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Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a first-order formula with
respect to some theory or combination of theories; Verification Modulo Theories (VMT) is the problem of
analyzing the reachability for transition systems represented in terms of SMT formulae. In this paper we
tackle the problems of SMT and VMT over the theories of nonlinear arithmetic over the reals (NRA) and of
NRA augmented with transcendental (exponential and trigonometric) functions (NTA).

We propose a new abstraction-refinement approach for SMT and VMT on NRA or NTA, called Incremental

Linearization. The idea is to abstract nonlinear multiplication and transcendental functions as uninterpreted
functions in an abstract space limited to linear arithmetic on the rationals with uninterpreted functions. The
uninterpreted functions are incrementally axiomatized by means of upper- and lower-bounding piecewise-
linear constraints. In the case of transcendental functions, particular care is required to ensure the soundness
of the abstraction.

The method has been implemented in the MathSAT SMT solver and in the nuXmv model checker. An ex-
tensive experimental evaluation on a wide set of benchmarks from verification and mathematics demonstrates
the generality and the effectiveness of our approach.
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1 INTRODUCTION
General context of SMT and VMT. Satisfiability Modulo Theories (SMT) is the problem of deciding

the satisfiability of a first-order formula with respect to some theories of interest (e.g. theory of linear
arithmetic, of arrays, of bit-vectors) and their combination thereof [7]. Since its inception, SMT has
been a thriving research area, also leveraging developments in propositional satisfiability (SAT),
with applications in formal verification, planning, security, and synthesis. SMT formulae allow
for the symbolic representation of many expressive forms of infinite-state transition systems. We
refer to the problem of analysing such transition systems (e.g. checking reachability) as Verification
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Modulo Theories (VMT). Various algorithms for VMT exist [3, 22, 32]. They extend effective SAT-
based verification algorithms from the finite case [10, 13, 54, 63] by means of SMT solving and
abstraction [66].

The crux of nonlinearity. Powerful and effective SMT and VMT techniques and tools are available
for the quantifier-free theories1 of Uninterpreted Functions (UF) and Linear Arithmetic (LA),
either over the reals (LRA) or the integers (LIA), as well as their combinations (UFLRA, UFLIA). A
fundamental challenge is to go beyond the linear case, by introducing nonlinear polynomials – over
the reals (NRA) or over the integers (NIA) – plus transcendental functions such as exponentiation
and trigonometric functions. (We denote the theory NRA enriched with transcendental functions
as NTA.) In fact, the expressive power of nonlinear arithmetic and transcendental functions is
required bymany application domains (e.g. railways, aerospace, control software, and cyber-physical
systems).
Unfortunately, dealing with nonlinearity is a very hard challenge. Going from SMT(LRA) to

SMT(NRA) yields a complexity gap that results in a computational barrier in practice – most
available complete solvers rely on Cylindrical algebraic decomposition (CAD) techniques [27], which
require double exponential time in worst case. Adding transcendental functions to NRA exacerbates
the problem even further, because reasoning on NTA has been shown to be undecidable [61].
Similarly, reasoning in NIA is undecidable [53] (the result of Hilbert’s 10th problem).
A similar situation can be observed for VMT. In general, given a theory, VMT is harder than

SMT, due to the underlying notion of reachability: VMT is undecidable even for relatively simple
theories such as LRA [42]. Yet, VMT(LRA) tools are reasonably effective in practice, based on the
power of SMT(LRA) solvers and the ability to automatically construct abstractions. This is hardly
the case for reachability over NTA transition systems.

Incremental Linearization. In this paper, we take on the challenge of dealing with the quantifier-
free theory of nonlinear arithmetic, also with transcendental functions, over the reals in SMT as well
as in VMT. We propose a practical and unifying approach, referred to as Incremental Linearization,
that trades the use of expensive, exact solvers for nonlinear arithmetic for an abstraction-refinement
loop on top of much less expensive solvers for linear arithmetic and uninterpreted functions. The
approach is based on an abstraction-refinement loop, using SMT(UFLRA) as abstract space. The
Uninterpreted Functions are used to model nonlinear and transcendental functions. Then, we
iteratively and incrementally axiomatize nonlinear multiplication and transcendental functions with
a lemma-on-demand approach. Specifically, we eliminate spurious interpretations in SMT(UFLRA)
(or spurious counterexample traces, in the case of VMT), by tightening the piecewise-linear envelope
around the (uninterpreted counterpart of the) transcendental functions.
The underlying rationale is that, for many practical problems, reasoning with full precision

over nonlinear and transcendental functions may not be necessary. For example, constructing a
piecewise-linear invariant may be sufficient to prove that the (nonlinear) transition system at hand
satisfies a given property. The linearization is performed incrementally and only when and where
needed, driven by the spurious counterexamples.
We remark that the proposed approach also works in the case of NIA. However, its evaluation

over NIA benchmarks is left as future work.

Example 1.1. Consider the following constraints: x ∗ x +y ∗y ≤ 2 ∧ (x ≥ 1.1 ∨ x ≤ −1.1) ∧ (y ≥
1.1∨y ≤ −1.1), which are graphically shown in Fig. 1a. We want to check whether their intersection
is nonempty or not. One way is to use some nonlinear solving method to answer that question.
1In the following, we only consider quantifier-free theories, and we abuse the accepted notation and omit the “QF_” prefix
in the names of the theories.
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(a) Is the intersection of the circle

and squares nonempty?

(b) Linear approximation of circle. (c) Linear constraints for solving

the problem.

Fig. 1. Illustration of Example 1.1

However, notice that the intersection can be shown empty by approximating the circle: this can
be done by replacing nonlinear multiplications, i.e., x ∗ x and y ∗ y with uninterpreted functions
f∗ (x ,x ) and f∗ (y,y), respectively, and adding the following linear constraints over the uninterpreted
functions ( f∗ (x ,x ) ≥ −2.8 ∗ x − 1.96) ∧ ( f∗ (x ,x ) ≥ −3 ∗ x − 2.25) ∧ ( f∗ (x ,x ) ≥ 3.2 ∗ x − 2.56) ∧
( f∗ (x ,x ) ≥ 2.6 ∗ x − 1.69) ∧ ( f∗ (y,y) ≥ 2.4 ∗ y − 1.44) ∧ ( f∗ (y,y) ≥ −2.8 ∗ y − 1.96) ∧ ( f∗ (y,y) ≥
2.2 ∗ y − 1.21) ∧ ( f∗ (y,y) ≥ −3 ∗ y − 2.25). Clearly, as depicted in Fig. 1b the additional constraints
approximate the circle. Therefore, we can answer the question by solving the linear problem (as
shown in Fig. 1c) using some linear method.

Incremental linearization for SMT. Consider first the case of Satisfiability Modulo Theories. In
the abstract space, nonlinear multiplication between variables is modeled as a binary uninterpreted
function f∗. When spurious models are found, the abstraction is tightened by the incremental
introduction of linear constraints, including tangent planes resulting from differential calculus, and
monotonicity constraints.
In order to deal with NTA, we rely on several insights. First, irrational numbers are basically

inevitable with the most common transcendental functions, such as exponential and sine, as shown
by the Hermite and Niven theorems (see [57]). The challenge is to obtain provably correct (rational-
coefficient) approximations in LRA. We use Taylor series to exactly compute suitable accurate
rational coefficients for the piecewise-linear envelopes. Notice that, nonlinear polynomials are
only used to numerically compute the coefficients, i.e., no SMT solving in the theory of nonlinear
arithmetic is needed.

The refinement is based on the addition, in the abstract space, of piecewise-linear axiom instanti-
ations, which upper- and lower-bound the candidate solutions, ruling out spurious interpretations.
To compute such piecewise-linear bounding functions, the concavity of the curve is taken into
account to identify the actual approximation interval. In order to deal with trigonometric functions,
we leverage the property of periodicity, so that the axiomatization is only done in the interval
between −π and π , and deal with the external intervals by reduction.
Finally, we adopt a logical method to conclude the existence of a solution without explicitly

constructing it. We use a sufficient criterion that consists in checking whether the formula is
satisfiable under all possible interpretations of the uninterpreted functions (representing the tran-
scendental functions) that are consistent with some rational interval bounds within which the
correct values for the transcendental functions are guaranteed to exist. We encode the problem as
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an SMT(LRA) satisfiability check, such that an unsatisfiable result implies the satisfiability of the
original SMT(NTA) formula.

Incremental linearization for VMT. By means of Incremental linearization, we also tackle invariant
checking for transition systems over NRA and transcendental functions. The key insight is to
implement the Counterexample Guided Abstraction Refinement (CEGAR) loop on top of an abstract
version of the transition system expressed over UFLRA. We leverage the characteristics of a recently
introduced approach [22] based on the combination of IC3 and predicate abstraction.
We remark that this approach based on incremental linearization has strong advantages over

other VMT(NTA) approaches that could be obtained from traditional SMT-based algorithms by
delegating the management of nonlinearity to an SMT(NTA) solver. Bounded Model Checking
and k-induction [34, 63] would be relatively simple to implement (given an SMT solver for the
required theory) but have very limited effectiveness when it comes to proving properties over
infinite-state transition systems. Extending other approaches (e.g. interpolation, IC3 [22, 54]) to
handle nonlinearities at the level of the solver would require the SMT(NRA) solver (or, worse, the
SMT(NTA) solver), to carry out interpolation or quantifier elimination, and to proceed incrementally.
These extra functions are usually not available, or they have a very high computational cost.

Implementation and Experimental Evaluation. We have implemented our SMT and VMT ap-
proaches based on incremental linearization, and a thorough experimental evaluation has been
carried out. TheMathSAT SMT solver [23] has been extended with a tightly integrated abstraction-
refinement loop for NRA and, in the transcendental case, with exponentiation and trigonometric
functions. We experimentally evaluatedMathSAT on all the SMT-LIB benchmarks from the NRA
categories, as well as with benchmarks from SMT-based verification queries over nonlinear tran-
sition systems, including Bounded Model Checking of hybrid automata, several mathematical
properties from the MetiTarski [1] suite and from other competitor solver distributions. We
contrasted MathSAT against various SMT solvers: z3 [31], Yices [33], SMT-RAT [28] based on
expensive techniques like CAD, iSAT3 and dReal, based on interval constraint propagation, and
with the deductive approach of MetiTarski [1].

As for VMT, the approach has been implemented in the nuXmv model checker [17], relying
on the IC3 with Implicit Abstraction [22] engine for VMT(UFLRA). We selected benchmarks over
VMT(NRA) and VMT(NTA), and compared nuXmv against multiple approaches working at NRA
level, including BMC and k-induction using SMT(NRA), the recent interpolation-based iSAT3
engine [50], and the static abstraction approach proposed in [18].

Discussion. The experimental results show the merits of incremental linearization. The technique
is surprisingly effective in SMT, even compared to other complete and more mature approaches.
In VMT, incremental linearization significantly outperforms its competitors which are based on
interval propagation.
The effectiveness of our approach is possibly explained with the following insights. On the

one hand, in contrast to LRA, NRA is a hard-to-solve theory: in practice, most available complete
solvers rely on expensive solvers; we try to avoid NRA reasoning, trading it for LRA and UF
reasoning. On the other hand, proving properties of practical NRA transition systems may not
require the full power of nonlinear solving. In fact, some systems are “mostly-linear” (i.e. nonlinear
constraints are associated to a very small part of the system), an example being the Transport Class
Model (TCM) for aircraft simulation from the Simulink model library [44]. Furthermore, even NRA
transition systems with significant nonlinear dynamics may admit a piecewise-linear invariant of
the transition system that is strong enough to prove the property.
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Overall, incremental linearization is a general and relatively simple idea that supports approaches
to SMT and VMT, and is able to successfully tackle many practical problems.

Structure of the paper. The rest of this paper is organized as follows. We present the background
in §2. We discuss our technique at the SMT level in §3–§5, first outlining the general ideas in §3,
and then providing details on the refinement mechanisms in §4 and on the detection of satisfiable
results in §5. We extend our approach to VMT in §6. In §7 we prove the correctness of the overall
approach. In §8 we describe some heuristics and provide some implementation details. In §9 we
compare our approach with the related work. In §10 we present the results of the experimental
evaluation. Finally, in §11 we draw some conclusions and outline directions for future work.

Note. This paper brings together and extends the ideas presented in the conference papers [19]
(where the case of VMT(NRA) is discussed), and [20] (where the SMT(NTA) case is discussed).
The paper differs from and extends [19] and [20] in various directions. First, the paper has been
completely rewritten to cover in a systematic manner all the combinations of both SMT and VMT
with both NRA and NTA, and present it in the light of incremental linearization. Second, the case
VMT(NTA) was not covered in [19, 20]. Third, the SMT approach is now based on a much tighter
integration into SMT(UFLRA). Fourth, we provide a theoretical underpinning of the approach.
Finally, a much stronger implementation of incremental linearization is now integrated within
the official versions of MathSAT and nuXmv, and a more comprehensive set of experiments is
provided.

2 BACKGROUND
We assume the standard first-order quantifier-free logical setting and standard notions of theory,
satisfiability, and logical consequence.We denote formulaewithφ,ψ , I ,T , P , termswith t , s , variables
with x ,y, constants with a, b, c , functions with f , tf, each possibly with subscripts. 2 If X is a set of
variables, we write φ (X ) to denote the fact that the all the variables of φ are in X . We denote with
φ{x 7→ t } the formula obtained by replacing all the occurrences of x in φ with t . We use the same
notation for terms and models, and we extend it to ordered sequences of variables in the natural way.
(E.g., if x =̇ x1, ..,xk and t =̇ t1, .., tk , then φ{x 7→ t} s.t. denotes φ{x1 7→ t1}{... 7→ ...}{xk 7→ tk }.) If
µ is a model and x is a variable, we write µ[x] to denote the value of x in µ, and we extend this
notation to terms and formulae in the usual way. If Γ is a set of formulae, we write

∧
Γ (or simply

Γ) to denote the conjunction of all the formulae in Γ. We write t1 < t2 < t3 for t1 < t2 ∧ t2 < t3. (A
similar notation is used with “≤”.) We abuse the notation and write t ∈ φ to denote that term t
occurs in φ. abs (t ) stands for ite(t < 0,−t , t ), ite being the standard if-then-else term operator.

2.1 Satisfiability Modulo Theories
Satisfiability Modulo Theories (SMT) is the problem of deciding the satisfiability of a first-order
formula with respect to some first-order theory (T ) or combination of first-order theories (T1 ∪ T2).
A formula is satisfiable in T (or T -satisfiable) if it is satisfiable in a model of T (also written as
T -model). Similarly, a formula is valid in T (or T -valid) if it is satisfiable in every model of T .
An SMT solver is a decision procedure which solves the SMT problem. The most efficient

implementations of SMT solvers use the so-called “lazy approach”, where a SAT solver is tightly
integrated with a T -solver, that is demanded to decide conjunctions of constraints in the theory T .

There exist several theories that the modern SMT solvers support. In this work we are interested
in the following theories: Equality and Uninterpreted Functions, Linear Arithmetic and Nonlinear

2As is standard practice in SAT, SMT, CSP, and OR communities, and with a little abuse of terminology, in quantifier-free
formulae like “(A1 ∨ (2 ∗ x1 + 3 ∗ x2 ≤ 4)) ∧ A2” we call “Boolean variables” the propositional atoms Ai and we call
"variables" the Skolem constants xi .
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Arithmetic over the Reals, and in their combinations thereof. The theory of linear real arithmetic
(LRA) is the first-order theory with equality whose atoms are linear polynomial constraints inter-
preted over R, whereas the theory of nonlinear real arithmetic (NRA) is the first-order theory with
equality whose atoms are nonlinear polynomial constraints interpreted over R.
We denote with UFLRA the combined theory of UF and LRA.

2.2 Verification Modulo Theories
A symbolic transition system S =̇ ⟨X , I ,T ⟩ is a tuple where X is a finite set of (state) variables,
I (X ) is a formula denoting the initial states of the system, and T (X ,X ′) is a formula expressing its
transition relation, where X ′ is the set obtained by replacing each element x ∈ X with x ′. A state si
of S is an assignment to the variables X . A path (execution trace) σk =̇ s0, s1, s2, . . . , sk−1 of length
k (possibly infinite) for S is a sequence of states such that s0 |= I and si ∧ si+1{X 7→ X ′} |= T for all
0 ≤ i < k − 2. We denote with X ⟨i⟩ the set obtained by replacing x with x ⟨i⟩. We call an unrolling
of S of length k the formula I {X 7→ X ⟨0⟩} ∧

∧k−1
i=0 T {X 7→ X ⟨i⟩}{X ′ 7→ X ⟨i+1⟩}.

Verification Modulo Theories (VMT) is the problem of verifying the properties of a symbolic
transition system where I and T are expressed as SMT(T ) formulae for some background theory
T . Let P (X ) be a formula whose assignments represent a property over the state variables X . (P
can be seen as representing the “good” states, while ¬P represents the “bad” states.) The invariant
verification problem, denoted with S |= P , is the problem of checking if for all the finite paths
s0, s1, . . . , sk of S, for all i , 0 ≤ i ≤ k , si |= P . Its dual formulation in terms of reachability of ¬P is
the problem of finding a path s0, s1, . . . , sk of S such that sk |= ¬P .

2.3 Nonlinear Arithmetic and Transcendental Functions
We denote with Z, Q and R the set of integer, rational and real numbers, respectively. The absolute
value of a ∈ R, denoted by |a |, is defined as |a | = a if a ≥ 0, and −a otherwise. A monomial in
variables x1,x2, . . . ,xn is a product xα11 ∗ x

α2
2 ∗ . . . ∗ x

αn
n , where each αi is a non-negative integer

called exponent of the variable xi . When clear from context, we may omit the multiplication symbol
∗ and simply write xα11 xα22 . . . x

αn
n . A polynomial p is a linear combination of monomials with

coefficients in Q. We write Q[x1, . . . ,xn] as the sets of the polynomials containing the variables
x1, . . . ,xn with coefficients in Q. A univariate polynomial is a polynomial containing one variable,
whereas a multivariate polynomial contains more than one variable. A polynomial constraint P is of
the form p ▷◁ 0 where p is a polynomial and ▷◁∈ {<, ≤,=,,, >, ≥}.

The total degree of a monomial is the sum of the exponents of its variables. The total degree of a
polynomial is the highest degree among its monomials. A monomial is linear if it has total degree
less than or equal to one, otherwise it is nonlinear, and similarly for polynomials. A polynomial
constraint p ▷◁ 0 is a linear constraint if p is linear and is a nonlinear constraint if p is nonlinear.
A real number c ∈ R is a real root of p ∈ Q[x] iff p (c ) = 0. A real number a ∈ R is an algebraic

number iff it is a root of some p ∈ Q[x], otherwise it is transcendental number. An example of
algebraic number is

√
2, while π and e are transcendental numbers.

A function over the reals f : Rn → R maps every element in Rn into a corresponding element in
R. A function f : Rn → R is called univariate when n = 1, and multivariate when n > 1. A function
y = f (x1, . . . ,xn ) is algebraic iff it satisfies a polynomial equation, i.e. there exists a polynomial
p ∈ Q[y,x1, . . . ,xn] such that ∀x1, . . . ,xn .(p (y,x1, . . . ,xn ) = 0). A function is transcendental if it
is not algebraic [41, 67].
We assume that we have continuous and differentiable functions. If f is a univariate function,

we write d
dx f for the first-order derivative of f . We also write f (i ) for the i-th derivative of f , and

f ′ and f ′′ for f (1) for f (2) , respectively.
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Let l and u be two real numbers. We denote open and closed intervals between them as ]l ,u[ and
[l ,u] respectively. Given a univariate function f over the reals, the graph of f is the set of pairs
{(x , f (x )) | x ∈ R}. We refer to an element (x , f (x )) of the graph as a point of f .

Definition 2.1. The tangent line at a to the function f , denoted with TanLinef ,a (x ), is the straight
line defined as follows:

TanLinef ,a (x ) =̇ f (a) +
d

dx
f (a) ∗ (x − a)

Definition 2.2. Given a , b, the secant line at [a,b] to a function f , denoted with SecLinef ,a,b (x ),
is the straight line defined as follows:

SecLinef ,a,b (x ) =̇
f (a) − f (b)

a − b
∗ (x − a) + f (a).

Definition 2.3. Let f be a univariate function twice differentiable at point c . The concavity of f
at c is the sign of f ′′(c ).

Definition 2.4. A univariate function f has an inflection point at c iff it is twice differentiable
at c , f ′′(c ) = 0, and there exists ϵ > 0 such that for all x ∈ [c − ϵ, c[ has sign s , 0 and for all
x ∈]c, c + ϵ] has sign s ′ , 0 opposite to s .

Proposition 2.5. Let f be a univariate function. If f ′′(x ) ≥ 0 for all x ∈ [l ,u], then for all a,x ∈
[l ,u] TanLinef ,a (x ) ≤ f (x ), and for all a,b,x ∈ [l ,u] ((a , b ∧ a ≤ x ≤ b) → SecLinef ,a,b (x ) ≥
f (x )).

If f ′′(x ) ≤ 0, then the dual property holds.
Let f (x ,y) be a bivariate function. We write d

dx f (x ,y) and
d
dy f (x ,y) for the first-order partial

derivatives of f (x ,y) w.r.t. x and y, respectively.

Definition 2.6. The tangent plane at (a,b) to a bivariate function f (x ,y), denoted with
TanPlanef ,a,b (x ,y), is defined as follows:

TanPlanef ,a,b (x ,y) =̇ f (a,b) +
d

dx
f (a,b) ∗ (x − a) +

d

dy
f (a,b) ∗ (y − b)

Taylor Series and Taylor’s Theorem.

Definition 2.7. Let f (x ) be n-differentiable at a. The Taylor series of f of degree n centered around
a is the polynomial:

Pn,f (a) (x ) =̇
n∑
i=0

f (i ) (a)

i!
∗ (x − a)i

The Taylor series centered around zero is also called Maclaurin series.
According to Taylor’s theorem, any continuous function f (x ) that is (n + 1)-differentiable can be

written as the sum of the Taylor series and the remainder term:

f (x ) = Pn,f (a) (x ) + Rn+1,f (a) (x )

where Rn+1,f (a) (x ) is the Lagrange form of the remainder, expressible as

Rn+1,f (a) (x ) =̇
f (n+1) (b)

(n + 1)!
∗ (x − a)n+1.

for some b between x and a.
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Although the value of b is not known, an upper bound on the size of the remainder Ru
n+1,f (a) (x )

at a point x can be defined as:

Ru
n+1,f (a) (x ) =̇ max

c ∈[min(a,x ),max(a,x )]
( | f (n+1) (c ) |) ∗

|(x − a)n+1 |

(n + 1)!
.

From this, we obtain a lower- and an upper-bound for f (x ), given by Pn,f (a) (x ) − R
u
n+1,f (a) (x )

and Pn,f (a) (x ) +Ru
n+1,f (a) (x ) respectively. Clearly, the closer is a to x , the tighter the approximation

of f (x ) will be.
Within this paper we consider univariate exponential and trigonometric transcendental functions.

We recall that the graphs of exponential and trigonometric functions have only a finite number of
points in Q × Q (e.g. (0, 1) for exp, (0, 0) for sin). A trigonometric number is an irrational number
expressible as sin(aπ ) with a ∈ Q. Remarkable points in the graph of sin are sin(1/2π ) =

√
2/2 and

sin(5/6π ) = 1/2. Finally, we recall that trigonometric functions like sine are periodic. For example,
for all i ∈ Z, sin(a) = sin(a + 2iπ ).

3 SMT VIA INCREMENTAL LINEARIZATION
We now provide a high-level description of the algorithm for SMT solving on NTA (and hence
NRA) based on incremental linearization. Further details will be provided in the next sections.

To simplify the presentation, and when not explicitly stated otherwise, we often implicitly assume
w.l.o.g. that all multiplications in the input formula φ are either between variables (e.g. x ∗ y) or
between one constant and one variable (e.g. 3x), and that all transcendental functions in φ are
applied to variables (e.g., exp(x)). This can be obtained by recursively substituting non-variable
terms t inside multiplications and transcendental function applications with fresh variables xt , and
by conjoining (xt = t ) to φ.

3.1 The Main Procedure
The main algorithm is shown in Fig. 2. The main function SMT-NTA-check takes as input a formula
φ containing non-linear constraints with polynomials and transcendental functions, and returns a
Boolean value asserting if φ is satisfiable or not. When the formula is found to be unsatisfiable it
returns also the set of UFLRA constraints Γ such that the formulaφ∧

∧
Γ can be shown unsatisfiable

using an UFLRA SMT solver. Notice that, SMT-NTA-check is not guaranteed to terminate, so that
we implicitly assume that it is stopped as soon as some given resource budget (e.g. time, memory,
number of iterations) is exhausted.
In order to deal with transcendental models, we adopt a mechanism based on rational approxi-

mations of irrational values; a variable ϵ keeps track of the current precision of approximation, and
it is incremented on demand.
First, in line 1 the formula undergoes some NTA-satisfiability-preserving preprocessing step,

which produces the formula φ ′ =̇ φ ∧ φshif t by introducing some fresh real variables ωx and by
conjoining to φ a formula φshif t which defines univocally the values of the ωx ’s in terms of some
variables x ’s in φ (see §4).

Then the formulaφ ′ is abstracted into an over-approximating formula φ̂ over the combined theory
of linear arithmetic and uninterpreted functions (UFLRA) by invoking SMT-initial-abstraction
(line 2). φ̂ is the result of replacing each nonlinear term x ∗y with f∗ (x ,y), and each transcendental
term tf(x ) with ftf (x ), s.t. f∗(.) and ftf (., .) are uninterpreted functions, and the symbol π with
the new symbol π̂ (see §4). (We remark that, linear multiplications, like e.g. c ∗ x where c is a
constant, are not replaced.) The set of constraints Γ is initialized to the empty set, and the precision
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⟨bool, constraint-set⟩ SMT-NTA-check (φ):
1. φ ′ := SMT-preprocess(φ)
2. φ̂ := SMT-initial-abstraction(φ ′)
3. Γ := ∅
4. ϵ := initial-precision ()
5. while true:
6. ⟨sat , µ̂⟩ := SMT-UFLRA-check (φ̂ ∧

∧
Γ)

7. if not sat :
8. return ⟨false, Γ⟩
9. ⟨sat , Γ′⟩ := check-refine (φ̂, µ̂, ϵ)
10. if sat :
11. return ⟨true, ∅⟩
12. Γ := Γ ∪ Γ′

Fig. 2. The main procedure for solving SMT(NTA) via abstraction to SMT(UFLRA) and refinement.

variable ϵ is initialized to some (small) real value by calling the function initial-precision (lines
3-4).
Then the algorithm enters a loop (lines 5-12). At each iteration, the approximation φ̂ of φ ′ is

refined by adding new UFLRA constraints to Γ that rule out spurious solutions. The loop maintains
the invariant that φ̂ ∧

∧
Γ is an over-approximation of φ, (see Lemma 7.3). The process iterates

until either the formula φ̂ ∧
∧

Γ is proved unsatisfiable in SMT(UFLRA) by invoking the standard
SMT-solving function SMT-UFLRA-check (lines 6-8), or φ̂ ∧

∧
Γ is proved UFLRA-satisfiable and

the satisfiability result can be lifted to a satisfiability result for the original formula φ by means of a
refinement process (lines 9-11). The function check-refine (see §3.2) takes as input the abstracted
formula φ̂, the current abstract model µ̂ and the precision ϵ , and it returns ⟨true, ∅⟩ if it achieves
proving the NTA-satisfiability of φ ′, it returns ⟨false, Γ′⟩ if it fails, Γ′ being a non-empty set of
UFLRA constraints that rule out µ̂ (and other spurious solutions). When none of the above loop-exit
condition occurs, the novel constraints in Γ′ which were found by check-refine are added to Γ
before entering into next loop.

Unsat-core extraction. As a byproduct of the algorithm in Fig. 2, since state-of-the-art SMT
solvers for UFLRA can return unsatisfiable cores when the input formula is found unsatisfiable,
we can easily modify SMT-NTA-check to produce also an unsatisfiable core for NTA when φ
in NTA-unsatisfiable. This is done by a variation of the lemma-lifting technique in [24]: when
SMT-UFLRA-check returns false, then it can be asked to produce an unsatisfiable core ψ̂ of φ̂ ∧ Γ.
Then we drop from ψ̂ all the conjuncts which belong either to Γ or to the abstraction of φshif t , and
produce the final NTA unsatisfiable core by un-abstracting the result, rewriting back each f∗, ftf
and π̂ into ∗, tf and π respectively. The conjuncts in

∧
Γ and in the abstraction of φshif t are safely

ignored because they would respectively produce NTA-valid subformulae and simple definitions of
variables which do not occur in φ. (See §4.)

3.2 Spuriousness Check and Abstraction Refinement
The process of checking for spuriousness and refining the abstraction is carried out by the procedure
check-refine (reported in Fig. 3). check-refine first calls the function check-model on the
abstracted formula φ̂, the abstract model µ̂ and the value ϵ , which tries to determine whether µ̂ does
indeed imply the existence of a model for φ (lines 1-2). (check-model is described in §5). The check
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⟨bool, constraint-set⟩ check-refine (φ̂, µ̂, ϵ):
1. if check-model (φ̂, µ̂, ϵ):
2. return ⟨true, ∅⟩
3. Γ := block-spurious-product-terms(φ̂, µ̂ ) # refinement of products

4. while true: # refinement of transcendental functions, for progressively improving precision

5. Γ := Γ ∪ block-spurious-transcendental-terms(φ̂, µ̂, ϵ )
6. if Γ , ∅:
7. return ⟨false, Γ⟩
8. ϵ := improve-precision (ϵ)
9. if check-model (φ̂, µ̂, ϵ):
10. return ⟨true, ∅⟩

Fig. 3. The main procedure for spuriousness check and refinement.

is formulated as a SMT(UFLRA) search problem over a constrained version of φ, guided by the
current abstract model and the current precision, either yielding a sufficient criterion for concluding
the existence of a model for φ, returning true, or stating that µ̂ is spurious, returning false. If
check-model succeeds, then check-refine returns ⟨true, ∅⟩, and the whole process terminates.
Otherwise µ̂ is spurious –because it violates some multiplications, or some transcendental functions,
or both– and check-model could not prove the existence of another model within the current
precision. (Nevertheless, one such model could exist, and might be found using a better precision.)
The rest of the procedure tries to refine the spurious model µ̂ by adding UFLRA refinement

constraints that rule out µ̂ (and other spurious solutions), which are collected into the set Γ,
interleaving this process with calls to check-model with increasingly improved precision. This is
performed in two steps.

The first step is the refinement of products (line 3). block-spurious-product-terms is invoked
on φ̂ and µ̂ and looks for UFLRA constraints on multiplication terms in the form f∗ (x ,y) occurring
in φ̂ which are violated by µ̂. These constraints are stored in Γ. Importantly, this process does not
depend on the precision ϵ . (block-spurious-product-terms is described in §4.)

The second step is the refinement of transcendental functions, which is performed for progressively-
improving precision (lines 4-10). At each iteration, first block-spurious-transcendental-terms
is invoked on φ̂, µ̂ and ϵ , and looks for UFLRA constraints on transcendental terms in the form
ftf (x ) occurring in φ̂ which are violated by µ̂. These constraints (if any) are added to Γ. (block-
spurious-transcendental-terms is described in §4.) Then, if Γ contains at least one refinement
constraint ruling out µ̂, then ⟨false, Γ⟩ is returned. If not so, then no result in either direction
was obtained with the current precision. Then, the current precision is increased (in the current
implementation, we simply reduce ϵ by one order of magnitude), and check-model is invoked
again with the improved precision, returning ⟨true, ∅⟩ if it succeeds, like in lines 1-2. The whole
process in lines 5-10 is iterated until either φ is found satisfiable, or some refinement constraint is
produced (or the process is terminated due to resource-budget exhaustion).

Remark 1. It is important to notice that Fig. 3 describes the strategy which is currently im-
plemented, which is only one of the many alternative strategies by which refinement can be
performed. E.g., the calls to check-model, block-spurious-product-terms and block-spurious-
transcendental-terms are not bound to be executed necessarily in this sequence, and can be
interleaved in different ways. For instance, one could adopt the strategy to call block-spurious-
transcendental-terms only if Γ = ∅, so that check-refine will be repeatedly called to refine
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Zero: ∀x ,y.((x = 0 ∨ y = 0) ↔ f∗ (x ,y) = 0)
∀x ,y.(((x > 0 ∧ y > 0) ∨ (x < 0 ∧ y < 0)) ↔ f∗ (x ,y) > 0)
∀x ,y.(((x < 0 ∧ y > 0) ∨ (x > 0 ∧ y < 0)) ↔ f∗ (x ,y) < 0)

Sign: ∀x ,y. f∗ (x ,y) = f∗ (−x ,−y)

∀x ,y. f∗ (x ,y) = −f∗ (−x ,y)

∀x ,y. f∗ (x ,y) = −f∗ (x ,−y)

Commutativity: ∀x ,y. f∗ (x ,y) = f∗ (y,x )

Monotonicity: ∀x1,y1,x2,y2.((abs (x1) ≤ abs (x2) ∧ abs (y1) ≤ abs (y2)) → abs ( f∗ (x1,y1)) ≤ abs ( f∗ (x2,y2)))

∀x1,y1,x2,y2.((abs (x1) < abs (x2) ∧ abs (y1) ≤ abs (y2) ∧ y2 , 0) → abs ( f∗ (x1,y1)) < abs ( f∗ (x2,y2)))

∀x1,y1,x2,y2.((abs (x1) ≤ abs (x2) ∧ abs (y1) < abs (y2) ∧ x2 , 0) → abs ( f∗ (x1,y1)) < abs ( f∗ (x2,y2)))

Tangent plane: ∀x ,y.( f∗ (a,y) = a ∗ y ∧ f∗ (x ,b) = b ∗ x∧

(((x > a ∧ y < b) ∨ (x < a ∧ y > b)) → f∗ (x ,y) < TanPlane∗,a,b (x ,y))∧
(((x < a ∧ y < b) ∨ (x > a ∧ y > b)) → f∗ (x ,y) > TanPlane∗,a,b (x ,y)))

Fig. 4. The refinement UFLRA constraint schemata for multiplication. (We recall that “abs (x )” is a shortcut
for “ite(x < 0,−x ,x )” and that “TanPlane∗,a,b (x ,y)” is a shortcut for “b ∗ x + a ∗ y − a ∗ b”.)

only multiplications (line 3) until a fixpoint is reached, and to refine the transcendental functions
only after then. Further information on these issues will be provided in §4 and §8.

4 REFINEMENT
In this section we focus on the refinement part of our procedure. We first describe how to perform
the refinement of multiplication terms f∗ (x ,y) in the function block-spurious-product-terms
(§4.1) and then how to perform refinement of transcendental functions in the function block-
spurious-transcendental-terms (§4.2).

4.1 Refinement for NRA
We describe the refinement of multiplication terms in the function block-spurious-product-
terms. The refinement is based on selecting suitable instantiations of given constraint schemata
which prevent spurious assignments to multiplication terms. We consider the refinement constraint
schemata in Fig. 4, where x ,xi ,y,yi are variables and a,b are generic rational values. It is straight-
forward to verify that all the constraints are valid formulae in any theory interpreting f∗ () as ∗.
Notice that, the Zero constraints refer to a single multiplication term, that the Sign, Commutativity
and Monotonicity constraints refer to pairs of multiplication terms, whereas the Tangent plane
constraints refer to a single multiplication term and a single point (a,b). The Zero, Sign, Commuta-
tivity and Monotonicity constraints are self-explanatory; the Tangent-plane constraints, instead,
deserve some explanations.
The equalities in the Tangent-plane constraints are providing multiplication lines that enforce

the correct value of f∗ (x ,y) when x = a or y = b; the inequalities are providing bounds for
f∗ (x ,y) when x and y are not on the multiplication lines. The constraints specialize the notion
of tangent plane to the case of nonlinear multiplication. Geometrically, the surface generated by
the multiplication functionmul (x ,y) =̇ x ∗ y is shown in Fig. 5a and 5b. This kind of surface is
known in geometry as hyperbolic paraboloid. A hyperbolic paraboloid is a doubly-ruled surface,
i.e. for every point on the surface, there are two distinct lines projected from the surface such that
they pass through the point. A tangent plane to a hyperbolic paraboloid has the property that
the two projected lines from the surface are also in the tangent plane, and they define how the
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(a) x ∗ y (b) x ∗ y (top view) (c) x ∗ y and tangent plane (d) x ∗ y and tangent

plane (top view)

Fig. 5. Multiplication function and tangent plane.

plane cuts the surface. In case of the multiplication surface, the projected lines basically lie on
the surface (see Fig. 5c and 5d). Another way to show the validity of the inequalities is by using
the fact that x ∗ y − TanPlane∗,a,b (x ,y) = (x − a) ∗ (y − b). Consider the following case of the
Tangent-plane inequalities (the other cases can be proven in the same way): (x > a) ∧ (y < b) →
(x ∗ y < TanPlane∗,a,b (x ,y)). Using the previous fact, we can rewrite the right hand-side of the
implication as (x −a) ∗ (y −b) < 0, which follows immediately from the premises of the implication.
Let µ̂ be the spurious interpretation which is given as input to block-spurious-product-

terms. Let f∗ (x ,y) be one generic multiplication term occurring in φ̂, let a =̇ µ̂[x] and b =̇ µ̂[y]. If
µ̂[f∗ (x ,y)] , a∗b, then f∗ (x ,y) is a spurious term in µ̂. The idea is thus to add refinement constraints
to block the spurious terms f∗ (x ,y) in φ̂ so that a new interpretation will be constructed. In what
follows, ST µ̂

∗ denotes the set of multiplication terms in φ̂ which are made spurious by µ̂.

Single-term Refinements. If f∗ (x ,y) is the only multiplication term occurring in a constraint
schema ∀x ,y.ψ in Fig. 4 (i.e., a Zero constraint schema), and f∗ (t1, s1) ∈ ST

µ̂
∗ , then we say that µ̂

violates ∀x ,y.ψ on f∗ (t1, s1) wrt. f∗ (x ,y) if and only ifψ {x ,y 7→ µ̂[t1], µ̂[s1]} is false in any theory
interpreting f∗ () as ∗. Then, for every term f∗ (t1, s1) ∈ ST

µ̂
∗ , and for every constraint schema

∀x ,y.ψ as above, if µ̂ violates ∀x ,y.ψ on f∗ (t1, s1) wrt. f∗ (x ,y), then we can produce the refinement
constraintψ {x ,y 7→ t1, s1}. By construction, µ̂ ̸ |= ψ ′, that is,ψ ′ rules out µ̂.

Double-term Refinements. Similarly, if f∗ (t , s ) and f∗ (u,w ) for some terms s, t ,u,w are the only
multiplication terms occurring in a constraint schema ∀x.ψ (i.e. a Sign, Commutativity, or Mono-
tonicity constraint schema), and f∗ (t1, s1), f∗ (u1,w1) ∈ ST

µ̂
∗ s.t. ⟨f∗ (t , s ), f∗ (u,w )⟩ can be mapped

into ⟨f∗ (t1, s1), f∗ (u1,w1)⟩ by some variable instantiation σ : x 7→ t, we say that µ̂ violates ψ on

⟨f∗ (t1, s1), f∗ (u1,w1)⟩ wrt ⟨f∗ (t , s ), f∗ (u,w )⟩ if and only if ψ {x 7→ µ̂[t]} is false in any theory in-
terpreting f∗ () as ∗. Then, for every pair of terms ⟨f∗ (t1, s1), f∗ (u1,w1)⟩ and for every constraint
schemaψ as above, if µ̂ violatesψ on f∗ (t1, s1) wrt ⟨f∗ (t , s ), f∗ (u,w )⟩ as above, then we can produce
the refinement constraintψ ′ =̇ψ {x 7→ t}. By construction, µ̂ ̸ |= ψ ′, that is,ψ ′ rules out µ̂.

Tangent-Plane Refinements. For every term f∗ (t1, s1) ∈ ST
µ̂
∗ , and for each

Tangent-plane constraint schema ∀x ,y.ψ , we can produce the refinement constraint
ψ ′ =̇ψ {x ,y,a,b 7→ t1, s1, µ̂[t1], µ̂[s1]}. By construction, µ̂ ̸ |= ψ ′, that is,ψ ′ rules out µ̂.

Example 4.1. Consider the case where φ contains the multiplications u1 ∗w1 and u2 ∗w2, so that
φ̂ contains the multiplication terms f∗ (u1,w1) and f∗ (u2,w2). Let µ̂ be a spurious assignment s.t.

µ̂[u1] = 2, µ̂[w1] = 3, µ̂[f∗ (u1,w1)] = 7, µ̂[u2] = 3, µ̂[w2] = −4, µ̂[f∗ (u2,w2)] = 5.
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Zero: ((u2 < 0 ∧w2 > 0) ∨ (u2 > 0 ∧w2 < 0)) ↔ f∗ (u2,w2) < 0
Monotonicity: (abs (u1) ≤ abs (u2) ∧ abs (w1) ≤ abs (w2)) → abs ( f∗ (u1,w1)) ≤ abs ( f∗ (u2,w2))

(abs (u1) < abs (u2) ∧ abs (w1) ≤ abs (w2) ∧w2 , 0) → abs ( f∗ (u1,w1)) < abs ( f∗ (u2,w2))

(abs (u1) ≤ abs (u2) ∧ abs (w1) < abs (w2) ∧ u2 , 0) → abs ( f∗ (u1,w1)) < abs ( f∗ (u2,w2))

Tangent plane: f∗ (2,w1) = 2 ∗w1

f∗ (u1, 3) = 3 ∗ u1
((u1 > 2 ∧w1 < 3) ∨ (u1 < 2 ∧w1 > 3)) → f∗ (u1,w1) < 3 ∗ u1 + 2 ∗w1 − 6
((u1 < 2 ∧w1 < 3) ∨ (u1 > 2 ∧w1 > 3)) → f∗ (u1,w1) > 3 ∗ u1 + 2 ∗w1 − 6
f∗ (3,w2) = 3 ∗w2

f∗ (u2,−4) = −4 ∗ u2
((u2 > 3 ∧w2 < −4) ∨ (u2 < 3 ∧w2 > −4)) → f∗ (u2,w2) < −4 ∗ u2 + 3 ∗w2 + 12
((u2 < 3 ∧w2 < −4) ∨ (u2 > 3 ∧w2 > −4)) → f∗ (u2,w2) > −4 ∗ u2 + 3 ∗w2 + 12

Sign: f∗ (u1,w1) = −f∗ (u1,−w1)

Commutativity: f∗ (u2,w2) = f∗ (w2,u2)

Fig. 6. Top: example of instantiation of constraint schemata for the multiplication terms f∗ (u1,w1) and
f∗ (u2,w2), where µ̂[u1] = 2, µ̂[w1] = 3, µ̂[f∗ (u1,w1)] = 7, µ̂[u2] = 3, µ̂[w2] = −4, µ̂[f∗ (u2,w2)] = 5.
Bottom: example of instantiation of Sign and Commutativity if we consider also f∗ (u1,−w1) and f∗ (w2,u2).

µ̂ violates the third Zero constraint on f∗ (u2,w2), it does not violate any Sign or Commutativity
constraint, and it violates the three Monotonicity constraints on ⟨f∗ (u1,w1), f∗ (u2,w2)⟩. Overall,
this leads to the addition of the Zero and Monotonicity constraints, plus the Tangent-plane ones in
the points (2, 3) and (3,−4), which are reported at the top of Fig. 6.
If φ contains also f∗ (u1,−w1) and f∗ (w2,u2), and if µ̂[f∗ (u1,−w1)] = −3 and µ̂[f∗ (w2,u2)] = 9,

then we add also the Sign and Commutativity constraints in the bottom part of Fig. 6 (plus the
other Zero, Monotonicity and Tangent-plane constraints).

Remark 2. The above narration describes a very “eager” refinement strategy, in which all possible
refinement constraints for all possible spurious multiplication terms are generated. Notice, however,
that in order to rule out µ̂ it is sufficient to produce one single refinement constraint for one single
spurious multiplication term. Thus, a great variety of more “lazy” strategies can be adopted, in
which only some of the schemata are instantiated, and only for some of the multiplication terms.
For example, rather than refining all spurious terms, it might be a good idea to refine only terms
occurring in atomic subformulae whose truth-value assignment in µ̂ actually contributed to satisfy
φ̂. (E.g., atoms occurring only positively in φ̂ which are true in µ̂, see e.g. [7].)

Also, the instantiation of each constraint schema can be implemented at different levels of
granularity, because some constraint schema may correspond to the conjunction of more than one
clause (e.g., three clauses in the case of each Zero constraint schema 3) so that one may decide to
instantiate all, some or only one of the clauses that are actually violated by µ̂.
Notice that, even more eager refinement strategies are possible, e.g., by instantiating the Sign

and Commutativity constraint schemata ∀x ,y.ψ also when only one multiplication term f∗ (t1, s1)

in ST µ̂
∗ matches one of the two multiplication terms in ∀x ,y.ψ , adding a new multiplication term.

We will discuss the strategies which we have actually chosen and implemented in §8.

3A formula in the form (A ∨ B ) ↔ C can be rewritten as (A ∨ B ∨ ¬C ) ∧ (¬A ∨C ) ∧ (¬B ∨C ).
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Fig. 7. Piecewise-linear refinement illustration.

constraint-set block-spurious-transcendental-terms (φ̂, µ̂, ϵ):
1. Γ := ∅
2. for all ftf (x ) ∈ φ̂:
3. ⟨Pl (x ), Pu (x )⟩ := get-polynomial-bounds (ftf (x ), µ̂, ϵ)
4. if µ̂[ftf (x )] < [Pl (µ̂[x]), Pu (µ̂[x])]:
5. Γ := Γ ∪ block-spurious-nta-term( f tf(x ), µ̂, Pl (x ), Pu (x ))
6. return Γ

Fig. 8. Refinement of transcendental functions.

⟨polynomial, polynomial⟩ get-polynomial-bounds (ftf (x ), µ̂, ϵ):
1. c := µ̂[x]
2. conctf := get-concavity (tf, c)
3. i := 1
4. while true:
5. ⟨Pl (x ), Pu (x )⟩ := maclaurin-approx (tf, i , x , c)
6. δ := Pu (c ) − Pl (c )
7. concl := get-concavity (Pl , c)
8. concu := get-concavity (Pu , c)
9. if concl = concu = conctf and δ ≤ ϵ :
10. return ⟨Pl (x ), Pu (x )⟩
11. else:
12. i := i + 1

Fig. 9. Polynomial bounds computation for transcendental functions.

4.2 Refinement for NTA
We consider now the problem of eliminating spurious assignments to transcendental functions.
The pseudo-code for block-spurious-transcendental-terms is shown in Fig. 8. We iterate on
all the (abstract) transcendental function applications ftf (x ) in φ̂, in order to check whether the
SMT(UFLRA)-model µ̂ is consistent with the NTA semantics. In principle, this amounts to checking if
µ̂[ftf (x )] = tf(µ̂[x]). In practice, the check cannot be implemented, since transcendental functions
at rational points most often have irrational values (see e.g. [57]), which cannot be represented in
SMT(UFLRA).
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Therefore, for each term tf(x ) in φ, we instead compute two rational values, namely ql and
q, with the property that ql ≤ tf(µ̂[x]) ≤ q. The computation of ql and q is based on
polynomials computed using Taylor series, according to the given current precision, by the function
get-polynomial-bounds of Fig. 9. This is done by expanding the Maclaurin series of tf, generating
polynomials for the upper and lower bounds according to Taylor’s theorem (see §2.3), until the
requested precision ϵ is met. The two values ql andq are simply the results of evaluating the two
computed polynomials Pl (x ) and Pu (x ) at µ̂[x]. As an additional requirement that will be explained
below, the function also ensures (lines 7–9) that the concavity of the Taylor polynomials is the
same as that of tf at µ̂[x].
If the value of tf(x ) in µ̂ is not included in the interval [ql,q], the function block-spurious-

nta-term of Fig. 10 is used to generate (piecewise) linear constraints that remove the point
(µ̂[x], µ̂[tf(x )]) (and possibly many others) from the graph of ftf, thus refining the abstraction.
The refinement is performed by block-spurious-nta-term of Fig. 10 in two steps. First, it

attempts to exclude the bad point by invoking block-spurious-nta-basic, which instantiates
some basic constraint schemata describing very general properties of the transcendental function tf
under consideration (lines 1-3). These constraints encode some simple properties of transcendental
functions (such as sign and monotonicity conditions, or bounds at noteworthy values) via linear
relations, and are described in §4.2.1 and §4.2.2. If the current abstract model µ̂ violates any of the
basic constraints, block-spurious-nta-term simply returns their corresponding instantiations.

If none of the basic constraints is violated, then two situations are possible, as illustrated in Fig. 7.
Let the green line be the graph of some transcendental function tf. The points p1 = (x1,y1) and
p2 = (x2,y2), say (1.0,1.0) and (2.2, 0.5), represent transcendental terms that are spurious in the
current assignment µ̂ —that is, p1 = (µ̂[x1], µ̂[ftf (x1)]) and p2 = (µ̂[x2], µ̂[ftf (x2)]), for some x1,x2.
In order to eliminate them, we need to discover linear constraints that are guaranteed to safely
approximate tf. Clearly, a major role is played by the position of the spurious value µ̂[ftf (x )]
relative to the correct value tf(µ̂[x]), and by the concavity of tf around the point µ̂[x]. If the
concavity is negative or equal to zero, and the point lies above the function, then the tangent to
the function would be adequate to block the spurious assignment –and tighten the approximation
of tf. (This is the case for p1.) However, if the concavity is negative but the point lies below the
function, then a tangent would be not adequate. (This is the case for p2.) For this reason, secants
are required, which are unfortunately not unique.

Themain problem, however, is that the coefficients of the tangent or of a secant to a transcendental
function for a rational value are likely to be irrational, which means that the constraints of the
tangent/secant line cannot be readily dealt with by an SMT(UFLRA) solver. As shown in Fig. 7,
the idea is to rely on polynomials to approximate the transcendental function, making sure that
they also agree on the concavity with the transcendental function. In this way, the polynomial Pu
approximating tf from above, depicted as a dashed blue line, has tangent that is guaranteed to
approximate tf from above (see Proposition 2.5 in §2.3). Similarly, for the (red dashed) polynomial Pl
approximating tf from below, any piecewise combination of secants is guaranteed to approximate
tf from below. The key property of polynomials is that the coefficients for tangents and secants are
guaranteed to be rationals, and thus amenable to LRA reasoning. These polynomials are computed
using the Maclaurin series of the corresponding transcendental function and Taylor’s theorem.
Notice that, we use the Maclaurin series (i.e. the Taylor series centered around 0) because we
can always compute the exact derivative of any order at 0 for the transcendental functions we
support, namely the exponential (exp) and the sine (sin) function. In fact, exp(0) = 1, sin(0) = 0,
exp(i ) (x ) = exp(x ) for all i , and | sin(i ) (x ) | is | cos(x ) | if i is odd and | sin(x ) | otherwise. Thus, the
computation of the Maclaurin series and of the remainder polynomial is exact.
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constraint-set block-spurious-nta-term (tf(x ), µ̂, Pl (x ), Pu (x )):
# basic refinement

1. Γ := block-spurious-nta-basic (tf(x ), µ̂)
2. if Γ , ∅:
3. return Γ

# general refinement

4. c := µ̂[x]
5. v := µ̂[ftf (x )]
6. conc := get-concavity (tf(x ), c)
7. if (v ≤ Pl (c ) and conc ≥ 0) or (v ≥ Pu (c ) and conc ≤ 0):

# tangent refinement

8. P := (v ≤ Pl (c )) ? (Pl ) : (Pu )
9. T (x ) := TanLineP,c (x ) # tangent of P at c

10. ⟨l ,u⟩ := get-tangent-bounds (tf(x ), c , d
dx P (c ))

11. ψ := (conc < 0) ? ( ftf (x ) ≤ T (x )) : ( ftf (x ) ≥ T (x ))
12. Γ := {((x ≥ l ) ∧ (x ≤ u)) → ψ }
13. else: # (v ≤ Pl (c ) ∧ conc < 0) ∨ (v ≥ Pu (c ) ∧ conc > 0)

# secant refinement

14. prev := get-previous-secant-points (tf(x ))
15. l := max{p ∈ prev | p < c}
16. u := min{p ∈ prev | p > c}
17. P := (v ≤ Pl (c )) ? (Pl ) : (Pu )
18. Sl (x ) := SecLineP,l,c (x ) # secant of P between l and c
19. Su (x ) := SecLineP,c,u (x )
20. ψl := (conc < 0) ? ( ftf (x ) ≥ Sl (x )) : ( ftf (x ) ≤ Sl (x ))
21. ψu := (conc < 0) ? ( ftf (x ) ≥ Su (x )) : ( ftf (x ) ≤ Su (x ))
22. ϕl := (x ≥ l ) ∧ (x ≤ c )
23. ϕu := (x ≥ c ) ∧ (x ≤ u)
24. store-secant-point (tf(x ), c)
25. Γ := {(ϕl → ψl ), (ϕu → ψu )}
26. return Γ

Fig. 10. Piecewise-linear refinement for the transcendental function tf(x ) at point c .

The rest of the primitive block-spurious-nta-term (lines 4-26), which blocks spurious tran-
scendental terms, is based on the above considerations. If the concavity is positive (resp. negative)
or equal to zero, and the point lies below (resp. above) the function, then the linear approximation
is given by a tangent to the lower (resp. upper) bound polynomial Pl (resp. Pu ) at µ̂[x] (lines 7–12
of Fig. 10); otherwise, i.e. the concavity is negative (resp. positive) and the point is below (resp.
above) the function, the linear approximation is given by a pair of secants to the lower (resp. upper)
bound polynomial Pl (resp. Pu ) around µ̂[x] (lines 13–25 of Fig. 10) – an example is shown in Fig. 7.

In the case of tangent refinement, the function get-tangent-bounds (line 10) returns an interval
[l ,u] inside which the tangent line is guaranteed not to cross the transcendental function tf. In
practice, this interval can be (under)approximated quickly by exploiting known properties of the
specific function tf under consideration. For example, for the exponential function get-tangent-
bounds always returns [−∞,+∞]; for other functions, the computation can be based e.g. on an
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Lower Bound: ∀y.( fexp (y) > 0)
Zero: ∀y.(y = 0↔ fexp (y) = 1)

∀y.(y < 0↔ fexp (y) < 1)
∀y.(y > 0↔ fexp (y) > 1)

Zero Tangent Line: ∀y.(y , 0↔ fexp (y) > y + 1)
Monotonicity: ∀y1,y2.(y1 < y2 ↔ fexp (y1) < fexp (y2))

Fig. 11. Basic constraint schemata for the exponential function.

analysis of the (known, precomputed) inflection points of tf around the point of interest µ̂[x] and
the slope d

dx P (c ) of the tangent line.
In the case of secant refinement, a second value, different from µ̂[x], is required to draw a secant

line. The function get-previous-secant-points returns the set of all the points at which a secant
refinement was performed in the past for tf(x ). From this set, we take the two points l and u
closest to µ̂[x], such that l < µ̂[x] < u and that there is no inflection point in [l ,u] 4, and use
those points to generate two secant lines and their validity intervals. Before returning the set of
the two corresponding constraints, we also store the new secant refinement point µ̂[x] by calling
store-secant-point.

Remark 3. Note that we have some freedom in choosing the extra points for secant refinement,
as long as they lie within the interval in which the concavity doesn’t change; our reuse of previous
secant points is therefore simply a heuristic, based on the intuition that the points are relevant
(because they have been generated in previous refinements); furthermore, by reusing previous
points we avoid introducing too many new literals, which might pollute the search space of the
solver.

Remark 4. Similarly to the case of NRA (see Remark 2), we remark that also the above description
is only one of the possible strategies for refinement, and that in particular it is possible to adopt
lazier variants.

Example 4.2. In order to rule out a spurious interpretation µ̂[x] = 2.0, µ̂[fexp (x )] = 3.0 (where
fexp (x ) is the abstraction of the exponential function) we may exploit the positive concavity of
exp(x ) and obtain a linear lower-bound constraint, e.g. fexp (x ) > 155

21 +
331
45 ∗ (x − 2). Notice that,

exp(2.0) ≊ 7.389, 155
21 ≊ 7.381 ⪅ exp(2.0), and 331

45 ≊ 7, 356 ⪅ d
dx exp (2.0). These values are such

that the above linear constraint “approximates” the tangent of exp(x ) in x = 2, since it always
lower-bounds exp (x ) and its value and derivative are very near to those of exp (x ) for x = 2.0.

In the following, we discuss our approach for generating refinement constraints for the transcen-
dental functions exp and sin. Other transcendental functions such as log, cos, tan, arcsin, arccos,
arctan can be handled by means of rewriting. For example, cos(x ) is rewritten to sin(x+ π

2 ), whereas
if φ contains log(x ), we rewrite it as φ{log(x ) 7→ lx } ∧ exp(lx ) = x , where lx is a fresh variable.

4.2.1 The Exponential Function.

Basic linear constraints. Our implementation of block-spurious-nta-basic for exp uses the
linear constraint schemata in Fig. 11. For each exponential function exp(x ) violating its rational
4For simplicity, we assume that this is always possible. If needed, this can be implemented e.g. by generating the two points
at random while ensuring that l < µ̂[x ] < u and that there is no inflection point in [l, u].
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bounds, we instantiate the basic constraint schemata with µ̂[x]; if the result evaluates to false,
we generate the corresponding instantiation by replacing the quantified variable y with x and
removing the quantifier. In the case of the monotonicity constraint schema, we check all possible
combinations of exponential function applications exp(x1) and exp(x2) that are violating their
rational bounds.

Polynomial approximation. Since d
dx exp(x ) = exp(x ), all the derivatives of exp are positive. The

polynomial Pn,exp(0) (x ) is given by the Maclaurin series

Pn,exp(0) (x ) =
n∑
i=0

x i

i!

and behaves differently depending on the sign of x . Thus, get-polynomial-bounds distinguishes
three cases for finding the polynomials Pl (x ) and Pu (x ):

Case x = 0: since exp(0) = 1, we have Pl (0) = Pu (0) = 1;
Case x < 0: we have that Pn,exp(0) (x ) < exp(x ) if n is odd, and Pn,exp(0) (x ) > exp(x ) if n is even;
we therefore set Pl (x ) = Pn,exp(0) (x ) and Pu (x ) = Pn+1,exp(0) (x ) for a suitable n so that the
required precision ϵ is met;

Case x > 0: we have that Pn,exp(0) (x ) < exp(x ) and Pn,exp(0) (x ) ∗ (1 − xn+1
(n+1)! )

−1 > exp(x ) when
(1 − xn+1

(n+1)! ) > 0, therefore we set Pl (x ) = Pn,exp(0) (x ) and Pu (x ) = Pn,exp(0) (x ) ∗ (1 − xn+1
(n+1)! )

−1

for a suitable n. 5 This upper bound is derived using Taylor’s theorem: We can write exp as a
sum of the Taylor series centered at zero and Lagrange remainder.

exp(x ) = Pn,exp(0) (x ) + exp(c ) ∗
xn+1

(n + 1)!

When x > 0 then exp(c ) ≤ exp(x ), therefore the above equality can be written as:

exp(x ) ≤ Pn,exp(0) (x ) + exp(x ) ∗
xn+1

(n + 1)!

exp(x ) − exp(x ) ∗
xn+1

(n + 1)!
≤ Pn,exp(0) (x )

exp(x ) ∗ (1 −
xn+1

(n + 1)!
) ≤ Pn,exp(0) (x )

We can obtain an upper bound for exp(x ) for the case when (1 − xn+1
(n+1)! ) > 0, that is

exp(x ) ≤ Pn,exp(0) (x ) ∗ (1 −
xn+1

(n + 1)!
)−1

Since the concavity of exp is always positive, the tangent refinement will always give lower
bounds for exp(x ), and the secant refinement will give upper bounds. Moreover, as exp has no
inflection points, get-tangent-bounds always returns [−∞,+∞].

4.2.2 The Sine Function.

5We slightly abuse the notation: Pu (x ) is not a polynomial but a rational function.

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.



Incremental Linearization for Satisfiability and Verification 1:19

Dealing with periodicity: base period shifting. The correctness of our refinement procedure relies
crucially on being able to compute the concavity of the transcendental function tf at a given point
c . This is needed in order to know whether a computed tangent or secant line constitutes a valid
upper or lower bound for tf around c (see Fig. 7 and 10). In the case of the sin function, computing
the concavity at an arbitrary point c is problematic, since this essentially amounts to computing the
value c ′ ∈ [−π ,π [ s.t. c = 2πn + c ′ for some integer n, because in [−π ,π [ the concavity of sin(c ′)
is the opposite of the sign of c ′. This is not easy to compute because π is a transcendental number.
In order to solve this problem, we exploit another property of sin, namely its periodicity (with

period 2π ). More precisely, we split the reasoning about sin depending on two kinds of periods:
base period, with argument from −π to π , and extended period. For each sin(x ) term we introduce
an “artificial” sin term sin(ωx ), where ωx is a fresh variable called base variable. Base variables
are constrained to be interpreted over the base period, where the sin value for the corresponding
variable in the extended period is computed. This is done by adding the following constraint during
formula preprocessing:

φshif t =̇
∧

sin(x )∈φ

(−π ≤ ωx < π ∧ ((−π ≤ x < π ) → x = ωx ) ∧ sin(x ) = sin(ωx )) (1)

The first conjunct constrains ωx to the base period. The second conjunct 6 states that if x is
interpreted in the base period then it has the same value as its base variable. The third conjunct
constrains sin(x ) to have the same value as sin(ωx ). In order to reason about the irrational π , we
introduce a variable π̂ , and add the constraint lπ < π̂ < uπ to φ. lπ and uπ are valid rational lower
and upper bounds for the actual value of π that can be computed with various methods. Using this
transformation, we can easily compute the concavity of sin at µ̂[ωx ] by just looking at the sign of
µ̂[ωx ], provided that −lπ ≤ µ̂[ωx ] ≤ lπ , where lπ is the current lower bound for π̂ . (We recall that
in the interval [−π ,π [, the concavity of sin(c ) is the opposite of the sign of c .)
Let F b

sin be the set of fsin (ωx ) terms in φ̂ that have base variables as arguments, Fsin be the set
of all fsin (x ) terms, and F e

sin =̇ Fsin \ F
b
sin, where fsin is the uninterpreted function that represents

sin in φ̂. Both the basic linear refinement and the tangent/secant refinement is performed for the
terms in F b

sin only; we then use linear shift constraints (described below) for refining terms in F e
sin,

as follows.
For each fsin (x ) ∈ F

e
sin with the corresponding base variable ωx , we check whether the value

µ̂[x] after shifting to the base period is equal to the value of µ̂[ωx ]. We calculate the integer shift
value s of x as the rounding towards zero of (µ̂[x] + µ̂[π̂ ])/(2 ∗ µ̂[π̂ ]), and we then compare µ̂[ωx ]
with µ̂[x] − 2 ∗ s ∗ µ̂[π̂ ]. If the values are different, we add the following linear shift constraint for
relating x with ωx in the extended period s:

(−π̂ ≤ ωx < π̂ ∧ fsin (x ) = fsin (ωx ) ∧ π̂ ∗ (2 ∗ s − 1) ≤ x < π̂ ∗ (2 ∗ s + 1)) → ωx = x − 2 ∗ s ∗ π̂ .

In this way, we do not need the tangent and secant refinement for the extended period and we
can reuse the refinements done in the base period. Notice that, even if the calculated shift value is
wrong (due to the imprecision of µ̂[π̂ ] with respect to the real value π ), the constraint we generate
may be useless, but it is never wrong.

Basic linear constraints. We use the constraint schemata of Fig. 12 for implementing block-
spurious-nta-basic for sin. As written above, these constraints are only checked for terms in
F b
sin.

6 Notice that we can skip the addition of this constraint, which could be added during the refinement as a linear shift
constraint. However, we chose to add it eagerly because it is a very common case.
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Symmetry: ∀ωx .( fsin (ωx ) = −fsin (−ωx ))

Phase: ∀ωx .(−π̂ ≤ ωx < π̂ → (0 < ωx ↔ fsin (ωx ) > 0))
∀ωx .(−π̂ ≤ ωx < π̂ → (−π̂ < ωx < 0↔ fsin (ωx ) < 0))

Zero Tangent: ∀ωx .(−π̂ ≤ ωx < π̂ → (ωx > 0↔ fsin (ωx ) < ωx ))

∀ωx .(−π̂ ≤ ωx < π̂ → (ωx < 0↔ fsin (ωx ) > ωx ))

π Tangent: ∀ωx .(−π̂ ≤ ωx < π̂ → ( fsin (ωx ) < −ωx + π̂ ))

∀ωx .(−π̂ ≤ ωx < π̂ → (ωx > −π̂ ↔ fsin (ωx ) > −ωx − π̂ ))

Significant Values: ∀ωx .(−π̂ ≤ ωx < π̂ → ( fsin (ωx ) = 0↔ (ωx = 0 ∨ ωx = −π̂ )))

∀ωx .(−π̂ ≤ ωx < π̂ → ( fsin (ωx ) = 1↔ ωx =
π̂

2
))

∀ωx .(−π̂ ≤ ωx < π̂ → ( fsin (ωx ) = −1↔ ωx = −
π̂

2
))

∀ωx .(−π̂ ≤ ωx < π̂ → ( fsin (ωx ) =
1
2
↔ (ωx =

π̂

6
∨ ωx =

5 ∗ π̂
6

)))

∀ωx .(−π̂ ≤ ωx < π̂ → ( fsin (ωx ) = −
1
2
↔ (ωx = −

π̂

6
∨ ωx = −

5 ∗ π̂
6

)))

Monotonicity: ∀ωx1 ,ωx2 .(−π̂ ≤ ωx1 < ωx2 ≤ −
π̂

2
→ fsin (ωx1 ) > fsin (ωx2 ))

∀ωx1 ,ωx2 .(−
π̂

2
≤ ωx1 < ωx2 ≤

π̂

2
→ fsin (ωx1 ) < fsin (ωx2 ))

∀ωx1 ,ωx2 .(
π̂

2
≤ ωx1 < ωx2 < π̂ → fsin (ωx1 ) > fsin (ωx2 ))

Fig. 12. Basic constraint schemata for sin function.

Polynomial approximation. For each term fsin (ωx ) that needs to be refined, we first check whether
µ̂[ωx ] ∈ [−lπ , lπ ], where lπ is the current lower bound for π̂ . If this is the case, then we derive the
concavity of sin at µ̂[ωx ] by just looking at the sign of µ̂[ωx ]. We can therefore perform tangent or
secant refinement as shown in Fig. 10. More precisely, get-polynomial-bounds finds the lower
and upper polynomials using Taylor’s theorem, which ensures that:

Pn,sin(0) (ωx ) − R
u
n+1,sin(0) (ωx ) ≤ sin(ωx ) ≤ Pn,sin(0) (ωx ) + R

u
n+1,sin(0) (ωx )

where Pn,sin(0) (ωx ) =
∑n

k=0
(−1)k ∗ω2k+1

x
(2k+1)! and Ru

n+1,sin(0) (ωx ) =
ω2(n+1)
x

(2(n+1))! . We set Pl (x ) = Pn,sin(0) (x ) −

Ru
n+1,sin(0) (x ) and Pu (x ) = Pn,sin(0) (x ) + Ru

n+1,sin(0) (x ). Under the above hypothesis that µ̂[ωx ] ∈
[−lπ , lπ ], also the function get-tangent-bounds can easily be implemented by looking at the sign
of µ̂[ωx ]: if µ̂[ωx ] ≥ 0, then the validity interval is [0, π̂ [, otherwise, it is [−π̂ , 0].

The remaining case to discuss is when the value of ωx in µ̂ is not within the interval [−lπ , lπ ]
(which means that |µ̂[ωx ]| ∈ (lπ ,uπ ]). In this case, we cannot reliably compute the concavity of sin
at µ̂[ωx ]. Therefore, instead of performing a tangent/secant refinement, we refine the precision of
π̂ by computing a tighter interval (l ′π ,u ′π ) for it, using Machin’s formula [9]. 7

7This is not explicitly shown in the pseudocode of Fig. 10, but it is part of block-spurious-nta-basic.
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⟨bool, model⟩ check-NRA-model (φ̂, µ̂):
1. ψ̂ := get-assignment(µ̂ ) # truth assignment induced by µ̂ on the atoms of φ̂ (2)
2. ψ̂ ∗ := ψ̂ ∧ linearization-axioms(ψ̂ ) # add multiplication-line constraints (3) to ψ̂
3. return SMT-UFLRA-check (ψ̂ ∗)

Fig. 13. An incomplete procedure using an SMT(UFLRA) solver.

5 SPURIOUSNESS CHECK AND DETECTING SATISFIABILITY
We concentrate now on the problems of checking the spuriousness of the abstract model µ̂ and of
detecting the existence of solutions for satisfiable formulae. We deal with NRA first in §5.1, and
then consider NTA in §5.2.

5.1 Finding Rational Models for NRA.
We first describe the behaviour of the function check-model restricted to NRA, which we represent
by the function check-NRA-model. Notice that, the parameter ϵ has no role for NRA, so that
check-NRA-model receives as input only φ̂ and µ̂.

In its simplest form, the function check-NRA-model could simply be implemented by checking
if µ̂[x] ∗ µ̂[y] = µ̂[f∗ (x ,y)] for every multiplication term f∗ (x ,y) ∈ φ̂, returning true if and only if
this is the case. It is easy to see, however, that this very simple algorithm can return true only if
the UFLRA solver “guesses” a model that is consistent with all the nonlinear multiplications. In an
infinite and dense domain like the rationals or the reals, the chances that this will happen are close
to zero in general.
Thus, in practice it is not enough for check-NRA-model to check the spuriousness of µ̂. In

order to detect satisfiable cases more effectively in the very-likely case in which µ̂ is spurious,
we also want that check-NRA-model searches for the existence of an actual model for φ “in the
surroundings” of µ̂. Our idea is to extract the truth assignment ψ̂ induced by µ̂ on the atoms of φ̂:

ψ̂ =̇
∧

[Â ∈ atoms(φ̂ ) s .t . µ̂ |=Â]

Â ∧
∧

[Â ∈ atoms(φ̂ ) s .t . µ̂ ̸ |=Â]

¬Â, (2)

and then to look for another model η̂ for ψ̂ . Notice that, any such model η̂ shares with µ̂ the truth
assignment on the atoms ψ̂ , but with different values of the real variables.

The algorithm we propose is outlined in Fig. 13, where we extract the truth assignment ψ̂ induced
by the UFLRA model µ̂ on the atoms of φ̂, and we conjoin to it the multiplication-line constraints:

ψ̂ ∗ = ψ̂ ∧
∧

f∗ (x,y )∈ψ̂

(
( x = µ̂[x] ∧ f∗ (x ,y) = µ̂[x] ∗ y ) ∨
( y = µ̂[y] ∧ f∗ (x ,y) = µ̂[y] ∗ x )

)
. (3)

The main idea is to build an UFLRA underapproximation ψ̂ ∗ of the NRA formulaψ , in which all
multiplications are forced to be linear. Notice that, this corresponds to searching for a solution
along the multiplication lines described in §4.1, Fig. 5c and Fig. 5d. This idea is demonstrated by
the following example.

Example 5.1. Consider the following formula φ =̇ x ∗ y = 10 ∧ (2 ≤ x ≤ 4) ∧ (2 ≤ y ≤ 4). Its
abstraction is given by φ̂ =̇ f∗ (x ,y) = 10 ∧ (2 ≤ x ≤ 4) ∧ (2 ≤ y ≤ 4). Suppose the following model
µ̂ is returned by SMT-UFLRA-check (line 6 in Fig. 3.2): µ̂[x] = 2, µ̂[y] = 4, µ̂[f∗ (x ,y)] = 10. µ̂ is a
spurious interpretation because 2 ∗ 4 , 10 in NRA. However, using check-NRA-model we can still
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bool check-model (φ̂, µ̂, ϵ):
1. ⟨sat , µ̂∗⟩ := check-NRA-model (φ̂, µ̂)
2. if sat :
3. let φsatµ̂∗ be the formula as defined in (5)
4. return not SMT-LRA-check (¬φsatµ̂∗ )
5. else:
6. return false

Fig. 14. Detecting Satisfiability using an SMT(LRA) solver.

find an NRA-compliant model from the “guesses”, which solves the following UFLRA-satisfiable
formula (see (3)):

ψ̂ ∗ =̇ f∗ (x ,y) = 10 ∧ (2 ≤ x ≤ 4) ∧ (2 ≤ y ≤ 4)∧
((x = 2 ∧ f∗ (x ,y) = 2 ∗ y) ∨ (y = 4 ∧ f∗ (x ,y) = 4 ∗ x )).

A possible UFLRA-model µ̂∗ for φ̂ is:

µ̂∗[x] =
5
2
, µ̂∗[y] = 4, µ̂∗[f∗ (x ,y)] = 10,

that is also compliant with NRA.

Given the simplicity of the Boolean structure of the underapproximated formula, the check
should in general be very cheap. In substance, we trade the complexity of NRA-solving with some
extra Boolean reasoning. The drawback is that this is (clearly) still an incomplete procedure (see
Example 5.2). However, in our experiments (for which we refer to §10) we have found it to be
surprisingly effective for many problems.

Example 5.2. Consider the following NRA-satisfiable formula: φ =̇ x ∗ x = 2. check-NRA-model
would never find a model that is compliant with NRA, because it is driven by the “guesses” returned
by SMT-UFLRA-check which only produces rational number guesses (line 6 in Fig. 3.2) and φ has
models with irrational numbers only. Moreover, for the same reason the procedure SMT-NTA-check
would never terminate and will keep performing the refinement.

5.2 Detecting Satisfiability with NTA
We describe now how to extend the check-model procedure to deal with transcendental functions.
The pseudo-code for check-model is shown in Fig. 14. As already written earlier, since our UFLRA
solver is not able to deal with irrational numbers, in general we are not able to precisely represent
a model µ for a formula with transcendental functions, since in most cases the model value for a
term tf(x ) is irrational if the value for x is rational. 8
In general, therefore, we are not able to construct a model for a formula with transcendental

functions. However, wemay exploit this simple observation: we can still conclude thatφ is satisfiable
if we are able to show that φ̂ is satisfiable under all possible interpretations of ftf that are guaranteed
to include also tf. In order to do this, we proceed as follows.

Starting from the abstract model µ̂ for φ̂, we first try to obtain a model µ̂∗ that is consistent with
multiplication terms, using the procedure check-NRA-model described in §5.1, while still treating
all the transcendental functions as uninterpreted. Then, we compute safe lower and upper bounds

8With the notable exception of 0, at which both exp and sin have rational values.
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tf(µ̂∗[x])
l
and tf(µ̂∗[x])

u
for the function tf at point µ̂∗[x] with the get-polynomial-bounds

function (see §4.2), with the current value of ϵ .
Let ψ be the formula obtained by substituting every f∗ (x ,y) ∈ φ̂ by x ∗ y and every variable

x ∈ φ̂ by µ̂∗[x] with the exception of π̂ . 9 We notice that, the satisfiability of the original formula φ
follows from the validity of the following formula ρ:

ρ =̇
*..
,
lπ < π̂ < uπ ∧

∧
ftf (x )∈φ̂

tf(µ̂∗[x])
l
≤ ftf (µ̂∗[x]) ≤ tf(µ̂∗[x])

u+//
-
→ ψ , (4)

that is, from the fact that ψ holds for all possible interpretations of π̂ and the uninterpreted
functions ftf which fit in the bounds in the given points. In fact, since by construction lπ < π <
uπ ∧ tf(µ̂∗[x]) l ≤ tf(µ̂∗[x]) ≤ tf(µ̂∗[x])

u
, then the validity of the above formula implies that the

formula is satisfied also by all interpretations which assign to π̂ the value of π and all ftf (µ̂∗[x])
the values of tf(µ̂∗[x]), which by construction satisfy the original formula φ.

In order to be able to use a quantifier-free SMT(LRA)-solver, we reduce the problem to the validity
check of a pure LRA formula. Let CT be the set of all terms ftf (µ̂∗[x]) occurring inψ . We replace
each occurrence of ftf (µ̂∗[x]) in CT with a corresponding fresh variable yftf (µ̂∗[x ]) from a set Y .
We then check the validity of the formula:

φsatµ̂∗ =̇ ∀π̂Y .ρ{CT 7→ Y }. (5)

If ¬φsatµ̂∗ is unsatisfiable, we conclude that φ is NTA-satisfiable. Clearly, this can be checked with
a quantifier-free SMT(LRA)-solver, since ¬∀x .ϕ is equivalent to ∃x .¬ϕ, and x can then be removed
by Skolemization.

Example 5.3. Consider the following NTA-satisfiable formula: φ =̇ exp(x ) > 0, and its initial
abstraction: φ̂ =̇ fexp (x ) > 0. We demonstrate an execution of check-model (Fig. 14). Let µ̂∗ be a
model returned by check-NRA-model (line 1 in Fig. 14), where: µ̂∗[x] = 1, µ̂∗[fexp (x )] = 1. Using
the bounds computed by get-polynomial-bounds (Fig. 9), (4) and (5) become:

ρ =̇

(
(
333
106
< π̂ <

355
113

) ∧ (
65
24
≤ fexp (1) ≤

325
119

)

)
→ fexp (1) > 0

φsatµ̂∗ =̇ ∀π̂ ,y.
*
,

(
333
106
< π̂ <

355
113

) ∧ (
65
24
≤ y ≤

325
119

)

)
→ y > 0+

-
¬φsatµ̂∗ =̇ (

333
106
< π̂ <

355
113

) ∧ (
65
24
≤ y ≤

325
119

) ∧ y ≤ 0

Note that ¬φsatµ̂∗ clearly LRA-unsatisfiable because of the constraints on y and that can be shown by
using any complete SMT(LRA) solver. Therefore, check-model returns true.

6 SOLVING VMT(NTA)
We now consider the problem of VMT(NTA), exploring several approaches. A first direction is the
direct use of an SMT(NTA) solver, like the one described in previous sections, to extend known
SMT-based verification algorithms. This extension can be relatively easy in the case of Bounded
Model Checking (BMC) and k-induction, given that both techniques interact with the SMT(NTA)

9Notice that, we are treating π as a zero-argument transcendental function.
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solver largely as if it were a “black box”. BMC presents to the SMT solver a sequence of proof
obligations of the form

BMC (S, P ,k ) =̇ I (X ⟨0⟩) ∧T (X ⟨0⟩,X ⟨1⟩) ∧ . . . ∧T (X ⟨k−1⟩,X ⟨k⟩) ∧ ¬P (X ⟨k⟩)

for increasing values of k , until a counterexample trace is found, or resource limit is exhausted.
BMC is an incomplete technique, oriented to finding violations, and likely to work well on unsafe
instances. k-induction interacts with the SMT solver in a similar way, but also attempting to prove
the validity of an inductive safety argument of the form

P (X ⟨0⟩) ∧T (X ⟨0⟩,X ⟨1⟩) ∧ . . . ∧ P (X ⟨k−1⟩) ∧T (X ⟨k−1⟩,X ⟨k⟩) → P (X ⟨k⟩)

Although effective in the finite-state case for safe instances in some practical cases, k-induction
turns out to be quite weak even for NRA. Consider for example the transition system S �
⟨I (X ) =̇ x ≥ 2 ∧ y ≥ 2 ∧ z = x ∗ y, T (X ,X ′) =̇ x ′ = x + 1 ∧ y ′ = y + 1 ∧ z ′ = x ′ ∗ y ′⟩. The property
P (X ) � z ≥ x + y is not k-inductive, not even for a very large value of k . Thus, the typical proving
techniques based on k-induction using an SMT(NRA) solver will not be able to prove it. Thus, one
could explore the extension to NTA of other SMT-based approaches, such as interpolation-based
verification or IC3 (e.g. [11, 22, 43, 46]), that are often more effective than k-induction. However,
there are substantial difficulties in lifting them to the case of NTA. First, they require an interpo-
lating SMT(NRA) solver, which is not available. Second, the effectiveness of IC3 depends on an
efficient, incremental interaction with the underlying SMT engine, which is asked to solve a large
number of relatively cheap and often satisfiable queries. The procedure of §3, however, can be
very expensive, especially for satisfiable queries. Finally, some IC3 extensions require the ability of
performing (approximated) quantifier eliminations, a functionality not provided by the algorithm
of Fig. 2.

Therefore, we propose a new direction, that radically differs from plugging a solver for SMT(NTA)
into a known SMT-based algorithm. Instead, we adopt an abstraction-refinement approach, lifting
the concepts of incremental linearization of NTA at the transition system level. In this approach,
the VMT(NTA) problem is abstracted to a VMT(UFLRA) verification problem. A very efficient
verification engine for VMT(UFLRA) is used as a black box, and the abstraction is refined in order
to rule out spurious counterexamples.

6.1 The Main Procedure
The pseudo-code of the main algorithm is reported in Fig. 15. The main function IC3-NTA-prove
takes as input a transition system S and a formula φ and checks if φ is an invariant property of
S. Notice that, as with SMT-NTA-check in §3, IC3-NTA-prove is not guaranteed to terminate,
so that we implicitly assume that it is stopped as soon as some given resource budget (e.g. time,
memory, number of iterations) is exhausted.
We first apply a preprocessing step to ⟨S,φ⟩ (function VMT-preprocess) which is analogous

to that of SMT-preprocess in SMT-NTA-check, producing ⟨S′,φ ′⟩. Then we generate ⟨Ŝ, φ̂⟩,
an abstract UFLRA version of the input NTA transition system S and invariant φ, by invoking
VMT-initial-abstraction. As with the SMT case, the VMT-initial-abstraction function re-
places every non-linear multiplication and transcendental function in the transition system and
property with the corresponding uninterpreted function symbol.

Then the procedure enters a loop (lines 3-11). At each iteration, the pair ⟨Ŝ, φ̂⟩ is first checked by
IC3-UFLRA-prove which implements IC3ia 10 [22], a procedure for VMT(UFLRA) that extends IC3
10Notice that, other approaches, such as interpolation-based model checking, could in principle be used. Here we consider
IC3ia because it is currently the most effective procedure for VMT(UFLRA), and also because it allows us to leverage
incrementality.
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bool IC3-NTA-prove (S : transition system ⟨X , I ,T ⟩, φ : invariant property):
1. ⟨S′,φ ′⟩ := VMT-preprocess(S,φ)
2. ⟨Ŝ, φ̂⟩ := VMT-initial-abstraction(S′,φ ′)
3. while true:
4. ⟨ok, ĉex⟩ := IC3-UFLRA-prove(Ŝ, φ̂)
5. if ok: # property proved

6. return true

7. ⟨is_cex, Γ⟩ := SMT-NTA-concretize-abstract-cex(S′, Ŝ, φ̂, ĉex )
8. if is_cex: # counterexample found

9. return false

10. ⟨ΓI , ΓT ⟩ := refine-transition-system(Ŝ, Γ)
11. Ŝ := ⟨X , Î ∧

∧
ΓI , T̂ ∧

∧
ΓT ⟩

Fig. 15. Verification of NTA transition systems via abstraction to UFLRA.

⟨constraint set, constraint set⟩ refine-transition-system (Ŝ, Γ):
1. let ⟨X , Î , T̂ ⟩ = Ŝ
2. ⟨ΓI , ΓT ⟩ := ⟨∅, ∅⟩
3. for each γ in Γ:
4. if vars(γ ) ⊆ X ⟨0⟩:
5. ΓI := ΓI ∪ {γ {X

⟨0⟩ 7→ X }}
6. else if there exists i > 0 s.t. vars(γ ) ⊆ X ⟨i⟩:
7. ΓT := ΓT ∪ {γ {X

⟨i⟩ 7→ X },γ {X ⟨i⟩ 7→ X ′}}
8. else there exists i > 0 s.t. vars(γ ) ⊆ X ⟨i⟩ ∪ X ⟨i+1⟩:
9. ΓT := ΓT ∪ {γ {X

⟨i⟩ 7→ X }{X ⟨i+1⟩ 7→ X ′}}
10. return ⟨ΓI , ΓT ⟩

Fig. 16. Refinement of the UFLRA transition system.

with implicit predicate abstraction [66]. If the invariant property is verified in the abstract domain
UFLRA, then it is also verified in the original NTA domain, so that the whole procedure returns
true. Otherwise, a counterexample is produced, and the SMT-NTA-concretize-abstract-cex
primitive is used to check whether it is spurious. If not so, then the whole procedure returns false.
If so, the linear constraints generated by SMT-NTA-concretize-abstract-cex are used to refine
the abstraction of the transition system, and the procedure enters a new iteration.

6.2 Spuriousness Check and Abstraction Refinement

When IC3-UFLRA-prove returns a counterexample trace ĉex for the abstract system Ŝ, we use the
dedicated routine SMT-NTA-concretize-abstract-cex to check for its spuriousness. The first
step is to build a formulaψ whose unsatisfiability implies that ĉex is spurious. The formulaψ is built
by unrolling the transition relation of Ŝ, and optionally adding constraints that restrict the allowed
transitions to be compatible with the states in ĉex . If SMT-NTA-concretize-abstract-cex returns
true, the property is violated. If SMT-NTA-concretize-abstract-cex returns false, we use the
constraints Γ produced during search to refine the transition system Ŝ, using the procedure shown
in Fig. 16. Essentially, refine-transition-system translates back the linearization constraints
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from their unrolled version (on variables X ⟨0⟩,X ⟨1⟩, . . . ,X ⟨k⟩) to their “untimed” version (on vari-
ables X and X ′). Each γ constraint is added either to the initial-states formula or to the transition
relation formula, depending on the distance (in terms of steps) of the variables occurring in it.
Care must be taken in order to deal with the case where γ spawns across multiple time points:
The routine SMT-NTA-concretize-abstract-cex is similar in spirit to the SMT-NTA-check (dis-
cussed in §3), but it is designed in such a way that the constraints in Γ never span more than a
single transition step – for example, a monotonicity constraint over terms tf(x ⟨i⟩) and tf(y⟨j⟩)
is instantiated only if j = i or j = i + 1. Note that, despite the restriction in the constraints in-
stantiation, SMT-NTA-concretize-abstract-cex is as powerful as SMT-NTA-check in detecting
the spuriousness of a counterexample. This is because SMT-NTA-concretize-abstract-cex can
basically instantiate a finite number of constraints restricted to a single transition step such that
their conjunction is equivalent to any constraint instantiated by SMT-NTA-check.

Example 6.1. We now demonstrate the execution of the IC3-NTA-prove procedure shown in
Fig. 15 by an example. Consider the earlier mentioned transition system S =̇ ⟨I (X ),T (X ,X ′)⟩ with
the property P (X ), where I (X ) =̇x ≥ 2∧y ≥ 2∧z = x∗y,T (X ,X ′) =̇x ′ = x+1∧y ′ = y+1∧z ′ = x ′∗y ′,
and P (X ) =̇ z ≥ x + y. After the initial abstraction, line 1-2, we have ⟨Ŝ =̇ ⟨̂I (X ), T̂ (X ,X ′)⟩, P̂ (X )⟩

where: Î (X ) =̇ x ≥ 2 ∧ y ≥ 2 ∧ z = f∗ (x ,y), T̂ (X ,X ′) =̇ x ′ = x + 1 ∧ y ′ = y + 1 ∧ z ′ = f∗ (x
′,y ′),

P̂ (X ) =̇ z ≥ x + y. In the loop (line 3-11), after execution of line 4, IC3-UFLRA-prove returns an
abstract counterexample of length 2. Then SMT-NTA-concretize-abstract-cex tries to concretize
the abstract counterexample: in its simplest form it builds a BMC unrolling of length 2 (more details
are given in §8.2). SMT-NTA-concretize-abstract-cex returns false (meaning that the abstract
counterexample is spurious) and the following set of linear constraints:

Γ =̇ { (x ⟨1⟩ > 2 ∧ y⟨1⟩ > 2) → f∗ (x
⟨1⟩,y⟨1⟩) > 2 ∗ x ⟨1⟩ + 2 ∗ y⟨1⟩ − 4 }

Next, refine-transition-system refines Ŝ using Γ, such that:

Î (X ) =̇ x ≥ 2 ∧ y ≥ 2 ∧ z = f∗ (x ,y),

T̂ (X ,X ′) =̇ x ′ = x + 1 ∧ y ′ = y + 1 ∧ z ′ = f∗ (x
′,y ′) ∧

(x > 2 ∧ y > 2) → f∗ (x ,y) > 2 ∗ x + 2 ∗ y − 4 ∧
(x ′ > 2 ∧ y ′ > 2) → f∗ (x

′,y ′) > 2 ∗ x ′ + 2 ∗ y ′ − 4

After the refinement, another iteration of the loop is performed. Now IC3-UFLRA-prove returns
true (meaning that the property is safe in Ŝ), which means P (X ) is safe in S. Therefore, true is
returned.

7 PROOFS OF CORRECTNESS
In this section, we present the correctness proofs of the SMT procedure (discussed in §3–§5) and
the VMT procedure (§6).

7.1 Correctness of the SMT Procedure
We prove the correctness of the SMT-NTA-check procedure (Fig. 2), by first proving that the
procedure maintains an overapproximation of the input problem φ. This is done by showing that
the SMT-preprocess function (Line 1) is NTA-satisfiability preserving – Lemma 7.1; and that the
overapproximation is maintained in the loop (Line 5-12) – Lemma 7.3.

In what follows φ ′ is the result of SMT-preprocess(φ), so that φ ′ =̇ φ ∧ φshif t (see (1) in §4.2.2).

Lemma 7.1. φ is NTA-satisfiable if and only if φ ′ is NTA-satisfiable.
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Proof. The “if” case is obvious. For the “only if” case, let µ be an NTA-interpretation satisfying φ.
Then we can build another NTA-interpretation µ ′ by extending µ to the new symbols ωx ∈ φshif t
introduced during preprocessing as follows. For each ωx ∈ φ

′, if µ[x] ∈ [−π ,π [ then µ ′[ωx ] =̇ µ[x];
otherwise, we can choose µ ′[ωx ] =̇ c such that µ[sin(c )] = µ[sin(x )], where c ∈ R and c ∈ [−π ,π [.
We can always choose such c because sin is periodic, and [−π ,π ] defines a period for it. Then by
construction µ ′ |= φshif t , so that the statement holds. □

Let φ̂ be the result of SMT-initial-abstraction(φ ′). Consider a generic loop in
SMT-NTA-check(φ) and the value Γ at the end of such loop. By construction all constraints
in Γ are either instances of those in Fig. 4, Fig. 11, Fig. 12, or tangent/secant constraints from
Fig. 10, or linear shift constraints as discussed in §4.2.2. Let Γtf be the constraints added by
block-spurious-transcendental-terms(φ̂, µ̂, ϵ ) – line 5 of Fig. 3.

Lemma 7.2. The constraints in Γtf are NTA-valid when ftf () is interpreted as tf().

Proof. The constraints in Γtf are generated either by the basic refinement (block-spurious-
nta-basic– line 1 in Fig. 10) or the tangent/secant refinement (line 4-26 in Fig. 10). In the former
case, the constraints are instances of those in Fig. 11 or Fig. 12, and these constraints are valid in any
theory which interprets ftf () and π̂ as tf() and π respectively. For the latter case, the generated
constraints are also NTA-valid when ftf () is interpreted as tf() because:
• The lower polynomial Pl (x ) and the upper polynomial Pu (x ) (in Fig. 10) for the tf() function
are constructed using Taylor’s theorem, such that the concavity (within the interval of
interest) of the polynomials and the function is the same at the point of interest (spurious
point). Therefore, Pl (x ) and Pu (x ) are guaranteed to be below and above tf(), respectively.
• When the concavity of tf() is positive (negative), then by construction the concavity of Pl (x )
is also positive (negative) and the tangent to Pl (x ) at the spurious point is below (above) Pl (x )
(Pu (x )) because of Proposition 2.5; therefore the tangent constraint is also below (above) the
tf(). A similar argument applies to the constraints generated by the secant refinement.

□

Lemma 7.3. If φ is NTA-satisfiable, then φ̂ ∧
∧

Γ is UFLRA-satisfiable.

Proof. Let µ be an NTA-interpretation satisfying φ. By Lemma 7.1, we have an NTA-
interpretation µ ′ that satisfies φ ′. We build an UFLRA-interpretation µ̂ satisfying φ̂ ∧

∧
Γ as

follows:
• for each x ∈ φ ′, µ̂[x] =̇ µ ′[x]
• for each ωx ∈ φ

′, µ̂[ωx ] =̇ µ ′[ωx ]
• for π̂ , µ̂[π̂ ] =̇ µ ′[π ]
• for each f∗ (x ,y) ∈ φ̂, µ̂[f∗ (x ,y)] =̇ µ ′[x ∗ y]
• for each ftf (x ) ∈ φ̂, µ̂[ftf (x )] =̇ µ ′[tf(x )]

µ̂ clearly satisfies φ̂ and all the constraints added by block-spurious-product-terms (constraints
in Fig. 4 and the Tangent-plane constraints) are NTA-valid in any theory which interprets f∗ () as ∗,
and all the constraints added by block-spurious-transcendental-terms are also NTA-valid by
Lemma 7.2. Hence the statement holds. □

We now prove the correctness of the method to detect satisfiability. Let φ, φ ′ be as above and let
φ̂, µ̂, sat, µ̂∗, and φsatµ̂∗ be as in check-model (Fig. 14), so that µ̂ is an UFLRA-model for φ̂. φsatµ̂∗ (5) is
the formula for detecting the NTA-satisfiability of φ as discussed in §5.2. (We recall that φsatµ̂∗ is a
closed LRA formula.)

ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.



1:28 Alessandro Cimatti, Alberto Griggio, Ahmed Irfan, Marco Roveri, and Roberto Sebastiani

Lemma 7.4. If check-model(φ̂, µ̂, ϵ ) returns true, then φ is NTA-satisfiable.

Proof. From Fig. 14, check-model(φ̂, µ̂, ϵ ) returns true if and only if check-NRA-model
returns ⟨True, µ̂∗⟩ and ¬φsatµ̂∗ is LRA-unsatisfiable –that is, φsatµ̂∗ is LRA-valid. From Fig. 13, if
check-NRA-model returns ⟨True, µ̂∗⟩, then µ̂∗ is an UFLRA-model of a conjunction of literals
ψ̂ ∗ (3) which tautologically entails φ̂ and it is s.t. each f∗ (x ,y) equals x ∗ y in µ̂∗. Thus µ̂ |= φ̂ and
µ̂[f∗ (x ,y)] = µ̂[x] ∗ µ̂[y] for each term f∗ (x ,y) ∈ φ̂.
Then we can construct an NTA-interpretation µ for φ ′ as follows:
• for every x ,ωx ∈ φ

′, µ[x] =̇ µ̂∗[x] and µ[ωx ] =̇ µ̂∗[ωx ]
• for π̂ , µ[π̂ ] =̇ π
• for every tf(x ) ∈ φ : µ[tf(x )] =̇ tf(µ̂∗[x])

We show that µ is a model for φ ′. The validity of φsatµ̂∗ , and hence of (4), implies that φ ′ is satisfied
by every interpretation extending µ̂∗ which assigns to each uninterpreted term ftf (µ̂∗[x]) a value
within the bounds [tf(µ̂∗[x])

l
, tf(µ̂∗[x])

u
] and assigns π̂ a value in ]lπ ,uπ [. µ is one of such inter-

pretations because µ[π̂ ] =̇ π and µ[ftf (µ̂∗[x])] =̇ tf(µ̂∗[x]) which is in [tf(µ̂∗[x])
l
, tf(µ̂∗[x])

u
]

by Taylor’s Theorem (§2.3). Thus µ is an NTA-model for φ ′, and hence for φ. Therefore φ is
NTA-satisfiable. □

Theorem 7.5. SMT-NTA-check is sound, i.e. when it returns ⟨True, ∅⟩ then φ is NTA-satisfiable

and when it returns ⟨False, Γ⟩ then φ is not NTA-satisfiable.

Proof. SMT-NTA-check returns ⟨False, Γ⟩ only when SMT-UFLRA-check returns false. In this
case, by Lemma 7.1 and Lemma 7.3, φ is not NTA-satisfiable.

SMT-NTA-check returns true only when check-model inside check-refine returns true. In
this case φ is NTA-satisfiable by Lemma 7.4. □

7.2 Correctness of the VMT Procedure
We prove that the IC3-NTA-prove procedure (Fig. 15) is sound. First we show that the proce-
dure maintains an overapproximation of the input transition system. Consider a generic loop in
IC3-NTA-prove (Line 10-11) and let Ŝ := ⟨X , Î ∧

∧
ΓI , T̂ ∧

∧
ΓT ⟩ at the end of the loop.

Lemma 7.6. Ŝ is an overapproximation of S.

Proof. We need to show that for every path σk =̇ s0, s1, . . . , sk−1 in S, there is a path σ̂k in Ŝ.
This is true because:
• by definition of σk , we have s0 |= I and si ∧ si+1{X 7→ X ′} |= T for 0 ≤ i ≤ k − 2, and
• similar to the the proof of Lemma 7.3, we can construct a path σ̂k in a such way that
ŝ0 |= Î ∧

∧
ΓI and ŝi ∧ ŝi+1{X 7→ X ′} |= T̂ ∧

∧
ΓT for 0 ≤ i ≤ k − 2.

Hence the statement holds. □

Lemma 7.7. S ̸|= φ implies Ŝ ̸|= φ̂.

Proof. S ̸|= φ means there is a path σk = s0, s1, . . . , sk−1 in S such that sk−1 |= ¬φ. Then by
Lemma 7.6, we can also construct a path σ̂k = ŝ0, ŝ1, . . . , ŝk−1 in Ŝ in a way that ŝk−1 |= ¬φ̂ (similar
to the proof of Lemma 7.3). Hence the statement holds. □

Lemma 7.8. IC3-UFLRA-prove(Ŝ, φ̂) is sound, i.e. when it returns ⟨True, . . .⟩ then Ŝ |= φ̂, and

when it returns ⟨False, ĉex⟩ then Ŝ ̸|= φ̂ where ĉex is a counterexample.

Proof. Proof omitted – see [22]. □
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Theorem 7.9. IC3-NTA-prove(S,φ) is sound, i.e. when it returns True then S |= φ and when it

returns False then S ̸|= φ.

Proof. IC3-NTA-prove(S,φ) return true only when IC3-UFLRA-prove(Ŝ, φ̂) returns
⟨True, . . .⟩. By Lemma 7.6 and Lemma 7.7, S |= φ. IC3-NTA-prove(S,φ) return false
only when the simulation of the abstract counterexample ĉex (Lemma 7.8) by the
SMT-NTA-concretize-abstract-cex succeeds, and by Theorem 7.5 S ̸|= φ. □

8 IMPLEMENTATION
The SMT and VMT algorithms described in the previous sections have been implemented within the
MathSAT SMT solver [23] and within the nuXmv symbolic model checker [17] respectively. The
description of the procedures leaves some flexibility for different heuristics regarding refinement
strategies and implementation choices. In this section, we describe the most important ones. We
remark that these choices do not affect the soundness of the approach, but they can have an
important impact on performance.

MathSAT. We have extended MathSAT with the procedures for NRA and NTA. The core
solver only supports the exp and sin transcendental functions and nonlinear multiplications. Other
functions (such as nonlinear division, square root, log, cos, tan, arcsin, arccos, arctan) are handled
by encoding them in terms of the supported ones. For example, if the input formula φ contains
√
x , it is rewritten as φ{

√
x 7→ y} ∧ (y ≥ 0→ y ∗ y = x ) where y is a fresh variable. For formulae

not involving transcendental functions, MathSAT can produce a model (in which all variables are
assigned a rational value) when the formula is found to be satisfiable. Model generation is however
not supported for transcendental functions. In this case, in principle it would be possible to produce
rational bounds for the transcendental functions within which a model is guaranteed to exist (see
§5.2), but this has not been implemented yet.

nuXmv. The nuXmv model checker has been extended to deal with non-linear multiplications
and with the transcendental functions supported by its underlying SMT solver MathSAT. The
verification engines of nuXmv have been extended to deal with invariant checking based on
Bounded Model Checking, k-induction, and incremental linearization over IC3. The implementation
of BMC and k-induction extends the algorithms already implemented in nuXmv for the LRA
case. This extension was relatively simple, given the augmented capabilities of the underlying
MathSAT solver. We also extended nuXmv with the capability to output BMC and k-induction
proof obligations in SMT-LIB format. 11 The implementation of the VMT(NTA) algorithm based
on incremental linearization was more involved. It builds on top of the best nuXmv engine for
VMT(UFLRA), i.e. IC3 with Implicit Abstraction [22], leveraging its stateful, incremental nature. We
chose not to implement the incremental linearization loop on top of an induction-based engine. We
have no reason to believe that it would bring significant added value. Given the complementarity
between IC3 and interpolation-based methods demonstrated in the finite-state case, an incremental
linearization loop over an interpolation-based solver for VMT(UFLRA) might yield additional
solving capability, and it is currently under consideration.

8.1 Implementation Details for SMT(NTA)
8.1.1 Normalization. We normalize (during preprocessing) the polynomials by applying the

distributivity property of multiplication over addition, and by sorting both the monomials and the
variables in each monomial using a total order (lexicographic). The goal of this is to reduce the

11More precisely, with the extension of the SMT-LIB format to transcendental function symbols.
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number of unique multiplication terms, and therefore increase the number of shared f∗ () terms in
the abstract SMT problem.12

8.1.2 Arbitrary-precision Rationals. We use the GMP arbitrary-precision library to represent
rational numbers. In our (model-driven) approach, we may have to deal with numbers with very
large numerators and/or denominators. It may happen that we get such rational numbers from
the bad model µ̂ for the variables appearing as arguments of transcendental functions. As a result
of the piecewise-linear refinement (e.g. for the instantiation of the tangent plane constraints), we
may end-up feeding to the SMT(UFLRA) solver numbers that may have (even exponentially) larger
numerators and/or denominators (due to the fact that get-polynomial-bounds uses power series).
This might significantly slow-down the performance of the solver.

We address this issue along the following dimensions:
(1) Continued fractions. We approximate values in µ̂[x] having too large numerators and/or

denominators by using continued fractions [56]. The precision of the rational approximation
is increased periodically over the number of iterations. Thus, we delay the use of numbers
with larger numerator and/or denominator, and eventually find those numbers if they are
really needed.

(2) Selective instantiation of tangent plane constraints. While instantiating tangent plane con-
straints at the point (a,b) for x ∗ y we observe that, in order to block a model µ̂ such that
µ̂[f∗ (x ,y)] , µ̂[x] ∗ µ̂[y], it is sufficient to add one of the two equalities of the tangent plane
constraints in Fig. 4; instead of instantiating a constraint at (a,b), we can instantiate it at
either (a + δ ,b) or at (a,b + δ ), for any value of δ . In practice, if a (resp. b) is a rational
constant with a very large numerator or denominator, instead of instantiating one constraint
at (a,b), we instantiate two tangent constraints at (⌊a⌋,b) and (⌈a⌉,b).

(3) Initial approximation for π . We initialize the algorithm by choosing the values lπ = 333
106 and

uπ =
355
113 since they give a very small difference ( 1

11978 ) with a limited number of digits.

8.1.3 Heuristics for Refinement. The descriptions of block-spurious-nra-term and get-
polynomial-bounds leave some flexibility in deciding which constraints to add (and how many of
them) at each iteration. It is possible to conceive strategies with an increasing degree of eagerness,
from very lazy (e.g. adding only a single constraint per iteration) to more aggressive ones. The
simple strategy we currently adopted consists in eagerly adding all the refinement constraints that
are violated by the current abstract solution µ̂, leaving the investigation of alternative strategies as
future work.

8.1.4 Tangent Plane Frontiers for Multiplications. x ∗ y is a hyperbolic paraboloid surface, and a
tangent plane to such surface cuts the surface into four regions: in two of them, the tangent plane
is above the surface, thus providing an upper bound, whereas in the other two regions the tangent
plane is below the surface (see Fig. 5). Each instantiation of the tangent plane constraints, therefore,
only provides either a lower or an upper bound for a given region. Hence, there is a risk that the
refinement procedure may go into an infinite loop, in which at each iteration a refined lower bound
(respectively, upper bound) for a given point is added, when instead an upper bound (a lower bound,
resp.) would be appropriate. In order to address the problem, we adopt the following strategy. For
each f∗ (x ,y) in the input formula, we maintain a frontier ⟨[lx ,ux ], [ly ,uy ]⟩ with the invariant that
whenever x ∈ [lx ,ux ] or y ∈ [ly ,uy], then f∗ (x ,y) has both an upper and a lower bound in the
abstract formula φ̂. Fig. 17 shows a graphical illustration of the strategy. Initially, the frontiers are
set to ⟨[0, 0], [0, 0]⟩, corresponding to the “Zero” constraint of Fig. 4. Whenever a tangent plane

12We leave the investigation of more sophisticated methods for reducing the number of multiplications to future work.
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regions with lower bounds regions with upper bounds regions with upper & lower bounds

(a) current frontier (b) new point (a, b ) (c) tangent plane instantia-

tion at (a, b )
(d) additional instantiations

and updated frontier

Fig. 17. Illustration of the tangent lemma frontier strategy.

constraint for f∗ (x ,y) is instantiated at a point (a,b), we also add further instantiations of the
constraint and update the frontier as follows:

case a < lx and b < ly : add tangent planes at (a,uy ) and at (ux ,b), and set the frontier to
⟨[a,ux ], [b,uy]⟩;

case a < lx and b > uy : add tangent planes at (a, ly ) and at (ux ,b), and set the frontier to
⟨[a,ux ], [ly ,b]⟩;

case a > ux and b > uy : add tangent planes at (a, ly ) and at (lx ,b), and set the frontier to
⟨[lx ,a], [ly ,b]⟩;

case a > ux and b < ly : add tangent planes at (a,uy ) and at (lx ,b), and set the frontier to
⟨[lx ,a], [b,uy]⟩.

Remark 5. We remark that in each of the above four cases only one of the tangent lemma in-
stantiation is required to preserve the tangent frontier invariant. However, rather than heuristically
choosing one instantiation over the other, we instantiate both tangent lemmas.

8.2 Implementation Details for VMT(NTA)
8.2.1 Counterexample Checking and Refinement. Different heuristics can be consid-

ered for implementing the abstract counterexample check routine of Fig. 15 (function
SMT-NTA-concretize-abstract-cex), trading generality for complexity. In particular, the
unrolling of the transition system to check the feasibility of the abstract counterexample could be
fully constrained by the states in ĉex (thus checking only one abstract counterexample path per
iteration); it could be only partially constrained (e.g. by considering only the Boolean variables
and/or the state variables occurring only in linear constraints); or it could be left unconstrained,
considering only the length of the abstract counterexample. In our current implementation, we
only consider the length of ĉex to build a BMC formula that checks for any counterexample of the
given length, leaving the investigation of alternative strategies to future work.

8.2.2 Reduction in the Number of Constraints. In general, not all the constraints generated during
a call to SMT-NTA-concretize-abstract-cex are needed to successfully block a counterexam-
ple, especially when using eager constraint instantiation strategies at the SMT level and when
considering (like described above) all possible counterexample traces of a given length at each
call to SMT-NTA-concretize-abstract-cex. In the long run, having a large number of redundant
constraints can be quite harmful for performance.
In order to mitigate this problem, we apply a filtering strategy to the set of constraints, before

adding them to the transition system. The strategy is based on the use of unsatisfiable cores, and it
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⟨constraint set, constraint set⟩ reduce-constraints (⟨X , Î , T̂ ⟩, ĉex , ⟨ΓI , ΓT ⟩):
1. ψ := I ⟨0⟩ ∧ Γ⟨0⟩I ∧ ĉex[0]

⟨0⟩ ∧
∧ |ĉex |−1

i=0

(
T ⟨i⟩ ∧ Γ⟨i⟩T ∧ Γ⟨i+1⟩T ∧ ĉex[i + 1]⟨i+1⟩

)
2. sat := SMT-UFLRA-check(ψ )
3. assert not sat
4. let C be an unsatisfiable core ofψ
5. ΓI = {γ ∈ ΓI | γ {X 7→ X ⟨0⟩} ∈ C}
6. ΓT = {γ ∈ ΓT | ∃j > 0 s.t. γ {X 7→ X ⟨j⟩}{X ′ 7→ X ⟨j+1⟩} ∈ C}
7. return ⟨ΓI , ΓT ⟩

Fig. 18. Reducing the constraints needed for refinement.

is shown as pseudo-code in Fig. 18. The function reduce-constraints takes as input the current
abstract transition system, the current abstract counterexample ĉex , and the sets of refinement
constraints ΓI and ΓT returned by the function refine-transition-system of Fig. 16. Then it
builds an abstract BMC formula constrained by ĉex (line 1 of Fig. 18). This formula is unsatisfiable,
and we can extract a reduced set of constraints that is still sufficient for blocking the abstract
counterexample by removing all the constraints that are not in the unsatisfiable core produced by
the SMT solver (lines 5–6).

9 RELATEDWORK
In the following, we overview the state of the art and compare it to incremental linearization. We
first analyze the literature in SMT and then discuss VMT.

9.1 SMT
Various techniques have been explored for SMT(NRA) solving, that include complete methods
based on quantifier elimination and incomplete methods based on interval constraint propagation
and linearization. For SMT(NTA) solving, the approaches include incomplete methods based on
interval constraint propagation, deductive methods, and linearization.

9.1.1 Quantifier Elimination. The two well-known and well-studied quantifier elimination pro-
cedures for the theory of nonlinear polynomials are cylindrical algebraic decomposition (CAD) [27]
and virtual substitution (VS) [71]. They have doubly-exponential worst-case complexity [16, 29, 70].
Although these procedures have been studied for decades, their use in the SMT(NRA) solving is rel-
atively recent. SMT-RAT [28] represents the first attempt to integrate CAD and VS in an SMT(NRA)
solver. Then, z3 [31] and Yices [33] (winners of the SMT competition 2017 in the QF-NRA division)
also implemented a variant [45] of CAD. In contrast to these approaches, incremental linearization
is an incomplete technique and is not based on quantifier elimination.

9.1.2 Interval Constraint Propagation. Interval constraint propagation (ICP) [8] is an incom-
plete technique for solving constraints over NRA and NTA. Initially it has been investigated
in [40, 59]. Now it has been integrated in several SMT solvers, most noticeably raSAT [68] for
NRA, and iSAT3 [37] and dReal [39] for NTA. Interestingly, dReal relies on the notion of delta-
satisfiability [38], which basically guarantees that there exists a variant (within a user-specified
δ “radius”) of the original problem such that it is satisfiable. The approach cannot guarantee that
the original problem is satisfiable, since it relies on numerical approximation techniques that only
compute safe overapproximations of the solution space.
There are a few key insights that differentiate our approach. First, our approach is based on

linearization, it relies on solvers for SMT(UFLRA), and it proceeds by incrementally axiomatizing
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transcendental functions. Compared to interval propagation, we avoid numerical approximations
(even if within the bounds from DeltaSat). In a sense, the precision of the approximation is
selectively detected at run time, while in iSAT3 and dReal this is a user defined threshold that is
uniformly adopted in the computations. Second, our method relies on piecewise linear approxima-
tions, which can provide substantial advantages when approximating a slope – intuitively, interval
propagation ends up computing a piecewise-constant approximation. Third, a distinguishing feature
of our approach is the ability to (sometimes) prove the existence of a solution even if the actual
values are irrationals, by reduction to an SMT-based validity check.

9.1.3 Deductive Methods. The MetiTarski [1] theorem prover relies on resolution and on a
decision procedure for NRA to prove quantified inequalities involving transcendental functions.
It works by replacing transcendental functions with upper- or lower-bound functions specified
by means of axioms (corresponding to either truncated Taylor series or rational functions derived
from continued fraction approximations), and then using an external decision procedure for NRA
for solving the resulting formulae. Differently from our approach,MetiTarski cannot prove the
existence nor compute a satisfying assignment of a solution, while we are able to (sometimes)
prove the existence of a solution even if the actual values are irrationals. Finally, we note that
MetiTarskimay require the user to manually write axioms if the ones automatically selected from
a predefined library are not enough. Our approach is much simpler, and it is completely automatic.

The approach presented in [35], where the NTA theory is referred to as NLA, is similar in spirit
to MetiTarski in that it combines the SPASS theorem prover [69] with the iSAT3 SMT solver.
The approach relies on the SUP(NLA) calculus that combines superposition-based first-order logic
reasoning with SMT(NTA). Similarly to our work, the authors also use a UFLRA approximation of
the original problem. This is however done only as a first check before calling iSAT3. In contrast,
we rely on solvers for SMT(UFLRA), and we proceed by incrementally axiomatizing transcendental
functions instead of calling directly an NTA solver. Another similarity with our work is the
possibility of finding solutions in some cases. This is done by post-processing an inconclusive
iSAT3 answer, trying to compute a certificate for a (point) solution for the narrow intervals returned
by the solver, using an iterative analysis of the formula and of the computed intervals. Although
similar in spirit, our technique for detecting satisfiable instances is completely different, being
based on a logical encoding of the existence of a solution as an SMT(UFLRA) problem.

Combination of interval propagation and theorem proving. Gappa [30, 52] is a standalone tool
and a tactic for the Coq proof assistant, that can be used to prove properties about numeric
programs (C-like) dealing with floating-point or fixed-point arithmetic. Another related Coq
tactic is Coq.Interval [55]. Both Gappa and Coq.Interval combine interval propagation and
Taylor approximations for handling transcendental functions. A similar approach is followed
also in [64], where a tool written in Hol-Light to handle conjunctions of non-linear equalities
with transcendental functions is presented. The work uses Taylor polynomials up to degree two.
NLCertify [49] is another related tool which uses interval propagation for handling transcendental
functions. It approximates polynomials with sums of squares and transcendental functions with
lower and upper bounds using some quadratic polynomials [2]. Internally, all these tools/tactics
rely on multi-precision floating point libraries for computing the interval bounds.
A similarity between these approaches and our approach is the use of the Taylor polynomials.

However, one distinguishing feature is that we use them to find lower and upper linear constraints
by computing tangent and secant lines. Moreover, we do not rely on any floating point arithmetic
library, and unlike the mentioned approaches, we can also prove the existence of a solution. On
the other hand, some of the above tools employ more sophisticated/specialised approximations
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for transcendental functions, which might allow them to succeed in proving unsatisfiability of
formulae for which our technique is not sufficiently precise.

Finally, since we are in the context of SMT, our approach also has the benefits of being:

(1) fully automatic, unlike some of the above which are meant to be used within interactive
theorem provers;

(2) able to deal with formulae with an arbitrary Boolean structure, and not just conjunctions of
inequalities; and

(3) capable of handling combinations of theories (including uninterpreted functions, bit-vectors,
arrays), which are beyond what the above, more specialised tools, can handle.

9.1.4 Linearization. Recent versions of the CVC4 [5] SMT solver also implement a variant of
the incremental linearization procedure, as discussed in [60]. In comparison to our work, it does
not support SMT(NTA). Moreover, it does not uses the NRA model-finding heuristic, as described
in §5.1. In another work [58], the idea of using tangent planes has been explored in the context of
SMT(NRA). A key difference is that the tangent planes are used to under-approximate predicates,
while in our approach they are used to refine the over-approximation of the multiplication function.

A recent development in solving SMT(NRA) is the method of subtropical satisfiability [36], which
is an incomplete method to detect satisfiability of conjunctions of strict inequality constraints. The
method is efficient in returning satisfiable or unknown. It has been implemented in veriT [12].
Interestingly, the method encodes a sufficient condition for satisfiability into an LRA problem, which
is a similarity to our approach for checking satisfiability of NRA constraints. Another linearization
technique [51], though proposed for program analysis (see §9.2.2), has been implemented as an
external theory solver for the CVC4 SMT solver. This approach can detect only unsatisfiability of
NRA problems. In contrast to the subtropical satisfiability method and the approach based on [51],
our approach (though incomplete) can be used to detect both satisfiable and unsatisfiable cases.

In the context of SMT(NTA), the work in [65] approximates the natural logarithm ln with tangent
lines, whereas we approximate not only a monotonic exp function (ln can be rewritten in terms
exp) but we can also handle periodic trigonometric functions. Moreover, we also exploit other
properties (e.g. monotonicity) to derive additional axioms.

9.2 VMT
There are not many tools that deal with NRA and NTA transition systems. Here we discuss two
classes of approaches: based on non-linear solving and based on linearization.

9.2.1 Non-Linear Solving. The most relevant is the recently proposed iSAT3 [50], that uses
an interpolation-based [48, 50] approach to prove invariants. In addition to being an SMT solver,
iSAT3 is also a bounded model checker for transition systems. It supports both NRA and NTA,
and it additionally has support for some kinds of differential equations. iSAT3 is built on an SMT
solver based on numeric techniques (interval arithmetic), and is able to provide results that are
accurate up to the specified precision. In fact, in addition to “safe” and “unsafe” answers, iSAT3may
return “maybe unsafe” when it finds an envelope of given precision that may (but is not guaranteed
to) contain a counterexample. Another relevant tool is dReach [47], a bounded model checker
implemented on top of the dReal [39] SMT solver, that adopts numerical techniques similar to
iSAT3. dReach has an expressiveness similar to iSAT3, but being a bounded model checker it is
unable to prove properties.

9.2.2 Linearization. The work in [18] follows a reduction-based approach to check invariants
of NRA transition systems. It over-approximates the non-linear terms with a coarse abstraction,
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encoding into LRA some weak properties of multiplication like identity and sign. Another reduction-
based approach is presented in [51] in the context of program analysis. The idea is to find a
(tight) convex approximation of polynomials in form of polyhedron, thus obtaining a conservative
linear transition system. The key differences of our approach with respect to [18, 51] are that we
iteratively refine the abstraction, and we adopt a reduction to UFLRA. Furthermore, to the best of
our knowledge, there is no available implementation of the approach [51] in a program analysis
tool.

10 EXPERIMENTS
We now experimentally evaluate the proposed approaches for SMT (§10.1) and for VMT (§10.2). The
experiments were run on a cluster of identical machines equipped with 2.6GHz Intel Xeon X5650
processors. The memory limit was set to 6 GB. We used 1000 seconds for the SMT experiments
and 3600 seconds for the VMT experiments, respectively. 13 The results of the various solvers were
automatically cross checked, and no discrepancies were reported.

We present the (most significant) data using tables and survival plots. (In Appendix ??, we also
present the scatter plots.) An archive containing the complete experimental evaluation, including
benchmarks and results, is available at https://es.fbk.eu/people/irfan/papers/tocl17-data.tar.gz. The
survival plots compare the performance of multiple approaches. The x-axis shows the solving time
in log-scale, and the y-axis shows the number of instances solved within the corresponding time.
(Notice that we may use different scales on different plots.) In the comparison, by VirtualBest we
mean the results of a virtual portfolio solver that performs on each benchmark as the best of the
solvers in the portfolio.

10.1 Experiments for SMT
10.1.1 Benchmarks. For the experimental evaluation on SMT we selected the following bench-

marks. For NRA, we used all the SMT-LIB [6] benchmarks from the QF-NRA category. This is
a class of 11354 benchmarks, among which 4963 are satisfiable, 5296 are unsatisfiable, and 1095
have unknown status. Since SMT(NTA) is not standardized in SMT-LIB, for NTA we adopted an
extended version of SMT-LIB including special function symbols for sin, exp and π . We collected
and encoded SMT(NTA) benchmarks from the following sources, for a total of 2512 benchmarks:

• verification queries over transcendental transition systems [50] deriving from SMT-based
verification engines, including discretization of Bounded Model Checking of hybrid au-
tomata [4, 62];
• all the benchmarks from theMetiTarski distribution [1];
• all the SMT(NTA) benchmarks 14 from the dReal distribution [39];
• all the benchmarks from the iSAT3 distribution [50].

iSAT3 requires that the variables are constrained to small intervals when there are transcendental
functions. Thus, it is unable to deal with the benchmarks in their original formulation. In order
to include iSAT3 in the comparison we generated scaled-down versions of the NTA benchmarks,
by adding bound constraints that force all the real variables in the problem to assume values in
the [−300, 300] interval. Since the SMT-LIB format is not accepted by iSAT3 andMetiTarski, we
wrote scripts to cross-convert the benchmarks in the respective formats.

13The SMT problems are in general easier. The adopted time out for SMT is very close to the time out adopted in the
SMT competition. The time out for VMT was dictated by restrictions in the computing power available, but appears to be
reasonable given the number of benchmarks.
14dReal is also able to deal with Ordinary Differential Equations.
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(11354) (4348) (7006) (69) (20) (2752) (45) (821) (405) (9) (61) (166)

MathSAT 3514/5338 400/3045 3114/2293 3/1 0/20 17/2267 18/0 299/432 0/285 0/0 32/6 31/34
CVC4 3050/5322 315/3068 2735/2254 0/2 0/20 9/2253 4/0 298/465 0/285 0/2 4/8 0/33
z3 4883/5039 492/2428 4391/2611 0/0 0/9 243/2210 33/0 105/115 0/47 2/7 47/13 62/27
Yices 4817/5057 449/2480 4368/2577 0/11 0/8 219/2182 10/0 120/233 0/2 0/0 40/12 60/32
SMT-RAT 4317/4475 133/1957 4184/2518 0/0 0/20 98/1632 9/0 0/0 0/285 0/1 2/0 24/19
dReal 0(5396)/4239 0(516)/2154 0(4880)/2085 0(0)/0 0(0)/20 0(351)/2129 0(17)/1 0(0)/0 0(0)/0 0(0)/0 0(45)/0 0(103)/4
iSAT3 2404(2517)/4402 10(667)/2486 2394(1850)/1916 0(15)/0 0(0)/14 0(393)/2276 1(29)/1 0(121)/27 0(7)/148 0(3)/0 0(27)/2 9(72)/18
VirtualBest 5158/5756 767/3141 4391/2615 3/12 0/20 299/2303 33/1 310/466 0/285 2/7 48/13 72/34

Table 1. Summary of SMT(NRA) experimental results. Each column represents a benchmark family. Each

entry shows the number of sat/unsat results reported. For tools reporting MaybeSat, the number is shown in

parentheses. The best performer for each family is highlighted in boldface. The overall best is underlined.

10.1.2 Other Approaches. We comparedMathSAT with various SMT solvers. For SMT(NRA),
we considered Yices [33], Z3 [31, 45] (Yices and Z3 were the winner and the runner-up in the
QF-NRA division of the SMT competition 2017), and SMT-RAT [28], that implement expensive
and complete techniques based on variants of CAD, and iSAT3 and dReal, based on interval
constraint propagation. We also considered the recent version of CVC4 [5] that, as discussed in [60],
is an independent implementation of our incremental linearization approach as described in [19].
For SMT(NTA), we considered iSAT3, dReal and MetiTarski [1], that implements a deductive
approach. MetiTarski has been developed to deal with hard NTA problems with a few dozens of
predicates, and it is not particularly suited for problems with a complicated Boolean structure.

10.1.3 Results for SMT(NRA). The results for SMT(NRA) are reported in Table 1. Each column
shows a benchmark family, and each entry gives the number of satisfiable/unsatisfiable instances
found. In the case of dReal and iSAT3, which can provide aMaybeSat answer, the value shown
for the satisfiable instances contains only the definitive answers produced by the tools. In this case,
we also report in parentheses the number of MaybeSat answers.

The MetiTarski benchmark class in SMT-LIB contains proof obligations deriving from
MetiTarski executions. The MetiTarski benchmarks are about two thirds of the SMT(NRA)
benchmarks in SMT-LIB, and have a very specific structure – they are conjunctions with no
Boolean part, so that the SMT solvers are in fact being activated as T -solvers for NRA. Given that
MathSAT is also able to deal with the original problems in SMT(NTA), we also report the results
of the comparison limited to the other benchmarks.
Table 1 demonstrates several interesting trends. First, on satisfiable instances, the complete

techniques of Yices and z3 have superior performances thanMathSAT in the overall case. However,
if we exclude theMetiTarski benchmarks, we obtain comparable performance to complete solvers,
and substantial advantage over incomplete solvers. We also notice that dReal is unable to conclude
Sat in any of the benchmarks, and – regardless of the precision adopted – it claims MaybeSat on
583 unsatisfiable benchmarks.
Incremental linearization shines on unsatisfiable benchmarks.MathSAT (and also CVC4, that

basically implements the same technique) demonstrates very good performance. Overall,MathSAT
solves 8852 benchmarks (behind z3 with 9922 and Yices 9874), and is the strongest solver with
3445 solved (followed by CVC4 with 3383) on the benchmarks without MetiTarski problems.
Interestingly, incremental linearization is highly complementary with respect to the more expensive
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Fig. 19. Survival plots for all SMT(NRA) Benchmarks. For each tool, the plots show the number of instances

that could be solved (y axis) within the given time (x axis).
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techniques implemented in z3, Yices and SMT-RAT. MathSAT is able to solve 317 benchmarks
that cannot be solved by other solvers (with the exception of CVC4), and it has been able to prove
579 benchmarks that have unknown status in the SMT-LIB. 15

The scatter plots for all SMT(NRA) benchmarks are reported in Fig. ??; in Fig. ?? are reported the
results excluding the MetiTarski benchmarks. The diagrams comparing MathSAT with z3, Yices
and SMT-RAT show that the techniques to detect satisfiable instances are very complementary. The
diagrams comparingMathSAT with iSAT3 and dReal show that the interval-based techniques
are not good at detecting satisfiable instances. We also notice that incremental linearization and
interval-based solvers are complementary on unsatisfiable instances. This suggests that integrating
interval propagation within incremental linearization may be sometimes beneficial for efficiency.

10.1.4 Results for SMT(NTA). The results on the SMT(NTA) benchmarks are reported in Table 2.
We can see that MathSAT is able to solve more benchmarks than dReal and iSAT3.MetiTarski
is unable to deal with benchmarks involving Boolean combinations, and thus could not be run on
the BMC and dReal benchmarks. Similarly to the case of SMT(NRA), dReal is able to solve only
unsatisfiable benchmarks, and returnsMaybeSat in many situations that are in fact unsatisfiable.
If we consider the scaled-down case, iSAT3 demonstrates better performance than dReal on
BMC benchmarks, being able to prove more satisfiable benchmarks. Overall, however, it is still
behindMathSAT. The scatter plots are reported in Fig. ??. The comparison betweenMathSAT
and MetiTarski only considers the MetiTarski benchmarks. Despite MetiTarski being superior
15This value refers to the tagging of the SMT-LIB on 2017-06-17.
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(2512) (887) (681) (944)

MathSAT 58/1198 44/541 0/299 14/358
dReal 0(1177)/761 0(294)/392 0(368)/267 0(528)/102
MetiTarski 0/536 - 0/536 -
VirtualBest 58/1588 44/546 0/621 14/421
MathSAT 50/1139 39/547 0/313 11/279
iSAT3 43(1316)/733 36(270)/475 0(455)/195 7(591)/63
dReal 0(1056)/782 0(267)/403 0(293)/269 0(496)/110
VirtualBest 70/1317 53/565 0/406 17/346

Table 2. Summary of SMT(NTA) experimental results (original problems above, bounded version below). Each

column represents a benchmark family. Each entry shows the number of sat/unsat results reported. For tools

reporting MaybeSat, the number is shown in parentheses. The best performer for each family is highlighted

in boldface. The overall best is underlined.
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Fig. 21. Survival plots for SMT(NTA) – Unbounded Benchmarks. For each tool, the plots show the number of

instances that could be solved (y axis) within the given time (x axis).
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Fig. 22. Survival plots for SMT(NTA) – Bounded Benchmarks. For each tool, the plots show the number of

instances that could be solved (y axis) within the given time (x axis).

toMathSAT in terms of solved instances, we notice thatMathSAT can be at times much faster
than MetiTarski, and that it is not strictly dominated – MetiTarski runs out of memory in
many benchmarks thatMathSAT can solve. In fact, there is a substantial difference between the
number of benchmarks solved byMetiTarski (536) and the virtual best solver (621). The scatters in
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Fig. ?? also confirm the complementarity between incremental linearization and interval constraint
propagation solvers. It is possible to notice a stripe of points that are solved in nearly constant
time by dReal and iSAT3 that are increasingly harder for MathSAT. On the bounded benchmarks,
dReal and iSAT3 contribute with almost 200 instances solved to the virtual best (see Table 2). This
confirms the potential benefits of integrating interval propagation within incremental linearization.

10.2 Experiments for VMT
10.2.1 Benchmarks. We collected 114 benchmarks over VMT(NRA) and 126 benchmarks over

VMT(NTA). The VMT(NRA) benchmarks set consists of the following families:
• Handcrafted: 14 (13 safe and 1 unsafe) benchmarks.
• HyComp: 7 (3 safe, 4 unsafe) benchmarks from [26] and converted to VMT(NRA) using
HyComp [21].
• HYST: 65 benchmarks generated from the hybrid systems examples in the HYST [4] distri-
bution, by approximating the continuous time with a fixed rate sampling. This process is
done automatically using an extended version of HYST. Since the generated benchmarks are
approximations, their status is unknown.
• iSAT3 and iSAT3-CFG: 11 (7 safe, 4 unsafe) benchmarks from [50] and the iSAT3 examples
available online.
• nuXmv: 2 safe benchmarks, with complex Boolean structure, from the nuXmv users’ mailing
list.
• SAS13: 13 benchmarks are generated from the C programs used in [14], but interpreted over
NRA instead of the theory of IEEE floating-point numbers. This makes some of the instances
unsafe.
• TCM: 2 safe benchmarks from the Simulink models (taken from the case study [15]) by
first generating the C code using Embedded Coder 16 and then encoding the programs into
VMT(NRA) models.

The VMT(NTA) benchmarks set consists of the following families:
• Handcrafted: 3 (safe) benchmarks.
• HARE, HYST, and WBS: 50, 57, and 12 benchmarks obtained from the discretization (using
HyComp [21]) of the hybrid systems benchmarks from [4, 25, 62] (unknown status).
• iSAT3: 4 benchmarks from the iSAT3 webpage.

Similar to the case of SMT(NTA), we included a scaled-down version of the VMT(NTA) benchmarks,
with real-valued variables constrained to the [−300, 300] interval, in order to include iSAT3 in the
comparison.
The benchmarks of the comparison are expressed in the VMT-LIB language 17, that extends

the SMT-LIB language so that the SMT formulae are interpreted as the initial condition and the
transition relation of the transition system. Cross-translation scripts were developed for the iSAT3
and dReal benchmarks.

10.2.2 Other Approaches. We compared the incremental linearization algorithm implemented in
nuXmv (in the following referred to as IncreLin-nuXmv) against the static abstraction approach
proposed (for the case of NRA) in [18] (referred to as StaticLin-nuXmv). In the case of NTA,
StaticLin-nuXmv also uses some basic constraints to limit the interpretation of transcendental

16https://www.mathworks.com/products/embedded-coder/
17Information available at http://www.vmt-lib.org/. A complete specification of the VMT-LIB language can be found in the
nuXmv User Manual available at https://nuxmv.fbk.eu/downloads/nuxmv-user-manual.pdf.
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(114) (14) (7) (65) (1) (10) (2) (13) (2)

IncreLin-nuXmv 16/65 1/13 1/3 7/34 0/0 2/6 0/2 5/5 0/2
StaticLin-nuXmv 0/37 0/4 0/1 0/19 0/0 0/4 0/2 0/5 0/2
Interpolation-iSAT3[1e−1] 2(47)/48 0(8)/2 0(3)/0 2(23)/34 0/0 0(4)/6 0/0 0(9)/4 0/2
Interpolation-iSAT3[1e−9] 2(19)/47 0(3)/2 0(2)/0 2(3)/32 0/0 0(3)/6 0/0 0(8)/5 0/2
K-induction-NRA-MathSAT 13/20 1/2 0/0 6/12 0/0 1/4 0/0 5/0 0/2
K-induction-NRA-Z3 25/22 1/2 2/0 15/12 0/0 2/6 0/0 5/0 0/2
K-induction-NRA-dReal 0(32)/16 0(4)/2 0(2)/0 0(19)/9 0/0 0(2)/5 0/0 0(5)/0 0/0
BMC-NRA-MathSAT 15/0 1/0 0/0 7/0 0/0 2/0 0/0 5/0 0/0
BMC-NRA-Z3 26/0 1/0 2/0 15/0 0/0 3/0 0/0 5/0 0/0
BMC-NRA-dReal 0(39)/0 0(8)/0 0(2)/0 0(19)/0 0/0 0(3)/0 0/0 0(7)/0 0/0
VirtualBest 26/71 1/13 2/3 15/39 0/0 3/7 0/2 5/5 0/2

Table 3. Summary of VMT(NRA) experimental results. Each column represents a benchmark family. Each

entry shows the number of unsafe/safe results reported. For tools reportingMaybeUnsafe, the number is

shown in parentheses. The best performer for each family is highlighted in boldface. The overall best is

underlined.

functions. We also compared IncreLin-nuXmv against various approaches based on the direct use
of an SMT(NRA) or SMT(NTA) solver.
• BMC: BMC-NRA-Z3, based on z3 (limited to NRA); BMC-NRA-dReal and BMC-NTA-dReal,
based on dReal; BMC-NRA-MathSAT and BMC-NTA-MathSAT, based on MathSAT.
• k-induction: 18 K-induction-NRA-Z3, based on z3 (limited to NRA); K-induction-NRA-
dReal and K-induction-NTA-dReal, based on dReal; K-induction-NRA-MathSAT and
K-induction-NTA-MathSAT, based on MathSAT.
• The interpolation-based iSAT3 engine [50], with two different levels of precision –
Interpolation-iSAT3[1e−1] and Interpolation-iSAT3[1e−9].

10.2.3 Results for VMT(NRA). The results for VMT(NRA) are summarized in Table 3. Each
column shows a benchmark family, and each entry gives the number of unsafe/safe instances
found. In parenthesis we report the number of undefiniteMaybeUnsafe answers. The experimental
results for VMT(NRA) clearly demonstrate the merits of incremental linearization compared to
BMC and k-induction approaches based on the direct usage of SMT(NRA). IncreLin-nuXmv is by
far the best solver among all the available ones, with 81 benchmarks solved against the 50 solved by
the runner-up Interpolation-iSAT3[1e−1]. The purely-static approach of StaticLin-nuXmv only
solves 37, thus confirming the importance of incremental refinement of the abstraction. The scatter
plot in Fig. ?? reports the comparison on VMT(NRA) problems. We notice that IncreLin-nuXmv
dominates the approaches based on k-induction: every safe instance solved by k-induction is
also solved by incremental linearization (with the exception of one instance). Interpolation has

18The BMC and k-induction solvers using dReal are based on a script developed with the specific objective of this evaluation.
When dReal returns aMaybeSat result on a BMC query (or a base case query) the script returnsMaybeUnsafe. When
dReal returnsMaybeSat on an inductive step query the script considers it a failed induction and increases k . This does
not hamper the correctness of Safe results. However, we notice that the loop is slightly different from the one that is
implemented in nuXmv on top of MathSAT and of z3, in that they may run out of resources trying to prove that an
inductive query is satisfiable. The ability to “bail out” from hard satisfiable inductive checks gives dReal a slight advantage.
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Fig. 23. Survival plots for VMT(NRA). For each tool, the plots show the number of instances that could be

solved (y axis) within the given time (x axis).
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(126) (3) (50) (57) (4) (12)

IncreLin-nuXmv 26/61 0/3 0/43 24/4 0/2 2/9
StaticLin-nuXmv 0/23 0/0 0/15 0/1 0/0 0/7
K-induction-NTA-MathSAT 21/8 0/1 0/0 20/1 0/0 1/6
K-induction-NTA-dReal 0(66)/3 0(0)/0 0(3)/0 0(54)/2 0(0)/0 0(9)/1
BMC-NTA-MathSAT 21/0 0/0 0/0 19/0 0/0 1/0
BMC-NTA-dReal 0(67)/0 0(0)/0 0(4)/0 0(54)/0 0(0)/0 0(9)/0
VirtualBest 31/61 0/3 0/43 29/4 0/2 2/9
IncreLin-nuXmv 25/61 0/3 0/43 23/4 0/2 2/9
StaticLin-nuXmv 0/24 0/0 0/15 0/1 0/1 0/7
Interpolation-iSAT3[1e−1] 27(36)/21 0(0)/3 0(4)/8 27(21)/5 0(1)/3 0(10)/2
Interpolation-iSAT3[1e−9] 23(27)/20 0(0)/3 0(2)/7 23(19)/5 0(0)/3 0(6)/2
K-induction-NTA-MathSAT 22/14 0/3 0/4 22/1 0/0 0/6
K-induction-NTA-dReal 0(55)/10 0(0)/3 0(4)/4 0(42)/1 0(0)/1 0(9)/1
BMC-NTA-MathSAT 22/0 0/0 0/0 22/0 0/0 0/0
BMC-NTA-dReal 0(55)/0 0(0)/0 0(4)/0 0(42)/0 0(0)/0 0(9)/0
VirtualBest 33/63 0/3 0/43 31/5 0/3 2/9

Table 4. Summary of VMT(NTA) experimental results (original problems above, bounded version below). Each

column represents a benchmark family. Each entry shows the number of unsafe/safe results reported. For

tools reportingMaybeUnsafe, the number is shown in parentheses. The best performer for each family is

highlighted in boldface. The overall best is underlined.

some complementarity w.r.t. incremental linearization: it solves 5 benchmarks where IncreLin-
nuXmv (as well as all the other engines) times out. We conjecture that incremental linearization
for SMT(NRA) could be extended to produce interpolants applicable to verification. We also see
that the BMC approach based on complete SMT(NRA) techniques is the best in terms of unsafe
instances. This can be due to the fact that we are adopting a concretization approach that is based
on incremental linearization and not a complete solver.
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Fig. 24. Survival plots for VMT(NTA) – Unbounded Benchmarks. For each tool, the plots show the number of

instances that could be solved (y axis) within the given time (x axis).
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instances that could be solved (y axis) within the given time (x axis).

10.2.4 Results for VMT(NTA). The results for VMT(NTA) are reported in Table 4. Overall, the
experimental results clearly demonstrate the merits of incremental linearization at the level of VMT.
IncreLin-nuXmv is by far the best solver among all the available ones, confirming the trends of
the VMT(NRA) case. In fact, incremental linearization dominates even more in VMT(NTA), given
the lack of complete techniques: the performance of IncreLin-nuXmv is very close to the virtual
best (see Table 4). The survival plots reported in Fig. 24 and 25, and the scatter plots reported in
Fig. ?? and ?? corroborate these observations. Compared to VMT(NRA), we notice many more
memory-outs, suggesting that the solvers may proceed by brute force and generate useless lemmas.

10.3 Discussion
The experimental evaluation suggests several interesting general remarks:
• Incremental linearization is highly competitive for NRA. Given the maturity of the other
solvers, we found it quite surprising to discover how well it compares on SMT as well as
VMT benchmarks.
• Incremental linearization appears to be a very effective technique to deal with transcendental
functions, a theory for which no complete methods are available. A key factor in the case of
trigonometric functions appears to be the idea of reduction to the base interval. Incremental
linearization could be improved further by integration with interval-based techniques.
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• Despite their inherent theoretical limitations, in practice the satisfiability-oriented methods
presented in this paper are often able to conclude Sat in cases where complete techniques
bail out or do not exist.19

11 CONCLUSIONS AND FUTUREWORK
In this paper we have proposed incremental linearization as a general framework for automated
reasoning about nonlinear polynomials and transcendental functions such as exponentiation and
trigonometric functions.

The key idea is to abstract nonlinear and transcendental functions as uninterpreted functions in
the combined theories of Linear Real Arithmetic (LRA) and Equalities and Uninterpreted Functions
(UF), for which efficient solvers exist. The uninterpreted functions in the abstract space, correspond-
ing to nonlinear and transcendental functions in the original theory, are incrementally axiomatized
by means of upper- and lower-bounding piecewise-linear constraints. The refinement is driven
by the existence of spurious models (or traces, in the case of VMT). In the case of transcendental
functions, the management of irrational values is particularly tricky, and care is required to ensure
the soundness of the abstraction.

The approach is proved to be correct, and it has been implemented in the MathSAT SMT solver
and in the nuXmvmodel checker. We carried out an extensive experimental evaluation on a wide set
of SMT and VMT benchmarks, and the results clearly demonstrate the effectiveness of incremental
linearization.
In the future, we plan to work along two main directions. At the level of basic SMT solving,

we will investigate the integration of incremental linearization with complementary techniques,
such as interval constraint propagation - in order to further improve efficiency - or CAD - that
is a more powerful technique but also more expensive. Other important topics include sufficient
criteria for satisfiability without necessarily producing a model [36], and the use of factorization
techniques for the polynomial pre-processing and polynomial-level axiomatization. We are also
interested in exploring the impact of a native approach for handling transcendental functions that
are currently supported via a reduction to sin and exp by way of rewriting. Finally, we will evaluate
the incremental linearization to solve NIA benchmarks.
At the level of VMT, a very important step is the extension beyond invariant checking, to deal

with full LTL specifications over nonlinear transition systems. We conjecture that the computation
of limit values for series may help to deal with transition systems deriving from discrete-step
controllers. Finally, we will extend incremental linearization to deal with hybrid automata featuring
polynomial and transcendental dynamics.
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A SCATTER PLOTS
The scatter plots compare pairwise solvers S1 and S2 on individual benchmarks: each point (t1, t2)
in a scatter represents a benchmark problem that was solved in ti time by solver Si . We adopt a
logarithmic scale, and report time out and memory out as separate lines.
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ACM Transactions on Computational Logic, Vol. 1, No. 1, Article 1. Publication date: January 2018.



Incremental Linearization for Satisfiability and Verification 1:51

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

S
ta

ti
c
L
in

-n
u
X

m
v

IncreLin-nuXmv

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000
K

-i
n
d
u
c
ti
o
n
-N

T
A

-M
a
th

S
A

T

IncreLin-nuXmv

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

K
-i
n
d
u
c
ti
o
n
-N

T
A

-d
R

e
a
l

IncreLin-nuXmv

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

B
M

C
-N

T
A

-M
a
th

S
A

T

IncreLin-nuXmv

 0.1

 1

 10

 100

 1000

 0.1  1  10  100  1000

B
M

C
-N

T
A

-d
R

e
a
l

IncreLin-nuXmv

Fig. 31. Scatter plots of VMT(NTA) – Unbounded Benchmarks. Safe instances are shown in blue, unsafe ones

in red. Green dots indicate unknown instances. Diagonal lines mark 2x and 10x performance differences.

Points on the inner edges indicate timeouts, those on the outer edges indicate other errors (memory outs or
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Fig. 32. Scatter plots of VMT(NTA) – Bounded Benchmarks. Safe instances are shown in blue, unsafe ones in

red. Green dots indicate unknown instances. Diagonal lines mark 2x and 10x performance differences. Points

on the inner edges indicate timeouts, those on the outer edges indicate other errors (memory outs or aborts).
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