
Requirements Validation for Hybrid Systems?

Alessandro Cimatti, Marco Roveri, and Stefano Tonetta
Fondazione Bruno Kessler (FBK-irst), Trento, Italy

Abstract. The importance of requirements for the whole development flow calls
for strong validation techniques based on formal methods. In the case of dis-
crete systems, some approaches based on temporal logic satisfiability are gaining
increasing momentum. However, in many real-world domains (e.g. railways sig-
naling), the requirements constrain the temporal evolution of both discrete and
continuous variables. These hybrid domains pose substantial problems: on one
side, a continuous domain requires very expressive formal languages; on the other
side, the resulting expressiveness results in highly intractable problems.
In this paper, we address the problem of requirements validation for real-world
hybrid domains, and present two main contributions. First, we propose the
HRELTL logic, that extends the Linear-time Temporal Logic with Regular Ex-
pressions (RELTL) with hybrid aspects. Second, we show that the satisfiability
problem for the linear fragment can be reduced to an equi-satisfiable problem for
RELTL. This makes it possible to use automatic (albeit incomplete) techniques
based on Bounded Model Checking and on Satisfiability Modulo Theory.
The choice of the language is inspired by and validated within a project funded
by the European Railway Agency, on the formalization and validation of the Eu-
ropean Train Control System specifications. The activity showed that most of
requirements can be formalized into HRELTL, and an experimental evaluation
confirmed the practicality of the analyses.

1 Introduction

Requirements analysis is a fundamental step in the development process of software
and system design. In fact, flaws and ambiguities in the requirements can lead to the
development of correct systems that do not do what they were supposed to. This is
often unacceptable, especially in safety-critical domains, and calls for strong tools for
requirements validation based on formal techniques. The problem of requirements val-
idation is significantly different from traditional formal verification, where a system
model (the entity under analysis) is compared against a set of requirements (formalized
as properties in a temporal logic), which are assumed to be “golden”. In requirements
validation, on the contrary, there is no system to be analyzed (yet), and the requirements
themselves are the entity under analysis.

Formal methods for requirements validation are being devoted increasing inter-
est [12, 15, 27, 1]. In such approaches, referred to as property-based, the requirements
are represented as statements in some temporal logics. This allows to retain a corre-
spondence between the informal requirements and the formal statement, and gives the

? The first and second authors are supported by the European Commission (FP7-2007-IST-1-
217069 COCONUT). The third author is supported by the Provincia Autonoma di Trento
(project ANACONDA).



ability to reason at the level of abstraction of the requirements engineer. Typical anal-
ysis functionalities include the ability to check whether the specification is consistent,
whether it is strict enough to rule out some undesirable behaviors, and whether it is
weak enough not to rule out some desirable scenarios. These analysis functionalities
can in turn be obtained by reduction to temporal logics satisfiability [27].

Property-based approaches have been typically applied in digital domains, where
the requirements are intended to specify a set of behaviors over discrete variables, and
the wealth of results and tools in temporal logic and model checking provides a sub-
stantial technological basis. However, in many real-world domains (e.g. railways, space,
industrial control), the requirements are intended to constrain the evolution over time
of a combination of discrete and continuous variables. Hybrid domains pose substantial
problems: on the one side, a continuous domain requires very expressive formal lan-
guages; on the other side, the high expressiveness leads to highly intractable problems.

In this paper, we address the problem of requirements validation in such hybrid
domains by making two main contributions.

First, we define a suitable logic for the representation of requirements in hybrid
domains. The logic, called Hybrid Linear Temporal Logic with Regular Expressions
(HRELTL), is interpreted over hybrid traces. This allows to evaluate constraints on
continuous evolutions as well as discrete changes. The basic atoms (predicates) of the
logic include continuous variables and their derivatives over time, and are interpreted
both over time points and over open time intervals.1 The semantics relies on the fact
that each open interval of a hybrid trace can be split if it does not have a uniform
evaluation of predicates in the temporal formulas under analysis (cf. [26, 13]), and that
the formulas satisfy properties of sample invariance and finite variability [13]. The logic
encompasses regular expressions and linear-time operators, and suitable choices have
been made to interpret the “next” operator and regular expressions over the open time
intervals, and the derivative of continuous variables over the time points.

Second, we define a translation method for automated verification. The transla-
tion encodes satisfiability problems for the linear fragment of HRELTL into an equi-
satisfiable problem in a logic over discrete traces. The restrictions of the linear fragment
guarantee that if the formula is satisfiable, there exists a piecewise-linear solution. We
exploit the linearity of the predicates with regard to the continuous variables to encode
the continuity of the function into quantifier-free constraints. We can therefore compile
the resulting formula into a fair transition system and use it to solve the satisfiability and
the model checking problem with an automata-theoretic approach. We apply infinite-
state model checking techniques to verify the language emptiness of the resulting fair
transition system.

Our work has been inspired by and applied within a project funded by the European
Railway Agency (http://www.era.europa.eu). The aim of the project was to develop a
methodology supported by a tool for the validation of requirements in railway domains.
Within the project, we collaborated with domain experts in a team that tackled the
formalization of substantial fragments of the European Train Control System (ETCS)
specification. With regard to the hybrid aspects of ETCS requirements, the formaliza-

1 This is known to be a nontrivial issue: see for instance [26, 13, 22] for a discussion on which
type of intervals and hybrid traces must be considered.

2



LR
B

G

Section Time−out stop location

Optional signal

Section Time−out stop location
Length of overlap

Distance to Danger Point

Overlap Time−out start location

End Section Time−out start location

Section(2) = End SectionSection(1)

Fig. 1. Structure of an MA (left) and a speed monitoring curve (right) [14].

tion and the validation were based on the language and techniques described in this
paper, and were successfully applied by the domain experts.

2 Motivating Application Domain
The ETCS specification is a set of requirements related to the automatic supervision of
the location and speed performed by the train on-board system. The system is intended
to be progressively installed on all European trains in order to guarantee the interoper-
ability with the track-side system which are currently governed by national rules. ETCS
specifies how the train should behave in the proximity of the target location. In partic-
ular, the Chapter 3 of the System Requirement Specification (SRS) [14] describes how
trains move on a line and periodically receive a so-called Movement Authority (MA).
The MA consists of a set of sections and a series of timeout that define some deadlines
of the authorization to move in each section while a number of curves limit the speed
of the train approaching the end of the MA (see Fig. 1). The specific curves are not
defined by ETCS, but only constrained by high-level requirements (“The algorithm for
their calculation is an implementation matter” SRS Sec. 3.13.4.1). Moreover, when the
trains pass some limit, particular actions must be taken on board: e.g. when the train
passes the end of the MA the “train trip” must be started.

The ETCS specification poses demanding requisites to the formal methods adopted
for its validation. First, the adopted formalism shall be able to capture the meaning
of the requirements. Second, the formalism shall be as simple as possible to be used
by non-experts in formal methods: the requirements are usually ambiguous English
sentences that only an expert in the domain can formalize and validate.

In this context, a model-based approach is not natural. First, designing a hybrid
system that captures all behaviors allowed by the requirements requires to consider all
possible intricate combinations of timeout values, locations where to reset the timers,
speed limits for given locations. Second, these are not parameters of the system but
variables that change their value at discrete steps. Finally, in a model-based approach
it is hard to maintain the link between a requirement and its formal counterpart in the
model.

A property-based approach to requirements validation relies on the availability of
an expressive temporal logic, so that each informal statement has a formal counterpart
with similar structure. A natural choice are formulas in Linear-time Temporal Logic
(LTL) [25] extended with Regular Expressions (RELTL) [6], because temporal formu-
las often resemble their informal counterpart. This is of paramount importance when

3



experts in the application domain have the task of disambiguating and formalizing the
requirements. For instance, a complex statement such as “The train trip shall issue
an emergency brake command, which shall not be revoked until the train has reached
standstill and the driver has acknowledged the trip” SRS Sec. 3.13.8.2 can be formal-
ized into G (train trip→ (emergency brake U (train speed = 0 ∧ ack trip))).

In order to deal with an application domain such as ETCS, first, we need to model
the dynamic of continuous variables, such as position, speed, time elapse, and timers,
in a way that is reasonably accurate from the physical point of view. For example, we
expect that a train can not move forward and reach a location without passing over all
intermediate positions. Second, we must be able to express properties of continuous
variables over time intervals. This poses problems of the satisfiability of formulas like
(pos ≤ P U pos > P ) or (speed > 0 U speed = 0). The first formula is satisfi-
able only if we consider left-open intervals, while the second one is satisfiable only if
we consider left-closed intervals (see [22]). Considering time points (closed singular
intervals) and open intervals is enough fine grained to represent all kinds of intervals.

Last, we need to be able to intermix continuous evolution and discrete steps, intu-
itively modeling “instantaneous” changes in the status of modes and control procedures.
For example, the requirement “The End Section timer shall be started on-board when
the train passes the End Section timer start location” (SRS Sec. 3.8.4.1.1) demands to
interrupt the continuous progress of the train for resetting a timer.

3 Hybrid traces
Let V be the finite disjoint union of the sets of variables VD (with a discrete evolu-
tion) and VC (with a continuous evolution) with values over the Reals.2 A state s is an
assignment to the variables of V (s : V → R). We write Σ for the set of states. Let
f : R→ Σ be a function describing a continuous evolution. We define the projection of
f over a variable v, written fv , as fv(t) =̇ f(t)(v). We say that a function f : R→ R
is piecewise analytic iff there exists a sequence of adjacent intervals J0, J1, ... ⊆ R
and a sequence of analytic functions h0, h1, ... such that ∪iJi = R, and for all i ∈ N,
f(t) = hi(t) for all t ∈ Ji. Note that, if f is piecewise analytic, the left and right
derivatives exist in all points. We denote with ḟ the derivative of a real function f , with
ḟ(t)− and ḟ(t)+ the left and the right derivatives respectively of f in t. Let I be an
interval of R or N; we denote with le(I) and ue(I) the lower and upper endpoints of I ,
respectively. We denote with R+ the set of non-negative real numbers.

Hybrid traces describe the evolution of variables in every point of time. Such evo-
lution is allowed to have a countable number of discontinuous points corresponding to
changes in the discrete part of the model. These points are usually called discrete steps,
while we refer to the period of time between two discrete steps as continuous evolution.

Definition 1 (Hybrid Trace). A hybrid trace over V is a sequence
〈f, I〉 =̇ 〈f0, I0〉, 〈f1, I1〉, 〈f2, I2〉, . . . such that, for all i ∈ N,

– either Ii is an open interval (Ii = (t, t′) for some t, t′ ∈ R+, t < t′) or is a singular
interval (Ii = [t, t] for some t ∈ R+);

2 In practice, we consider also Boolean and Integer variables with a discrete evolution, but we
ignore them to simplify the presentation.

4



– the intervals are adjacent, i.e. ue(Ii) = le(Ii+1);
– the intervals cover R+:

⋃
i∈N Ii = R+ (thus I0 = [0, 0]);

– fi : R→ Σ is a function such that, for all v ∈ VC , fvi is continuous and piecewise
analytic, and for all v ∈ VD, fvi is constant;

– if Ii = (t, t′) then fi(t) = fi−1(t), fi(t′) = fi+1(t′).

Typically, the fi are required to be smooth. Since observable events may occur
during a continuous evolution, we wish that a predicate over the continuous variable
changes its truth value only a finite number of times in a bounded interval. For this
reason, we require the analyticity of functions (see similar assumptions in [13]). At the
same time, we weaken the condition of smoothness allowing discontinuity in the deriva-
tives also during a continuous evolution. This allows to observe the value of functions
and their derivatives without the need to break the continuous evolution with discrete
steps not required by the specification.

Fig. 2 shows the evolution of two continuous variables (speed and limit) and a dis-
crete variable (warning). The evolution presents two discrete steps and three continuous
evolutions. The figure shows two possible traces, respectively with 10 and 14 intervals.
In the second continuous evolution the function associated to speed is continuous but
not derivable in all points.

Some predicate over the variables in V may evaluate to true only in particular points
of a continuous evolution. Therefore, it is important to sample the evolution in particular
time points. We say that a trace is a sampling refinement of another one if it has been
obtained by splitting an open interval into two parts by adding a sampling point in the
middle [13]. In Fig. 2, TRACE2 refines TRACE1 by exposing two more points.

Definition 2 (Partitioning Function [13]). A partitioning function µ is a sequence
µ0, µ1, µ2, . . . of non-empty, adjacent and disjoint intervals of N partitioning N. For-
mally,

⋃
i∈N µi = N and ue(µi) = le(µi+1)− 1.

Definition 3 (Trace Sampling Refinement [13]). A hybrid trace 〈f ′, I ′〉 is a sampling
refinement of 〈f, I〉 by the partitioning µ (denoted with 〈f ′, I ′〉 �µ 〈f, I〉) iff, for all
i ∈ N, Ii =

⋃
j∈µi I

′
j and, for all j ∈ µj , f ′j = fi.

V
A

L
U

E

TRACE2

speed
limit
warning

TIME
TRACE1

Fig. 2. Possible evolution of two continuous variables (speed and limit) and a discrete variable
(warning), and two possible hybrid traces that represent it. TRACE2 is a refinement of TRACE1.

4 A temporal logic for hybrid traces
In this section we define HRELTL, i.e. linear temporal logic extended with regular
expressions equipped to deal with hybrid traces. The language is presented in a general

5



form with real arithmetic predicates without details on the syntax and the semantics of
the real functions. It is indeed possible that some requirements need such expressiveness
to be faithfully represented. A linear sub-case is then presented for which we have a
discretization that produces equi-satisfiable formulas.

Syntax. If v is a variable we denote with NEXT(v) the value of v after a discrete step
and with DER(v) the derivative of v. If V is the set of variables, we denote with Vnext
the set of next variables and with Vder the set of derivatives. HRELTL is built over a set
of basic atoms, that are real arithmetic predicates over V ∪ Vnext, or over V ∪ Vder.3
We denote with PRED the set of predicates, with p a generic predicate, with pcurr
a predicate over V only, with pnext a predicate over V and Vnext, and with pder a
predicate over V and Vder. We denote with p the predicate obtained from p by replacing
<with≥,>with≤, = with 6= and vice versa. We denote with p./ the predicate obtained
from p by substituting the top-level operator with ./, for ./∈ {<,>,=,≤,≥, 6=}.

The subset PREDla of PRED over linear arithmetic constraints consists of the
predicates in one of the following forms

– a0 + a1v1 + a2v2 + · · · + anvn ./ 0 where v1, . . . , vn ∈ VC , a0, . . . , an are
arithmetic predicates over variables in VD, and ./∈ {<,>,=,≤,≥, 6=}.

– a0 + a1v̇ ./ 0 where v ∈ VC , a0, a1 are arithmetic predicates over variables in VD,
and ./∈ {<,>,=,≤,≥, 6=}.

Example 1. x ≤ y + z, NEXT(x) = 0, DER(x) ≤ d are in PRED. The first two
predicates are also in PREDla, while the third one is in PREDla only if d is a discrete
variable.

We remark that, the class of predicates generalizes the class of constraints used for
linear hybrid automata [2, 19]; in particular, we replace constants with discrete (dense-
domain) variables.

The HRELTL is defined by combining extended regular expressions (SEREs) and
temporal operators from LTL. The linear fragment of HRELTL is defined by consider-
ing only predicates in PREDla.

Definition 4 (SERE syntax). If p ∈ PRED, r, r1 and r2 are SEREs, then:
– p is a SERE;
– ε is a SERE;
– r[*], r1 ; r2, r1 : r2, r1 ||| r2, and r1 && r2 are SEREs.

Definition 5 (HRELTL syntax). If p ∈ PRED, φ, φ1 and φ2 are HRELTL formulas,
and r is a SERE, then:

– p is a HRELTL formula;
– ¬φ1, φ1 ∧ φ2, X φ1, φ1 U φ2 are HRELTL formulas;
– r ♦→♦→♦→ φ is an HRELTL formula.

We use standard abbreviations for ∨,→, G , F , and |→|→|→ (see, e.g., [11]).

Example 2. G (warning = 1→ (warning = 1 U speed ≤ limit)) is in HRELTL.
3 In practice, we consider also predicates with next variables and derivatives, and derivatives

after a discrete step, but we ignore this extensions to simplify the presentation.

6



Semantics. Some choices underlie the definition of the semantics in order to guarantee
that the satisfaction of a formula by a hybrid trace does not depend on the sampling of
continuous evolutions, rather it depends only on the discrete steps and on the shape of
the functions that describe the continuous evolutions (sampling invariance [13]). Other
choices have been taken to make the formalization of requirements more natural. For
example, predicates including next variables can be true only in discrete steps.

Definition 6 (PRED semantics).
– 〈f, I〉, i |= pcurr iff, for all t ∈ Ii, pcurr evaluates to true when v is equal to fvi (t),

denoted with fi(t) |= p;
– 〈f, I〉, i |= pnext iff there is a discrete step between i and i + 1, i.e. Ii = Ii+1 =

[t, t], and pnext evaluates to true when v is equal to fvi (t) and NEXT(v) to fvi+1(t),
denoted with fi(t), fi+1(t) |= pnext;

– 〈f, I〉, i |= pder iff, for all t ∈ Ii, pder evaluates to true both when v is equal to
fvi (t) and DER(v) to ḟvi (t)+, and when v is equal to fvi (t) and DER(v) to ḟvi (t)−,
denoted with fi(t), ḟi(t)+ |= pder and fi(t), ḟi(t)− |= pder (when ḟi(t) is defined
this means that fi(t), ḟi(t) |= pder).

Note that, for all i ∈ N, fi is defined on all reals, and thus the left and right deriva-
tives are defined in all points of Ii.

In order to ensure sample invariance, the predicates inside a SERE can be true over
a sequence of more than one moment. This is different from the standard discrete ap-
proach, where they are usually true only if evaluated on just one state. Moreover, we
require that if a sequence satisfies the concatenation or repetition of two SEREs, the
sequence must contain a discrete step.

Definition 7 (SERE semantics).
– 〈f, I〉, i, j |= p iff, for all k, i ≤ k < j, there is no discrete step at k (Ik 6= Ik+1),

and, for all k, i ≤ k ≤ j, 〈f, I〉, k |= p;
– 〈f, I〉, i, j |= ε iff i > j;
– 〈f, I〉, i, j |= r[*] iff i > j, or 〈f, I〉, i, j |= r, or there exists a discrete step at k

(Ik = Ik+1), i ≤ k < j, such that 〈f, I〉, i, k |= r, 〈f, I〉, k + 1, j |= r[*];
– 〈f, I〉, i, j |= r1 ; r2 iff 〈f, I〉, i, j |= r1, 〈f, I〉, j + 1, j |= r2 (i.e., r2 accepts

the empty word), or; 〈f, I〉, i, i − 1 |= r1, 〈f, I〉, i, j |= r2 (i.e., r1 accepts the
empty word), or there exists a discrete step at k (Ik = Ik+1), i ≤ k < j, such that
〈f, I〉, i, k |= r1, 〈f, I〉, k + 1, j |= r2;

– 〈f, I〉, i, j |= r1 : r2 iff there exists a discrete step at k (Ik = Ik+1), i ≤ k ≤ j,
such that 〈f, I〉, i, k |= r1, 〈f, I〉, k, j |= r2;

– 〈f, I〉, i, j |= r1 ||| r2 iff 〈f, I〉, i, j |= r1 or 〈f, I〉, i, j |= r2;
– 〈f, I〉, i, j |= r1 && r2 iff 〈f, I〉, i, j |= r1 and 〈f, I〉, i, j |= r2.

Definition 8 (HRELTL semantics).
– 〈f, I〉, i |= p iff 〈f, I〉, i |= p;
– 〈f, I〉, i |= ¬φ iff 〈f, I〉, i 6|= φ;
– 〈f, I〉, i |= φ ∧ ψ iff 〈f, I〉, i |= φ and 〈f, I〉, i |= ψ;
– 〈f, I〉, i |= X φ iff there is a discrete step at i (Ii = Ii+1), and 〈f, I〉, i+ 1 |= φ;

7



– 〈f, I〉, i |= φ U ψ iff, for some j ≥ i, 〈f, I〉, j |= ψ and, for all i ≤ k < j,
〈f, I〉, k |= φ;

– 〈f, I〉, i |= r ♦→♦→♦→ φ iff, there exists a discrete step at j ≥ i (Ij = Ij+1) such that
〈f, I〉, i, j |= r, and 〈f, I〉, j |= φ.

Definition 9 (Ground Hybrid Trace [13]). A hybrid trace 〈f, I〉 is a ground hybrid
trace for a predicate p iff the interpretation of p is constant throughout every open
interval: if Ii = (t, t′) then either 〈f, I〉, i |= p or 〈f, I〉, i |= p. A hybrid trace 〈f, I〉
is a ground hybrid trace for a formula φ iff it is ground for all predicates of φ.

Given an HRELTL formula φ, and a hybrid trace 〈f, I〉 ground for φ, we say that
〈f, I〉 |= φ iff 〈f, I〉, 0 |= φ.

Given an HRELTL formula φ, and any hybrid trace 〈f, I〉, we say that 〈f, I〉 |= φ

iff there exists a sampling refinement 〈f ′, I ′〉 of 〈f, I〉 such that 〈f ′, I ′〉 is ground for φ
and 〈f ′, I ′〉 |= φ.

For example, the hybrid traces depicted in Fig. 2 satisfy the formula of Example 2.
The following theorems guarantee that the semantics is well defined. (We refer the

reader to Sec. B of the appendix for the proofs.)

Theorem 1 (Finite variability). Given a formula φ, for every hybrid trace 〈f, I〉 there
exists another hybrid trace 〈f ′, I ′〉 which is a sampling refinement of 〈f, I〉 and ground
for φ.

Theorem 2 (Sample invariance). If 〈f ′, I ′〉 is a sampling refinement of 〈f, I〉, then
the two hybrid traces satisfy the same formulas.

Note that we can encode the reachability problem for linear hybrid automata into
the satisfiability problem of a linear HRELTL formula. Despite the undecidability of
the satisfiability problem, we provide automatic techniques to look for satisfying hybrid
traces, by constructing an equi-satisfiable discrete problem.

5 Reduction to discrete semantics

RELTL is the temporal logic that combines LTL with regular expressions and consti-
tutes the core of many specification languages. Here, we refer to a first-order version
of RELTL with real arithmetic predicates. RELTL syntax can be seen as a subset of
HRELTL where predicates are allowed to include only current and next variables, but
not derivatives.

RELTL formulas are interpreted over discrete traces. A discrete trace is a sequence
of states σ = s0, s1, s2, . . . with si ∈ Σ for all i ∈ N. The semantics for RELTL is
analogue to the one of HRELTL but restricted to discrete steps only. We refer the reader
to Sec. C for more details.

Encoding Hybrid RELTL into Discrete RELTL. We now present a translation of
formulas of the linear fragment of HRELTL into equi-satisfiable formulas of RELTL. In
the rest of this document we assume that formulas contain only predicates in PREDla.

8



We introduce two Real variables δt and ζ respectively to track the time elapsing
between two consecutive steps, and to enforce the non-Zeno property (i.e. to guarantee
that time diverges). We introduce a Boolean variable ι that tracks if the current state
samples a singular interval or an open interval.

We define a formula ψι that encodes the possible evolution of δt and ι:
ψι := ι ∧ ζ > 0 ∧

G ((ι ∧ δt = 0 ∧X (ι)) ∨ (ι ∧ δt > 0 ∧X (¬ι)) ∨ (¬ι ∧ δt > 0 ∧X (ι))) ∧
G (NEXT(ζ) = ζ) ∧
G F δt ≥ ζ.

(1)

In particular, we force to have a discrete step, which is characterized by two consecutive
singular intervals, if and only if δt = 0.

For every continuous variable v ∈ VC we introduce the Real variable v̇l and v̇r
that track the left and right derivative of v. We define a formula ψDER that encodes the
relation among continuous variables and their derivatives:

ψDER :=
V
v∈VC

((δt > 0 ∧ ι)→ (NEXT(v)− v) = (δt × NEXT(v̇l))) ∧
((δt > 0 ∧ ¬ι)→ (NEXT(v)− v) = (δt × v̇r)). (2)

The equation says that, before a point that samples an open interval, the evolution is
tracked with the value of left derivative assigned in the sampling point, while after-
wards, the evolution is tracked with the right derivative in the same point.

We define a formula ψPREDφ , being PREDφ the set of predicates occurring in
φ without next variables and derivatives, that encodes the continuous evolution of the
predicates.
ψPREDφ := (δt > 0 ∧ ι) →

V
p∈PREDφ

NEXT(p=)→ p= ∧
(δt > 0 ∧ ¬ι) →

V
p∈PREDφ

p= → NEXT(p=) ∧
δt > 0 →

V
p∈PREDφ

((p< → ¬X p>) ∧ (p> → ¬X p<)).
(3)

The first two conjuncts encode that if p= holds in an open interval, then p= holds
in the immediately adjacent singular intervals too. The third conjuncts encodes that if
p< holds we cannot move to an immediately following state where p> holds (and vice
versa) without passing through a state where p= holds.

We define ψVD to encode that discrete variables do not change value during a con-
tinuous evolution:

ψVD := δt > 0→ (
V
v∈Vd

(NEXT(v) = v)). (4)

Finally, we define the partial translation τ ′(φ) recursively over φ. The translation τ ′a
of predicates is defined as:

– τ ′a(pcurr) = pcurr;
– τ ′a(pnext) = (δt = 0) ∧ pnext;
– τ ′a(pder) = pder[v̇l/DER(v)] ∧ pder[v̇r/DER(v)]).

Where, p[v′/v] is predicate p where every occurrence of v is replaced with v′.
The translation τ ′r of SEREs is defined as:

– τ ′r(p) = (δt > 0 ∧ τ ′a(p))[*] ; τ ′a(p); 4

– τ ′r(ε) = ε;
– τ ′r(r[*]) = ε ||| {τ ′r(r) : δt = 0}[*] ; τ ′r(r);
– τ ′r(r1 ; r2) = {{ε && τ ′r(r1)} ; τ ′r(r2)} ||| {τ ′r(r1) ; {ε && τ ′r(r2)}} |||
{{τ ′r(r1) : δt = 0} ; {τ ′r(r2) : >}};

4 This has the effect that τ ′r(pnext) = τ ′a(pnext) = (δt = 0 ∧ pnext).

9



– τ ′r(r1 : r2) = τ ′r(r1) : δt = 0 : τ ′r(r2);
– τ ′r(r1 ||| r2) = τ ′r(r1) ||| τ ′r(r2);
– τ ′r(r1 && r2) = τ ′r(r1) && τ ′r(r2).

The translation τ ′ of HRELTL is defined as:
– τ ′(p) = τ ′a(p);
– τ ′(¬φ1) = ¬τ ′(φ1);
– τ ′(φ1 ∧ φ2) = τ ′(φ1) ∧ τ ′(φ2);
– τ ′(X φ1) = δt = 0 ∧X τ ′(φ1);
– τ ′(φ1 U φ2) = τ ′(φ1) U τ ′(φ2);
– τ ′(r ♦→♦→♦→ φ) = {τ ′r(r) : δt = 0} ♦→♦→♦→ τ ′(φ).

Thus, the translation τ for a generic HRELTL formula is defined as:

τ(φ) := ψι ∧ ψDER ∧ ψPREDφ ∧ ψVD ∧ τ
′(φ). (5)

Remark 1. If φ contains only quantifier-free predicates then also τ(φ) is quantifier-free.
In general, the predicates in τ(φ) are non linear. φ may contain non linear predicates,
even in the case φ is in the linear fragment of HRELTL, since it may contain polyno-
mials over discrete variables or multiplications of a continuous variable with discrete
variables. Moreover, Equation 2 introduces quadratic equations. Finally, note that if φ
does not contain SEREs, then the translation is linear in the size of φ.

We now define a mapping from the hybrid traces of φ to the discrete traces of τ(φ),
and vice versa. Without loss of generality, we assume that the hybrid trace does not
have discontinuous points in the derivatives in the open intervals.

Definition 10. Given a hybrid trace 〈f, I〉, the discrete trace σ = Ω(〈f, I〉) is defined
as follows: for all i ∈ N,

– ti = t if if Ii = [t, t], and ti = (t+ t′)/2 if Ii = (t, t′);
– si(v) = fvi (ti);
– if Ii = (t, t′), si(v̇l) = (fvi (ti)− fvi (ti−1))/(ti − ti−1) and si(v̇r) = (fvi (ti+1)−
fvi (ti))/(ti+1 − ti); if Ii = [t, t] then si(v̇l) = ḟvi (t)− and si(v̇r) = ḟvi (t)+;

– si(ι) = > if Ii = [t, t], and si(ι) = ⊥ if Ii = (t, t′);
– si(δt) = ti+1 − ti;
– si(ζ) = α, such that for all i ∈ N, there exists j ≥ i such that ti+1 − ti ≥ α (such
α exists for the Cauchy’s condition on the divergent sequence {ti}i∈N).

We then define the mapping in the opposite direction.

Definition 11. Given a discrete trace σ, the hybrid trace 〈f, I〉 = Υ (σ) is defined as
follows: for all i ∈ N,

– ti =
∑

0≤j<i−1 sj(δt),
– if si(ι) = > then Ii = [ti, ti] else Ii = (ti−1, ti+1),
– if si(δt) > 0 then fi is the piecewise linear function defined as fvi (t) = si(v) −
si(v̇l)× (ti − t) if t ≤ ti and as fvi (t) = si(v) + si(v̇r)× (t− ti) if t > ti.

Theorem 3 (Equi-satisfiability). If 〈f, I〉 is ground for φ and 〈f, I〉 |= φ, then
Ω(〈f, I〉) |= τ(φ). If σ is a discrete trace such that σ |= τ(φ), then Υ (σ) |= φ and
Υ (σ) is ground for φ. Thus φ and τ(φ) are equi-satisfiable.

For the proofs we refer the reader to Sec. C of the appendix.

10



6 Fair transition systems and language emptiness
Fair Transition Systems (FTS) [25] are a symbolic representation of infinite-state sys-
tems. First-order formulas are used to represent the initial set of states I , the transition
relation T , and each fairness condition ψ ∈ F .

To check the satisfiability of an RELTL formula φ with first-order constraints we
build a fair transition system Sφ and we check whether the language accepted by Sφ is
not empty with standard techniques. For the compilation of the RELTL formula Sφ into
an equivalent FTS Sφ we rely on the works described in [11, 10].

The language non-emptiness check for the FTS Sφ is performed by looking for a
lasso-shape trace of length up to a given bound. We encode this trace into an SMT
formula using a standard Bounded Model Checking (BMC) encoding and we submit
it to a suitable SMT solver. This procedure is incomplete from two point of views:
first, we are performing BMC limiting the number of different transitions in the trace;
second, unlike the Boolean case, we cannot guarantee that if there is no lasso-shape
trace, there does not exist an infinite trace satisfying the model (since a real variable may
be forced to increase forever). Nevertheless, we find the procedure extremely efficient
in the framework of requirements validation.

The BMC encoding allows us to perform some optimizations. First, as we are con-
sidering a lasso-shape path, the Cauchy condition for the non-Zeno property can be
reduced to G F δt > 0 and no extra variables are needed. Second, whenever we have a
variable whose value is forced to remain the same in all moments, we can remove such
constraint and use a unique copy of the variable in the encoding.

The definition of HRELTL restricts the predicates that occur in the formula to linear
function in the continuous variables in order to allow the translation to the discrete case.
Nevertheless, we may have non-linear functions in the whole set of variables (including
discrete variables). Moreover, the translation introduces non-linear predicates to encode
the relation of a variable with its derivatives.

We aim at solving the BMC problem with an SMT solver for linear arithmetics over
Reals. To this purpose, first, we assume that the input formula does not contain non-
linear constraints; second, we approximate (2) with linear constraints. Suppose DER(v)
is compared with constants c1, . . . , cn in the formula, we replace the non-linear equa-
tions of (2) that are in the form NEXT(v)− v = h× δt with:V

1≤i≤n(h < ci ↔ NEXT(v)− v < ci × δt ∧
h = ci ↔ NEXT(v)− v = ci × δt ∧
h > ci ↔ NEXT(v)− v > ci × δt))).

(6)

7 Practical experience
The HRELTL language has been evaluated in a real-world project that aims
at formalizing and validating the ETCS specification. The project is in re-
sponse to the ERA tender ERA/2007/ERTMS/OP/01 (“Feasibility study for the
formal specification of ETCS functions”), awarded to a consortium composed
by RINA SpA, Fondazione Bruno Kessler, and Dr. Graband and Partner GmbH
(see http://www.era.europa.eu/public/core/ertms/Pages/Feasibility Study.aspx for fur-
ther information on the project). The language used within the project is actually a

11



superset of HRELTL that encompasses first-order constructs to represent classes of ob-
jects and their relationships. The extension enriches the representation power of the
discrete part of the specification, and therefore it is orthogonal to the hybrid aspects
of the language. The techniques used to handle objects and first-order constraints are
described in [10].

We implemented the translation from linear HRELTL to RELTL in an extended
version of the NUSMV [9] model checker that interfaces with the MathSAT [5] SMT
solver. For an RELTL formula φ, we use NUSMV to compile φ into an equivalent FTS
Sφ. Then, we check the language non-emptiness of Sφ by submitting the corresponding
BMC problem to the MathSAT SMT solver.

We ran the experiments on a 2.20GHz Intel Core2 Duo Laptop equipped
with 2GB of memory running Linux version 2.6.24. All the data and bi-
naries necessary to reproduce the results here presented are available at
http://es.fbk.eu/people/tonetta/tests/cav09/.

We extracted from the fragment of the ETCS specification a set of requirements that
falls in HRELTL and that are relevant for their hybrid aspects. This resulted in a case
study consisting of 83 HRELTL formulas, with 15 continuous variables, of which three
are timers and two are stop watches. An excerpt of the ETCS specification in HRELTL
format is reported in Sec. D.

We first checked whether the specification is consistent, i.e. if it is satisfiable (SAT).
Then, we validated the formalization with 3 different scenarios (SCEN {1,2,3}), check-
ing the satisfiability of the conjunction of the specification with a formula that represents
some assumptions on the evolution of the variables. In all cases, the tool generated a
trace proving the satisfiability of the formulas. We then asked the tool to generate wit-
ness traces of different increasing lengths k (10, 20, and 30 respectively). We obtained
the results reported in Fig. 3(a). In the table we report also the size, in terms of num-
ber of variables and number of fairness conditions of the FTS we submit to underlying
verification tool. (We use #r,#b,#f with the meaning, r Real variables, b Boolean
variables, and f fairness conditions.) Fig. 3(b) also reports some curves that we can ex-
tract from the trace generated by the tool. These curves are the same that are manually
depicted in ETCS (Fig. 1(b)). The fact that the automated generated traces resemble the
ones inserted in the requirements document makes us more confident that the require-
ments captures what the designers have in mind.

8 Related Work

To the best of our knowledge, this is the first attempt to generalize requirements valida-
tion to the case of hybrid domains.

The work most closed to the current paper is described in [13], where LTL with
continuous and hybrid semantics is compared with the discrete semantics. It is proved
that a positive answer to the model checking problem and to the validity problem with
the discrete semantics implies a positive answer to the corresponding problem in the
continuous semantics. The properties of finite variability and sampling invariance are
introduced. Notably, the hybrid semantics of the logic relies on the hybrid traces ac-
cepted by a hybrid system (while our definition is independent).

12



Name: Sat k #r,#b,#f Mem Time
(MB) (sec)

SAT Y 10 56,310,17 74.8 11.38
SAT Y 20 56,310,17 122.4 55.38
SAT Y 30 56,310,17 173.0 141.20
SCEN 1 Y 10 56,312,19 75.4 15.00
SCEN 1 Y 20 56,312,19 123.1 78.09
SCEN 1 Y 30 56,312,19 174.3 190.73
SCEN 2 Y 10 56,312,19 76.8 17.56
SCEN 2 Y 20 56,312,19 127.1 78.26
SCEN 2 Y 30 56,312,19 180.0 270.59
SCEN 3 Y 10 56,323,18 75.9 19.16
SCEN 3 Y 20 56,323,18 122.5 52.52
SCEN 3 Y 30 56,323,18 173.3 147.97

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 0  1  2  3  4  5  6  7  8  9

P_limit
W_limit

SBI_limit
SBD_limit
EBI_limit

EBD_limit

(b)
Fig. 3. The results of the experimental evaluation.

Besides [13], our work is also inspired by the ones of [23, 26, 22]. [23, 26] face
the problem of the observability of predicates during continuous evolutions, and define
phase transition systems, which are a symbolic version of hybrid automata. [22] for-
mally defines a continuous semantics for LTL without next operator and derivatives. In
all these works, there is no attempt to solve the satisfiability problem for LTL with the
continuous semantics.

Many logics have been introduced to describe properties of timed systems (see [3,
4] for a survey), but none of them can force the continuity of functions, because the
semantics is discrete, though in some cases even a dense time domain is considered.
Hybrid systems [26, 19] assume that some functions are continuous but the logic used
to express the properties is discrete.

In [21, 17], a translation from dense time to discrete time is proposed for a particular
class of specifications, but only discrete semantics is considered. In [29], the discretiza-
tion of hybrid systems is obtained with an over-approximation, while our translation
produces an equi-satisfiable discrete formula.

In [18], a framework for specifying requirements of hybrid systems is proposed.
However, the techniques are model based, and the requirements are formalized in a
tabular notation, which can be seen as a symbolic representation of an automaton.

In [28], a hybrid dynamic logic is proposed for the verification of hybrid systems
and it was used to prove safety properties for ETCS. The approach is still model-based
since the description of the system implementation is embedded in the logical formula.
The regular expression operations are used to define hybrid programs, that represent the
hybrid systems. Properties of hybrid programs are expressed with the modalities of first-
order dynamic logic. As in RELTL, we use regular expressions with a linear semantics.
Moreover, the constraints on the continuous evolution are part of the requirements rather
than the system description. As explained in Sec. 2, our approach to the validation of
ETCS specifications is property-based.

In [2, 19], linear hybrid automata are defined and a symbolic procedure is proposed
to check their emptiness. Besides the different property-based approach that we pro-
pose, our techniques differ in the following points. First, instead of a finite set of states,
the discrete modes are represented by the infinite (uncountable) set of assignments to
the discrete variables. Second, instead of fix-point computations where the image is

13



based on the quantifier elimination in the theory of Reals, we propose a BMC-based
approach with a quantifier-free encoding (this is accomplished by forcing each step to
move in a convex region). Related to the encoding of invariants that hold in a continuous
evolution, also [30] faces the problem of concave conditions, and splits concave time
conditions into convex segments. The condition (3) of our translation has the purpose
to split the trace into convex regions in an analogue way.

In [24], a continuous semantics to a temporal logic which does not consider next
operators and derivatives is presented. The paper addresses the problem of monitoring
temporal properties of circuits with continuous signals.

On a different line of research, Duration Calculus (DC) [7] specifies requirements
of real-time systems with predicates over the integrals of Boolean functions over fi-
nite intervals of time. Extensions of DC such as Extended Duration Calculus [8] can
specify properties over continuous and differentiable functions. DC has been used to
specify properties for ETCS [16]. Similarly to DC, Hybrid Temporal Logic (HTL) [20]
uses the “chop” operator to express the temporal succession and can express temporal
constraints on the derivatives of dynamic functions. Both DC and HTL interpret formu-
las over intervals of time (rather than infinite sequences of intervals). On the contrary,
HRELTL is based on RELTL, which has been consolidated as specification language
at the industrial level. HRELTL has the advantage to allow the reuse of requirements
analysis techniques for RELTL.

9 Conclusions and future work

In this paper, we tackled the problem of validating requirements for hybrid systems.
We defined a new logic HRELTL, that allows to predicate over properties of hybrid
traces. Then, we showed that the satisfiability for the linear fragment of HRELTL can
be reduced to an equi-satisfiable problem for RELTL over discrete traces. HRELTL
was used for modeling in a real-world project aiming at the validation of a subset of the
ETCS specification. The validation showed that the temporal requirements of ETCS can
be formalized with HRELTL, and the experimental evaluation we carried out showed
the practicality of the analysis, based on the use of SMT techniques.

As future work, we will enhance the scalability of the satisfiability procedure, by
means of incrementality, lemmas on demand, and abstraction-refinement techniques.
We will also consider alternative ways to deal with nonlinear constraints.

References

1. The PROSYD project on property-based system design, 2007. http://www.prosyd.org.
2. R. Alur, C. Courcoubetis, T. A. Henzinger, and P-H. Ho. Hybrid Automata: An Algorithmic

Approach to the Specification and Verification of Hybrid Systems. In Hybrid Systems, pages
209–229, 1992.

3. R. Alur and T. A. Henzinger. Logics and Models of Real Time: A Survey. 1992.
4. R. Alur and T. A. Henzinger. Real-Time Logics: Complexity and Expressiveness. Inf. Com-

put., 104(1):35–77, 1993.
5. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. The MathSAT 4

SMT Solver. In CAV, pages 299–303, 2008.

14



6. D. Bustan, A. Flaisher, O. Grumberg, O. Kupferman, and M.Y. Vardi. Regular Vacuity. In
CHARME, pages 191–206, 2005.

7. Z. Chaochen, C. A R. Hoare, and A. P. Ravn. A calculus of durations. Inf. Process. Lett.,
40(5):269–276, 1991.

8. Z. Chaochen, A. P. Ravn, and M. R. Hansen. An extended duration calculus for hybrid
real-time systems. In Hybrid Systems, pages 36–59, 1992.

9. A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: a new Symbolic Model
Verifier. In CAV 1999, volume 1633 of LNCS, 1999.

10. A. Cimatti, M. Roveri, A. Susi, and S. Tonetta. Object models with temporal constraints. In
SEFM 2008, pages 249–258. IEEE press, 2008.

11. A. Cimatti, M. Roveri, and S. Tonetta. Symbolic Compilation of PSL. IEEE Trans. on CAD
of Integrated Circuits and Systems, 27(10):1737–1750, 2008.

12. K. Claessen. A coverage analysis for safety property lists. In FMCAD, pages 139–145.
IEEE, 2007.

13. L. de Alfaro and Z. Manna. Verification in Continuous Time by Discrete Reasoning. In
AMAST, pages 292–306, 1995.

14. ERTMS/ETCS — Baseline 3: System Requirements Specifications. SUBSET-026-1, i3.0.0,
2008. http://www.era.europa.eu/core/ertms/Pages/FirstETCSSRS300.aspx.

15. H. Eveking, M. Braun, M. Schickel, M. Schweikert, and V. Nimbler. Multi-level assertion-
based design. In MEMOCODE, pages 85–86. IEEE, 2007.

16. J. Faber and R. Meyer. Model checking data-dependent real-time properties of the european
train control system. In FMCAD, pages 76–77, 2006.

17. C. A. Furia, M. Pradella, and M. Rossi. Automated Verification of Dense-Time MTL Speci-
fications Via Discrete-Time Approximation. In FM, pages 132–147, 2008.

18. C. L. Heitmeyer. Requirements Specifications for Hybrid Systems. In Hybrid Systems, pages
304–314, 1995.

19. T. A. Henzinger. The Theory of Hybrid Automata. In LICS, pages 278–292, 1996.
20. T. A. Henzinger, Z. Manna, and A. Pnueli. Towards refining temporal specifications into

hybrid systems. In Hybrid Systems, pages 60–76, 1992.
21. T. A. Henzinger, Z. Manna, and A. Pnueli. What Good Are Digital Clocks? In ICALP, pages

545–558, 1992.
22. A. Kapur. Interval and point-based approaches to hybrid system verification. PhD thesis,

Stanford, CA, USA, 1998.
23. O. Maler, Z. Manna, and A. Pnueli. From Timed to Hybrid Systems. In REX Workshop,

pages 447–484, 1991.
24. O. Maler, D. Nickovic, and A. Pnueli. Checking Temporal Properties of Discrete, Timed and

Continuous Behaviors. In Pillars of Computer Science, pages 475–505, 2008.
25. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specifi-

cation. Springer-Verlag, 1992.
26. Z. Manna and A. Pnueli. Verifying Hybrid Systems. In Hybrid Systems, pages 4–35, 1992.
27. I. Pill, S. Semprini, R. Cavada, M. Roveri, R. Bloem, and A. Cimatti. Formal analysis of

hardware requirements. In DAC, pages 821–826, 2006.
28. A. Platzer. Differential Dynamic Logic for Verifying Parametric Hybrid Systems. In

TABLEAUX, pages 216–232, 2007.
29. A. Tiwari. Abstractions for hybrid systems. Formal Methods in System Design, 32(1):57–83,

2008.
30. F. Wang. Time-Progress Evaluation for Dense-Time Automata with Concave Path Condi-

tions. In ATVA, pages 258–273, 2008.

15



A Abbreviations

We use the following standard abbreviations:
> =̇ p ∨ ¬p STEP =̇ (pnext ∨ pnext)
ϕ1 ∨ ϕ2 =̇ ¬(¬ϕ1 ∧ ¬ϕ2) ϕ1 → ϕ2 =̇ ¬ϕ1 ∨ ϕ2

F ϕ =̇ > U ϕ G ϕ =̇ ¬F ¬ϕ
ϕ1 V ϕ2 =̇ ¬(¬ϕ1 U ¬ϕ2) ϕ1 W ϕ2 =̇ ϕ1 U ϕ2 ∨G ϕ1

r + =̇ r; r∗ r |→|→|→ ϕ =̇ ¬r ♦→♦→♦→ ¬ϕ

B A temporal logic for hybrid traces

Theorem 1 (Finite variability). Given a formula φ, for every hybrid trace 〈f, I〉 there
exists another hybrid trace 〈f ′, I ′〉 which is a sampling refinement of 〈f, I〉 and ground
for φ.

Proof. The theorem is guaranteed by the analyticity of every function fi and the an-
alyticity of the functions used to form predicates. Since the composition of analytic
functions is analytic, the truth value of a predicate cannot change infinitely many times
in a given interval.

Formally, given a predicate p occurring in φ, p is in the form g ./ 0, with g : Σ → R
analytic. For every i ∈ N, fi : R→ Σ is piecewise analytic. Therefore the composition
g · fi is a real analytic function. Thus, the function is either constantly zero or has
a finite number of zeros in Ii. Let such points be the sequence t1i , t

2
i , ..., t

ni
i . Finally,

consider the sampling refinement of 〈f, I〉 of 〈f, I〉 that splits every open interval Ii =
(ti, ti+1) into (ti, t1i ), [t

1
i , t

1
i ], (t

1
i , t

2
i ), ..., (t

ni
i , ti+1). Note that for all i, for all predicate

p occurring in φ, suppose p is in the form g ./ 0, then the interpretation of g in Ii either
is constantly zero or is never zero. Since g is continuous, the interpretation of p in Ii is
constant. Therefore 〈f, I〉 is ground for φ.

Lemma 1. Given two hybrid traces 〈f, I〉 and 〈f ′, I ′〉, if 〈f, I〉 is ground for φ and
〈f ′, I ′〉 �µ 〈f, I〉, then, for all i ∈ N, for all j ∈ µi, 〈f, I〉, i |= p iff 〈f ′, I ′〉, j |= p.

Proof. If Ii = [t, t] then Ij = Ii and thus 〈f, I〉, i |= p iff 〈f ′, I ′〉, j |= p. Suppose
Ii = (t, t′) then either Ij = (t1, t2) with t ≤ t1 < t2 ≤ t′ or Ij = [t1, t1] with
t < t1 < t′.

Suppose Ij = (t1, t2).
– If p contains only variables in V , σ, i |= p iff, for all t ∈ Ii, fi(t) |= p. If, for all
t ∈ Ii, fi(t) |= p, then, for all t ∈ Ij , fj(t) |= p since Ij ⊆ Ii and fj = fi. If, for
all t ∈ Ij , fj(t) |= p, then, for all t ∈ Ii, fi(t) |= p since 〈f, I〉 is ground for p.

– If p contains variables in VNEXT then σ, i 6|= p and σ′, j 6|= p.
– If p contains only variables in V , σ, i |= p iff, for all t ∈ Ii, fi(t), ḟi(t)− |= p

and fi(t), ḟi(t) + − |= p. If, for all t ∈ Ii, fi(t), ḟi(t)− |= p, then, for all t ∈ Ij ,
fj(t), ḟj(t)− |= p since Ij ⊆ Ii and fj = fi ḟi(t)− = ḟj(t)−. If, for all t ∈ Ij ,
fj(t), ḟj(t)− |= p, then, for all t ∈ Ii, fi(t), ḟi(t)− |= p since 〈f, I〉 is ground for
p. The same applies to right derivative.

16



Lemma 2. If 〈f, I〉 is a trace ground for φ and 〈f ′, I ′〉 is a sampling refinement of
〈f, I〉 by the partitioning µ, then for all i, j ∈ N, for all i′ ∈ µi, j′ ∈ µj , for all SERE
r that occur in φ, 〈f, I〉, i, j |= r iff 〈f ′, I ′〉, i′, j′ |= r.

Proof. We prove the lemma by induction on the definition of r:

– If r = p, for some predicate p, and i = j, then i′ and j′ are indexes of the same
continuous evolution. Since 〈f, I〉 is ground, 〈f, I〉, i′ |= p iff 〈f ′, I ′〉, j′ |= p.
Thus, 〈f, I〉, i, j |= p iff 〈f ′, I ′〉, i′, j′ |= p. Suppose now r = p and i < j. By
definition of sampling refinement, there are no discrete steps between i and j iff
there are no discrete steps between i′ and j′. Moreover, since the trace is ground
for p, 〈f, I〉, k |= p for all k, i ≤ k ≤ j, iff 〈f, I〉, k |= p for all k′, i′ ≤ k′ ≤ j′.

– If r = ε, then 〈f, I〉, i, j |= r iff i > j. Though, i > j iff i′ > j′.
– Suppose r = r1∗. This case is proved by induction on j − i. As for the base

case, i > j iff i′ > j′. For the inductive hypothesis on r, 〈f, I〉, i, j |= r, iff
〈f, I〉, i′, j′ |= r for all i, j ∈ N, for all i′ ∈ µi, j′ ∈ µj . Thus, if i ≤ k < j,
〈f, I〉, i, k |= r, 〈f, I〉, k + 1, j |= r∗ iff 〈f, I〉, i′, k′ |= r, 〈f, I〉, k′ + 1, j′ |= r∗.
Finally, note that if Ik′ = Ik′+1 = [t, t], then k′ ∈ µk iff k′ + 1 ∈ µk′+1.

– The cases r = r1; r2 and r = r1 : r2 are similar to previous one.
– The cases r1|r2 and r1&&r2 can be proved directly from the inductive hypothesis.

Lemma 3. If two hybrid traces 〈f, I〉 and 〈f ′, I ′〉 are ground for a formula φ and they
are one a sampling refinement of the other, then 〈f, I〉 |= φ iff 〈f ′, I ′〉 |= φ.

Proof. We prove by induction on φ that, for all i ∈ N, for all j ∈ µi, 〈f, I〉, i |= φ iff
〈f ′, I ′〉, j |= φ.

– Suppose p is a predicate; then the claim is true by Lemma 1.
– Suppose φ is in the form ¬φ1, φ1 ∧ φ2, X φ1, φ1 U φ2. Then the claim follows

directly from the inductive hypothesis.
– Suppose φ is in the form r ♦→♦→♦→ φ1. Then for Lemma 2, 〈f, I〉, i, k |= r, iff
〈f, I〉, i′, k′ |= r for all i, k ∈ N, for all i′ ∈ µi, k′ ∈ µk. Thus, if i ≤ k,
〈f, I〉, i, k |= r, 〈f, I〉, k |= φ1 then 〈f, I〉, j, k′ |= r, 〈f, I〉, k′ |= φ1 for some
k′ ∈ µk (since µk is not empty). If 〈f, I〉, j, k′ |= r, 〈f, I〉, k′ |= φ1 for some
k′ ∈ µk, then i ≤ k, 〈f, I〉, i, k |= r, 〈f, I〉, k |= φ1.

Theorem 2 (Sample invariance). If 〈f ′, I ′〉 is a sampling refinement of 〈f, I〉, then
the two hybrid traces satisfy the same formulas.

Proof. Given a formula φ, for Theorem 1, both traces 〈f, I〉 and 〈f ′, I ′〉 have a sam-
pling refinement ground for φ, named resp. 〈fG, IG〉 and 〈f ′G, I

′
G〉. Since 〈f, I〉 �µ1

〈f ′, I ′〉, 〈fG, IG〉 �µ2 〈f, I〉, there exists a refinement µ3 such that 〈fG, IG〉 �µ3

〈f ′, I ′〉. Since 〈f ′G, I
′
G〉 �µ4 〈f

′
, I
′〉, there exists a sampling refinement 〈f ′′, I ′′〉 that

merges the splitting of µ3 and µ4, thus refining both 〈fG, IG〉 and 〈f ′G, I
′
G〉. For Lemma

3, 〈fG, IG〉 |= φ iff 〈f ′′, I ′′〉 |= φ iff 〈f ′G, I
′
G〉 |= φ.

17



C Reduction to discrete semantics

In this section we give the formal semantics of RELTL and the proofs of our translation.
Given a predicate p and a state s, we assume that the relation s |= p defining when

the state satisfies the predicate is given.

Definition 12 (SERE semantics).
– σ, i, j |= p iff, i = j, and σi |= p;
– σ, i, j |= ε iff i > j;
– σ, i, j |= r[*] iff i > j or σ, i, j |= r, or there exists k, i ≤ k < j, such that
σ, i, k |= r, σ, k + 1, j |= r[*];

– σ, i, j |= r1 ; r2 iff σ, i, j |= r1, σ, j + 1, j |= r2, or σ, i, i − 1 |= r1, σ, i, j |= r2,
or there exists k, i ≤ k < j, such that σ, i, k |= r1, σ, k + 1, j |= r2;

– σ, i, j |= r1 : r2 iff there exists k, i ≤ k ≤ j, such that σ, i, k |= r1, σ, k, j |= r2;
– σ, i, j |= r1 ||| r2 iff σ, i, j |= r1 or σ, i, j |= r2;
– σ, i, j |= r1 && r2 iff σ, i, j |= r1 and σ, i, j |= r2.

Definition 13 (RELTL semantics).
– σ, i |= p iff σi |= p;
– σ, i |= ¬φ iff σ, i 6|= φ;
– σ, i |= φ ∧ ψ iff σ, i |= φ and σ, i |= ψ;
– σ, i |= X φ iff σ, i+ 1 |= φ;
– σ, i |= φ U ψ iff, for some j ≥ i, σ, j |= ψ and, for all i ≤ k < j, σ, k |= φ;
– σ, i |= r ♦→♦→♦→ φ iff, there exists j ≥ i, such that σ, i, j |= r and σ, j |= φ.

The following three lemmas prove that if σ is a hybrid trace than Ω(σ) |= ψι ∧
ψDER ∧ ψPREDφ ∧ ψVD . Vice versa, if σ |= ψι ∧ ψDER ∧ ψVD , then Υ (σ) is a hybrid
trace.

Lemma 4. If σ a hybrid trace, then Ω(σ) |= ψι. If σ |= ψι, then the intervals of Υ (σ)
are adjacent and cover R+.

Proof. Suppose σ is a hybrid trace. Then I0 = [0, 0] and s0(ι) = >. If Ii = Ii+1 = [t, t]
then si(ι) = si+1(ι) = > and si(δt) = 0. If Ii = [t, t] and Ii+1 = (t, t′) then
si(ι) = >, si(δt) = (t′ − t)/2 > 0 and si+1(ι) = ⊥. If Ii = (t, t′) and Ii+1 = [t, t]
then si(ι) = ⊥, si(δt) = (t′ − t)/2 > 0 and si+1(ι) = >. Finally,

⋃
i∈N Ii = R+ so

that the sequence {ti}i∈N must be divergent. Then, for the Chauchy’s condition, there
exists α = s0(ζ) > 0 such that for all i ∈ N, there exists j ≥ i such that ti+1 − ti ≥ α.
and thus sj(δt) ≥ sj(ζ).

Suppose σ |= ψι. Then I0 = [0, 0] and there exists α = s0(ζ) > 0 such that for
all i ∈ N, there exists j ≥ i such that sj(δt) ≥ sj(ζ), and thus ti+1 − ti ≥ α. Hence,
t0 = 0 and {ti}i∈N diverges, and so

⋃
i∈N Ii = R+. If si(ι) = si+1(ι) = > then Ii =

Ii+1 = [ti, ti]. If si(ι) = >, and si+1(ι) = ⊥ then Ii = [ti, ti] and Ii+1 = (ti, ti+2). If
si(ι) = ⊥, and si+1(ι) = > then Ii = (ti−1, ti+1) and Ii+1 = [ti+1, ti+1].

Lemma 5. If σ a hybrid trace, then Ω(σ) |= ψDER. If σ |= ψDER, then for all i ∈ N, for
all v ∈ VC , if Ii = (t, t′) then fi(t) = fi−1(t), fi(t′) = fi+1(t′).

18



Proof. Suppose σ is a hybrid trace. If si(δt) > 0 ∧ ι then Ii = [t, t] and Ii+1 =
(t, t′) and si+1(v̇l) = (fvi+1(ti+1) − fvi+1(ti))/(ti+1 − ti). Since fvi+1(ti) = fvi (ti),
si+1(v)− si(v) = δt × si+1(v̇l).

If si(δt) > 0 ∧ ¬ι then Ii = (t, t′) and Ii+1 = [t′, t′] and si(v̇r) = (fvi+1(ti+1) −
fvi+1(ti))/(ti+1 − ti). Since fvi+1(ti) = fvi (ti), si+1(v)− si(v) = δt × si(v̇r).

Now, suppose σ |= ψDER.
If Ii = [t′, t′] and Ii+1 = (t′, t) (first case of Equation 2), si+1(v) − si(v) =

si(δt) × si+1(v̇l). By Definition 11, fvi+1(t) = si+1(v) − si+1(v̇l) × (ti+1 − t) if
t ≤ ti+1. In particular, fvi+1(t

′) = si+1(v) − si+1(v̇l) × si(δt). Substituting, we get
fvi+1(t

′) = si(v). Since, by Definition 11, si(v) = fvi (t′), the result holds.
If Ii = (t, t′) and Ii+1 = [t′, t′] (second case of Equation 2), si+1(v) − si(v) =

si(δt) × si(v̇r). By Definition 11, fvi (t) = si(v) + si(v̇r) × (t − ti) if t > ti. In
particular, fvi (t′) = si(v) + si(v̇r) × si(δt). Substituting, we get fvi (t′) = si+1(v).
Since, by Definition 11, si+1(v) = fvi+1(t

′), the result holds.

Lemma 6. If σ a hybrid trace, then If σ is ground for φ, Ω(σ) |= ψPREDφ . If σ |=
ψPREDφ , then Υ (σ) is ground for φ.

Proof. Suppose Ii = [t, t], Ii+1 = (t, t′), and Ω(σ), i 6|= NEXT(p=) → p=. Since
p= is an open set and fi+1 is continuous, by topology f−1(p=) must be open. Thus
there exist t′′ ∈ (t, t′) such that fi+1(t′′) |= p=, which violates the hypothesis that σ is
ground. The case p= → NEXT(p=) is similar.

Suppose Ω(σ) does not satisfy (p< → ¬X p>) for some p ∈ PRED, then by
Bolzano’s theorem, we can pick a point in the interval such that p= holds, which
violates the hypothesis that σ is ground. The case in which Ω(σ) does not satisfy
(p> → ¬X p<) is similar.

Suppose σ |= ψPREDφ . Suppose Ii = (t, t′) and fi(ti) |= p= then, by hypothesis,
fi(t) |= p= and fi(t′) |= p=. Since fi is linear over [t, ti] and [ti, t′], and p= is convex,
then fi(t′′) |= p= for all t′′ ∈ (t, t′). Suppose fi(ti) |= p< then, by hypothesis, fi(t) |=
¬p> and fi(t′) |= ¬p>. Since fi is linear over [t, ti] and [ti, t′], and p= is convex, then
fi(t′′) |= p< for all t′′ ∈ (t, t′). The case for p> is similar. We conclude that Υ (σ) is
ground.

Lemma 7. If σ a hybrid trace, then Ω(σ) |= ψVD . If σ |= ψDER ∧ ψVD , then for all
v ∈ VD, fvi is constant.

Proof. For all v ∈ VD, v is constant when δt > 0 and thus Ω(σ) |= ψVD .
If σ |= ψDER ∧ ψVD , if σi(δt) > 0 then for all v ∈ VD, σi(v̇l) and σi(v̇r) are zero,

and therefore fvi is constant.

Lemma 8. If σ is ground for a predicate p, σ, i |= p iff Ω(σ), i |= τ ′a(p).

Proof.
– If σ, i |= pcurr then, for all t ∈ Ii, fi(t) |= pcurr and in particular fi(ti) |= pcurr,

i.e., si |= pcurr. Vice versa, if si |= pcurr, then fi(ti) |= pcurr, and since σ is
ground for pcurr, for all t ∈ Ii, fi(t) |= pcurr.

– σ, i |= pnext iff Ii = Ii+1 = [t, t] and fi(t), fi+1(t) |= pnext, i.e. si(t), si+1(t) |=
pnext and σ, i |= δt = 0.

19



– If σ, i |= pder and Ii = (t, t′), then, for all t ∈ Ii, fi(t), ḟi(t) |= pder. In particular
fi(ti), ḟi(ti) |= pder. By the mean value theorem there is a point t in (t, (t+ t′)/2)
such that ḟi(t) = si(v̇l) and another point in ((t+t′)/2, t′) such that ḟi(t) = si(v̇r).
In both cases, since g contains only discrete variables, fi(ti), ḟi(t) |= pder. Vice
versa, if fi(ti), ḟi(ti) |= pder, then there exists t as above and since σ is ground for
pder, for all t ∈ Ii, fi(t), ḟi(t) |= pder. If Ii = [t, t], then fi(t), ḟi(t)− |= pder and
fi(t), ḟi(t)+ |= pder iff si |= pder[v̇l/DER(v)] ∧ pder[v̇r/DER(v)].

Lemma 9. If σ is ground for a SERE r, then σ, i, j |= r iff Ω(σ), i, j |= τ ′r(r).

Proof.
– σ, i, j |= p iff, for all k, i ≤ k < j, there is no discrete step at k (Ik 6= Ik+1),

and, for all k, i ≤ k ≤ j, σ, k |= p; thus, σ, i, j |= p, iff for all k, i ≤ k < j,
Ω(σ), k |= δt > 0, and, for all k, i ≤ k ≤ j, Ω(σ), k |= τ ′a(p) (for Lemma 8);

– σ, i, j |= ε iff i > j iff Ω(σ), i, j |= ε;
– σ, i, j |= r[*] iff i > j, or σ, i, j |= r, or there exists a discrete step at k (Ik = Ik+1),
i ≤ k < j, such that σ, i, k |= r, σ, k + 1, j |= r[*]; the first case holds iff
Ω(σ), i, j |= ε; the second case iff there exist n discrete steps at k1, k2, . . . kn such
that Iki = Iki+1 and σ, i, k1 |= r, σ, k1, k2 |= r, ... σ, kn, j |= r iff (for inductive
hypothesis) Ω(σ), i, k1 |= τ ′r(r), Ω(σ), k1 + 1, k2 |= τ ′r(r), ... Ω(σ), kn + 1, j |=
τ ′r(r), and Ω(σ), k1 |= δt = 0, Ω(σ), k1 + 1, k2 |= δt = 0, ... Ω(σ), kn + 1, j |=
δt = 0;

– σ, i, j |= r1 ; r2 iff σ, i, j |= r1, σ, j + 1, j |= r2 (i.e., r2 accepts the empty word),
or σ, i, i − 1 |= r1, σ, i, j |= r2 (i.e., r1 accepts the empty word), or there exists a
discrete step at k (Ik = Ik+1), i ≤ k < j, such that σ, i, k |= r1, σ, k + 1, j |= r2;
the first case holds, by induction, iff Ω(σ), i, j |= r1, Ω(σ), j + 1, j |= r2 and
thus iff Ω(σ), i, j |= τ ′r(r1) ; {ε && τ ′r(r2)}; the second case holds, by in-
duction, iff Ω(σ), i, i − 1 |= r1, Ω(σ), i, j |= r2 and thus iff Ω(σ), i, j |=
{ε && τ ′r(r1)} ; τ ′r(r2); the third case holds, by induction, iff Ω(σ), i, i− 1 |= r1,
Ω(σ), i, j |= r2 and thus iff Ω(σ), i, j |= {ε && τ ′r(r1)} ; τ ′r(r2);

– σ, i, j |= r1 : r2 iff there exists a discrete step at k (Ik = Ik+1), i ≤ k ≤ j, such
that σ, i, k |= r1, σ, k, j |= r2 iff (by inductive hypothesis) Ω(σ), i, k |= τ ′r(r1),
Ω(σ), k, j |= τ ′r(r2), and Ω(σ), k |= δt = 0,

– σ, i, j |= r1 ||| r2 iff σ, i, j |= r1 or σ, i, j |= r2 iff (by inductive hypothesis)
Ω(σ), i, j |= τ ′r(r1) or Ω(σ), i, j |= τ ′r(r2);

– σ, i, j |= r1 && r2 iff σ, i, j |= r1 and σ, i, j |= r2 iff (by inductive hypothesis)
Ω(σ), i, j |= τ ′r(r1) and Ω(σ), i, j |= τ ′r(r2).

Lemma 10. If σ is ground for φ, then σ, i |= φ iff Ω(σ), i |= τ ′(φ).

Proof. – σ, i |= p iff Ω(σ), i |= p for Lemma 8;
– σ, i |= ¬φ iff σ, i 6|= φ iff Ω(σ), i 6|= τ ′(φ) (by inductive hypothesis);
– σ, i |= φ ∧ ψ iff σ, i |= φ and σ, i |= ψ iff Ω(σ), i |= τ ′(φ) and Ω(σ), i |= τ(ψ);
– σ, i |= X φ iff there is a discrete step at i (Ii = Ii+1), and σ, i + 1 |= φ iff
Ω(σ), i |= δt = 0 and Ω(σ), i |= τ ′(X φ);

– σ, i |= φ U ψ iff, for some j ≥ i, σ, j |= ψ and, for all i ≤ k < j, σ, k |= φ iff
Ω(σ), j |= τ(ψ) and, for all i ≤ k < j, Ω(σ), k |= τ ′(φ);

20



– σ, i |= r ♦→♦→♦→ φ iff, there exists a discrete step at j ≥ i (Ij = Ij+1) such that
σ, i, j |= r, and σ, j |= φ iff Ω(σ), i, j |= τ ′r(r), and Ω(σ), j |= τ ′(φ).

Lemma 11. If σ |= ψι ∧ ψDER ∧ ψPREDφ ∧ ψVD , σ, i |= τ ′(φ) iff Υ (σ), i |= φ.

Proof. – If σ, i |= pcurr then fi(ti) |= pcurr, and since Υ (σ) is ground, for all t ∈ Ii,
fi(t) |= pcurr.

– If σ, i |= (δt = 0) ∧ pnext, then Ii = Ii+1 = [t, t] and fi(t), fi+1(t) |= pnext.
– If σ, i |= pder[v̇l/DER(v)] ∧ pder[v̇r/DER(v)], then, for all t < ti, fi(t), ḟi(t) |=
pder because ḟi(t) = v̇l, and, for all t > ti, fi(t), ḟi(t) |= pder because ḟi(t) = v̇r.

– The other cases result directly from the inductive hypothesis similarly to Lemmas
9 and 10.

Theorem 3 (Equi-satisfiability). If 〈f, I〉 is ground for φ and 〈f, I〉 |= φ, then
Ω(〈f, I〉) |= τ(φ). If σ is a discrete trace such that σ |= τ(φ), then Υ (σ) |= φ and
Υ (σ) is ground for φ. Thus φ and τ(φ) are equi-satisfiable.

Proof. Suppose σ |= φ. Then for Lemmas 4, 5, 6, and 7,Ω(σ) |= ψι∧ψDER∧ψPREDφ∧
ψVD . For Lemma 10, Ω(σ) |= τ ′(φ). Thus, Ω(σ) |= τ(φ).

Suppose σ |= τ(φ). Then σ |= τ ′(φ), and, for Lemma 11, Υ (σ) |= φ. Finally, for
Lemmas 4, 5, 6, and 7, Υ (σ) is a hybrid trace.

D ETCS case study in HRELTL
----------------------------
-- Background assumptions --
----------------------------

-- declaration of train front end
VAR
train.front_end: continuous;

-- the train front end does not change during discrete steps
FORMULA
G ! ( next(train.front_end)!=train.front_end )

-- declaration of train min and max safe_front_end
VAR
train.min_safe_front_end: continuous;
train.max_safe_front_end: continuous;

-- relation between train front_end and min_safe_front_end
FORMULA
G ( train.front_end>=train.min_safe_front_end )

-- relation between train front_end and max_safe_front_end
FORMULA
G ( train.front_end<=train.max_safe_front_end )

21



-- declaration of train speed
VAR
train.speed: continuous;

-- relation between train front end and speed
FORMULA
G ( ( (train.speed<0) <-> (der(train.front_end)<0) ) &

( (train.speed=0) <-> (der(train.front_end)=0) ) &
( (train.speed>0) <-> (der(train.front_end)>0) ) )

-- declaration of level
VAR
level: 1..3;

-- declaration of MA message events
VAR
receive_MA: boolean;

-- MA_message.received is an instantaneous event
FORMULA
G ( receive_MA -> next(receive_MA)=FALSE )

-- declaration of MA message contents
FROZENVAR
MA_message.time_stamp: real;

-- declaration of passage time over the first balise of the current
-- balise group

FROZENVAR
current_balise_group.first_balise.passage_time_stamp: real;

-------------------------
-- Scenario conditions --
-------------------------

-----------------------
-- ETCS requirements --
-----------------------

-- 3.8 Movement authority
-- 3.8.1 Characteristics of a MA
-- 3.8.1.1 The following characteristics can be used in a Movement
-- Authority (see Figure 17:
-- Structure of an MA):
-- a) The End Of Authority (EOA) is the location to which the train is
-- authorized to move.
VAR
eoa: real;

22



FORMULA
G ( eoa>=0 )

-- b) The Target Speed at the EOA is the permitted speed at the EOA;
-- when the target speed is not zero, the EOA is called the Limit
-- of Authority (LOA). This target speed can be time limited.
VAR
eoa_target_speed: real;
eoa_target_speed_timeout: real;

FORMULA
G ( eoa_target_speed >=0 )

FORMULA
G ( (train.front_end=eoa) -> train.speed<=eoa_target_speed )

-- c) If no overlap exists, the Danger Point is a location beyond the
-- EOA that can be reached by the front end of the train without a
-- risk for a hazardous situation.
VAR
ol: real;
dp: real;
hazard: boolean;

FORMULA
G ( dp>eoa )

FORMULA
G ( (ol=0 & train.front_end>dp) -> hazard )

-- d) The end of an overlap (if used in the existing interlocking
-- system) is a location beyond the Danger Point that can be reached
-- by the front end of the train without a risk for a hazardous
-- situation. This additional distance is only valid for a defined
-- time.
VAR
end_ol: real;

FORMULA
G ( end_ol>=dp )

FORMULA
G ( ol = end_ol - dp )

FORMULA
G ( (train.front_end>end_ol) -> hazard )

-- e) A release speed is a speed under which the train is allowed to
-- run in the vicinity of the EOA, when the target speed is zero. One
-- release speed can be associated with the Danger Point, and another

23



-- one with the overlap. Release speed can also be calculated on-board
-- the train (see section 3.13.7).
VAR
eoa_release_speed: real;
eoa_vicinity: real;
dp_release_speed: real;
dp_vicinity: real;
ol_release_speed: real;
ol_vicinity: real;

FORMULA
G ( ( train.front_end>=(eoa - eoa_vicinity) & eoa_target_speed=0) ->

train.speed<=eoa_release_speed )

FORMULA
G ( ( train.front_end>=(dp - dp_vicinity) & ol=0) ->

train.speed<=dp_release_speed )

FORMULA
G ( ( train.front_end>=(ol - ol_vicinity) & ol>0) ->

train.speed<=ol_release_speed )

-- f) The MA can be split into several sections, The last one is
-- called End Section.
-- * A first time out value can be attached to each section.
-- This value will be used for the revocation of the associated
-- route when the train has not entered into it yet. It is
-- called the Section time-out.
-- * In addition, a second time out value can be attached to the
-- End Section of the MA. This second time out will be used
-- for the revocation of the last section when it is occupied
-- by the train; it is called the End Section time-out.
VAR
section[1].start: real;
section[1].end: real;
section[1].timeout: real;
endsection.start: real;
endsection.end: real;
endsection.timeout: real;
endsection.end_timer: continuous;
endsection.end_timeout: real;

FORMULA
G (section[1].start>=0)

FORMULA
G (section[1].start<section[1].end)

FORMULA
G (section[1].end=endsection.start)

24



FORMULA
G (endsection.start<endsection.end)

FORMULA
G (endsection.end=eoa)

FORMULA
G ( der(endsection.end_timer)=1 )

-- 3.8.3 Structure of a Movement Authority (MA)

-- 3.8.3.1 The distance to End of Authority (EOA) can be composed of
-- several sections.
-- 3.8.3.2 For each section composing the MA the following information
-- shall be given;
-- a) Length of the section
VAR
section[1].length: real;
endsection.length: real;

FORMULA
G (section[1].length = section[1].end - section[1].start )

FORMULA
G (endsection.length = endsection.end - endsection.start )

-- b) Optionally, Section time-out value and distance from
-- beginning of section to Section Time-out stop location
VAR
section[1].timeout_stop_location: real;
endsection.timeout_stop_location: real;

-- 3.8.3.3 In addition, the End section of the MA may include;

-- a) End Section Time-out value and distance from the End
-- Section Time-out start location to the end of the last
-- section
-- b) Danger point information (distance from end of section
-- to danger point, release speed related to danger point)
-- c) Overlap information (distance from end of section to end
-- of overlap, time-out, distance from overlap time-out start
-- location to end of section, release speed related to overlap)
VAR
endsection.timeout_start_location: real;
ol.timeout_start_location: real;

-- 3.8.3.4 The time-out start locations (for Overlap and End Section)
-- and the Section Time-out stop location shall be inside of
-- the corresponding section.

25



FORMULA
G (section[1].timeout_stop_location>=section[1].start &

section[1].timeout_stop_location<=section[1].end)

FORMULA
G (endsection.timeout_stop_location>=endsection.start &

endsection.timeout_stop_location<=endsection.end)

FORMULA
G (endsection.timeout_start_location>=endsection.start &

endsection.timeout_start_location<=endsection.end)

FORMULA
G (ol.timeout_start_location>=endsection.start &

ol.timeout_start_location<=endsection.end)

-- 3.8.4 Use of the MA on board the train
-- 3.8.4.1 End Section Time Out
-- 3.8.4.1.1 The End Section timer shall be started on-board when the
-- train passes the End Section timer start location given by
-- trackside with its max safe front end.
FORMULA
G ( train.max_safe_front_end!=endsection.timeout_start_location ->

( train.max_safe_front_end!=endsection.timeout_start_location W
( train.max_safe_front_end=endsection.timeout_start_location &
next(endsection.end_timer)=0 ) ) )

-- 3.8.4.1.2 The End Of Authority shall be considered as withdrawn to
-- the current position of the train when the time out has expired.
FORMULA
G ( endsection.end_timer<endsection.end_timeout ->

( endsection.end_timer<endsection.end_timeout W
( endsection.end_timer=endsection.end_timeout &
next(eoa)=train.front_end ) ) )

-- 3.8.4.2 Section Time Outs

-- 3.8.4.2.1 The on-board shall start a Section timer for each section:
-- a) For Level 2: at the value of the time stamp of the
-- message including the MA.
-- b) For Level 1: at the time of passage over the first
-- encountered balise of the balise group giving the MA.
VAR
section[1].timer: continuous;
section[1].timer_stop: boolean;
endsection.timer: continuous;
endsection.timer_stop: boolean;

FORMULA
G ( section[1].timer_stop -> der(section[1].timer)=0 )

26



FORMULA
G ( !section[1].timer_stop -> der(section[1].timer)=1 )

FORMULA
G ( (level=2 & receive_MA) ->

( next(section[1].timer)=MA_message.time_stamp &
next(section[1].timer_stop)=FALSE ) )

FORMULA
G ( (level=1 & receive_MA) ->

( next(section[1].timer)=
current_balise_group.first_balise.passage_time_stamp &
next(section[1].timer_stop)=FALSE ) )

FORMULA
G ( endsection.timer_stop -> der(endsection.timer)=0 )

FORMULA
G ( !endsection.timer_stop -> der(endsection.timer)=1 )

FORMULA
G ( (level=2 & receive_MA) ->

( next(endsection.timer)=MA_message.time_stamp &
next(endsection.timer_stop)=FALSE ) )

FORMULA
G ( (level=1 & receive_MA) ->

( next(endsection.timer)=
current_balise_group.first_balise.passage_time_stamp &
next(endsection.timer_stop)=FALSE ) )

-- 3.8.4.2.2 When the time out has expired, the EOA shall be withdrawn
-- to the entry point of the revoked section.

FORMULA
G ( section[1].timer<section[1].timeout ->

( section[1].timer<section[1].timeout W
( section[1].timer=section[1].timeout &
next(eoa)=section[1].start) ) )

FORMULA
G ( endsection.timer<endsection.timeout ->

( endsection.timer<endsection.timeout W
( endsection.timer=endsection.timeout &
next(eoa)=endsection.start) ) )

-- 3.8.4.2.3 The Section timer shall be stopped when the min safe
-- front end of the train has passed the associated Section
-- Time-out stop location.

27



FORMULA
G ( train.min_safe_front_end<section[1].timeout_stop_location ->

( train.min_safe_front_end<section[1].timeout_stop_location W
( train.min_safe_front_end=section[1].timeout_stop_location &
next(section[1].timer_stop)=TRUE ) ) )

FORMULA
G ( train.min_safe_front_end<endsection.timeout_stop_location ->

( train.min_safe_front_end<endsection.timeout_stop_location W
( train.min_safe_front_end=endsection.timeout_stop_location &
next(endsection.timer_stop)=TRUE ) ) )

-- 3.8.4.3 Time-out of the speed associated with the EOA/LOA
-- 3.8.4.3.1 The on-board shall start a timer for the speed at the
-- EOA/LOA:
-- a) For Level 2: at the value of the time stamp of the
-- message including the MA.
-- b) For Level 1: at the time of passage over the first
-- encountered balise of the balise group giving the MA.
VAR
eoa_target_speed_timer: continuous;

FORMULA
G ( der(eoa_target_speed_timer)=1 )

FORMULA
G ( (level=2 & receive_MA) ->

( next(endsection.timer)=MA_message.time_stamp ) )

FORMULA
G ( (level=1 & receive_MA) ->

( next(endsection.timer) =
current_balise_group.first_balise.passage_time_stamp ) )

-- 3.8.4.3.2 When the time out has expired, the speed value shall be
-- set to zero, i.e. the Limit of Authority becomes an End
-- of Authority.

FORMULA
G ( eoa_target_speed_timer<eoa_target_speed_timeout ->

( eoa_target_speed_timer<eoa_target_speed_timeout W
( eoa_target_speed_timer=eoa_target_speed_timeout &
next(eoa_target_speed)=0) ) )

-- 3.8.4.4 Time-out of Overlap

-- 3.8.4.4.1 The overlap timer shall be started on-board when the
-- train passes the overlap timer start location given by
-- trackside with its max safe front end.

28



VAR
ol.timer: continuous;

FORMULA
G ( der(ol.timer)=1 )

FORMULA
G ( train.max_safe_front_end!=ol.timeout_start_location ->

( train.max_safe_front_end!=ol.timeout_start_location W
( train.max_safe_front_end=ol.timeout_start_location &
next(ol.timer)=0 ) ) )

-- 3.8.4.4.2 When the timer expires, the overlap shall be considered
-- as released. I.e. the Supervised Location is withdrawn to the
-- Danger Point (if any) or to the EOA.

VAR
ol.timeout: real;

FORMULA
G ( ol.timer<ol.timeout ->

( ol.timer<ol.timeout W
( ol.timer=ol.timeout & next(ol)=0 ) ) )

-- 3.8.4.4.3 When the train has passed the overlap timer start
-- location and the train has come to standstill, the
-- overlap shall be considered as released, even if
-- the time-out has not yet expired.

FORMULA
G ( ( train.front_end>ol.timeout_start_location &

der(train.front_end)>0 ) ->
( der(train.front_end)>0 W
( der(train.front_end)=0 & next(ol)=0 ) ) )

-- 3.8.4.5 Supervised Location
-- 3.8.4.5.1 The Supervised Location shall be defined on board as;
-- a) the end of overlap (if any and before time-out).
-- b) if not, the Danger Point (if any).
-- c) if not, the End Of Authority.

VAR
SL: real;

FORMULA
G ( SL=(case ol>0: end_ol; dp>eoa: dp; 1: eoa; esac) )

-- 3.13 Dynamic Speed Monitoring
--

29



-- 3.13.4 Supervision Limits
--
-- 3.13.4.1 Note: The supervision limits described in the SRS are only
-- defined as far as required for interoperability. The
-- algorithm for their calculation is an implementation
-- matter. This chapter specifies general rules, the
-- following ones special conditions.
-- 3.13.4.2 The speed limits described in this chapter shall be
-- calculated for the Ceiling Speed and Target Speed
-- monitoring, also a subset for the Release Speed
-- monitoring. By comparing the train speed and location of
-- the train to the various supervision limits, the system
-- shall generate indications to the driver and braking
-- actions.
-- 3.13.4.3 The supervision limits shall take into account the input
-- data specified in the previous chapter. This may be done
-- in a simplified way as long as the safety of the train is
-- ensured.
-- 3.13.4.4 The Permitted Speed limit (abbreviated as P)
-- 3.13.4.4.1 The permitted speed is the speed the driver is requested
-- to follow and shall be indicated to the driver.

VAR
P_limit: continuous;

FORMULA
G (train.front_end<eoa -> P_limit>0)

FORMULA
G ! ( next(P_limit)!=P_limit )

-- 3.13.4.5 The Warning limit (abbreviated as W)
-- 3.13.4.5.1 If the train speed exceeds the warning limit, a warning
-- shall be triggered, allowing the driver to avoid brake
-- intervention.

VAR
W_limit: continuous;
warning: boolean;

FORMULA
G (train.front_end<eoa -> W_limit>0)

FORMULA
G ! ( next(W_limit)!=W_limit )

FORMULA
G ( train.speed<W_limit ->

( train.speed<W_limit W
( train.speed=W_limit & next(warning)=TRUE ) ) )

30



-- 3.13.4.5.2 After a warning has been triggered it shall remain
-- active until the train speed is equal to or below the
-- permitted speed.
FORMULA
G ( warning -> ( warning U train.speed<=P_limit ) )

-- 3.13.4.6 The Service Brake Intervention limit (abbreviated as SBI)
--
-- 3.13.4.6.1 The service brake shall be used as First line of system
-- intervention unless
-- a) No interface to the service brake is available on a
-- train
-- b) The use of the service brake is inhibited for
-- Target Speed Monitoring by means of a National Value.
-- 3.13.4.6.2 The Service Brake is considered not safe, therefore it
-- shall be backed up, as Second line of intervention, by
-- the emergency brake. This is ensured by means of the
-- Emergency Brake Intervention limit (see below).
-- 3.13.4.6.3 If the train speed exceeds the Service Brake
-- Intervention limit, the system shall command the service
-- brake to be applied.
VAR
SBI_limit: continuous;
service_brake: boolean;

FORMULA
G (train.front_end<eoa -> SBI_limit>0)

FORMULA
G ! ( next(SBI_limit)!=SBI_limit )

FORMULA
G ( train.speed<SBI_limit ->

( train.speed<SBI_limit W
( train.speed=SBI_limit & next(service_brake)=TRUE ) ) )

-- 3.13.4.6.4 After the service brake has been triggered, the brake
-- command shall be revoked when the train speed is equal
-- to or below the Permitted Speed limit
FORMULA
G ( service_brake ->

( train.speed>P_limit W
( train.speed<=P_limit & next(service_brake)=FALSE ) ) )

-- 3.13.4.7 The Emergency Brake Intervention limit (abbreviated as EBI)
-- 3.13.4.7.1 The emergency brake shall be used as First line of
-- intervention in the following cases:
-- a) Release Speed supervision
-- b) Train trip

31



-- c) Service brake is not available (refer to 3.13.4.6.1)
-- 3.13.4.7.2 If the train speed exceeds the Emergency Brake
-- Intervention limit, the system shall command the
-- emergency brake to be applied.
VAR
EBI_limit: continuous;
emergency_brake: boolean;

FORMULA
G (train.front_end<eoa -> EBI_limit>0)

FORMULA
G ! ( next(EBI_limit)!=EBI_limit )

FORMULA
G ( train.speed<EBI_limit ->

( train.speed<EBI_limit W
( train.speed=EBI_limit & next(emergency_brake)=TRUE ) ) )

-- 3.13.4.7.3 After the emergency brake has been triggered, the brake
-- command shall be revoked when the train speed is equal
-- to or below the Permitted Speed limit or the train is at
-- standstill, depending on a National Value. There are the
-- following exceptions:
-- a) If there is no interface to the Service Brake provided,
-- the brake command shall be revoked when the train speed
-- is equal to or below the permitted speed. This only
-- applies if the brake intervention was due to passage
-- of the brake intervention curve.
-- b) For Release Speed supervision the brake command
-- shall be revoked at standstill.
-- c) For train trip special conditions apply (see
-- chapter 3.13.8).
FORMULA
G ( emergency_brake ->

( train.speed>P_limit W
( train.speed<=P_limit & next(emergency_brake)=FALSE ) ) )

-- 3.13.6 Special Requirements for the Target Speed Monitoring FRS
-- references: 4.3.2 - Dynamic train speed profile
-- calculation, 4.3.7 - Supervision of movement authorities
-- and speed limits, 4.3.7 - Supervision of movement
-- authorities and speed limits
-- 3.13.6.1 General
-- 3.13.6.1.1 The following requirements have to be considered as
-- addition to the general requirements specified in
-- section 3.13.4.
-- 3.13.6.1.2 Note: No special requirements are necessary for the
-- Permitted Speed limit and Warning limit for target speed
-- monitoring.

32



-- 3.13.6.1.3 If the service brake is available for target speed
-- monitoring, the Service Brake Intervention (SBI) limit
-- shall comply, in reference to the expected brake
-- performance, with the most restrictive of the following
-- two requirements:
-- a) The SBI limit shall be calculated such that the
-- SBD limit (reflecting the expected deceleration with
-- the service brake fully applied) is not exceeded at
-- the given target location and for the given target
-- speed.
-- b) It shall avoid that the Emergency Brake Intervention
-- limit is reached.
VAR
SBD_limit: continuous;

FORMULA
G (der(train.front_end)>0 -> der(SBD_limit)<0)

FORMULA
G (der(train.front_end)=0 -> der(SBD_limit)=0)

FORMULA
G (der(train.front_end)<0 -> der(SBD_limit)>0)

FORMULA
G ! ( next(SBD_limit)!=SBD_limit )

FORMULA
G (service_brake -> (der(train.speed)=der(SBD_limit)) )

FORMULA
G (train.speed>SBI_limit V

(train.front_end=eoa -> train.speed<=SBD_limit) )

-- 3.13.6.1.4 The EBI limit shall be calculated such that the EBD
-- limit (reflecting the expected deceleration with the
-- emergency brake fully applied) is not exceeded at the
-- given target location and for the given target speed,
-- unless the expected brake performance is not available.
VAR
EBD_limit: continuous;

FORMULA
G (der(train.front_end)>0 -> der(EBD_limit)<0)

FORMULA
G (der(train.front_end)=0 -> der(EBD_limit)=0)

FORMULA
G (der(train.front_end)<0 -> der(EBD_limit)>0)

33



FORMULA
G ! ( next(EBD_limit)!=EBD_limit )

FORMULA
G (emergency_brake -> (der(train.speed)=der(EBD_limit)) )

FORMULA
G (train.speed>EBI_limit V

(train.front_end=eoa -> train.speed<=EBD_limit) )

-- 3.13.6.3 Special Requirements for the EOA section
-- FRS reference: - none
-- 3.13.6.3.1 The EOA section is a section where the permitted speed
-- curve decreases from the current value to zero speed at
-- the EOA.
VAR
eoa_section.start: real;

FORMULA
G ( (train.front_end>eoa_section.start) -> der(P_limit)<0 )

-- 3.13.6.3.1.1 Note: For the end of the section the Release Speed
-- supervision may apply (see section 3.13.7).
--
-- Case 1: Service brake is first line of intervention
-- 3.13.6.3.2.1 The supervision limits of the Braking to the EOA
-- section shall be calculated such that
-- a) The EBD curve reaches the zero speed at
-- the Supervised Location (SL).
-- b) The SBD, W and P curve reaches the zero speed
-- at the End Of Authority (EOA).
FORMULA
G ( (train.front_end=SL) -> EBD_limit=0 )

FORMULA
G ( (train.front_end=eoa) -> SBD_limit=0 )

FORMULA
G ( (train.front_end=eoa) -> W_limit=0 )

FORMULA
G ( (train.front_end=eoa) -> P_limit=0 )

34


