodes of the
partition tree. My intuition is that a time limit on the nodes of the partition tree
could be harmful and I will show in Section 5.1 that, in certain conditions, a time
limit on nodes of the partition tree could introduce a slow down.

4.2.3. Sharing Information Among Partitions

A recent empirical study [KSMS11] shows that clause learning is the most important
feature of modern SAT solvers. The same study also shows that the decision heuristic
VSIDS is also an important feature of modern SAT solvers. Most of the current portfo-
lio solvers share learnt clauses among the incarnations. This sharing of learnt clauses
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Figure 10: Example - Clause sharing in portfolio solvers

shows improvement in portfolio solvers, because a learnt clause can prune certain part
of a search space of the incarnation. An important question in sharing learnt clauses
is: which clauses are good for sharing? There is no successful answer to this question,
but different portfolio solvers use different heuristics, e.g. ManySAT [HJS09b], win-
ner of the SAT competition 2009 in parallel SAT solver track, shares clauses of upto
size eight, and PeneLoPe [AHJ+12], runner-up of the SAT challenge 2012 in parallel
SAT solver track, shares clauses of LBD value upto eight, and Plingeling [Bie12],
winner of SAT race 2010 and SAT competition 2011 in parallel SAT solver track,
shares only unit clauses and literal equivalences. Surprisingly, portfolio solver pfo-
lioUZK [WvdGSP12], winner of SAT challenge 2012 in parallel SAT solver track,
does not share any clauses.

Example 4.11. Figure 10 shows an example of a portfolio solver that uses four
incarnations. As each incarnation, shown by a node in the figure, solves the same
given CNF formula, so each incarnation can share learnt clauses with every other
incarnation. We have shown the clause sharing with dashed lines in the figure.

In the iterative partitioning, we can not share each learnt clause with every incarna-
tion. This restriction is due to the partitioning constraints that can contribute to the
learning of a clause, and so the clause learnt can not be a logical consequence of CNF
formulas solved by other incarnations. The first approach for sharing clauses in the
iterative partitioning is given in [HJN11], this clause sharing approach is called flag-
based learnt clause tagging. The author gives the idea to tag each learnt clause with
safe or unsafe, and share the safe learnt clauses. He defines unsafe clause inductively
as: clauses belonging to partitioning constraints are unsafe, a learnt clause is unsafe it
is obtained by resolution derivation involving one or more unsafe clauses. He defines
safe clause as: a clause that is not unsafe is called safe clause. Sharing in the iterative
partitioning has been further improved by position-based clause tagging [LM13]. The
authors extend the idea of safe and unsafe clause in a sub-partition tree and sharing of
learnt clause in a sub-partition tree if it is safe in that sub-partition tree. He attaches
a position, in a partition tree, to each clause and calculates the position of a newly
learnt clause, by taking the maximum of the position of the clause that is used in
the resolution derivation for learning. Of course every clause learned by a node is
semantic consequence of its decedents and can be shared with them, these clauses can
be shared with position-based approach but not with flag-based approach.
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Figure 11: Example - Clause sharing with flag-based tagging in iterative partitioning

F, ?,I
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Figure 12: Example - Clause sharing with position-based tagging in iterative partitioning

Example 4.12. To elaborate the difference between flag-based and position-
based clause tagging, we present an graphical example. Figure 11 shows an
example of iterative partitioning that has incarnation distributed in three levels
of the partition tree, and flag-based clause tagging. The flag-based clause tagging
approach for clause sharing only shares clauses that are semantic consequence of
the root node. We have shown this restriction by a directed dashed line in the
figure. Of course, every clause learned by the root node can be shared. Figure 12
shows the position-based clause tagging approach in iterative partitioning. You
can see that the position-based clause tagging approach is an extension of the flag-
based approach, the dashed lines represent the flag-based approach. It shares the
clauses in a sub-partition tree, if the clause is a semantic consequence of the nodes
in that sub-partition tree. We represent the extended sharing with a dotted lines
in the figure. You can see that the node φ′′(F13, ?,I) learned a clause C that is
semantic consequence of the node φ′(F1, ?,I), and this clause can be shared with
φ′(F1, ?,I) and its decedents. You can think of the position-based approach as
a flag-based approach at sub-partition tree level.

We can also share information about decision heuristic and polarity heuristic in the
iterative partitioning, by propagating the information down the partition tree. In this
way, a child node gets decision heuristic and polarity heuristic from its parent, when
the child node starts its search.
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4.3. Diversification vs Intensification
A search strategy in a modern SAT solver use the following components: decision
heuristic, polarity heuristic, restart policy, and learning scheme. Diversification vs
intensification is a trade-off made by the search strategy. Intensification refers
to search strategies with goal to greedily improve the chances of finding a solution.
Diversification strategies try to achieve a reasonable coverage of the search space.
For further reading, you can refer to [HS04].
In the sense of sequential SAT solver, we see decision heuristic and polarity heuristic

as a intensification strategy, while restart policy is a diversification strategy, and
learning scheme is a mix of diversification and intensification. ManySAT [GHJS10], a
portfolio solver, diversifies each of its incarnation by choosing different search strategy,
and uses a master-slave model to intensify: master shares information about where
he is in the search space, so that the slaves should look in the similar but not exactly
the same search space. Best to our knowledge, there has been no effort with regard
to the diversification vs intensification of a search space partitioning solver. We will
discuss more about diversification and intensification in Section 5.
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5. Improving Search Space Partitioning SAT Solver
In this section, we discuss the ideas for improving search space partitioning solver.
We use SplitterLA [Irf12] as the base solver, which is an extended and improved
version of the search space partitioning solver Splitter [HM12a] [HM12b]. Like
its predecessor, SplitterLA is also a search space partitioning solver based on the
iterative partitioning. The solver uses scattering method with lookahead techniques
for creating partitions, and solves these partitions with CDCL solver MiniSat. We
have discussed about search space partitioning solvers in Section 4.2, and discussed
CDCL and lookahead in Section 3. This work also looks into the diversification
and intensification for search space partitioning solver that uses iterative partitioning
approach. We see different partitions created by search space partitioning solver as
diversification strategy, and information sharing as intensification strategy. We discuss
more about diversification vs intensification in Section 5.5.
We also present some test results, the outcome of our ideas, and these tests are run

on a 16 core AMD Opteron 6274 CPUs with 2.2 GHz clock speed. We use a limit on
memory, i.e. 8 GB, and a overall time limit of 7200 seconds per instance. We denote
the time limit by timeout. The benchmark used for experiments is the set of instances
from SAT Competition 2009, SAT Competition 2011 unselected, and SAT Challenge
2012 ; we denote this set by Ins. Let TSi be the time taken by solver S solving
instance i, then the set solvedIns(S) by a solver S, such that solvedIns(S) ⊆ Ins, is
defined as:

solvedIns(S) = {i | TSi < timeout and i ∈ Ins}

and set of unsolved instances unsolvedIns(S) by solver S is:

unsolvedIns(S) = Ins \ solvedIns(S).

We use cactus plot, which has number of solved instances on x-axis and solving time
on the y-axis. Let Ins≤t(S) be the set of instances such that the time taken by solver
S solving instance i is less or equal to t, i.e. TSi ≤ t. We define cactus plot of solver S
on instance set Ins as a set of data points (x, y) that are plotted on a two dimensional
diagram:

cactusP lot(S) = {(x, y) | x = |Ins≤y(S)| and y ∈ [0, timeout]}.

We define cross plot of two solvers S′ and S′′ on instance set Ins as set of data points
(x, y) that are plotted on a two dimensional axis:

crossP lot(S′, S′′) = {(x, y) | i ∈ Ins and x = TS′
i
and y = TS′′

i
}

5.1. Solving Limit

SplitterLA uses a solving time limit for each node in the partition tree, proposed
in [HJN10] for grid environment. Here we propose a different strategy, we do not put

34



5.1. Solving Limit

F, ?,I

F2, ?,IF1, ?,I F3, ?,I

(a) Partition Tree in Start
F, ?,�

F2, ?,IF1, ?,� F3, ?,I

F12, ?,IF11, ?,I F13, ?,�

(b) Partition Tree after some time

Figure 13: Example - Iterative Partitioning with Limit

any limit on the solving time for each node. To give the intuition about our idea,
we first define ideal solving time limit: a solving time limit is ideal if the given CNF
formula is solved within that limit.
Given a unsatisfiable CNF formula that we solve with iterative partitioning hav-

ing a void partition function, and if the solving time limit is not ideal then iterative
partitioning slowly becomes plain partitioning. Figure 13a shows this scenario: iter-
ative partitioning approach with four incarnations that can run in parallel, the CNF
formula F , shown as root node, having three child nodes, all four nodes are solved
in parallel. Root node φ(F, ?,I) and its left most child φ(F1, ?,I) timeout with
result unknown because the solving time limit is not ideal, and so their status become
stopped, i.e. φ(F, ?,�) and φ(F1, ?,�). As two resources become free, so the solver
adds three child nodes to the node φ(F1, ?,�) by partitioning F1, that are φ(F11, ?,I),
φ(F12, ?,I), and φ(F13, ?,�) (two of the newly created nodes are running and one is
stopped); see Figure 13b. Note that only leaf nodes are in running state, which is
same as what plain partitioning approach does, so we can apply the Proposition 4.10
given on page 30, which says that plain partitioning approach with void partitioning
function suffers a slowdown.
We test our hypothesis by running an experiment, in which we use the following

two configurations:

Table 1: Statistics on 880 instances - Limit and without Limit
Configuration Solved SAT UNSAT Median Solving Time (sec)
Limit 489 256 233 1108.83
without Limit 590 292 298 857.37
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Figure 14: Cactus Plot - SplitterLA: Limit vs Without Limit

• Limit: SplitterLA with a solving time limit1 for each node

• without Limit: SplitterLA without any solving time limit

According to our hypothesis, the configuration without Limit should perform better
than Limit. Figure 14 shows a cactus plot of the two configurations, which we run
over 880 instances with overall 7200 sec timeout limit using 8 cores and 8 GB mem-
ory. You can see that the configuration without Limit clearly outperforms (beyond
our expectations) the configuration Limit, by solving 101 instances more, proves our
hypothesis to be true. Table 1 shows the statistics of the configurations Limit and
without Limit on 880 instances. Limit is able to solve 489 instances (256 satisfiable
and 233 unsatisfiable) with a median solving time of 1108.83 sec, while without Limit
is able to solve 590 instances (292 satisfiable and 298 unsatisfiable) with a median
solving time of 857.37 sec.

5.2. Sequential Solver
The second big improvement we bring is by changing the SAT solver used to solve
the partitions. SplitterLA uses MiniSat [Nik10] for solving partitions. We have
build new search space partitioning solver with iterative partitioning, which uses
Glucose [AS12a] to solve partitions. We call this new solver as SplitterGluLA.
Glucose is the winner of SAT challenge 2012 in the sequential SAT solver track, and

1Solving time limit is modeled as number of conflicts in SplitterLA

Table 2: Statistics on 880 instances - SplitterLA and SplitterGluLA
Configuration Solved SAT UNSAT Median Solving Time (sec)
SplitterLA 590 292 298 857.37
SplitterGluLA 644 292 352 548.04
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Figure 15: Cactus Plot - SplitterLA vs SplitterGluLA

is a modified version of MiniSat (ranked 9th in SAT challenge 2012 in the sequential
SAT solver track), but with different learnt clauses cleaning policy and restart policy.
Glucose uses LBD based learnt clauses cleaning policy and dynamic restart policy;
we have discussed these policies in Section 3.1.

Figure 15 shows the cactus plot of the configuration SplitterLA and SplitterGluLA,
where the configuration SplitterLA uses the solver SplitterLA and the configuration
SplitterGluLA uses the solver SplitterGluLA. Both configurations do not have any
limit on the solving time of a partition. You can see that SplitterGluLA solves faster
and more instances than SplitterLA. Table 2 shows the statistics of the configurations.
SplitterGluLA solves 644 instances (292 satisfiable and 352 unsatisfiable) with a solv-
ing time of 548.04 sec. SplitterLA solves less than SplitterGluLA, i.e. 590 instances
(292 satisfiable and 298 unsatisfiable) with a median time of 857.37 sec. These results
show that changing the SAT solver, for solving partitions, to a better SAT solver can
improve the overall performance of the parallel SAT solver.
We use SplitterGluLA as the base configuration for further improvements, we put

zero in the subscript, i.e. SplitterGluLA0. As almost every solver participating in
that the international competitions, uses a preprocessor, so for the rest of this work,
we will use preprocessor SatELite [EB05] as well.

5.3. Instance Selection

For testing our ideas for improvements, we select training set of 118 SAT instances out
of a set of 880 instances. We select a smaller subset for training so that we can perform
test faster by using less resources, but we will still do the final evaluation on the set
of 880 instances. We have made this selection after performing some experiments
with the configurations SplitterGluLA0, PeneLoPe, and Plingeling, where PeneLoPe
runs the parallel solver PeneLoPe [AHJ+12] and Plingeling runs the parallel solver
Plingeling [Bie12]. All the configurations use preprocessor SatELite. We selected
the training set of 118 instances that are medium to hard instances: the selection
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includes 72 unsatisfiable, 28 satisfiable instances, and 18 unsolved instances instances
by all configurations. We use this training set to test our ideas, whether they bring
improvements or not?
Table 3 shows the number of solved instances and other information by the config-

urations. SplitterGluLA0 solves 85 instances: 24 satisfiable instances and 61 unsat-
isfiable instances, with a median solving time of 1262.77 sec; while PeneLoPe solves
100 instances, of which 28 are satisfiable and 72 are unsatisfiable instances, and it
has a median solving time of 303.33 sec. Plingeling solves 90 instances that include
28 satisfiable and 62 unsatisfiable instances, with a median solving time of 1276.06 sec.
Although we have brought two major improvements, solving limit and the partition
solver, still SplitterGluLA0 needs more improvements to catch up with PeneLoPe, but
SplitterGluLA0 is not too far from Plingeling. You should note that PeneLoPe and
Plingeling uses clauses sharing and other techniques, which we look into, later in this
section.

5.4. Modifications in Creating Partitions
We want to improve the average partitioning time of the solver, as it effects the
overall performance of the solver (there could be a scenario that resources are waiting
for the creation of partitions), in that case the solver may not utilize all the given
resources efficiently. Average partitioning time should be small enough to utilize
parallel resources more efficiently, so our aim to lower this time without loosing overall
performance of the solver.

5.4.1. Pre-selection Heuristic

As we discussed in Section 3.2, that pre-selecting small number of variables for
lookaheadDecide can improve overall performance of lookahead SAT solver; in our
case, we can improve the performance of creating partitions, i.e. less time to create
partitions. SplitterGluLA0 uses a static method for choosing the size of pre-selection
variables: top 10% of the free variables, with a maximum cutoff of 2048 variables. We
now add the adaptive ranking method (see page 16). We have tested four different
configuration for adaptive ranking:

1. α = 5 and β = 7, this is default configuration of lookahead SAT solver
march [HvM06].

2. α = 10 and β = 7.

Table 3: Statistics on 118 selected instances - SplitterGluLA0, PeneLoPe, Plineling
Configuration Solved SAT UNSAT Median Solving

Time (sec)
Avg. Partitioning
Time (sec)

SplitterGluLA0 85 24 61 1262.77 31.31
PeneLoPe 100 28 72 303.33 -
Plineling 90 28 62 1276.06 -
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3. α = 20 and β = 7.

4. α = 50 and β = 7.

We have found the fourth configuration to perform slightly better than the other three
configurations.

5.4.2. Double Lookahead

Lookahead SAT solvers get benefits from using double lookahead in lookaheadDecide,
but we have seen in [Irf12] that use of double lookahead in partitions creation degrades
the performs of the solver. Here, we revisit the idea of double lookahead. We propose
to use different pre-selection heuristic for double lookahead than the one used for
lookaheadDecide. As the purpose of double lookahead is to find failed literal which
was not detected by applying single lookahead. In other words, consider applying
lookahead on literal L1 and the lookahead is not successful, then the goal of double
lookahead is to find a variable A such that lookahead on L2 = A is successful and
lookahead on L2 is also successful (see Section 3.2). So, we change the pre-selection
heuristic for double lookahead by choosing variables whose both polarities are present
in large number of the newly created binary clauses (binary clauses that have been
created by applying lookahead on L1).
Consider a CNF formula F and an interpretation J , we apply lookahead on literal

L1, i.e. lookahead(F :: J, L̇1), such that lookahead on L1 is unsuccessful, then we can
pre-select variables for double lookahead with the following heuristic:

F :: J, L̇1  
∗
UNIT F :: J, L̇1, P

newBin(F :: J, L̇1, P ) = {C , such that C ∈ F |J,L̇1,P and C 6∈ F and |C| = 2}

#freq2(L2) = |{C , such that L2 ∈ C and C ∈ newBin(F :: J, L̇1, P )}|

preselectDLAscore(A) = #freq2(A) ∗#freq2(¬A)

where newBin(F :: J, L̇1, P ) represents the newly created binary clause in F by inter-
pretation J, L̇1, P , #freq2(L2) is the frequency of the literal L2 present in newBin(F ::
J, L̇1, P ), and preselectDLAscore(A) is the heuristic score for variable A. We use
adaptive ranking method (see page 16) to choose the pre-selection variable set for
double lookahead.

5.4.3. Tabu Scattering

In our experiments, we have observed that scattering method creates partitions such
that there are common variables among the cubes used for splitting nodes. Recall
the scattering method is defined as, a biased search tree that splits a node on a
complementary pair of a cubes D1 and D1 (see Section 4.2.1 for details). We now
define tabu scattering method as an extension of scattering method, by putting a
restriction that a variable used in one cube, for splitting a node, must not be used
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in the cubes for splitting other nodes. Consider a CNF formula F , we create four
partitions F1, F2, F3, F4 using three cubes D1, D2, D3:

F1 = F ∪D1

F2 = F ∪D1 ∪D2

F3 = F ∪D1 ∪D2 ∪D3

F4 = F ∪D1 ∪D2 ∪D3

The restriction by tabu scattering is given by:

atom(D1) ∩ atom(D2) ∩ atom(D3) = ∅

Using tabu scattering method, we get two benefits: first is that we diversify the search
more, second is that we lower the probability of the partitioning function being a void
function.

5.4.4. Pure Literals

The paper [DP60], on which most of the modern SAT solvers are based on, gives the
pure literal rule: a literal which exists only either in positive polarity or in negative
polarity in the CNF formula. Modern SAT solvers usually do not use the pure lit-
eral rule, because their data structures focus on detecting cheaply the literals which
are present in unit clauses, and detecting pure literals with these data structures is
computationally expensive. In SplitterGluLA0, we use preselection heuristic, which
has to anyhow go through the CNF formula, for lookaheadDecide; we can add the
PURE rule in during the score calculation for preselection heuristic, without introduc-
ing computational overhead. The detected pure literal can be added as partitioning
constraint for a partition.
We define pure literal rule in the DPLL ARS.

Definition 5.1. The pure literal rule can be described using the set RDP LL from
DPLL ARS.

F :: J  PURE F :: J, Ll , iff @C ∈ F |J such that L ∈ C , and l = level(J)

The pure literal appends the pure literal to the interpretation. Here is an example:

Example 5.2. Consider the following CNF formula:

F = {{¬1, 2}, {¬1,¬2, 3}, {¬1,¬3, 4}, {1, 3, 6}, {¬1, 4,¬5}, {1,¬6}, {4, 5, 6}}

then, the literal 4 is pure, because the literal ¬4 does not exist in any clause of
F , and we can apply the pure literal rule.
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F :: ()
 PURE F :: (40) F |(40) = {{¬1, 2}, {¬1,¬2, 3}, {1, 3, 6}, {1,¬6}}

5.4.5. Constraint Resolvents

We perform local reasoning while performing lookaheadDecide (see page 15), i.e. add
local learnt clauses to the CNF formula. SplitterGluLA0 adds failed literals, necessary
assignments, and equivalent literals. We improve SplitterGluLA0 by adding constraint
resolvents as local learnt clauses during lookaheadDecide. Constraint resolvents are
loosely defined as the local learnt clauses which are useful: useful in the sense that
these local learnt clauses help in detecting more failed literals and necessary assign-
ments. We use a simple heuristic to add constraint resolvents, i.e. we add all indirect
implications {L1, L2} found after performing lookahead on the literal L1, as local
learning, if the the reason clause for L2 is not a binary clause. In symbols, we repre-
sent this heuristic as conRes:

conRes(F :: J, L̇1) = {{L1, L2} | C ∈ F and C is reason for L2 ∈ iup(F :: J, L̇1)
and |C| > 2}

5.4.6. Sorting Children

We have observed in experiments that scattering method does not always create par-
titions that have equal difficulty level in terms of solving time. Due to this difference,
consider a scenario that the solver has some resources free, so it creates partitions of
some running unsolved node φ(Fi, ?,I) in the partition tree, but it may happen that
φ(Fi, ?,I) is very close to find the result ⊥ and thus the solver may waste resources
on the newly created partitions. We propose a solution to decrease the chance of
this scenario to happen, by sorting the child nodes, of each parent node, in decreasing
order of difficulty level; this way the solver will create partitions of more difficult node
first than the less difficult nodes. We predict the difficulty level of a node by a simple
heuristic that counts the number of propagated literals: higher the number of start-
ing propagated literals means lower difficulty level. Number of starting propagated
literals of a CNF formula F is given by #propagation(F ), which is defined as:

#propagation(F ) = |s(P )|

F, ?,I

F2, ?,IF1, ?,I F3, ?,I

(a) Scattering without sorting

F, ?,I

F1, ?,IF3, ?,I F2, ?,I

(b) Example - Scattering with sorting

Figure 16: Sorting Children
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such that F :: ( ) ∗UNIT F :: P

where s(P ) is the set of propagated literals. We explain more with the help of an
example.

Example 5.3. Consider the solver creates three partitions of a F , with scattering
method, we represent the partition tree shown in Figure 16a. Suppose that:

#propagation(F3) < #propagation(F1) < #propagation(F2)

so we predict that partition F2 is has the lowest difficulty level, then comes the
partition F1, and the hardest among all the partitions is F3; so with sort option,
the solver changes the position of the partitions in the partition tree, and is shown
in Figure 16b.

5.4.7. Results

We perform an experiment using two solver configuration: SplitterGluLA0 and
SplitterGluLA1. For creating partitions, both solver use scattering method with looka-
head decision heuristic, use recursive weighted heuristic as pre-selection heuristic, add
equivalent literals as local learnt clauses, detect failed literals and necessary assign-
ments, add failed literals and necessary assignments to partitioning constraints. The
differences between these two solvers are: SplitterGluLA0 uses 10% with maximum
cutoff of 2048 variables for choosing the number of pre-selection variables, while
SplitterGluLA1 uses adaptive ranking with lower bound equal to 50 and failed literals
importance factor equal to 7. Apart from these options, SplitterGluLA1 detects and
adds pure literals to partitioning constraints, adds constraint resolvents as local learnt
clause, performs double lookahead, and imposes tabu restriction on scattering. We use
test set of 118 selected instances for performing the experiment; using 8 cores, 8 GB
memory and 7200 timeout per instance. Figure 17 shows a cactus plot of these two
solvers. SplitterGluLA1 performs better by solving 87 instances than SplitterGluLA0,
which solves 85 instances. Table 4 shows more detailed information of the experiment.
Median Solving time is slightly better for SplitterGluLA1, i.e. 1255.42 sec as com-
pared to SplitterGluLA0 with 1262.77 sec. Surprisingly, SplitterGluLA1 uses about
a factor of 6 less time to create partitions per node, compared to SplitterGluLA0.
SplitterGluLA1 also improves the CPU ratio, that is the measure of the utilization of
resources. In the next subsection, we discuss ideas to further improve SplitterGluLA1.

Table 4: Statistics on 118 instances - Improvements in Partition Creation
Configuration Solved Median Solving

Time (sec)
Avg. Partitioning
Time (sec)

CPU Ratio

SplitterGluLA0 85 1262.77 sec 31.31 sec 6.34
SplitterGluLA1 87 1255.42 sec 4.71 sec 6.45
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Figure 17: Cactus Plot - Improvements in Creating Partitions

5.5. Diversification vs Intensification in Solving Partitions

Now we take ideas about diversifying and intensifying the search of parallel solver,
from portfolio solvers. Creating partitions is itself a diversification process, we discuss
more ideas to further diversify and intensify the search of SplitterGluLA1.

5.5.1. Sharing VSIDS and Progress Saving

We intensify the search by sharing information. First thing we look into is sharing
VSIDS and progress saving heuristics. Portfolio solvers do not share this information,
because all incarnations start their search at the same time; but in case of our solver,
we have a tree structure (partition tree) that we can exploit, and also nodes in the
partition tree do not start search at the same time. So, sharing heuristic information
like VSIDS and progress saving from parent to child nodes, could help the child nodes
(given that the parent node starts search before child node). When SplitterGluLA1
starts solving, the root node and the nodes at the partition tree level one start at
almost the same time, because the solver creates partitions of a node equal to the
number of resources. The nodes at partition tree level greater than one are usually
created after some time, so we initialize the new child nodes with VSIDS and progress
saving information of their parent, because the child node searches in the sub-search
space of its parent and whatever is learned by parent node can help the child node as
well. We get improvement in the performance of SplitterGluLA1 by sharing VSIDS
heuristic scores and progress saving values of polarity, from nodes at partition level
one or greater, to their child nodes; we discuss the results in Section 5.5.8.

5.5.2. Sharing Learnt Clauses

Parallel SAT solvers share learnt clauses among incarnations to intensify the search.
We look into this idea and use position based learnt clause sharing in SplitterGluLA1;
we have discussed position based clause sharing in Section 4.2.3. We use the best
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known configuration for position based clause from [LM13], that shares clauses of LBD
score less or equal to two. We present this configuration as a function shareClause(C),
which return > if the clause C can be shared or return ⊥ otherwise; in symbols we
present this as:

shareClause(C) =
{
> , if lbd(C) ≤ 2
⊥ , otherwise

As expected, we get improvement by adding clause sharing option in SplitterGluLA1
(see Section 5.5.8).

5.5.3. Sharing Top Level Units

By top level units, we mean the literals present at decision level zero in the interpre-
tation. Inspired from Plingeling that shares top level units among its incarnations,
we can share top level units the same way as we share learnt clauses, by treating top
level units as unit clauses. We have conducted experiments to share top level units,
and we see a slowdown in overall performance of the solver. There might be several
reasons, but the ones we could think of are:

• sharing them increase the communication overhead (as they are large in number)

• other nodes could have found the top level unit themselves because of the shared
learnt clauses, sharing of VSIDS and progress saving information

We have not deeply investigated about the reason for slowdown, and leave this for
future work. For the time being, we do not use this option in our solver.

5.5.4. Different Restarts

Portfolio solvers like ManySAT and PeneLoPe, use different restart policies for
each incarnation, to diversify the search. Inspired by this idea, we diversify by using
different restart policy parameters. First we classify the nodes in partition tree into
three categories:

1. Root node: the node at root of the partition tree.

2. Leaf node: the node which does not has any child node.

3. Middle node: the node which is neither a root node nor a leaf node.

According to these node categories, we apply different restart policies.

• Root node uses the default restart policy of Glucose, i.e. X = 50 and K = 0.8.

• Leaf node uses X = 75 and K = 0.8.

• Parent node uses X = 75 and K = 0.7.

Recall that X is the size of bounded queue and K is the magic constant (see page 12),
that are used in dynamic restart policy by Glucose. We have selected the values of
X and K based on experiments and the data provided in [AS12b].
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5.5.5. Randomizing Polarity

Although sequential solvers make use progress saving for choosing the polarity, but
in start the solver does not has this information; so usually sequential solvers choose
negative polarity for a decision variable when no progress saving has been done for
that variable. PeneLoPe uses this fact by directing some incarnations to select random
polarity of a decision variable if the variable does not have any saved progress (last
used polarity); this small change brings some diversification in PeneLoPe because
different incarnations may choose the same decision variable but may take different
polarity (different direction of search). We use the same idea in the following way:

• Root node chooses the default negative polarity for a decision variable if no
progress saving information is available.

• Nodes at partition level one, use the random if no progress saving information
is available.

Note that this idea does not conflict with VSIDS and progress sharing, because we
only introduce this idea for the nodes which start almost at the same time, i.e. root
node and the nodes at partition tree level one.

5.5.6. Different Learnt Clauses Cleaning

To diversify, PeneLoPe also uses different interval for performing learnt clause clean-
ing (time between two learnt clause cleanings), for different incarnations. The purpose
is that some incarnations keep learnt clauses for longer time, while others for shorter.
We introduce this idea in our solver, according to the node category. We give different
cleaning intervals to root node, middle node, and leaf node, in such a way that root
node has the shortest cleaning interval, middle node has longer cleaning interval but
shorter than leaf node. Let Introot, Intmiddle, Intleaf be the cleaning intervals of the
nodes root, parent, and leaf, respectively. Then we have the following relationship:

Introot < Intmiddle < Intleaf

Note that a leaf node changes its cleaning policy dynamically when it become a middle
node (when it has child nodes).

5.5.7. Only Child Scenario

During our experiments we have observed, on some instances, that the height of the
partition tree grows equal to the number of parallel resources (number of cores in our
case). This means that there is only one unsolved node at each partition level of the
partition tree. On a smaller scale, there could be only one unsolved node at some
partition level. For that reason, we call this scenario the only child scenario. Here is
an example.
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F, ?,I

F2, ?,IF1,⊥,� F3,⊥,�

F22,⊥,�F21, ?,I F23,⊥,�

F212,⊥,�F211,⊥,� F213, ?,I

Figure 18: Example - Only Child Scenario

Example 5.4. Figure 18 shows an extreme case of only child scenario: solver
with four available resources. You can see that only one node is unsolved at each
level of partition tree, i.e. the nodes solving the partitions F , F2, F21, F213 are
unsolved and running.

Consider that only child scenario happens at some level of the partition tree, then
there are two cases:

• parent node is looking in the search space which has been solved by one of its
child.

• parent node is looking in the search space where its unsolved children are look-
ing.

In either case, we have the risk of doing redundant work. We propose a approach
to get out of this scenario by reintroducing solving limit in a node that has only one
unsolved child, as we can say with a high probability that the partitioning function
is not void (as all the partitions are solved except one). To be on safe side, we do not
introduce this limit in the root node if it has only one unsolved child, so that we are
not slower than the sequential solver. The introduced limit grows with level of the
partition tree.
Remark. We do not know if the only child scenario is good or bad, as portfolio solvers
also have the risk of doing redundant work and still they perform well. We suggest to
further investigate this only child scenario as a future work. One possible direction
could be to simulate portfolio approach2 in iterative partitioning.

5.5.8. Results

For testing the combined effect of the ideas presented in this subsection, we con-
duct an experiment using three solver configurations: SplitterGluLA1, SplitterGluLA2,

2Idea from the discussion with Davide Lanti
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Figure 19: Cactus Plot - Improvements by Diversification and Intensification

and SplitterGluLA3. The experiment is run over the test set of 118 instances, using
8 cores with solving time limit of 7200 sec, memory limit of 8 GB. SplitterGluLA1 is
the improved configuration from Section 5.4. SplitterGluLA2 and SplitterGluLA3 are
extensions of SplitterGluLA1. SplitterGluLA2 and SplitterGluLA3 use the intensifica-
tion and diversification techniques, i.e. sharing VSIDS and progress saving, sharing
learnt clauses, different restarts, randomizing polarity, different learnt clauses cleaning;
we have discussed these techniques in this subsection. The only difference between
SplitterGluLA2 and SplitterGluLA3 is the only child scenario: former ignores the only
child scenario, while latter considers the only child scenario by adding solving time
limit to the node with only one unsolved child.
Figure 19 shows the cactus plot of the three configurations, and as you can see

that we get improvements by applying diversification and intensification techniques
(SplitterGluLA2 and SplitterGluLA3): the number of solved instances has increased
and the median solving time has decreased. Among these configurations, SplitterGluLA3
solves the most number of instances, i.e. 93 instances (27 satisfiable and 66 unsat-
isfiable), see Table 5. It solves more than SplitterGluLA2 which solves 90 instances
(25 satisfiable and 65 unsatisfiable). Also the median solving time of SplitterGluLA3
(820.9 sec) is better than the median solving time of SplitterGluLA2 (875.48 sec).
These results motivate the importance of only child scenario, and we think further
research in this direction will bring some good results.

Table 5: Statistics on 118 instances - Improvements by Diversification and Intensification
Configuration Solved SAT UNSAT Median Solving

Time (sec)
CPU Ratio

SplitterGluLA1 87 26 61 1255.42 6.45
SplitterGluLA2 90 25 65 875.48 6.14
SplitterGluLA3 93 27 66 820.9 6.42
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6. Evaluation

In this section we discuss the result of our experiments, which include, finding a good
configuration, analysis of speed and efficiency, test for scalability, and comparison
with state-of-the-art portfolio solvers. In the end we also show the improvements
contributed through this work.
The hardware setup, that is used in our experiments, has 16 core AMDOpteron 6274

CPUs with 2.2 GHz clock speed. We run our experiments over an instance set Ins of
880 instances (set of instances from SAT Competition 2009, SAT Competition 2011
unselected, and SAT Challenge 2012 ).

6.1. Good Configuration

To find a good configuration for SplitterGluLA, we test four configurations. These
configurations are selected from the experiments performed in Section 5.4 and Sec-
tion 5.5. Following are the details of the configurations:

1. wOCS: (with only child scenario) limiting the solving time of a parent node if
it has only one unsolved child.

2. wOCSDelayClean: (with only child scenario + different learnt clauses cleaning)
limiting the solving time of a parent node if it has only one unsolved child and
using different learnt clauses cleaning intervals according to the category of the
partition tree node.

3. wOCSDelayCleanRndPol: (with only child scenario + different clauses cleaning
+ randomizing polarity) limiting solving time of a parent node if has only one
unsolved child, and using different learnt clauses cleaning intervals according to
the category of the partition tree node, and using random polarity in the nodes
at partition level one, for deciding a literal when no progress saving information
is available.

4. woOCS: (without only child scenario) does nothing if a parent node has only
one unsolved child.

All of the above mentioned four configurations use the same options for creating
partitions (SplitterGluLA1 from Section 5.4); all configurations also use sharing VSIDS
and progress saving option, sharing learnt clauses option, different restarts option (for

Table 6: Statistics on 880 instances - Final Evaluation
Configuration Solved SAT UNSAT Median CPU ratio Score
wOCS 680 299 381 179.48 6.05 −33
wOCSDelayClean 682 300 382 175.10 6.02 14
wOCSDelayCleanRndPol 676 298 378 171.99 5.75 13
woOCS 676 296 380 163.77 5.97 6
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Figure 20: Cactus Plot - Final Evaluation

details about these options, see Section 5.5). All configurations can use 8 core. The
time limit is set to 7200 sec (2 hours) and memory limit is set to 8 GB.
Figure 20 shows a cactus plot of the four configurations (we have discussed the

definition of a cactus plot on page 34). You can see that the configurations which
consider the only child scenario (wOCS, wOCSDelayClean, wOCSDelayCleanRndPol),
perform better than the configuration which does not consider the only child scenario
(woOCS), on hard instances. Although the median time of woOCS is the lowest
among all the configurations, but it solves less number of instances compared to wOCS
and wOCSDelayClean, see Table 6. Since we are particularly interested in solving
hard instances, wOCSDelayClean seems to do a good job, as it solves the highest
number of instances, i.e. 682 instances (300 satisfiable and 382 unsatisfiable). A
careful ranking system for solvers [VG11], that considers ties (difference of solving time
between two solvers is less than 300 sec) as noise, is shown in the last column of the
table, which places wOCSDelayClean as first by giving 14 score, and 13 score, 6 score,
and −33 score is given to wOCSDelayCleanRndPol, woOCS, and wOCS, respectively.
Interesting score comparison is between wOCS and woOCS : the former gets low score
but solves more instances, whereas later gets high score but solves less instances.
This comparison shows the importance of the only child scenario that it should not
be ignored. wOCS makes a trade-off over the speed (on easy instance) with solving
hard instances. The important question which arise here is: can this trade-off be
minimized, such that the speed (on easy instances) does not become slow and still
solves more number of hard instances? This question motivates to further look into
the only child scenario.

6.2. Comparison with Sequential Solver

SplitterGluLA uses Glucose to solve partitions, we compare the performance of
SplitterGluLA with sequential Glucose. The configuration Sequential represents
a sequential solver Glucose, and Parallel-8core (using 8 cores) represents the config-
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Figure 21: Cactus Plot - Sequential vs Parallel

Table 7: Statistics on 880 instances - Sequential vs Parallel
Configuration Solved SAT UNSAT Median CPU ratio Score
Sequential 629 272 357 289.28 - −96
Parallel-8 682 300 382 175.10 6.02 96

uration wOCSDelayClean of SplitterGluLA from our experiments, in Section 6.1.
Figure 21 shows a cactus plot of the configurations Sequential and Parallel-8core and
it is clear that Parallel-8core is solving more instances and also solving instances faster.
Sequential solves 629 instances (272 satisfiable and 357 unsatisfiable), while Parallel-
8core solves 682 instances (300 satisfiable and 382 unsatisfiable). Table 7 shows the
statistics of the experiment. The median solving time is better for Parallel-8core
(175.10 sec) than Sequential (289.28 sec). The score for Parallel-8core is 96, while the
score for Sequential is much lower, i.e. −96; this shows improvement of using parallel
approach over sequential.
Table 8 shows the speedup analysis of the configuration Parallel-8. We have dis-

cussed speedup on page 22. We observe:

• occasional super linear speedup on few instances (19 satisfiable instances and
4 unsatisfiable instances), where Parallel-8core is 8 time faster than Sequential,

• linear speedup on 421 instances (187 satisfiable instances and 234 unsatisfiable
instances), where Parallel-8core is faster than Sequential,

Table 8: Statistics on 880 instances - Speedup analysis for 8 cores
Super Linear Speedup Linear Speedup Slowdown

Configuration SAT UNSAT SAT UNSAT SAT UNSAT
Parallel-8 19 4 187 234 92 150
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Figure 22: Cross Plot - Sequential on y axis and Parallel-8core on y axis

• slowdown in 242 instances (92 satisfiable and 150 unsatisfiable) where Parallel-
8core is slower than Sequential.

A cross plot of Parallel-8core vs Sequential in Figure 22 shows the impact of this
slowdown (cross plot is defined on page 34); x-axis shows the solving time of Sequential
and y-axis shows the solving time of Parallel-8core. The figure shows that most of
the slower solved instances by Parallel-8 compared to Sequential, do not have a big
difference in the solving time, except for only few instances.
Overall the number of instances where speedup is observed (linear or super linear),

is twice the number of instances where slowdown. We still suggest to further inves-
tigate the reasons for slowdown on some instances and look into implementation of
SplitterGluLA; one direction could be sharing of some bad clauses (bad in a sense
that these clauses mislead the search) with the root node in the partition tree.

6.3. Scalability Test
A scalable parallel SAT solver means that the performance of the solver increases
with the increase in the number of resources. To check if our approach for paral-
lel SAT solving is scalable, we use the configurations wOCSDelayClean and woOCS
of SplitterGluLA (from Section 6.1). wOCSDelayClean-4, wOCSDelayClean-8,
and wOCSDelayClean-16 represent the configuration wOCSDelayClean using 4-cores,
8-cores, and 16-cores, respectively. Same notation is applied to woOCS. We also
use PeneLoPe using 4-core, 8-core, and 16-cores. We choose PeneLoPe because
it is claimed [AHJ+12] to scale better than the other portfolio solvers like Plin-
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Figure 23: Cactus Plot - PeneLope 4-core, 8-core, 16-core
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Figure 24: Cactus Plot - wOCSDelayClean 4-core, 8-core, 16-core

geling [Bie12], CrytoMiniSAT [Soo10], ManySAT [HS09], and ppfolio [Rou12].
PeneLoPe-4, PeneLoPe-8, and PeneLoPe-16 represent the configuration of Pene-
LoPe using 4-core, 8-core, and 16-core, respectively.
We use penalized average runtime-10 (par10) to measure the performance of each

configuration. Let S be a solver, Ins be the instance set, timeout be the solving time
limit, TSi be the time taken by S to solve instance i ∈ Ins, solvedIns(S) be the set
of solved instances by S, and unsolvedIns(S) be the set of unsolved instances by S
(see page 34 for more details), then par10 of S (we denote it by par10(S)) is defined
as:

par10(S) = 10 ∗ |unsolvedIns(S)| ∗ timeout+
∑

i∈solvedIns(S)
TSi

We say that an approach to parallel SAT solving is scalable if it par10 score decreases
with the increases in number of resources.
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Figure 25: Cactus Plot - woOCS 4-core, 8-core, 16-core

Table 9: Statistics on 880 instances - Scalability Analysis
Configuration Solved SAT UNSAT Median par10
PeneLoPe-4 691 298 393 140.86 13, 913, 759
PeneLoPe-8 704 304 400 89.39 12,887,177
PeneLoPe-16 703 302 401 83.42 12, 916, 426
wOCSDelayClean-4 664 295 369 212.92 15, 906, 877
wOCSDelayClean-8 682 300 382 175.10 14, 580, 060
wOCSDelayClean-16 682 299 383 149.8 14,531,761

woOCS-4 664 294 370 207.44 15, 876, 623
woOCS-8 676 296 380 163.77 14, 984, 328
woOCS-16 684 299 385 150.18 14,397,826
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6.4. Comparison with Other Parallel SAT Solvers

Figure 23 shows the cactus plot of PeneLoPe-4, PeneLoPe-8, and PeneLoPe-16. It
is clear from the figure that PeneLoPe-8 solves 13 more instances than PeneLoPe-4,
but PeneLoPe-16 solves one less instance than PeneLoPe-8. Figure 24 shows the cac-
tus plot of wOCSDelayClean-4, wOCSDelayClean-8, and wOCSDelayClean-16 ; this
plot shows that wOCSDelayClean-8 solves 18 more instances than wOCSDelayClean-4,
but wOCSDelayClean-16 solves same number of instances compared to wOCSDelayClean-
8. Figure 25 shows the cactus plot of woOCS-4, woOCS-8, and woOCS-16. This plot
shows a bit better picture (solving more instances by adding more resources) than pre-
vious plots shown in Figure 23 and Figure 25. woOCS-8 solves 12 more instances than
woOCS-4, and woOCS-16 solves 8 more instances compared to wOCSDelayClean-8.

Table 9 shows the statistics of 4-core, 8-core, and 16-core configurations of PeneLope,
wOCSDelayClean, and woOCS. All the configuration shows decrease in median solv-
ing time with the increase in number of cores. PeneLoPe-8 has lower par10 score than
PeneLoPe-4, but PeneLoPe-16 has higher par10 score than PeneLoPe-8, so it seems
that PeneLoPe does not scale from 8-core to 16-core. par10 score for wOCSDelay-
Clean and woOCS decreases with the increase in the number of cores. The decrease in
par10 score is more significant in woOCS than wOCSDelayClean. This suggests that
SplitterGluLA scales better than portfolio solvers (as it scales slightly better than
PeneLoPe, and PeneLoPe scales better than other portfolio solvers [AHJ+12]). We
believe that a better implementation of SplitterGluLA could further improve its
scalability.

6.4. Comparison with Other Parallel SAT Solvers

We compare our solver with state-of-the-art portfolio solvers: PeneLoPe (winner
of SAT race 2010 and SAT competition 2011, in parallel track) and Plingeling
(runner-up of SAT challenge 2012 in parallel track). We use the instance set Ins of
880 instances for experiment and three configuration:

1. PeneLope using PeneLoPe,

2. Plingeling using Plingeling,

3. SplitterGluLA using the configuration wOCSDelayClean of SplitterGluLA
from Section 6.1.

Each configuration runs using 8-cores with 8 GB memory limit and 7200 sec time limit.
Figure 26 shows a cactus plot of the solver SplitterGluLA, PeneLoPe, and Plingeling.
It is quite evident that SplitterGluLA performs better Plingeling: both in terms of

Table 10: Statistics on 880 instance - Parallel Solvers Comparison
Configuration Solved SAT UNSAT Median CPU ratio Score
SplitterGluLA 682 300 382 175.10 6.02 26
Plingeling 672 296 376 442.28 6.38 −291
PeneLoPe 704 304 400 89.39 6.90 265
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Figure 26: Cactus Plot - Parallel Solvers Comparison

number of solved instances and the time to solve an instance. SplitterGluLA solves
less instances and is almost twice slower than PeneLoPe. Table 10 shows the statistics
of the experiment: SplitterGluLA solves 682 instances (300 satisfiable and 382 unsatis-
fiable) with median solving time of 175.10 sec, Plingeling solves 672 instances (296 sat-
isfiable and 376 unsatisfiable) with median solving time of 442.28 sec, and PeneLoPe
solves 704 instances (304 satisfiable and 400 unsatisfiable) with median solving time of
89.39 sec. The big difference among these configurations is the number of unsatisfiable
solved instances, SplitterGluLA solves 18 less unsatisfiable instances than PeneLoPe.
This suggests to focus more on unsatisfiable instances. Another important observa-
tion is the CPU ratio, SplitterGluLA has the lowest value, i.e. 6.02. In ideal case the
CPU ratio should be equal to the number of cores, but due to the communication
overhead between the incarnation, the CPU ratio in practice is lower than the number
of cores. This means SplitterGluLA is wasting almost 2 out of 8 cores. CPU ratio
for Plingeling is 6.38 which is slightly better than SplitterGluLA. PeneLoPE has the
best CPU ratio, i.e. 6.90. SplitterGluLA follows object oriented approach (with
virtual functions) in implementation, and since SplitterGluLA is based on iterative
partitioning, which has a chance of having some cores idle (cores are waiting for the
creation of new partitions). Another reason for low CPU ratio of SplitterGluLA
and high CPU ratio of PeneLoPe is the time limit on preprocessing phase. There
are few instances in the Ins that SatELite takes more than 1000 sec to preprocess
them, it means that only one core is utilized till preprocessing is done. Splitter-
GluLA uses SatELite without any time limit on the preprocessing phase, while
PeneLoPe uses SatELite with a time limit of 300 sec (PeneLoPe kills SatELite
if the time limit exceeds and continues solving the instance without preprocessing).
This motivates to use preprocessor that can provide the CNF formula within certain
time limit. These might be the reasons of low CPU ratio, but still we will look into
the implementation of SplitterGluLA to improve the CPU ratio.

55
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Figure 27: Cactus Plot - Improvements of this work

These result show that SplitterGluLA can compete with the current portfolio
solvers, and encourage to further research iterative partitioning approach.

6.5. Improvements of this work
We show the progress of this work in Figure 27: a cactus plot of two configurations
Start and Finish. Start uses SplitterLA (starting point of this work) and Finish
uses SplitterGluLA (finish point of this work). It is clear from the figure that we
have brought huge improvements in this work, as Finish is able to solves 136 instances
more than Start. Also Finish has a better median solving time of 175.10 sec than
Start with median solving time of 362.14 sec.
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7. Conclusion

7. Conclusion
The outcome of this work is a solver called SplitterGluLA, which is a search space
partitioning SAT solver based on iterative partitioning approach. SplitterGluLA is
a huge step forward w.r.t. the previous work SplitterLA [Irf12]. We have shown that
SplitterGluLA is comparable in performance with competitive parallel SAT solvers,
like Plingeling (winner of SAT competition 2011 -parallel track) and PeneLoPe
(runner-up of SAT challenge 2012 -parallel track). Based on par10 measure, we have
also shown that SplitterGluLA seems to scale slightly better than the best known
scalable portfolio solver, PeneLoPe. The improvements of this work are:

• removing limits on the solving time in iterative partitioning, as we have shown
that the limit degrades the overall performance of the solver,

• using state-of-the-art sequential SAT solver Glucose as the solver underlying
the parallel solver,

• creating partitions with lookahead [Irf12] faster, by reducing dramatically the
partition creation time, we decrease the chance of starvation in the solver (sce-
nario when cores are idle and waiting for new partitions to be created),

• applying the techniques of diversification and intensification in the solver, by
taking some ideas from the state-of-the-art portfolio SAT solvers.

For future work, we believe that exploring the only child scenario (see page 45)
could bring encouraging results, e.g. the idea of simulating portfolio in iterative
partitioning seems interesting, as the clauses from the only unsolved child can be
shared with its parent without any restriction. We have seen that the performance of
SplitterGluLA decreases with the sharing of top level units among the partition
node, but this sharing shows good results in Plingeling. Investigating why is the
case could also be a possible future work direction. We have applied preprocessing
to the given CNF formula once before the solver start search; we think that applying
fast preprocessing on each node in the partition tree (created by iterative partitioning)
would further improve the performance of the solver.

Moreover, PeneLoPe uses a new freeze-unfreeze [AHJ+12] method to manage
the learnt clauses in each incarnation; adding this method to the solver, that solves
partitions in SplitterGluLA, could bring further improvements.
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