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Abstract—Model checking invariant properties of designs,
represented as transition systems, with non-linear real arithmetic
(NRA) is an important though very hard problem. On the one
hand NRA is a hard-to-solve theory; on the other hand most of
the powerful model checking techniques lack support for NRA.
In this paper, we present a work-in-progress counterexample-
guided abstraction refinement (CEGAR) approach that leverages
linearization techniques from differential calculus to enable the
use of mature and efficient model checking algorithms for
transition systems on linear real arithmetic (LRA).

I. INTRODUCTION

Typical real-world industrial designs, for instance from
the aerospace and automotive domains, often involve non-
linear dynamics. Due to the safety-critical nature, their formal
verification is of great importance. A prominent method is
to model them as transition systems on non-linear arithmetic
(NRA) and prove properties by applying model checking
techniques. Unlike transition systems on linear real arithmetic
(LRA), proving properties of the transition systems on NRA
has received much less attention. In this paper, we focus on
proving invariant properties of such systems that involve non-
linear polynomial constraints.

Usual approaches for proving invariant properties of tran-
sition systems on NRA handle non-linearity at the SMT-level
– by using a non-linear SMT solver like Z3 [1], nlSAT [2],
CVC4 [3], Yices [4], SMT-RAT [5]. We argue such techniques
are not mature, most of them extend the ideas of BMC and
k-induction, whereas exploring more powerful and efficient
proving techniques is an active research area.

Consider the following simple transition system: in the
initial state we have x ≥ 2 ∧ y ≥ 2 ∧ z = x ∗ y and in the
transition relation we have x′ = x+1∧y′ = y+1∧z′ = x′∗y′.
Suppose that we are interested in checking the property: “it
is always the case that z ≥ x + y”. Notice that the property
is not k-inductive, not even for a very large value of k. Thus
the typical proving techniques that are based on k-induction
algorithm [6], [7] using non-linear SMT solver, will not be able
to prove this property. The more powerful techniques [8], [9]
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require some extra functionalities like interpolants, quantifier
elimination from the non-linear SMT solver. These extra
functionalities are usually not available or they have a very
high computational cost. Note that the more efficient non-
linear SMT solvers like iSAT [10], dreal [11] that based on
the delta-complete [12] idea, will also fail. The reason for
their failure is that these solvers require that upper and lower
bounds for each real variable are given, which is not the case
in this example.

In contrast to the usual approaches, we propose to han-
dle non-linearity at the model checking level, by using lin-
earization techniques from differential calculus. Our ideas are
motivated by the fact that NRA is a hard-to-solve theory,
and for proving properties of a transition system on NRA
may not require full power of non-linear solving. One such
case is when there exists a piecewise linear invariant of the
transition system that is strong enough to prove the property.
Another case is when a system is “mostly-linear” and non-
linear constraints are very small part of the system, for instance
the simulink model of the Transport Class Model (TCM) for
aircraft simulation [13] has this characteristic.

We are working on a CEGAR-based idea: by using un-
interpreted functions to abstract the multiplication and the
tangent planes to refine the abstraction. We intend to exploit
the powerful techniques for transition systems on linear real
arithmetic (LRA) and equality with uninterpreted functions
(EUF) to model check the abstract system.

The paper is structured as follows: Sec. II gives a brief
background about the ideas of differential calculus, transition
systems, and CEGAR framework. In Sec. III we present the
key ideas of our work. Sec. IV and Sec. V briefly discuss some
interesting strategies and examples. We mention some related
works in Sec. VI and we conclude in Sec. VII.

II. BACKGROUND

We assume the standard first-order quantifier-free logical
setting and standard notions of theory, satisfiability, and logical
consequence. In the rest of the section we introduce some
notions that will facilitate in understanding this work.



(a) x ∗ y (b) x ∗ y (top view) (c) x ∗ y and tangent plane (d) x ∗ y and tangent plane (top
view)

Fig. 1. Plots – Multiplication and Tangent Plane.

A. Calculus Notions

We review some of the basic calculus notions. In the
following we adopt the following notation. Given a function
f(x1, ..., xn) : R× ...×R 7→ R, we denote with fxi

.
= d

dxi
f

the first-order partial derivative of f w.r.t. variable xi.
A Tangent Line to a uni-variate function f(x) at a point of

interest x = a is a straight line that “just touches” the function
at the point, and represents the instantaneous rate of change
of the function f at that one point. One particular use of the
tangent lines is to get linear approximation of a given function.

The tangent line Tf(x)(a) to f(x) at point x = a is the
straight line in (1).

Tf(x)(a)
.
= f(a) + fx(a) ∗ (x− a) (1)

The Secant Line to a uni-variate function f(x) is a straight
line that connects two points on the function plot. The equation
for the secant line Sf(x)(a1, a2) to a function f(x) between
points x = a1 and x = a2 is represented by (2)

Sf(x)(a1, a2)
.
= mf(x)(a1, a2)(x− a1) + f(a1) (2)

where mf(x)(a1, a2)
.
= f(a1)−f(a2)

a1−a2
is the slope of f between

the two point a1 and a2.
The Tangent Plane to a two-variable function f(x, y),

essentially a surface, at a point of interest (a, b) is a plane that
“just touches” the surface at the point. Similar to the tangent
lines, the tangent planes can be used to linearly approximate
the surface at the point of interest. We use first-order partial
derivatives to calculate the tangent plane Tf(x,y)(a, b) to
function f(x, y) at point (a, b).

Tf(x,y)(a, b)
.
= f(a, b) + fx(a, b) ∗ (x− a)

+ fy(a, b) ∗ (y − b)
(3)

In this work, we are interested in abstracting the multipli-
cation function between two real variables (this will become
clear in Sec. III). Geometrically the surface generated by the
multiplication function f(x, y)

.
= x ∗ y is shown in Fig. 1a

and Fig. 1b. This kind of surface is known in geometry as
Hyperbolic Paraboloid. An Hyperbolic Paraboloid surface is
a doubly-ruled surface, i.e. for every point on the surface, there
are two distinct straight lines that lie on the surface such that

they pass through the point. Moreover these two lines are also
in the tangent plane of the surface at the point, and they define
how the plane cuts the surface. Fig. 1c and Fig. 1d show the
multiplication surface with tangent plane in a 3-dimension plot
and 2-dimension top view, respectively. Using (3), the tangent
plane of multiplication x ∗ y at point (a, b) is:

Tmulx,y(a, b)
.
= b ∗ x+ a ∗ y − a ∗ b (4)

B. Symbolic Transition System

A symbolic transition system S is a tuple S = 〈X, I, T 〉
where X is a finite set of state variables, a state si of S is
an assignment to the variables X , I(X) is a formula whose
assignments represent the set of initial states, and T (X,X ′) is
a formula whose assignments represent the transitions (we use
X ′ to denote the set of next state variables). A path (execution
trace) π = s0, s1, s2, . . . for S is such that s0 |= I(X0) and
si∧si+1 |= T (Xi, Xi+1) for all i ≥ 0, where X0, Xi and Xi+1

are renamings of the variables representing the state variables
at time 0, i and i+ 1, respectively.

Let P (X) be a formula whose assignments represent a
property (good states) over the state variables X . The model
checking problem S |= GP is the problem of deciding that
for all the paths π = s0, s1, . . . of S, the following holds:
∀i, 0 ≤ i, si |= P . The dual is the reachability problem, which
is to check whether bad states (¬P (X)) are reachable in S ,
i.e., there exists a path π = s0, s1, . . . , sk of S such that
sk |= ¬P (X) and si |= P (X) for 0 ≤ i < k.

There are several algorithms to solve the model check-
ing problem. We have bounded model checking technique
(BMC) [14] (useful for disproving properties), and to
prove properties we can leverage on k-induction [6], on
interpolation-based [8], or on IC3 with implicit abstraction [9]
techniques. These last techniques can either prove the property
holds, or generate a counterexample. We briefly summarize
here the incremental formulation of the BMC technique, since
we will be using it later. The incremental BMC technique
checks if the transition system violates a property P or not in
exactly k steps, by checking the satisfiability of the following
formula:



CEGAR(I, T, P ) :
[ Î , T̂ , P̂ ] := I n i t i a l A b s t r a c t i o n (I, T, P ) ;
whi le True :

[ r e s u l t , π̂k ] := ModelCheck ( Î , T̂ , P̂ ) ;
i f r e s u l t = SAFE :

re turn SAFE ;
i f r e s u l t = UNSAFE:

[ r e s ,πk ] := C h e c k S p u r i o u s n e s s ( Î , T̂ , P̂ , π̂k ) ;
i f r e s = SPURIOUS :

[ Î , T̂ , P̂ ] := R e f i n e ( Î , T̂ , P̂ , π̂k ) ;
e l s e

re turn [UNSAFE, πk ] ;

Fig. 2. CEGAR Procedure

BMCk(I, T, P )
.
= (5)

I(X0) ∧
k−1∧
i=0

(T (Xi, Xi+1) ∧ P (Xi)) ∧¬P (Xk)

where Xi for 0 ≤ i ≤ k are renamings of the variables
representing the state variables at time i. If the property is
violated, then the above formula will be satisfiable, and we
will have a counterexample path πk such that:

πk |= BMCk(I, T, P ) (6)

If the formula is unsatisfiable, then there is no counterexample
path of length k, but there might be one for a length k + 1
and we check that by incrementing the value of k. We denote
with πk[ti] the interpretation of a term ti in BMCk(I, T, P )
on the counterexample (path) πk.

C. The CEGAR Framework

Counterexample guided abstraction refinement
(CEGAR) [15], in the context of model checking, is an
iterative framework consisting of three main phases: initial
abstraction, model checking, and refinement. Fig. 2 shows
the generic procedure of the CEGAR framework.

Typically the CEGAR loop starts with a very coarse ini-
tial abstraction (InitialAbstraction) of the system and applies
some model checking procedure (ModelCheck) on the abstract
system. If the result of model checking procedure says that
the property holds in the abstract system, then it also holds
in the concrete system and we return SAFE. If the property
fails in the abstract system, then one has to check whether
the abstract counterexample π̂k can be concretized into a
concrete counterexample πk or not (CheckSpuriousness). If
there exists a concrete counterexample πk refinement of π̂k,
then the property P is violated in the original transition
system and we can return UNSAFE and the computed concrete
counterexample. Otherwise, the abstract counterexample π̂k
is spurious. The spurious counterexample is used to refine
the abstract transition system (Refine) in such a way that
the counterexample π̂k does not hold anymore in the abstract
transition system.

III. CEGAR FOR NRA

To simplify the presentation we assume the transition sys-
tem contains only non-linear multiplication constraints (with
no division), and we assume the multiplication terms occurs
only between two variables. This is not a limitation, indeed,
it is possible to normalize any transition system [Î , T̂ , P̂ ] to
fulfill these constraint by using the following normalization
rules, until no more rewriting is possible.

1) Non-linear division as multiplication in a formula. This
can be done by replacing the term of form x

y by a fresh
variable z and conjoining the constraint y 6= 0 → x =
y ∗ z to the formula.

2) Non-linear multiplication occurs between two variables
in a formula. This can be done by introducing fresh
variables to convert a multiplication expression with
generic term into a multiplication expression with only
two variables, e.g. fmul(ti, tj) can be rewritten as
fmul(u, v) where u, v are fresh variables and u =
ti ∧ v = tj is conjoined to the formula.

In what follows we describe the different phases of the pro-
posed CEGAR loop for the verification of transition systems
with NRA constraints.

A. Initial Abstraction

The initial abstraction [Î , T̂ , P̂ ] is obtained by replacing
each multiplication expressions x ∗ y with a fresh uninter-
preted function expression fmul(x, y) in [I, T, P ]. For each
term fmul(x, y) occurring in [Î , T̂ , P̂ ], we also conjoin the
equality constraint fmul(x, y) = fmul(y, x) to Î , or T̂ or P̂ ,
depending on where fmul(x, y) appears.

We define the set of the fmul() arguments as:

FmulArgs(Î , T̂ , P̂ )
.
=

{(x, y) | fmul(x, y) appear in Î or in T̂ or in P̂}
(7)

B. Model Checking

For the model checking we rely on any of the SMT-
based model checking procedures for the theories of linear
real arithmetic (LRA) and uninterpreted functions (UF), e.g.
k-induction [6], interpolation-based [8], IC3 with implicit
abstraction [9]. These techniques can either prove that the
property holds, or generate a counterexample.

C. Counterexample Checking and Refinement

The counterexample checking and refinement phase per-
forms two kinds of actions: the monotonicity and the multipli-
cation check&refinement. Both produce a tuple of refinement
formulas [Îref , T̂ref ] – initial and transition respectively. These
refinement formulas are conjoined to the abstraction.

Suppose that we have an abstract counterexample π̂k of
length k. We know from (6) that π̂k |= BMCk(Î , T̂ , P̂ ).
Then the counterexample is spurious if the monotonicity
spuriousness or the multiplication spuriousness checks return
true.



The monotonicity spuriousness check returns true if there
exists at least two terms fmul(xi, yj) and fmul(ul, vm) in
BMCk(Î , T̂ , P̂ ) such that∣∣π̂k[xi]∣∣ ≤ ∣∣π̂k[ul]∣∣ ∧ ∣∣π̂k[yj ]∣∣ ≤ ∣∣π̂k[vm]

∣∣ ∧∣∣π̂k[fmul(xi, yj)]∣∣ > ∣∣π̂k[fmul(ul, vm)]
∣∣ .

If this is the case, we call the pair
(fmul(xi, yj), fmul(ul, vm)) a monotonicity conflict.

The multiplication spuriousness check returns true if there
exists at least one term fmul(xi, yj) in BMCk(Î , T̂ , P̂ ) such
that

π̂k[fmul(xi, yj)] 6= π̂k[xi] ∗ π̂k[xj ].

If this is the case, then we call fmul(xi, yj) a multiplication
conflict.

Let FmonoConfSet(Î , T̂ , P̂ , π̂k) be the set of mono-
tonicity conflicts. The monotonicity refinement will return
the tuple [Îref , T̂ref ] that basically contains the multi-
plication monotonicity lemmas produced for a subset of
FmonoConfSet(Î , T̂ , P̂ , π̂k). Given a monotonicity conflict
(fmul(xi, yj), fmul(ul, vm)), and the spurious counterexam-
ple π̂k, where (xi, yj) and (ul, vm) are essentially BMC re-
naming of (x, y) and (u, v) from the set FmulArgs(Î , T̂ , P̂ ),
then the monotonicity lemma is given by:

(abs(x) ≤ abs(u) ∧ abs(y) ≤ abs(v))
→ abs(fmul(x, y)) ≤ abs(fmul(u, v))

(8)

where abs() function is a shorthand for encoding the absolute
value of a term, i.e. abs(t) .= IfThenElse(t ≥ 0, t,−t). The
monotonicity lemma is basically stating a weaker form of the
property that the absolute multiplication is monotonic. The
monotonicity lemma is part of Îref , if i = j = l = m = 0,
otherwise it is part of T̂ref .

Let FmulConfSet(Î , T̂ , P̂ , π̂k) be the set of multiplication
conflicts. Then the multiplication refinement will use a subset
of FmulConfSet(Î , T̂ , P̂ , π̂k) to compute tangents lemmas
for producing [Îref , T̂ref ], such that the spurious counterex-
ample will not hold in the refined abstract system. Given
a multiplication conflict fmul(xi, yj), essentially (xi, yj) is
a BMC renaming of (x, y) ∈ FmulArgs(Î , T̂ , P̂ ), and the
spurious counterexample π̂k, then the tangent lemma is:

((x ≥ a ∧ y ≤ b)→ fmul(x, y) ≤ Tmulx,y(a, b))∧
((x ≤ a ∧ y ≥ b)→ fmul(x, y) ≤ Tmulx,y(a, b))∧
((x ≤ a ∧ y ≤ b)→ fmul(x, y) ≥ Tmulx,y(a, b))∧
((x ≥ a ∧ y ≥ b)→ fmul(x, y) ≥ Tmulx,y(a, b))

(9)

where we can choose a and b as:

a := π̂k[xi] and b := π̂k[yj ] (10)

a :=
1

π̂k[fmul(xi, yj)]
and b := π̂k[yj ] (11)

a := π̂k[xi] and b :=
1

π̂k[fmul(xi, yj)]
(12)

The tangent lemma is part of Îref , if i = j = 0, otherwise
it is part of T̂ref . The predicates in the tangent lemmas are

Fig. 3. Example where tangent lemmas are enough

Fig. 4. Example where tangent lemmas are not enough

extracted using the fact that the x ∗ y multiplication is a
hyperbolic paraboloid surface and a tangent plane to such
surface cuts the surface into four regions – in two of the
regions the tangent plane is above the surface whereas in the
other two regions the tangent plane is below the surface, as
shown in Fig. 1c and Fig. 1d. Note that the tangent lemma
is taking into account two among the possible three values
(shown in (10), (11), (12)). To get more or different tangent
lemmas, we can use all or different values pairs for calculating
the tangent lemma. Note that we can use (11) and (12) only
when π̂k[fmul(xi, yj)] 6= 0.

We have a special case for the tangent lemma when the
multiplication function has the same arguments (basically a
square function), e.g. fmul(x, x). In that case, the tangent
lemma for the multiplication conflict fmul(xi, xi), after sim-
plification becomes:

f(a, a) ≤ a2 ∧ f(x, x) ≥ Tmulx,x(a, a) (13)

where we get Tmulx,x(a, a)
.
= 2ax+a2 after simplifying (4).

We can get the same result by using tangent line for the uni-
variate square function – see (1).

Note that the tangent lemma for x ∗ y provides lower
bounds in two regions and upper bounds in other two regions.
Similarly the tangent lemma for x2 provides a generic lower



bound for the function, however the upper bound is point-
based. In certain cases, these partial bounds are not enough.
For instance, consider the following examples:
A) I := x2 + y2 ≤ 2 and T := x′ = x ∧ y′ = y and

P := −3 ≤ x ≤ 3 ∧ −3 ≤ y ≤ 3;
B) I := −1 ≤ x ≤ 1∧−1 ≤ y ≤ 1 and T := x′ = x∧y′ = y

and P := x2 + y2 ≤ 4.
In example A) we are able to prove the property using lower
bounds provided by the tangent planes. Fig. 3 shows the
reachable states inside the circle and the bad states as the outer
part of the square. Basically we are able to put a separation
between the circle and bad states using the lower bounds
provided by the tangent lemmas.

In example B) instead lower bounds provided by the tangent
lemmas are not enough to prove the property. Fig. 4 shows
the reachable states inside the square and the bad states as
the outer part of the circle. Actually we require upper bounds,
however the upper bounds by tangent lemmas are point-based
and we will require infinitely many point-based upper bounds
to prove the property.

Here we give an idea how to solve this problem of upper
bounds in the case when we have square function: we can
lift the same idea (with some modifications) to the case of
x ∗ y multiplication function. Basically we use secant lines to
get better interval-based upper bounds. Using (2), we have the
following lemmas depending on the choice of c:
• when a ≤ c

(x ≥ a ∧ x ≤ c)→ fmul(x, x) ≤ Sx∗x(a, c) (14)

• when a > c

(x ≥ c ∧ x ≤ a)→ fmul(x, x) ≤ Sx∗x(a, c) (15)

where

a := π̂k[xi] (16)

c := ±
√
π̂k[fmul(xi, xi)] (17)

Fig. 5 shows a plot of the square function with tangent and
secant lines. Using these extra lemmas we are able to prove
the example B) as shown in Fig. 4. The idea of secant lines
can be lifted to some sort of secant planes to the surface of the
multiplication function x ∗ y. We are aware that it will not be
straight forward, since the cut generated by the (secant) plane
is likely to be non-linear, i.e. a curve which we can linearize
by using tangent line.

IV. STRATEGIES

We have seen in Sec. III, that the refinement phase performs
two different kind of refinements. Moreover, for each kind
there are different choices in terms of producing refinements.
These choices may contribute to the search strategy of the
CEGAR loop. In this paper, we are not going into the details
about how to combine the two refinements and what different
choices to make; rather, we provide some brief ideas.
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A. CEGAR Structure

We can think of having one CEGAR loop with different
priorities to the monotonicity refinement and the multiplication
refinement. Another possibility is to have a two-level nested
CEGAR loop where one level corresponds to the monotonicity
refinement and the other corresponds to the multiplication
refinement.

B. Eager vs Lazy Strategy

The eager strategy focuses on learning lemmas for all the
conflicts that are encountered during the refinement phase.
This basically means that we try to add monotonicity lemmas
and tangent lemmas for every conflict in the FmonoConfSet
and FmulConfSet sets. This also suggests to add all the
three tangent lemmas for the different choices of the pa-
rameters a and b in (9). The lazy strategy, instead, tries to
learn enough lemmas during the refinement phase, such that
the spurious counterexample will not hold in the abstract
system. This means that we add monotonicity lemmas and
tangent lemmas for a subset of the FmonoConfSet and
FmulConfSet sets. This approach has also to deal with the
choice of the parameters a and b in (9).

V. PROOF OF CONCEPT

As proof of concept, we manually simulated the CEGAR-
based approach discussed in this paper on the example pre-
sented in Sec. I and on some other paradigmatic examples. We
leverage on the nuXmv model checker [16] for performing the
ModelCheck step on the abstract model.

A. Example 1

This is the example presented in Sec. I.
Original Problem:
I := x ≥ 2 ∧ y ≥ 2 ∧ z = x ∗ y
T := x′ = x+ 1 ∧ y′ = y + 1 ∧ z′ = x′ ∗ y′
P := z ≥ x+ y
Initial Abstraction:
Î := x ≥ 2 ∧ y ≥ 2 ∧ z = fmul(x, y)



T̂ := x′ = x+ 1 ∧ y′ = y + 1 ∧ z′ = fmul(x′, y′)
P̂ := z ≥ x+ y
We model check and get the following abstraction counterex-
ample of length 1:

0: fmul(4, 2) = 5; fmul(0, 0) = 0;x = 4; y = 2; z = 5.

We notice that the abstract counterexample is spurious, since
4∗2 6= 5. Therefore we eagerly (as discussed in Sec. IV) refine
with the three tangent lemmas using (9), (10), (11), (12). We
model check again and this time we get the following abstract
counterexample of length 1:

0: fmul(2, 4) = 5; fmul(0, 0) = 0;x = 2; y = 4; z = 5.

This counterexample is also spurious as 2 ∗ 4 6= 5. We again
eagerly refine using the three tangent lemmas and model check
again. This time we are able to prove the property.

B. Example 2

Original Problem:
I := x ≥ 0 ∧ y ≥ 0 ∧ u > x ∧ v > y
T := x′ = x+ 1 ∧ y′ = y + 1 ∧ u′ = u+ 1 ∧ v′ = v + 1
P := x ∗ y ≤ u ∗ v
Initial Abstraction:
Î := x ≥ 0 ∧ y ≥ 0 ∧ u > x ∧ v > y
T̂ := x′ = x+ 1 ∧ y′ = y + 1 ∧ u′ = u+ 1 ∧ v′ = v + 1
P̂ := fmul(x, y) ≤ fmul(u, v)
We model check with the IC3 with implicit abstraction tech-
nique and we get a following abstraction counterexample of
length 1:

0: fmul( 52 ,
7
2 ) = −

3
2 ; fmul(2, 3) = −1; fmul(0, 0) = 0;

x = 2; y = 3;u = 5
2 ; v = 7

2 ;

We notice that the abstract counterexample is violating the
monontocity property and is spurious. Therefore we refine
the abstraction with the monotonicity lemma using (8). Model
checking the refined abstract system shows that the property
holds.

C. Example 3

This example is similar to the example presented in Sec. III
and shown in Fig. 3.
Original Problem:
I := x2 + y2 ≤ 1
T := x′ = x ∧ y′ = y
P := −10 ≤ x ≤ 10 ∧ −10 ≤ y ≤ 10;
Initial Abstraction:
Î := fmul(x, x) + fmul(y, y) ≤ 1
T̂ := x′ = x ∧ y′ = y
P̂ := −10 ≤ x ≤ 10 ∧ −10 ≤ y ≤ 10;
First model checking step gives the following abstract coun-
terexample of length 1:

0: fmul(−11,−11) = 13; fmul(−12,−12) = −13;
x = −12; y = −11

This counterexample is voilating monotonicity property. Thus
we do the monotonicity refinement. Model checking again
gives the following abstract counterexample of length 1:

0: fmul(−12,−12) = −2; fmul(−11,−11) = −1;
x = −12; y = −11

The counterexample is spurious since −12 ∗ −12 6= −2 and
−11 ∗ −11 6= −1. We perform the multiplication refinement
and check again. This time we get the following abstract
counterexample of length 1:

0: fmul(− 312
25 ,−

312
25 ) = 3888

25 ;

fmul(12, 12) = − 3863
25 ; fmul(0, 0) = 0;x = 12;

y = − 312
25

Again the counterexample is spurious since − 312
25 ∗ −

312
25 6=

3888
25 and 12∗12 6= − 3863

25 . We do the multiplication refinement
and model check again. Now we get the following abstract
counterexample of length 1:

0: fmul(11, 11) = 169
3 ; fmul( 13336 ,

133
36 ) = − 166

3 ;

fmul(0, 0) = 0;x = 133
36 ; y = 11

Once more the counterexample is spurious and we use the
multiplication tangent lemmas to do the refinement. Model
checking again shows that the property holds in the refined
system.

VI. RELATED WORKS

The closest to our approach is the polyhedral approximation
of polynomials [17] in the context of program analysis. How-
ever our approach is iterative, whereas the approach in [17]
is not – basically it tries to find a tight convex polyhedra
approximation in the beginning and then tries to prove the
property.

In [18], the authors use interpolation-based [8] approach to
prove invariant properties of transition systems on NRA, by
using interpolants produced by iSAT SMT solver which uses
the semantics of delta-complete satisfiability. Note that iSAT
is sound modulo some precision error and thus also are the
techniques that use iSAT.

Similar to our approach, [19] abstracts the multiplication
and the division functions using uninterpreted functions. How-
ever in their approach abstraction is not iterative and is
very coarse since it encodes some weak properties of the
multiplication like identity and sign. In contrast to [19] our
approach is based on CEGAR and it is refined on demand.

The idea of using tangent planes (spaces) for approximation
has also been used in [20], however in a different setting
as they use them to under-approximate predicates for SMT
solving. In contrast we use them to over-approximate the
multiplication function in a CEGAR-based approach to solve
model checking problem.

The idea of approximating an univariate function, in par-
ticular natural log ln, with the tangent lines has been also
used in [21]. Similar to that work we use the tangent lines to
approximate univariate function, however the difference is we



use them to approximate the square function. In addition to
the tangent lines we also use the secant lines for the square
function approximation. Moreover, in our work we use tangent
planes to approximate the multiplication function.

VII. CONCLUSION

We presented a promising CEGAR-based approach for
proving invariant properties of transition systems on NRA.
Our next step is to implement it in nuXmv [16] and perform a
thorough experimental evaluation on real-world benchmarks.
Our approach is driven towards proving properties and it
is incomplete. In the future we would like to work on the
completeness of the approach.
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