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Outline

♦ Introduction
♦ Project objectives
♦ The proposed solution: ARE

– The ARE architecture
– The ARE formal framework

♦ Evaluation approach
♦ Related work
♦ Industrial perspective
♦ Conclusion
♦ Future work
♦ Demo
♦ Discussion
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Introduction
Andrea Guiotto
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The consortium at a glance

Fondazione Bruno Kessler
Subcontractor 

• Technology survey
• Formal Framework definition
• Architecture design
• Algorithms definition
• Implementation of the ARE
• Development of formal models
• Support to evaluation & characterization

Thales Alenia Space Italia
Prime contractor 

• Mission scenarios and requirements
• Architecture design 
• Validation
• Evaluation & characterization
• Project management

Thales Alenia Space France
Subcontractor 

• S/C Simulator
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Initial schedule

KO: 16/04/2007

FP: 16/10/2008

New FP: 10/11/2008
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Motivations

♦ Limits of the traditional approaches:
1.The control of a spacecraft takes place mostly from 

ground, through the exchange of sequences of low level 
commands.

2.Spacecraft is typically unable to deal alone with 
unexpected events from the environment or unpredicted 
on-board failures.

3. In deep space and remote planetary exploration 
missions the limits in communication between ground 
and spacecraft (in time and bandwidth) increase reaction 
times and can decrease the efficiency of corrective 
actions.
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Motivations (II)

♦ Enhancements with ARE:
1.Providing remote systems with the ability to create their 

own plans based on up-to-date information and enabling 
them to re-plan in response to dynamic events would 
greatly improve the efficiency of a mission and 
potentially improve the safety of systems. 

2.Ground operators can use the restricted communication 
link to forward high-level mission objectives, which the 
on-board system can turn into detailed commands. 

3.Execution can be monitored continuously and re-
planning invoked when any execution problem occurred.
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Study objectives

♦ Demonstrate the applicability of 
– model based reasoning, and
– model checking techniques

♦ … to increase autonomy of on-board reasoning
– on-board re-planning
– on-board plan validation
– monitoring
– FDIR
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Study objectives (II)

♦ Find out and justify the place of model checking in 
space systems to increase 
– degree of autonomy
– confidence on the correctness

♦ Develop a SW prototype, named Autonomous 
Reasoning Engine (ARE)
– to be used as building block in future space missions

♦ Evaluate the global approach on real case studies
– Planetary rover
– Orbiter spacecraft

♦ Characterize the approach w.r.t. peculiarities of the 
space environment.
– Memory usage, speed, embeddability in space architectures
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From Model Checking
to Model Based Reasoning for Autonomy 

Alessandro Cimatti
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FBK-irst

♦ Fondazione Bruno Kessler
– private research foundation with public finalities
– formerly Istituto Trentino di Cultura
– funded by the Autonomous Province of Trento
– several research centers

♦ Center for Information Technologies
– about 200 researchers in advanced areas of IT
– vision, acoustics, automated speech and translation, 

software engineering, knowledge management
♦ The Embedded Systems Unit

– about 20 people
– research staff, programmers, ph.d students
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Embedded Systems Unit

♦ Activities
– research
– tools
– technology transfer

♦ Three main lines of research
– formal specification and verification
– reasoning for autonomy
– distributed wireless sensor networks

♦ Some partnerships in technology transfer / research projects
– European Space Agency
– European Railway Agency
– Invensys Climate Controls
– Intel
– Ansaldo Trasporti
– Ansaldo Segnalamento Ferroviario
– Thales/Alenia Spazio
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"Standard" Formal Verification

♦ Embedded systems carry out critical functions
– lives and huge amounts of money at stake

♦ Bugs are possible
– Radiotherapy Machine Therac 25: 6 people overradiated
– Intel Pentium FDVI: 400 MUSD
– ….

♦ Research: Formal Verification, Model Checking
– Advanced methods for design and development 

♦ Find the greatest number of defects
♦ Certify the absence of defects

♦ The basic intuition
– The system under analysis is modeled as a mathematical theory
– Its correctness reduced to proving a theorem
– Model checker: a specialized software tool that is able to

» prove a theorem
» show that a conjecture is not a theorem

– automatic, esaustive, useful to the designer

♦ Formal verification
– off line, design time technologies
– avionics, space, railways, hardware
– Functional verification, Requirements engineering

Critical 
Systems



15

"Standard" Formal Verification

♦ Embedded systems carry out critical functions
– lives and huge amounts of money at stake

♦ Bugs are possible
– Radiotherapy Machine Therac 25: 6 people overradiated
– Intel Pentium FDVI: 400 MUSD
– ….

♦ Research: Formal Verification, Model Checking
– Advanced methods for design and development 

♦ Find the greatest number of defects
♦ Certify the absence of defects

♦ The basic intuition
– The system under analysis is modeled as a mathematical theory
– Its correctness reduced to proving a theorem
– Model checker: a specialized software tool that is able to

» prove a theorem
» show that a conjecture is not a theorem

– automatic, esaustive, useful to the designer

♦ Formal verification
– off line, design time technologies
– avionics, space, railways, hardware
– Functional verification, Requirements engineering

Critical 
Systems



16

"Standard" Formal Verification

♦ Embedded systems carry out critical functions
– lives and huge amounts of money at stake

♦ Bugs are possible
– Radiotherapy Machine Therac 25: 6 people overradiated
– Intel Pentium FDVI: 400 MUSD
– ….

♦ Research: Formal Verification, Model Checking
– Advanced methods for design and development 

♦ Find the greatest number of defects
♦ Certify the absence of defects

♦ The basic intuition
– The system under analysis is modeled as a mathematical theory
– Its correctness reduced to proving a theorem
– Model checker: a specialized software tool that is able to

» prove a theorem
» show that a conjecture is not a theorem

– automatic, esaustive, useful to the designer

♦ Formal verification
– off line, design time technologies
– avionics, space, railways, hardware
– Functional verification, Requirements engineering

Model
Checking

Critical 
Systems



17

"Standard" Formal Verification

♦ Embedded systems carry out critical functions
– lives and huge amounts of money at stake

♦ Bugs are possible
– Radiotherapy Machine Therac 25: 6 people overradiated
– Intel Pentium FDVI: 400 MUSD
– ….

♦ Research: Formal Verification, Model Checking
– Advanced methods for design and development 

♦ Find the greatest number of defects
♦ Certify the absence of defects

♦ The basic intuition
– The system under analysis is modeled as a mathematical theory
– Its correctness reduced to proving a theorem
– Model checker: a specialized software tool that is able to

» prove a theorem
» show that a conjecture is not a theorem

– automatic, esaustive, useful to the designer

♦ Formal verification
– off line, design time technologies
– avionics, space, railways, hardware
– Functional verification, Requirements engineering

Model
Checking

Critical 
Systems



18

"Standard" Formal Verification

♦ Embedded systems carry out critical functions
– lives and huge amounts of money at stake

♦ Bugs are possible
– Radiotherapy Machine Therac 25: 6 people overradiated
– Intel Pentium FDVI: 400 MUSD
– ….

♦ Research: Formal Verification, Model Checking
– Advanced methods for design and development 

♦ Find the greatest number of defects
♦ Certify the absence of defects

♦ The basic intuition
– The system under analysis is modeled as a mathematical theory
– Its correctness reduced to proving a theorem
– Model checker: a specialized software tool that is able to

» prove a theorem
» show that a conjecture is not a theorem

– automatic, esaustive, useful to the designer

♦ Formal verification
– off line, design time technologies
– avionics, space, railways, hardware
– Functional verification, Requirements engineering

Model
Checking

Critical 
Systems



19

"Standard" Formal Verification

♦ Embedded systems carry out critical functions
– lives and huge amounts of money at stake

♦ Bugs are possible
– Radiotherapy Machine Therac 25: 6 people overradiated
– Intel Pentium FDVI: 400 MUSD
– ….

♦ Research: Formal Verification, Model Checking
– Advanced methods for design and development 

♦ Find the greatest number of defects
♦ Certify the absence of defects

♦ The basic intuition
– The system under analysis is modeled as a mathematical theory
– Its correctness reduced to proving a theorem
– Model checker: a specialized software tool that is able to

» prove a theorem
» show that a conjecture is not a theorem

– automatic, esaustive, useful to the designer

♦ Formal verification
– off line, design time technologies
– avionics, space, railways, hardware
– Functional verification, Requirements engineering

Model
Checking

Critical 
Systems



20

Results in Formal Verification
♦ Research line in Bounded Model Checking

– In CiteSeer, "20th Most cited source document published in 1999
as of September 2006"

♦ The NuSMV model checker
– more than 20000 downloads since 2004
– Development based on OpenSource
– Industrial users include Rockwell-Collins, Intel, NASA, Boeing

♦ The FSAP safety analysis system
– fault tree analysis specialized in avionics
– commercial version under industrial evaluation

♦ Recent research projects
– ESACS (FP V), ISAAC (FP VI), MISSA (FP VII): avionics
– PROSYD (FP VI): requirements analysis for hardware
– ORCHID (PAT competitive funds): new generation verification tools
– BOWLING: grant from the Academic Research Program by INTEL Corp.
– COCONUT (FP VII): correctness by construction of embedded systems
– COMPASS: competitive invitation to tender by ESA
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Model-Based Autonomy

♦ Autonomous systems
– Example: remote space systems

♦ How can we program such systems?
– Potential for on-board autonomy
– Required Functions

» Action planning
» Execution Monitoring
» Fault diagnosis

♦ Model-based Reasoning via Model Checking
– Environment and functions to carry out

modeled as mathematical theories
– Functions for autonomy (planning, monitoring 

and diagnosis) carried out as proof search 
(model checking)

– Extensions of verification algorithms

♦ From off-line to on-line
– can be useful for ground operation
– carried out on board
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Results in Model-based Reasoning

♦ The research line in Planning as Model Checking
– Several top publications:

» 3 Journal of Artificial Intelligence
» 4 IJCAI

– Citation in MIT book of abstracts
– Collaboration with NASA Ames Research Center
– Recent award ICAPS'08 most influential paper in the last decade

♦ The MBP planner
– applied also in software and hardware synthesis

♦ The "On-board Model Checking" project
– Invitation to Tender by European Space Agency
– FBK-irst in team with Thales-Alenia Space
– Theme: model-based reasoning for autonomous systems

» Model based planning + execution + monitoring 
» Embedded platforms
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Overview of the ARE Architecture
Marco Roveri
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The proposed solution

♦ Autonomy as a mix of cooperating functions
– Plan generation, plan validation
– Execution and Monitoring
– FDIR

♦ A layered approach
– Deliberative layer
– Executive layer
– Control layer

♦ A generic reasoner working on a model
– Same model shared between the cooperating functions
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Autonomy Architecture: BB view

♦ High-level Inputs
– mission plans
– mission goals
– ground commands

♦ High-level Outputs
– logs, inspected status

♦ Low level Inputs
– signals from sensors

♦ Low level Outputs
– commands to actuators
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ARE high level architecture

DELIBERATIVE LAYER: provides 
facilities for goal-driven planning, 
plan validation, and system-level 
FDIR.

EXECUTIVE LAYER: provides 
facilities to execute and monitor 
the correct execution of the 
current mission plan.

CONTROL LAYER: provides low 
level interactions with the 
controlled system (sensor 
acquisition and commands to 
actuators sending).
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ARE architecture overview
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ARE Decision Layer
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ARE Executive Layer
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ARE Control Layer
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ARE Top Level FSM
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ARE Top Level FSM
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ARE FSM: the Nominal state
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The ARE Formal Framework
Alessandro Cimatti
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ARE Formal Framework

♦ The Planning as Model Checking framework
– Possible non-determinism in action effects
– Limited sensing: partially observable domain 
– Modeling run-time uncertainty on plant status 
– Conditional plans

♦ Extension 1: Assumptions under which the controlled plant is 
operated

♦ Extension 2: Model of Resources for plan validation and run-time 
monitoring

♦ Result:
– generation of conditional strong plans
– annotated for run-time monitoring of assumptions …
– … and of resource consumption
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The Formal Model

♦ Q is a set of propositions
♦ R is a set of resources
♦ S is finite set of states
♦ A is a finite set of actions
♦ O ⊆ Q is a set of observations
♦ F ⊆ Q is a set of fault bits
♦ T ⊆ S×A×S  

– The transition relation
– Applicability
– Several possible outcomes

♦ X ⊆ O×S  
– The observation relation, 

associating to a state the 
observation compatible with that 
state.

♦ Lab : S → 2Q
– Labeling function

♦ Res : S →  (R → ℜ2)
– Resource association function
– for each resource in a state

a Low value (Res(s)(r)Low) and 
an High  value (Res(s)(r)High)

♦ Ass ⊆ S 
– Assumptions under which the 

plant is operated  



42

An Example

♦ Simple robot navigation domain
♦ states: 00, .., 03, 10, 12, …
♦ actions: GoNorth, GoSouth, GoEast, GoWest
♦ applicability: R(01, GoEast) = { }
♦ determinism: R(33, GoEast) = { 33 }
♦ nondeterminism: R(22, GoEast) = { 31, 32, 33 }
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Reasoning in Belief Space

♦ Dealing with uncertainty
– several different states may be compatible with currently 

available information
– collect indistinguishable states into a set called Belief 

State
♦ Belief state  ∅ ≠ BS ⊆ S

– Emptiness denotes inconsistency in representation
♦ Actions in belief space

– applicability conditions must hold in all states
– result belief state is set of all possible successors

♦ Observations “split” belief states
– limit BS to the states compatible with observation
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Dealing with Resources

♦ For run-time plan monitoring and for plan validation we 
use two additional functions:

– A resource estimation function (REF) that associates to a 
belief state BS ⊆ S and to a resource r∈R a pair <m,M>∈ℜ2 

REF : 2S → (R → ℜ2)
– A resource consumption estimation function (RCEF) that 

associates to a BS ⊆ S, to an action α∈A, and to a resource 
r∈R a pair <m,M>∈ℜ2  corresponding to the min and max 
resource consumed by executing action α in any state s∈BS

 RCEF : 2S×A → (R → ℜ2)
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Resources in Belief Space

♦ REF(BS)(r) := <m,M>
– m := min{Res(s)(r)Low | s∈BS}
– M := max{Res(s)(r)High | s∈BS}

♦ RCEF(BS, α)(r) := <m,M>
– m := min{Res(s)(r)Low - Res(s’)(r)High| s∈BS, (s,α,s’)∈T}
– M := max{Res(s)(r)High - Res(s’)(r)Low| s∈BS, (s,α,s’)∈T}
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Mission Plans

<end of plan>
<action . assert(G,PG)> “;” <plan>
<observation . assert(G,PG)> “?” <plan> “:” <plan>

<plan> :=
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Mission Plans

<end of plan>
<action . assert(G,PG)> “;” <plan>
<observation . assert(G,PG)> “?” <plan> “:” <plan>

Action to execute

Sequencing

<plan> :=
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Mission Plans

<end of plan>
<action . assert(G,PG)> “;” <plan>
<observation . assert(G,PG)> “?” <plan> “:” <plan>

Action to execute

Sequencing

Conditional plan 
depending on an 

observation

Observation that 
conditions next 

part of plan

<plan> :=
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Mission Plans (II)

♦ G ⊆ S is a set of states in which the assumption Ass holds
♦ G ⊆ PG ⊆ S is a set of states in which the assumption Ass 

may be violated, but that are indistinguishable from states 
in G.

<end of plan>
<action . assert(G,PG)> “;” <plan>
<observation . assert(G,PG)> “?” <plan> “:” <plan>

<plan> :=
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Mission Plans (II)

♦ G ⊆ S is a set of states in which the assumption Ass holds
♦ G ⊆ PG ⊆ S is a set of states in which the assumption Ass 

may be violated, but that are indistinguishable from states 
in G.

<end of plan>
<action . assert(G,PG)> “;” <plan>
<observation . assert(G,PG)> “?” <plan> “:” <plan>

<plan> :=

Conditions to check at 
run-time to guarantee 
assumptions are 
satisfied
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Plan Execution: Exec[P](S)

♦ Recursively defined on the plan structure
– Exec[ <end of plan> ](BS) = BS

– Exec[ < α >;P ](BS) = ∅  if α is not applicable in BS
– Exec[ < α >;P ](BS) = BS' if α is applicable in BS

» BS' = {s'∈S| s∈BS and (s,α,s')∈T}

– Exec[ ο ? PT : PF ](BS) = ∅ if 
» Exec[PT](BS[ο,T]) = ∅ or Exec[PF](BS[ο,F]) = ∅

– Exec[ ο ? PT : PF ](BS) = BS'
» BS' = Exec[PT](BS[ο,T])  ∪ Exec[PF](BS[ο,F]) 

if Exec[PT](BS[ο,T])  ≠ ∅ and Exec[PF](BS[ο,F]) ≠ ∅
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Plan Execution with Assumptions

♦ Exec[P](<Sg,Spg>) = <Fg,Fpg>

♦ Spg is the set of states indistinguishable from Sg
– Spg = IND(Sg)

♦ Fg,Fpg  obtained by progressing the Sg,Spg following the 
plan similarly to the case without assumption
– Action applicability checked w.r.t Spg
– Observations split both Sg,Spg
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Plan Execution with Resources

♦ Resources associated to Sg and to Spg

♦ Resources progressed from initial resources
according to
– plan structure, 
– resource cost estimation function

♦ If resources of current Spg less than limit Rmin
then return <∅, ∅>
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Plan Validity

♦ ∅ ≠ Init ⊆ S  
– Set of all possible initial states (Initial belief state)

♦ ∅ ≠ Goal ⊆ S
– Set of all goal states

♦ Plan P is valid (is a strong solution) iff
– Exec[P](<Init,IND(Init)>)  ≠ <∅, ∅>
– Exec[P](<Init,IND(Init)>)  = <Fg,Fpg> and  Fpg ⊆ Goal
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Plan Generation Algorithm

♦ Forward And-Or search in belief space

♦ Node Expansion
– OR branching

» simulate effect of action execution
– AND branching

» simulate effect of observation

♦ Nodes tagged as 
– success if contained in goal, or if descendent success
– failure if no action possible or all descendents are failure due to 

loopbacks
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Plan Generation Algorithm (II)

♦ Beliefs pruned according to assumptions

♦ In parallel with the current belief, we also progress two 
“monitor-beliefs”, Sg and Spg that represent uncertainty 
w.r.t. assumption status.

♦ We prune monitor-beliefs using sensing, until no more 
uncertainty.

♦ General, domain-independent heuristic guidance used

♦ Resource consumption currently disregarded during 
planning
– could be used to prune resource-inconsistent branches
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Fault Detection, Identification, Recovery

♦ While plan executes, performed actions and observed events are recorded
– o0;a1;o1; …; ak; ok

♦ Bounded History Window over Observations and Actions
– select limited horizon of observation k
– X(s0,o0) & T(s0,a1,s1) & X(s1,o1) & … & T(sk-1,ak,sk) & X(sk,ok)
– defines set of system state sequences compatible with observations and actions

♦ Construction of a monitor for fault variables
– OccF0 iff F0

– OccFi iff Fi v OccFi-1

♦ Cross-product with the Model of the controlled plant

♦ Simulation of the History Window on the cross-product model
– Accumulate reachable states of the cross-product
– Project on fault monitor variables
– Analyze the resulting set to extract the possible faults
– For multiple faults, consider the one with highest probability
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The Role of Symbolic Techniques
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Model Checking
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♦ Symbolic Model Checking
– use logic-based data structures (e.g. BDD, SAT) for the 

representation and exploration of model
– may avoid blow-up due to enumeration

♦ In particular, Kripke structures are implicitly generated by 
a language:
– variable based representation
– synchronous/asynchronous composition

♦ Model checking is linear in the size of the structure…
♦ but the structure is exponential in the number  of 

components

Symbolic Representation
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Symbolic Representation

♦ Vector of state variables V
– e.g. robot in 4x4 square

» x : {0, 1, 2, 3}, y : {0, 1, 2, 3}
– State as assignment to state variables

» x = 2, y = 3
♦ Vector of action variables A

– e.g. robot actions
» a : { N, S, E, W}

– Action as assignment to action variables
» a = N

♦ Vector of next state variables V’
– Transition as assignment to current/next state and action 

variables
» x = 2, y = 3,    a = N,    x’ = 2,  y' = 2
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Symbolic Representation

♦ Set-oriented representation
– sets of states
– sets of actions
– sets of state-action pairs (i.e. policies)
– sets of transitions

♦ Logic to represent and manipulate characteristic functions of sets
– conjunction as intersection
– union as disjunction
– complementation as negation
– existential quantification as projection
– …

♦ Basic advantage: characteristic function may be much much more 
compact than represented set
– x = 0 represents { 0 } and { 00, 01 } and { 000, 001, 010, 011 }
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♦ Traditionally, based on Binary Decision Diagrams
– canonical form for propositional logic
– dependence on the ordering
– fix point algorithms
– QBF primitives

♦ More recently, SAT based model checking
– Bounded Model Checking

» extension to LTL for SAT-plan approach
– Invariant checking for inductive reasoning

♦ In this study, BDD-based technologies

Symbolic Technologies
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Binary Decision Diagrams

♦ The BDD package provides
– boolean operations
– universal and existential quantification (QBF)
– caching and memoizing

♦ Used to represent
– accumulated states
– belief states
– state distances for computation of heuristics
– assumptions and plan annotations

♦ Used to compute
– equality, containment between belief states
– set operations between belief states (union, intersection, …)
– images in reachability analysis
– belief state progression
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The ARE Implementation
Marco Roveri
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ARE implementation

ARE Top Level

ARE Functions

RTEMS OS

POSIX C

NuSMV Library
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ARE implementation (II)

Command
to actuators

Sensing
information

Command
from 

Ground

ARE FSM Thread ARE Child Thread

initialization
plan validation
plan generation
plan execution 
and monitoring

FDIR
Resource Estimation
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Implementation considerations

♦ No dynamic memory allocation

♦ Bounded (controlled) recursion

♦ Child thread is scheduled as a sporadic thread
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Implementation considerations (II)

♦ Development language
– ISO ANSI C API
– POSIX 1003.1B API

♦ Developed code checked for 
– buffer over-runs and under-runs using the DUMA and 

Valgrind suites
– use of variables before initialization with Valgrind suite
– thread synchronization errors with Valgrind

» http://duma.sourceforge.net
» http://valgrind.org

♦ NuSMV coding standard used for the whole project

http://duma.sourceforge.net/
http://valgrind.org/
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Implementation considerations (III)

♦ Developed lines of code (no domain dependent code)
– ARE Top Level:

– ARE Functions: 
# Files Comments code

C headers 19 1023 644
C sources 20 4753 5743

SUM 39 5776 6387

# Files Comments code

C headers 6 621 733
C sources 3 130 115

SUM 9 751 848

Cfr. cloc: http://cloc.sourceforge.net/ 

http://cloc.sourceforge.net/
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Model Generation Flow

NuSMV model

Model validation
with NuSMV

Feedback to the
Matlab/Simulink/Stateflow

model

Matlab/Simulink/Stateflow model

NuSMV model
generation

Generation of 
Low Level 

Resource Function
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Model and Resource Functions 

♦ About 310 properties to validate Rover model
♦ About 50 properties to validate Orbiter model

C
comments

C
code

SMV
lines

Rover 296 4669 1854
Small Rover 263 1789 524
Orbiter 173 480 181

Cfr. cloc: http://cloc.sourceforge.net/ 

http://cloc.sourceforge.net/
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The ARE Characterization
Marco Roveri
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Evaluation approach

♦ Case studies
– Planetary rover

» Model taken from  another running project 
developed in ThalesAlenia space

– Orbiting spacecraft
» ThalesAlenia space in house simple model

♦ Characterization
– Functional – on desktop PC
– Embedded – on platform
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Functional characterization

♦ Rover
– 17 subcomponents (92 commands)

» raman (21), spds (12), micromega (3), marsxrd (2), urey (3), moma 
(4), 2 pancam WAC1 (4), pancam HRC (3), sas (4), locomotion (2), 
mima (6), wisdom (7), clupi (3), mimosii (3), mamis (4), rat (2), mast 
(3), arm (2)

♦ Small rover
– 3 subcomponents (19)

» spds (12), urey (3), sas (4)

♦ Orbiter
– 3 subcomponents (9)

» imager (3), altimeter (3), antenna (3)
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Functional characterization

♦ For each case study
– Size of the models

» state variables
» action variables
» observations
» total boolean variables

– Size of state space
» potential states
» reachable states
» size of BDD
» diameter (max distance from initial states)

– Planning
» Explored search space
» Max depth of plan
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Functional characterization

# 
state
vars

# 
action
vars

#
obs

# 
bool
vars

state
space

reachable
state
space

reach.
BDD 
size

diameter

Rover 116 2 74 423 1.00361e+61 
(2^202)

3.44562e+58 
(2^194)

333 61

Small 
rover

40 2 20 147 2.90536e+20 
(2^67)

2.33589e+19 
(2^64)

103 31

Orbiter 16 3 5 77 4.22786e+09 
(2^31)

1.6535e+07 
(2^23)

106 33
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Functional characterization

♦ Plan generation

# generated 
nodes

# processed
nodes

Plan
depth

Rover 323 16 15

Small rover 70 16 15

Orbiter 17 3 2
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Platform Characterization

♦ Different scenarios
♦ Different plots CPU/Stack/Memory

– Memory characterization to estimate memory 
requirements

♦ Different configuration of the rover
– To characterize the impact of the model

♦ Different target space architecture 
– Sparc ERC32, Sparc LEON3
– To evaluate the performance in current and future target 

CPU architectures
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CPU Usage: rover (ERC32)



105

Stack usage: rover (ERC32)
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Memory usage: rover (ERC32)
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CPU Usage: rover (LEON3)
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Stack usage: rover (LEON3)
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Memory usage: rover (LEON3)
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CPU usage: orbiter (ERC32)
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Stack usage: orbiter (ERC32)
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Memory usage: orbiter (ERC32)
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CPU usage: orbiter (LEON3)
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Stack usage: orbiter (LEON3)
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Memory usage: orbiter (LEON3)
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CPU Usage: small rover (ERC32)
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Stack usage: small rover (ERC32)
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Memory usage: small rover (ERC32)



119

CPU Usage: small rover (LEON3)
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Stack usage: small rover (LEON3)
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Memory usage: small rover (LEON3)
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ERC32 vs LEON3 (rover)
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Rover vs Small Rover (ERC32)
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Time x Activity Summary 

ERC32 Initialization Load 
Plan

Plan 
Validation

Plan
Execution

Plan 
Generation

Rover 282s 6s 55s 125s 1349s
Small Rover 33s 3s 15s 116s 87s
Orbiter 9s 2s 1s 16s 6s

LEON3 Initialization Load 
Plan

Plan 
Validation

Plan
Execution

Plan 
Generation

Rover 113s 2s 23s 121s 540s
Small Rover 13s 1s 6.5s 121s 34s
Orbiter 1s 0.5s 1s 16s 2s



125

Comments

♦ Reported Plan Execution time is elapsed
– computation time in ARE below 5%

♦ If more CPU intensive tasks running at the same 
time on the CPU
– Running time can increase
– CPU percentage usage can reduce

♦ Rover required slightly less than 32Mb for plan 
generation.
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Industrial Perspective
Andrea Guiotto
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Industrial perspective

♦ Maturity of ARE
♦ Use in real applications
♦ Impact on the currently used architectures
♦ Impact on the development process

– Formal techniques to support the development
♦ Impact on future space architectures

– Potential reduction of costs of some HW 
♦ Integration with the spacecraft simulator
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Maturity of ARE

♦ The approach integrates in a unique framework 
different aspects such as planning, monitoring, 
execution, re-planning

♦ The formal model captures the possible non-
determinism in commands effects and environment 
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Maturity of ARE (II)

♦ Formal model contains the status of the controlled 
plant and of environment that is partially 
observable due to the limited availability of 
sensors. 

♦ ARE finds a plan that will guarantee the 
achievement of a goal despite the non determinism 
in the initial condition and partial observability of 
controlled plant.
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Maturity of ARE (III)

♦ ARE approach is suitable w.r.t.
– Mission characteristic (unpredictable local conditions)
– Mission constraints (limited bandwidth, intermittent visibility, 

long round trip delay)
– System operations (perform measurement cycle)

♦ ARE is suitable to be embedded in current on-board 
computers.

♦ The dimension of code could be optimized.
♦ Performance and re-planning ability depend on the 

complexity of model 
♦ Performances of ARE remains better under 

workstation Linux/x86 than in RTEMS/Leon3
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Use in real applications

♦ ARE has been developed as a potential BB to be 
reused in on-board software
– ARE is robust to stack overflow
– ARE does not use unbounded depth recursive 

functions.
– No dynamic memory allocation.
– It can receive commands from ground.

♦ ARE guarantees the safety of system:
– In case it does not find the plan it remains in a 

safe state waiting for ground intervention.
♦ ARE can be used as ground support tool for 

mission analysis.
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Impact on real applications

♦ In order to integrate ARE it is necessary to respect 
its interfaces:
– ARE SW has been developed on top of the 

POSIX 1003.1B API
– Low level routines must interface sensors and 

actuators

♦ The use of ARE could require to improve the 
performance of microprocessors. 
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Impact on development process

♦ Development of system model in SMV from 
Matlab/Stateflow/Simulink or textual description

♦ Integration phase

♦ Model Checker NuSMV should be certified as 
space software
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Future space architectures

♦ Investigate software replacement of some HW 
component dedicated to autonomy 
– This can increase the criticality level of software
– Cost of software validation campaign could 

increase
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Integration with the simulator
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Integration with the simulator (II)

♦ Spacecraft simulator is based on a library that 
contains the basic common functionalities (TC 
management, TM management, software bus 
services).

♦ The services offered by this library allow to easily 
integrate software components into a software bus. 

♦ The mock-up is running on a Linux PC host with a 
simulator (SiS64 on ERC32) 

♦ Commanding (TC, scripts) as well as display and 
reporting (TM, reports, checks) are network 
transparent and support multiple users on the 
same simulation.
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Integration with the simulator (III)

♦ ARE has been converted in a simulator component 
as Ostrales task:
– POSIX API of simulator are not equal to RTEMS 

POSIX API

♦ Increase RAM and ROM size in the linker script.
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Discussion, Related Work, 
and Future Perspectives

Alessandro Cimatti
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Scientific Perspective

♦ A comprehensive approach
– all functions in a unique framework

» plan generation, execution monitoring, FDIR, replanning
– a unique model for all functions
– a symbolic approach

♦ An expressive framework
– nondeterministic partially observable domains
– working with assumptions
– linking reasoning about resources and logical reasoning

» logic vs computation

♦ Platform characterization
– results are not dramatic (promising?)
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By product: use for ground ops

♦ Adaptation for ground operation
– Used to generate/validate plans to be uploaded
– could be a hand-written or mixed-initiative plan
– depends on ground information

» available? accurate?

♦ Can be used for explanatory/diagnostic purposes 
– to reconstruct on-board behaviour
– diagnosis on ground

♦ Uniform framework can be shared between on-
board and ground
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Comparison with existing approaches
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Comparison with existing approaches

♦ The Remote Agent NASA experience
– goal-directed planning, scheduling and diagnosis
– model-based executive Livingstone
– key differences

» several formalisms
» explicit state search

♦ MUROCO-II
– generic framework for the specification and verification of space missions
– emphasis on off line vs on board

» potentially complementary
– emphasis on model/plan validation rather than plan generation

» unable to deal with partial observability, non determinism, and diagnosis
» unable to generate and monitor execution of plans

♦ MMOPS
– Timeline Verification, Control and Repair
– on-board approach
– limited expressiveness, emphasis on scheduling aspects
– unable to deal with generic models
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Comparison with existing approaches
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Dissemination

♦ Project Web site
– http://es.fbk.eu/projects/esa_omc-are

♦ Accepted presentations
– On-Board Autonomy via Symbolic Model Based Reasoning, by M. Bozzano, A. Cimatti, 

A. Guiotto, A. Martelli, M. Roveri, A. Tchaltsev and Y. Yushtein. In 10th ESA Workshop on 
Advanced Space Technologies for Robotics and Automation (ASTRA'2008). 11 - 13 
November 2008, ESA/ESTEC, Noordwijk, The Netherlands. 

– On Board Model Checking for Space Applications, by A. Cimatti, A. Guiotto and M. 
Roveri. In ESA Workshop on Avionics Data, Control and Software Systems (ADCSS). 29 - 
31 October 2008, ESA/ESTEC, Noordwijk, The Netherlands. 

♦ Intended submissions
– Major aero-space conferences: DASIA, iSAIRAS

» case studies and characterization
– Major AI conferences: IJCAI, ICAPS, ECAI

» extensions to planning techniques
– Formal methods related conferences: ISOLA

» formal methods at work on "non-standard" applications
– Major AI journals: Artificial Intelligence, Journal of Art. Int. and Research (JAIR)

» comprehensive project description

http://es.fbk.eu/projects/esa_omc-are
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Conclusions

Results of the study:
♦ A unique and comprehensive framework 

encompassing different autonomy aspects
– plan generation, validation, monitoring, execution and 

FDIR
♦ Implementation using symbolic techniques
♦ Case studies
♦ Experiemental characterization

– functional and on platform
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Open and Future Directions

♦ Further technology push
– Footprint reduction

» customize nusmv library for embedded
– Memory / CPU usage

» Cone-of-influence reduction
» Alternate heuristics
» BDD partitioning
» SAT-based techniques
» Adaptation/use of classical planning techniques

♦ Model-based Validation of Intelligence
– proof of correctness of conceptual framework
– validation of implementation

» "translation validation" approach
» independent checking of generated plan

♦ Improve accuracy in reasoning
– Resource model

» beyond bounded arithmetics?
– Diagnosis

» need for finer-grain probabilistic reasoning?
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Future work

♦ Define process and extend tool support 
– Build automatic translator of NuSMV models from 

Matlab/Simulink/Stateflow models.
– Low level routines can be derived directly from the code 

automatically generated with Matlab Real Time 
Workshop

♦ Strong connection with the COMPASS 
(Correctness, Modeling and Performance of 
Aerospace Systems ) project sponsored by ESA
– http://compass.informatik.rwth-aachen.de/
– Same technology used in two projects

♦ Explore continuous ground/on board spectrum
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DEMO
Andrea Guiotto, Marco Roveri 
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OPEN DISCUSSION
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