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Abstract. Model checking invariant properties of designs, represented as transi-
tion systems, with non-linear real arithmetic (NRA), is an important though very
hard problem. On the one hand NRA is a hard-to-solve theory; on the other hand
most of the powerful model checking techniques lack support for NRA. In this
paper, we present a counterexample-guided abstraction refinement (CEGAR) ap-
proach that leverages linearization techniques from differential calculus to enable
the use of mature and efficient model checking algorithms for transition systems
on linear real arithmetic (LRA) with uninterpreted functions (EUF). The results
of an empirical evaluation confirm the validity and potential of this approach.

1 Introduction

Invariant checking for infinite-state transition systems is a fundamental research area.
Based on the recent improvements of SMT technologies, effective approaches have
been developed for the case of transition systems with dynamics over Linear Real
Arithmetic [4, 9, 18, 21]. However, many real-world industrial designs (e.g. aerospace,
automotive) require modeling as transition systems over non-linear arithmetic (NRA).
Although both problems are undecidable, proving properties of the NRA transition sys-
tems turns out to be much harder than the linear case, and has in fact received much less
attention. Approaches based on BMC and k-induction [15,29] are possible, so that non-
linearity is handled at the SMT-level, by means of an SMT(NRA) solver (e.g. Z3 [13],
nlSAT [20], Yices [14], SMT-RAT [1]). Their power is however limited. Consider the
following simple transition system: initially, x ≥ 2 ∧ y ≥ 2 ∧ z = x ∗ y; the transition
relation is defined by x′ = x+1∧y′ = y+1∧z′ = x′∗y′. The property “it is always the
case that z ≥ x + y” is not k-inductive, not even for a very large value of k. Thus, the
typical proving techniques that are based on k-induction using an SMT(NRA) solver
will not be able to prove it. In principle, it is also possible to lift other approaches (e.g.
interpolation, IC3 [9, 26]) to handle non-linearities at the level of the solver. However,
this requires the SMT(NRA) solver to carry out interpolation or quantifier elimination,
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and to proceed incrementally. These extra functions are usually not available, or they
have a very high computational cost.

In this paper, we propose a completely different approach to tackle invariant check-
ing for NRA transition systems. Basically, we work with an abstract version of the tran-
sition system, expressed over LRA with EUF, for which we have effective verification
tools [9]. In the abstract space, nonlinear multiplication is modeled as an uninterpreted
function. When spurious counter-examples are found, the abstraction is tightened by the
incremental introduction of linear constraints, including tangent planes resulting from
differential calculus, and monotonicity constraints.

We implemented the approach on top of the NUXMV model checker [7], leveraging
the IC3 engine with Implicit Abstraction [9] for invariant checking of transition systems
over LRA with EUF. We compared it, on a wide set of benchmarks, against multiple
approaches working at NRA level, including BMC and k-induction using SMT(NRA),
the recent interpolation-based ISAT3 engine [24], and the static abstraction approach
proposed in [8]. The results demonstrate substantial superiority of our approach, that is
able to solve the highest number of benchmarks.

The effectiveness of our approach is possibly explained with the following insights.
On the one hand, in contrast to LRA, NRA is a hard-to-solve theory: in practice, most
available complete solvers rely on CAD techniques [12], which require double expo-
nential time in worst case. Thus, we try to avoid NRA reasoning, trading it for LRA
and EUF reasoning. On the other hand, proving properties of practical NRA transition
systems may not require the full power of non-linear solving. In fact, some systems
are “mostly-linear” (i.e. non-linear constraints are associated to a very small part of the
system), an example being the Transport Class Model (TCM) for aircraft simulation
from the Simulink model library [19]. Furthermore, even NRA transition systems with
significant non-linear dynamics may admit a piecewise-linear invariant of the transition
system that is strong enough to prove the property.

Structure. In Sec. 2 we discuss the related work, and in Sec. 3 introduce some back-
ground. In Sec. 4 we discuss the approach in the setting of SMT(NRA). In Sec. 5 we
present the verification algorithm for NRA transition systems. In Sec. 6 we describe the
results of the experimental evaluation. In Sec. 7 we conclude and outline the directions
for future research.

2 Related Work

There are not many tools that deal with NRA transition systems. The most relevant is
the recently proposed ISAT3 [28], that uses an interpolation-based [23,24] approach to
prove invariants. In addition to NRA, it also supports trascendental functions and some
form of differential equations. ISAT3 is built on an SMT solver based on numeric
techniques (interval arithmetic), and is able to provide results that are accurate up to
the specified precision. In fact, in addition to “safe” and “unsafe” answers, ISAT3 may
return “maybe unsafe” when it finds an envelope of given precision that may (but is
not guaranteed to) contain a counterexample. Another relevant tool is DREACH [22],
a bounded model checker implemented on top of the DREAL [16] SMT solver, that



(a) x ∗ y (b) x ∗ y (top
view)

(c) x ∗ y and tangent
plane

(d) x ∗ y and tan-
gent plane (top
view)

Fig. 1. Multiplication function and tangent plane.

adopts numerical techniques similar to ISAT3. DREACH has an expressiveness similar
to ISAT3, but being a bounded model checker it is unable to prove properties.

The work in [8] follows a reduction-based approach to check invariants of NRA
transition systems. It over-approximates the non-linear terms with a coarse abstraction,
encoding into LRA some weak properties of multiplication like identity and sign. An-
other reduction-based approach is presented in [25] in the context of program analysis.
The idea is to find a (tighter) convex approximation of polynomials in form of polyhe-
dra, thus obtaining a conservative linear transition system. The key differences of our
approach with respect to [8, 25] are that we iteratively refine the abstraction, and we
adopt a reduction to LRA+EUF. Furthermore, to the best of our knowledge, there is no
available implementation of the approach [25] in a program analysis tool – it has been
only shown to work on SMT problems.

The idea of approximating a univariate function (in particular the natural logarithm
ln) with tangent lines is used in [30]. Here we abstract a bivariate function (multiplica-
tion), and use tangent planes for the refinement. We also exploit other properties (e.g.
monotonicity) to derive additional axioms. The idea of using tangent planes (spaces)
has been explored in [27], limited to the case of SMT solving. Another key differences
is that the tangent planes area used to under-approximate predicates, while we use them
to refine the over-approximation of the multiplication function.

3 Background

Properties of the Multiplication Function. Geometrically, the surface generated by
the multiplication function f(x, y) def

= x ∗ y is shown in Fig. 1a and 1b. This kind of
surface is known in geometry as hyperbolic paraboloid. A hyperbolic paraboloid is a
doubly-ruled surface, i.e. for every point on the surface, there are two distinct lines
projected from the surface such that they pass through the point. In case of the multipli-
cation surface, the projected lines basically lie on the surface.

Tangent Plane. The tangent plane to a surface at a point of interest (a, b) is a plane
that “just touches” the surface at the point. The tangent planes can be used to linearly
approximate the surface at the point of interest. An important property of the tangent
plane to a hyperbolic paraboliod is that the two projected lines from the surface are also



in the tangent plane, and they define how the plane cuts the surface (see Fig. 1c and 1d).
The tangent plane Tmula,b(x, y) to the multiplication function f(x, y) at point (a, b)
is calculated as follows:

Tmula,b(x, y)
def
= f(a, b) +

d

dx
f(x, y)|(a,b)

∗ (x− a) + d

dy
f(x, y)|(a,b)

∗ (y − b)

where d
dxf(x, y)|(a,b)

and d
dyf(x, y)|(a,b)

are the first-order partial derivatives of f(x, y)
w.r.t. x and y respectively, evaluated at (a, b). Tmula,b(x, y) simplifies to:

Tmula,b(x, y)
def
= b ∗ x+ a ∗ y − a ∗ b (1)

Logic and Satisfiability. We assume the standard first-order quantifier-free logical
setting and standard notions of theory, model, satisfiability, and logical consequence. If
ϕ is a formula, we denote with vars(ϕ) the set of its variables, and with atoms(ϕ) the set
of its atoms. We write ϕ(X) to denote that vars(ϕ) ⊆ X . If x and y are two variables,
we denote with ϕ{x 7→ y} the formula obtained by replacing all the occurrences of x in
ϕ with y. We extend this notation to ordered sequences of variables in the natural way.
If µ is a model and x is a variable, we write µ[x] to denote the value of x in µ, and we
extend this notation to terms in the usual way. If X is a set of variables, we denote with
X ′ the set obtained by replacing each element x ∈ X with x′, and with X〈i〉 the set
obtained by replacing x with x〈i〉. If Γ is a set of formulas, we write

∧
Γ to denote the

formula obtained by taking the conjunction of all its elements. If
∧
Γ is unsatisfiable

(modulo some theory T ), an unsatisfiable core is a set C ⊆ Γ such that
∧
C is still

unsatisfiable.

Symbolic Transition Systems. A symbolic transition system S def
= 〈X, I, T 〉 is a tuple

where X is a finite set of (state) variables, I(X) is a formula denoting the initial states
of the system, and T (X,X ′) is a formula expressing its transition relation. A state si of
S is an assignment to the variablesX . A path (execution trace) π = s0, s1, s2, . . . , sk−1
of length k (possibly infinite) for S is a sequence of states such that s0 |= I and si ∧
si+1{X 7→ X ′} |= T for all 0 ≤ i < k − 2. We call an unrolling of S of length k the
formula I{X 7→ X〈0〉} ∧

∧k−1
i=0 T{X 7→ X〈i〉}{X ′ 7→ X〈i+1〉}.

Let P (X) be a formula whose assignments represent a property (good states) over
the state variables X . The invariant verification problem, denoted with S |= P , is the
problem of checking if for all the finite paths s0, s1, . . . , sk of S, for all i, 0 ≤ i ≤ k,
si |= P . Its dual formulation in terms of reachability of ¬P is the problem of finding a
path s0, s1, . . . , sk of S such that sk |= ¬P . P represents the “good” states, while ¬P
represents the “bad” states.

4 Solving SMT(NRA) via SMT(LRA+EUF)

Top-level Algorithm. The main idea of this paper is that of solving an SMT formula
containing non-linear polynomial constraints (i.e., expressed in the NRA theory) by
overapproximating it with a formula over the combined theory of linear arithmetic and



bool SMT-NRA-check-abstract (ϕ):
1. ϕ̂ = initial-abstraction(ϕ)
2. res, data = SMT-NRA-check-abstract-ext(ϕ̂)
3. return res

〈bool, axiom set or model〉 SMT-NRA-check-abstract-ext (ϕ̂):
4. Γ = ∅
5. while true:
6. if budget-exhausted(): abort
7. res, µ̂ = SMT-LRA+EUF-check(ϕ̂ ∧

∧
Γ )

8. if not res: return false, Γ
9. ok, µ = get-NRA-model(ϕ̂, µ̂)
10. if ok: return true, µ
11. else: Γ = Γ ∪ refine(µ̂)

Fig. 2. Solving SMT(NRA) via abstraction to SMT(LRA+EUF).

uninterpreted functions (LRA+EUF). Our main SMT solving procedure follows a clas-
sic abstraction refinement loop, in which at each iteration the current overapproximation
of the input SMT formula is refined by adding new constraints that rule out one (or pos-
sibly more) spurious solutions, until one of the following occurs: (i) the SMT formula
becomes unsatisfiable in the LRA+EUF theory; or (ii) the LRA+EUF model for the cur-
rent overapproximation can be lifted to an NRA model for the original SMT formula;
or (iii) the resource budget (e.g. time, memory, number of iterations) is exhausted.

The pseudocode for the top-level algorithm is shown in Fig. 2. We provide more
details about its main components in the rest of this section.

Initial Abstraction. The function initial-abstraction takes as input an SMT(NRA) for-
mula ϕ and returns an overapproximation ϕ̂ of it in the LRA+EUF theory.

First, each multiplication expression x ∗ y between two variables3 occurring in ϕ is
replaced by fmul(x, y), where fmul() is a binary uninterpreted function returning a
real. We remark that this happens only for non-linear multiplications: expressions like
c ∗ x or x ∗ c in which c is a constant are not rewritten.

Then, some simple axioms about multiplication are added to ϕ̂ via static learning.
For each fmul(x, y) ∈ ϕ̂, we add the following axioms:

Commutativity: fmul(x, y) = fmul(y, x)

Sign: fmul(x, y) = fmul(−x,−y) ∧ fmul(x, y) = −fmul(−x, y) ∧
fmul(x, y) = −fmul(x,−y)

Zero: ((x = 0 ∨ y = 0)↔ fmul(x, y) = 0) ∧
(((x > 0 ∧ y > 0) ∨ (x < 0 ∧ y < 0))→ fmul(x, y) > 0) ∧
(((x < 0 ∧ y > 0) ∨ (x < 0 ∧ y > 0))→ fmul(x, y) < 0)

3 To simplify the presentation, we assume (here and in the rest of the paper) that all multiplica-
tions in ϕ are either between two variables or between one constant and one variable.



Abstraction Refinement. If the SMT check on the LRA+EUF abstraction returns false
(line 7 of Fig. 2), we can conclude that the input formula is unsatisfiable. In this case,
Γ contains all the lemmas (discussed later in this section) that were added in the earlier
refinements (line 11 of Fig. 2).

Otherwise, we have to check whether the model µ̂ found for ϕ̂ is also a model for the
original NRA formula ϕ. Let Fmuls be the set of all fmul(x, y) terms occurring in ϕ̂.
In its simplest version, the function get-NRA-model checks whether, for all fmul(x, y)
in Fmuls, µ̂[fmul(x, y)] = µ̂[x] ∗ µ̂[y]. If this is the case, then µ̂ is also a model for
the original formula, and get-NRA-model returns true. (We present more sophisticated
versions of get-NRA-model below.) Otherwise, letCFmuls be the set of all fmul(x, y)
terms whose value in µ̂ is different from µ̂[x] ∗ µ̂[y]. The function refine generates a set
of axioms Γ ′ such that there exists at least one element fmul(x, y) of CFmuls such
that the formula ϕ̂ ∧

∧
Γ ′ has no model µ̂′ that agrees with µ̂ on the values of x, y

and fmul(x, y) (i.e. such that µ̂′[fmul(x, y)] = µ̂[fmul(x, y)], µ̂′[x] = µ̂[x] and
µ̂′[y] = µ̂[y]). Intuitively, the axioms Γ ′ block the bad model values for fmul(x, y),
making the abstraction more precise by restricting the set of spurious solutions.

In our current implementation, two kinds of lemmas are generated during refine-
ment: tangent lemmas and monotonicity lemmas.

Tangent Lemmas. We use the model values µ̂[fmul(x, y)], µ̂[x] and µ̂[y] and (1) to
generate tangent plane lemmas for fmul(x, y):

fmul(a, y) = a ∗ y ∧ fmul(x, b) = b ∗ x ∧
(((x > a ∧ y < b) ∨ (x < a ∧ y > b))→ fmul(x, y) < Tmula,b(x, y)) ∧
(((x < a ∧ y < b) ∨ (x > a ∧ y > b))→ fmul(x, y) > Tmula,b(x, y))

(2)

where we can choose a and b as:

a
def
= µ̂[x] and b def

= µ̂[y] (3)

a
def
=

1

µ̂[fmul(x, y)]
and b def

= µ̂[y] (4)

a
def
= µ̂[x] and b def

=
1

µ̂[fmul(x, y)]
. (5)

Basically the equalities in the tangent lemma are providing multiplication lines that en-
force the correct value of fmul(x, y) when x = a or y = b. Moreover, the inequalities
of the tangent lemma are providing bounds for fmul(x, y) when x and y are not on the
multiplication lines.

Monotonicity Lemmas. Let fmul(x, y) and fmul(w, z) be two terms in ϕ̂, such that∣∣µ̂[x]∣∣ ≤ ∣∣µ̂[w]∣∣,∣∣µ̂[y]∣∣ ≤ ∣∣µ̂[z]∣∣, and
∣∣µ̂[fmul(x, y)]∣∣ > ∣∣µ̂[fmul(w, z)]∣∣. Then, we add

the monotonicity lemma

(abs(x) ≤ abs(w)∧abs(y) ≤ abs(z))→ abs(fmul(x, y)) ≤ abs(fmul(w, z)), (6)

where abs(t) stands for ite(t < 0,−t, t).



〈bool, model〉 get-NRA-model (ϕ̂, µ̂):
1. ψ̂ = get-assignment(µ̂) # truth assignment induced by µ̂ on the atoms of ϕ̂
2. ψ = concretize(ψ̂) # replace each fmul(x, y) in ψ̂ with x ∗ y
3. return SMT-NRA-check (ψ) # check with a complete NRA solver

Fig. 3. A complete procedure using an NRA solver.

〈bool, model〉 get-NRA-model (ϕ̂, µ̂):
1. ψ̂ = get-assignment(µ̂) # truth assignment induced by µ̂ on the atoms of ϕ̂
2. ψ̂∗ = ψ̂ ∧ linearization-axioms(ψ̂) # add multiplication-line axioms to ψ̂
3. return SMT-LRA+EUF-check (ψ̂∗)

Fig. 4. An incomplete procedure using an SMT(LRA+EUF) solver.

Finding Models. It is easy to see that our algorithm is expected to perform much
better for unsatisfiable instances than for satisfiable ones. The algorithm can return true
(meaning that the formula is satisfiable) only if the LRA+EUF solver “guesses” a model
that is consistent with all the nonlinear multiplications. In an infinite and dense domain
like the reals, the chances that this will happen are close to zero in general.

Moreover, our approach is inherently limited, because it can only find models over
the rationals. If the input formula is satisfiable, but all its models contain some irrational
values, then our algorithm will always abort (or never terminate, if there is no resource
budget set). In practice, it is very likely that the same will happen even for formulas
admitting a rational solution.

One possibility for addressing this limitation would be to couple our procedure
with a complete solver for NRA, to be used for detecting satisfiable cases, in order to
implement a more effective version of get-NRA-model. One such possibility is shown
in Fig. 3, where we extract the truth assignment ψ̂ induced by the LRA+EUF model µ̂
on the atoms of ϕ̂:

ψ̂
def
=

∧
[âi∈atoms(ϕ̂) s.t.µ̂|=âi]

âi ∧
∧

[âi∈atoms(ϕ̂) s.t.µ̂ 6|=âi]

¬âi, (7)

We concretize it by replacing each fmul(x, y) in ψ̂ with x∗y, and invoke the complete
NRA theory solver on the resulting conjunction of NRA-literals ψ, to check whether it
contains at least one solution. Although in general the problem is expected to be simpler
than the original input formula because the Boolean structure of ϕ is disregarded, invok-
ing a complete NRA theory solver at each loop iteration of SMT-NRA-check-abstract-ext
could be very expensive. Moreover, this would still require a complete NRA theory
solver, which might not always be available.

As an alternative, we propose the procedure outlined in Fig. 4, where we extract
the truth assignment ψ̂ induced by the LRA+EUF model µ̂ on the atoms of ϕ̂, and we
conjoin to it the multiplication lines:

ψ̂∗ = ψ̂ ∧
∧

fmul(x,y)∈Fmuls

(
( x = µ̂[x] ∧ fmul(x, y) = µ̂[x] ∗ y ) ∨
( y = µ̂[y] ∧ fmul(x, y) = µ̂[y] ∗ x )

)
, (8)



Fmuls being the usual set of all fmul(x, y) terms occurring in ϕ̂.
The main idea is to build an LRA+EUF underapproximation ψ̂∗ of the NRA formula

ψ of Fig. 3, in which all multiplications are forced to be linear. Compared to the previous
solution, this has the advantage of requiring a complete SMT(LRA+EUF) solver rather
than a (much more expensive) complete NRA solver. Moreover, given the simplicity of
the Boolean structure of the underapproximated formula, the check should in general
be very cheap. The drawback is that this is (clearly) still an incomplete procedure.
However, in our experiments (for which we refer to Sec. 6) we have found it to be
surprisingly effective for many problems.

Unlike with the basic implementation of get-NRA-model which considers only one
single candidate model at a time, the implementations in Fig.3 and Fig. 4 consider an
infinite amount of them, drastically increasing the chances of finding a model.

Correctness and progress. We notice that the procedure in Fig. 2 is correct. In fact,
it returns false only if ϕ is NRA-unsatisfiable because by construction ϕ̂ is an over-
approximation of ϕ, and all axioms in Γ are valid in any theory interpreting fmul(x, y)
as x ∗ y. Also, it returns true only if ϕ is NRA-satisfiable:

– if get-NRA-model is based only on evaluation, then by construction µ is an
LRA+EUF-model for ϕ̂ s.t. each fmul(x, y) equals x ∗ y in µ, so that µ is also
a model for ϕ;

– if get-NRA-model is as in Fig. 3, then µ is an NRA-model of a conjunction of literals
ψ which tautologically entails ϕ, so that µ is a model for ϕ;

– if get-NRA-model is as in Fig. 4, then µ is an LRA+EUF-model of a conjunction of
literals ψ̂∗ which tautologically entails ϕ̂ and it is s.t. each fmul(x, y) equals x ∗ y
in µ, so that µ is a also model for ϕ.

We also notice that the progress of the procedure in Fig. 2 is guaranteed by the
refinement step, which rules out significant parts of the search space at every loop by
means of the added lemmas.

Important Heuristics for Refinement. The description of refine provided above
leaves some flexibility in deciding what axioms to add (and how many of them) at each
iteration. It is possible to conceive strategies with an increasing degree of eagerness,
from very lazy (e.g. adding only a single axiom per iteration) to more aggressive ones.
In our current implementation, we eagerly add all the axioms (2)–(6) that are violated
by the current abstract solution µ̂, leaving the investigation of alternative strategies as
future work. However, we found the following two strategies to be crucial for perfor-
mance.

Tangent lemma frontiers. The tangent lemmas of (2) for a given point (a, b) are based
on the fact that the multiplication function x ∗ y is a hyperbolic paraboloid surface,
and a tangent plane to such surface cuts the surface into four regions such that in two
of the regions the tangent plane is above the surface, whereas in the other two regions
the tangent plane is below the surface (see Fig. 1). Each instantiation of (2) for a given
point, therefore, can only provide either a lower or an upper bound for a given region. In



regions with lower bounds regions with upper bounds regions with both upper and lower
bounds

(a) current frontier (b) new point (a, b) (c) instantiation of (2)
on (a, b)

(d) additional instan-
tiations and updated
frontier

Fig. 5. Illustration of the tangent lemma frontier strategy.

some cases, this might lead to an infinite refinement loop in which at each iteration the
“wrong” bound is refined. In order to address the problem, we use the following strat-
egy. For each fmul(x, y) in the input formula, we maintain a frontier 〈lx, ux, ly, uy〉
with the invariant that whenever x is in the interval [lx, ux] or y is in the interval [ly, uy],
then fmul(x, y) has both an upper and a lower bound. Initially, the frontiers are set to
〈0, 0, 0, 0〉. Whenever a lemma (2) for fmul(x, y) is instantiated on a point (a, b), we
generate further instantiations of (2) and update the frontier as follows:

case a < lx and b < ly: instantiate (2) on (a, uy) and on (ux, b), and set the frontier to
〈a, ux, b, uy〉;

case a < lx and b > uy: instantiate (2) on (a, ly) and on (ux, b), and set the frontier to
〈a, ux, ly, b〉;

case a > ux and b > uy: instantiate (2) on (a, ly) and on (lx, b), and set the frontier to
〈lx, a, ly, b〉;

case a > ux and b < ly: instantiate (2) on (a, uy) and on (lx, b), and set the frontier to
〈lx, a, b, uy〉.

Fig. 5 shows a graphical illustration of the strategy.

Tangent lemma rounding. The instantiation of a tangent lemma at the point (a, b) has
the side-effect of adding the rational constants a, b and a∗b to the formula that is solved
by the LRA+EUF solver. If such values have large numerators and/or denominators,
they might be a source of a significant slow-down for the LRA solver (which works on
exact, arbitrary-precision rational arithmetic). We address this issue by observing that,
in order to block a bad model µ̂ such that µ̂[fmul(x, y)] 6= µ̂[x]∗ µ̂[y], it is sufficient to
add one of the two equalities of (2); therefore, instead of instantiating a tangent lemma
at (a, b), we can instantiate it at either (a + δ, b) or at (a, b + δ), for any value of δ. In
practice, if a (resp. b) is a rational constant with a very large numerator or denominator,
instead of instantiating a tangent lemma at (a, b), we instantiate two tangent lemmas at
(bac, b) and (dae, b).



bool IC3-NRA-prove (S : transition system 〈X, I, T 〉, ϕ : invarant property):
1. Ŝ, ϕ̂ = initial-abstraction(S, ϕ)
2. while true:
3. if budget-exhausted(): abort
4. ok, π̂ = IC3-LRA+EUF-prove(Ŝ, ϕ̂)
5. if ok: return true # property proved
6. ψ = get-cex-formula(Ŝ, ϕ̂, π̂)
7. is cex, Γ = SMT-NRA-check-abstract-ext(ψ)
8. if is cex: return false # counterexample found
9. else: Ŝ = refine-transition-system(Ŝ, Γ )

Fig. 6. Verification of NRA transition systems via abstraction to LRA+EUF.

5 From Satisfiability to Verification

We now move from satisfiability checking to verification.

Overview. In principle, the solver described in the previous section could be integrated
as a “black box” in any off-the-shelf SMT-based verification algorithm, such as BMC,
k-induction, or one of the many extensions of IC3 to the SMT case (e.g. [4, 9, 18, 21]).
In practice, however, such black-box integration would hardly be effective, especially
in the case of state-of-the-art algorithms like IC3. IC3 requires a very incremental in-
teraction with the underlying SMT engine, which is asked to solve a large number of
relatively-cheap queries. The procedure of Sec. 4, however, can be very expensive, espe-
cially for satisfiable queries, which are very common in an IC3-like algorithm.4 More-
over, some of the IC3 extensions mentioned above require the ability of performing
(approximated) quantifier eliminations, a functionality not provided by the algorithm of
Fig. 2.

We propose therefore a white-box integration, in which we lift the abstraction re-
finement approach of Sec. 4 at the transition system level. We generate an abstract
LRA+EUF version of the input NRA transition system, which is then checked with
the IC3-based procedure of [9]. In case a counterexample is produced, we use the
SMT-NRA-check-abstract-ext algorithm of Fig. 2 to check whether it is spurious. If
so, the axioms generated by SMT-NRA-check-abstract-ext are then used to refine the
abstraction of the transition system. The pseudo-code of this algorithm is reported in
Fig. 6. Similarly to the satisfiability checking case, the initial-abstraction function re-
places every non-linear multiplication x ∗ y in the input transition system and property
with a fmul(x, y) term, and adds some simple axioms about the behaviour of multipli-
cation to the initial-state and transition-relation formulas of the transition system (see
Sec. 4). In the rest of this section, we describe the abstraction refinement algorithm in
more detail.

4 In fact, as already discussed in Sec. 4, the procedure is biased towards unsatisfiable instances,
and might easily diverge on satisfiable ones.



transition system refine-transition-system (Ŝ : transition system, Γ : set of axioms):
1. let 〈X, Î, T̂ 〉 = Ŝ
2. ΓI , ΓT = ∅, ∅
3. for each γ in Γ :
4. if vars(γ) ⊆ X〈0〉:
5. ΓI = ΓI ∪ {γ{X〈0〉 7→ X}}
6. else if there exists i > 0 s.t. vars(γ) ⊆ X〈i〉:
7. ΓT = ΓT ∪ {γ{X〈i〉 7→ X}, γ{X〈i〉 7→ X′}}
8. else
9. let i be the smallest index s.t. vars(γ) ∩X〈i〉 6= ∅
10. ΓT = ΓT ∪ {γ{X〈i〉 7→ X}{X〈i+1〉 ∪ . . . ∪X〈i+k〉 7→ X′}}
11. return 〈X, Î ∧

∧
ΓI , T̂ ∧

∧
ΓT 〉

Fig. 7. Refinement of the LRA+EUF transition system.

Counterexample Checking and Refinement. When IC3-LRA+EUF-prove returns a
counterexample trace π̂ for the abstract system Ŝ, we use SMT-NRA-check-abstract-ext
to check for its spuriousness. The function get-cex-formula builds a formula ψ to feed
to SMT-NRA-check-abstract-ext, whose unsatisfiability implies that π̂ is spurious. The
formula ψ is built by unrolling the transition relation of Ŝ, and optionally adding con-
straints that restrict the allowed transitions to be compatible with the states in π̂. Various
heuristics are possible, trading generality for complexity: ψ could be fully constrained
by the states in π̂ (thus checking only one abstract counterexample path per iteration);
it could be only partially constrained (e.g. by considering only the Boolean variables
and/or the state variables occurring only in linear constraints); or it could be left un-
constrained, considering only the length of the abstract counterexample. In our current
implementation (see Sec. 6), we use the last option, i.e. we only consider the length
of π̂ to build a BMC formula that checks for any counterexample of the given length,
leaving the investigation of alternative strategies to future work.

If SMT-NRA-check-abstract-ext returns true, the property is violated. In this case,
we can use the model found by SMT-NRA-check-abstract-ext to build a counterexample
trace for the input system and property.

If SMT-NRA-check-abstract-ext returns false, we use the axioms Γ produced during
search to refine the transition system Ŝ, using the procedure shown in Fig. 7. Essentially,
refine-transition-system translates back the axioms from their unrolled version (i.e. on
variablesX〈0〉, X〈1〉, . . .) to their “single step” version (on variablesX andX ′), adding
each of them either to the initial-states formula or to the transition relation formula. In
case an axiom γ spans more than a single transition step (lines 9–10 of Fig. 7), we
arbitrarily choose to map the variables with the lowest index as current state variables
X , and all the others as next-state variables X ′. Notice that this might cause some
refinement failure, as discussed in the next paragraph.

Reducing the number of axioms to add. In general, not all the axioms generated during a
call to SMT-NRA-check-abstract-ext are needed to successfully block a counterexample,
especially if eager strategies like those described in Sec. 4 are used. In the long run,
having a large number of redundant axioms can be quite harmful for performance. In



transition system reduce-axioms (〈X, Î, T̂ 〉, ϕ̂, π̂, 〈ΓI , ΓT 〉):
1. ψ = get-cex-formula(〈X, Î ∧

∧
ΓI , T̂ ∧

∧
ΓT 〉, π̂)

2. if not SMT-LRA+EUF-check(ψ):
3. let C be an unsatisfiable core of ψ
4. ΓI = {γ ∈ ΓI | γ{X 7→ X〈0〉} ∈ C}
5. ΓT = {γ ∈ ΓT | ∃j > 0 s.t. γ{X 7→ X〈j〉}{X′ 7→ X〈j+1〉} ∈ C}
6. return 〈X, Î ∧

∧
ΓI , T̂ ∧

∧
ΓT 〉

7. else
8. abort # refinement failure

Fig. 8. Reducing the axioms needed for refinement.

order to mitigate this problem, we apply a filtering strategy (based on unsatisfiable
cores) to the set of axioms, before adding them to the transition system. Instead of
adding ΓI and ΓT directly to Ŝ, we invoke the function shown in Fig. 8. Note that due to
the flattening of multi-step axioms described above (lines 9–10 of Fig. 7), the refinement
might fail. In this case, our current implementation simply aborts the execution.5

6 Experimental Analysis

Implementation and comparisons. We have implemented a prototype
of the IC3-NRA-prove procedure using the IC3 engine of NUXMV [7] for
IC3-LRA+EUF-prove. The code is written in Python, using the PYSMT library [17].
Our implementation, benchmarks, and experimental data are available at https://es-
static.fbk.eu/people/griggio/papers/tacas17-ic3-nra.tar.gz. We have used the following
tools for our evaluation.
NUXMV-LRA-static: we apply the upfront abstraction of NRA to LRA proposed in [8],
running the IC3 engine of NUXMV on the resulting transition system.
NRA-BMC-{Z3, DREAL } and NRA-K-induction-{Z3, DREAL }: we have implemented
the BMC [3] and k-induction [29] algorithms in Python (using PYSMT), using either
Z3 (NRA) or DREAL (NRA) as back-end SMT solver.
iSAT3[1e-1] and iSAT3[1e-9]: we have used the latest version of the ISAT3 solver [24],
which combines an SMT solver integrating CDCL and interval constraint propagation
techniques with an interpolation-based abstaction/refinement algorithm for verification.
ISAT3 supports both transition systems and software programs encoded as control flow
graphs. Similarly to DREAL, ISAT3 may return a “maybe unsafe” answer and provide
a candidate solution identifying the upper and lower bounds on the variables. In the
experiments, iSAT3[1e-1] is the configuration suggested by the ISAT3 authors 6 and
iSAT3[1e-9] is the same except that the minimum splitting width (msw) parameter is set
to 10−9. We have used a smaller value for the msw to get more precise answers, i.e.
“safe” or “unsafe”, as suggested in the ISAT3 user manual.

5 We remark however that so far we have never observed this behaviour during our experiments.
6
-I --use-craig-interpolation --use-cegar --cegar-abstraction-inductive

--interpolant-rules-mcmillan --interpolant-a-biased

--interpolation-offset --interpolant-offset 2
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Fig. 9. Plots of SAFE and UNSAFE results.

Benchmarks. We have collected a total of 114 NRA benchmarks from various sources.
Handcrafted. This set contains 14 hand-written instances, 13 safe and 1 unsafe.
HyComp. The second set contains 7 benchmarks (3 safe, 4 unsafe) which are taken
from [11] and converted to NRA transition systems using HYCOMP [10].
HYST. This is the biggest set, consisting of 65 benchmarks. These are generated from
the Hybrid examples that come with the HYST [2] distribution, by approximating the
continuous time by sampling at a fixed time interval. This process is done automatically
using an extended version of HYST. Since the generated benchmarks are approxima-
tions, we do not know their safety status. The benchmarks contain mostly non-linear
behaviour.
iSAT3 and iSAT3-CFG. The 11 benchmarks in this set (7 safe, 4 unsafe) are taken
from [24] and the ISAT3 examples available online.
nuXmv. In this set, we have 2 safe benchmarks which we collected from the nuXmv
users’ mailing list. These benchmarks have complex boolean structure.
SAS13. These 13 benchmarks are generated from the C programs used in [5], but in-
terpreted over NRA instead of the theory of IEEE floating-point numbers. This makes
some of the instances unsafe.
TCM. We have generated 2 safe benchmarks from the Simulink models (taken from
the case study [6]) by first generating the C code using the Embedded Coder7 and then
encoding the program into a symbolic transition system.

Results. We ran our experiments on a cluster of machines with 2.67GHz Xeon X5650
CPUs and 96GB of RAM, running Scientific Linux 6.7. We used 6GB memory limit
and 3600 seconds CPU timeout.

The results are summarized in Tables 1 and 2 and in Fig. 9. The plots show the
time to solve an instance on the x-axis and the total number of solved instances on the

7 https://www.mathworks.com/products/embedded-coder/



Table 1. Summary of experimental results.

Total

H
andcrafted

H
yC

om
p

H
Y

ST

ISAT
3

ISAT
3-C

FG

nuX
m

v

SA
S13

T
C

M

(114) (14) (7) (65) (1) (10) (2) (13) (2)
IC3-NRA-prove 60/15 9/1 3/0 33/7 0/0 6/2 2/0 5/5 2/0
iSAT3[1e-1] 48/2(47) 2/0(8) 0/0(3) 34/2(23) 0/0 6/0(4) 0/0 4/0(9) 2/0
iSAT3[1e-9] 47/2(19) 2/0(3) 0/0(2) 32/2(3) 0/0 6/0(3) 0/0 5/0(8) 2/0
NRA-K-induction-Z3 22/25 2/1 0/2 12/15 0/0 6/2 0/0 0/5 2/0
NUXMV-LRA-static 37/0 4/0 1/0 19/0 0/0 4/0 2/0 5/0 2/0
NRA-BMC-Z3 0/26 0/1 0/2 0/15 0/0 0/3 0/0 0/5 0/0
NRA-K-induction-DREAL 16/0(32) 2/0(4) 0/0(2) 9/0(19) 0/0 5/0(2) 0/0 0/0(5) 0/0
NRA-BMC-DREAL 0/0(39) 0/0(8) 0/0(2) 0/0(19) 0/0 0/0(3) 0/0 0/0(7) 0/0
virtual-best 66/26 9/1 3/2 38/15 0/0 7/3 2/0 5/5 2/0

Each column shows a benchmark family, and each entry gives the number of safe/unsafe instances found. For
tools working over interval arithmetic, the number of “maybe unsafe” is reported in parentheses.

Table 2. Comparitive summary of total solved benchmarks.

# Solved # Uniquely Solved Difference wrt.
IC3-NRA-prove Gained Lost

IC3-NRA-prove 60/15 9/0 - - -
NUXMV-LRA-static 37/0 0/0 -38 1/0 24/15
iSAT3[1e-1] 48/2(47)

4/0
-25 4/0 16/13

iSAT3[1e-9] 47/2(19) -26 3/0 16/13
NRA-K-induction-Z3 22/25

0/11 -28 2/11 40/1
NRA-BMC-Z3 0/26 -49 0/11 60/0
NRA-K-induction-DREAL 16/2(32)

0/0
-59 2/0 46/15

NRA-BMC-DREAL 0/0(39) -75 0/0 60/15

virtual-best 66/26 - 17 6/11 0

y-axis. Table 1 reports a summary of the solved instances by family, whereas Table 2
shows a comparitive analysis by reporting for each tool the number of uniquely solved
instances and the difference of solved instances w.r.t IC3-NRA-prove. We can make the
following observations from the experimental results:

– IC3-NRA-prove is the best performer overall, and it significantly outperforms all
the other approaches on safe instances (where it can solve 9 problems that are out of
reach for all the other tools). Interestingly, despite its simplicity, our model finding
approach (as outlined in §4) is surprisingly effective, allowing IC3-NRA-prove to
find 15 counterexample traces.

– The simple abstraction proposed in [8] is quite effective for many families, allowing
NUXMV-LRA-static to verify more properties than the approaches based on K-
induction with an NRA solver. However, IC3-NRA-prove results in a clear and very



significant improvement, solving more than twice as many instances than NUXMV-
LRA-static (and losing only 1).

– None of the other tools (with the exception of NUXMV-LRA-static) is able to
solve any safe benchmark in the HyComp and nuXmv families. These benchmarks
have a non-trivial Boolean structure and a significant linear component. Both IC3-
NRA-prove and NUXMV-LRA-static are able to fully exploit the effectiveness of
the underlying IC3 engine of NUXMV, outperforming the competitors. However,
IC3-NRA-prove is very competitive also on the HYST family, whose instances are
mostly non-linear and have very little Boolean structure.

– Increasing the default precision of ISAT3 significantly reduces the number of
“maybe unsafe” answers, but it doesn’t seem to help in solving more benchmarks.
In fact, we remark that even with the increased precision iSAT3[1e-9] classifies
2 safe instances as “maybe unsafe” (whereas in the default configuration, 6 safe
instances are classified as “maybe unsafe”).

7 Conclusions and Future Work

We presented a novel abstraction-refinement approach to the verification of transition
systems with nonlinear dynamics expressed in the NRA theory. We abstract non-linear
multiplication as an uninterpreted function, leveraging efficient invariant checkers for
transition systems over LRA and EUF to solve the problem in the abstract space. In
case of spurious counterexample, the abstraction of multiplication is incrementally re-
fined by introducing suitable axioms, based on the idea of tangent planes. An extensive
experimental evaluation demonstrates that the proposed approach is significantly more
effective than approaches directly based on SMT(NRA) solving.

This work opens up several important directions. First, we are going to improve the
implementation, by integrating all the steps within the NUXMV [7] model checker, and
to perform a thorough analysis of the various heuristic choices. Second, we will inves-
tigate the potential of the approach for SMT, both for other theories (e.g. NIA) and for
extended functionalities (e.g. interpolation). We will also extend the scope of the ap-
proach to deal with transcendental functions, look-up tables, and partially axiomatized
functions (e.g. gain functions known to be monotonic and of restricted co-domain).

Finally, we are going to investigate the generalization of the approach from transi-
tion systems to continuous-time hybrid systems with nonlinear characteristic functions.

Acknowledgement. We greatly thank the ISAT3 team for providing the latest ISAT3
executable and iSAT3-CFG benchmarks. We also thank James Davenport for the fruitful
discussions on CAD techniques and finding solutions in NRA.
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