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Abstract. Flaws in requirements may have severe impacts on the subsequent
phases of the development flow. However, an effective validation of requirements
can be considered a largely open problem.
In this paper, we propose a new methodology for requirements validation, based
on the use of formal methods. The methodology consists of three main phases:
first, an informal analysis is carried out, resulting in a structured version of the
requirements, where each fragment is classified according to a fixed taxonomy.
In the second phase, each fragment is then mapped onto a subset of UML, with
a precise semantics, and enriched with static and temporal constraints. The third
phase consists of the application of specialized formal analysis techniques, opti-
mized to deal with properties (rather than with models).

1 Introduction

Most of the efforts in formal methods have historically been devoted to comparing a de-
sign against a set of requirements. The validation of the requirements themselves, how-
ever, has often been disregarded, and it can be considered a largely open problem, which
poses several challenges. First, requirements are often written in natural language, and
may thus contain a high degree of ambiguity. Despite the progresses in Natural Lan-
guage Processing techniques, the task of understanding a set of requirements cannot
be automatized, and must be carried out by domain experts, who are typically not fa-
miliar with formal languages. Second, the informal requirements often express global
constraints on the system-to-be (e.g. mutual exclusion), and, in order to retain a direct
connection with the informal requirements, the formalization cannot follow standard
model-based approaches, but must be complemented with more suitable formalisms
such as temporal logics. Third, the formal validation of requirements suffers from the
lack of a clear correctness criterion (which in the case of design verification is basically
given by the availability of high-level properties). Finally, the expressiveness of the lan-
guage used in the formalization may go beyond the theoretical and/or practical capacity
of state-of-the-art formal verification.

In this paper, we present a new methodology for the validation of requirements,
that is based on formal methods. The main phases are the following. In the first phase,
the informal requirements are split into basic fragments, which are classified into cat-
egories, and the dependency relationships among them are identified. During this in-
formal inspection analysis, the natural language is disambiguated, and easy-to-detect



flaws are discovered. In the second phase, each requirement fragment is formalized ac-
cording to the categorization. The target formalism is a visual language such as UML,
syntactically restricted in order to guarantee a formal semantics, and enriched with a
highly-controlled natural language, to allow for expressing static and temporal con-
straints. In the third phase, an automatic formal analysis is carried out over the modeled
requirements, using a number of advanced, complementary techniques. In particular, it
is possible to carry out consistency checking, to verify whether some required proper-
ties are entailed, and whether the requirements are compatible with selected scenarios.
Within this setting, diagnostic information is provided by means of traces, inconsistent
cores, property vacuity, and scenario coverage.

The paper is structured as follows. In Section 2, we overview the methodology. In
Section 3 and 4, we describe the informal analysis phase and the formalization phase. In
Section 5, we present the procedures underlying the verification phase. In Section 6 we
describe the support tools. In Section 7 and 8, we discuss the proposed methodology and
the related work. Finally, in Section 9, we draw some conclusions and outline directions
for future work.

2 Overview of the methodology

We propose a novel methodology that addresses the issue of formalizing and validating
a requirements specification written in an informal language.

Our approach builds on the use of the Unified Modeling Language (UML) to for-
malize the requirements, and on the use of a Controlled Natural Language (CNL) [30],
based on a subset of the Property Specification Language (PSL) [21], to formalize the
set of constraints on the requirements model. The set of UML concepts and artifacts
we use in our approach represents a subset of the UML 2 concepts and diagrams de-
scribed in the OMG UML 2 metamodel specification documents [1]. The subset of PSL
our CNL builds on is the one that mixes Linear Time temporal Logic (LTL) [28] with
Regular Expressions [4].

Our methodology consists of the the following three main steps:

M1 Informal analysis phase. It consists of the categorization and structuring of the
informal requirement fragment described in the requirements document to produce
categorized requirement fragments;

M2 Formalization phase. The categorized requirement fragments are described trough
the set of concepts and diagrams in UML, and additional constraints in the defined
CNL to produce formalized requirement fragments;

M3 Formal validation phase. It consists of the identification of a subset of the formal-
ized requirement fragments (together with the definition of a series of validation
problems) for an automatic validation analysis.

Each step of the methodology is supported by a specific tool. In the following sec-
tions, we detail the methodology in terms of the associated sub-phases, artifacts, and
modeling concepts. The categories of requirement fragments are detailed together with
the steps for the analysis and structuring of the requirements. The methodology is pre-
sented using as running example a simple elevator control system specification.



Requirement fragments conditions Requirement
fragment
category

Does the requirement fragment define a particular concept in the domain? Glossary
Does the requirement fragment introduce some system’s modules and describe
how they interact?

Architecture

Does the requirement fragment describe the steps a particular module performs
or the states where the module can be?

Functional

Does the requirement fragment describe the messages some modules exchange? Communication
Does the requirement fragment describe some constraints on the behaviors of
system-to-be?

Behavioral

Does the requirement fragment describe some constraints on the environment? Environmental
Does the requirement fragment describe a possible scenario of the domain? Scenario
Does the requirement fragment describe an expected property of the domain? Property
Is the requirement fragment a note in the specifications that does not add any
information about the ontology or the behavior of the specified system?

Annotation

Table 1. Requirement fragments categories.

3 Informal analysis phase

The first activity in the methodology is the informal analysis of the set of requirements.
In this phase the requirements are first categorized on the basis of their characteris-
tics. Then, some dependencies among them are established to structure the categorized
requirement fragments. The steps for this informal categorization and analysis are:

M1.1 Isolation of the fragments that identify a requirement unit of the domain require-
ments document.

M1.2 Categorization of the informal requirement fragments.
M1.3 Creation of the dependencies among the informal requirement fragments.
M1.4 Analysis of the informal requirement fragments based on standard inspection-

based software engineering in order to identify flaws such as, e.g., recursive defini-
tions.

The final result of the informal analysis phase is a database of categorized requirement
fragments.

Requirement fragment categorization We have identified nine possible categories:
Glossary, Architecture, Functional, Communication, Behavioral, Environmental, Sce-
nario, Property, Annotation. The conditions specified in Table 1 define the correspond-
ing category to be assigned to each informal requirement fragment.

The categorization helps the analyst in understanding the domain and can also be
used in the next steps of the methodology to guide the formalization by suggesting the
use of particular UML or CNL constructs.



R0 Elevator
R1.1 Call buttons to choose a floor
R1.2 Floor
R1.3 Key switches
R1.4 Call buttons could be key switches
R1.5 Certain floors are inaccessible unless using the key
R2.1 Elevator Door
R2.2 Door open buttons
R2.3 Door close buttons
R2.4 [Door close button] instructs the elevator [door] to close immediately
R2.5 [Door open button] instructs the elevator [door] to remain open longer

Table 2. Example of identified requirement fragments.

Dependencies definition We have identified the following three kind of dependencies
to describe the possible relationships among two requirement fragments A and B:

– Strong Dependency links: A cannot exist without B.
– Weak Dependency links: A can exist without B.
– Refinement links: A redefines some notions of B at a lower level of abstraction.

These dependencies are used in the formalization phase, to establish links among the
formalized counterparts, and in the formal validation phase, to identify a well formed
verification task.

3.1 Example of informal analysis

We start analyzing the specification of the elevator described at the URL http://

en.wikipedia.org/wiki/Elevator#Controlling_elevators. We perform the
step M1.1 of the methodology to get a set of requirement fragments. It is reported that:
A typical modern passenger elevator will have:

1. Call buttons to choose a floor. Some of these may be key switches: certain floors are
inaccessible unless using the key.

2. Door open and door close buttons to instruct the elevator to close immediately or
remain open longer.

The first sentence introduces the concept Elevator. The first item introduces the con-
cepts Floor, Button, Call button and Key. The functionality choose a floor is associated
to concept Call button. Moreover, the concept Key is associated to the Call button by
saying that certain floors are inaccessible unless using the key. The second item in the
specification introduces three new concepts: the presence of an elevator door, the door
open and door close buttons with their functionalities to instruct the elevator to close
immediately or remain open longer. We can then define the requirement fragments as
in Table 2.

In the step M1.2 we classify R1.{1-4} and R2.{1-3} as Glossary requirement frag-
ments. The R1.5 and R2.{4-5} can be classified as a Behavioral requirement fragments
(they describe constraints on the system-to-be). R1.5 can also be classified Scenario and
Property.

In the step M1.3 we recognize a Strong Dependency of the requirement R1.5 to the
requirements R1.2 and R1.3.



4 Formalization phase

Our methodology requires proceeding with the formalization of the categorized require-
ment fragment version of the requirements produced as artifact of the informal analysis
phase. The formalization phase consists of the following sub-activities:

M2.1 Formalize each requirement fragment identified in the informal analysis phase
by specifying the corresponding UML concepts and diagrams, and/or the CNL con-
straints.

M2.2 Link the UML elements introduced in M2.1 to the textual requirements. The
link is used for requirements traceability of the formalization against the informal
textual requirements, and to select directly from the textual requirements document
a categorized requirement fragment to validate.

We have adopted: classes and class diagrams to formalize the requirements that
have been classified as Glossary; state machines to formalize requirements classified as
Functional; sequence diagrams to represent those requirements classified as Scenarios
that describe the interaction among a set of objects; CNL to specify the Behavioral, the
Environmental, the Property requirements and the remaining Scenario requirements.
The selection of UML diagrams and concepts has been performed on the basis of the
expressive power of the UML concepts and on the need related to the formalization of
the UML constructs in a formal language. (See [17] for details on the underlying object
model extended with temporal constraints.)

Class diagrams A class represents a concept in the domain. In our context, a class
is associated with: a set of class attributes representing the set of characteristics of the
concept; a set of class methods, representing actions/procedures the class can perform.
A method accepts a set of parameters in input and has a return parameter. Each attribute
and each method parameter has a type that can be primitive, e.g. Integer or Real, or
user defined, i.e., enumerative or a class defined in the UML model.

Relationships among classes represent the relations existing between domain con-
cepts. In our context we allow only for the following relationships:

– Association: it is the basic relationship that can be established among two classes.
– Aggregation: it specifies that the class belongs to a collection (another class).
– Generalization: it indicates that one class is a “superclass” of the other.

Association and Aggregation relationships are characterized by their multiplicity. This
multiplicity represents the range of the number of instances of the involved classes that
exist in the domain (0..1 zero or one instance, 0..∗ or ∗ no limit on the number of
instances, 1 exactly one instance, 1..* at least one instance, and n..m n to m instances).

State Machines We use state machines to model the behavior of each method of a class
in the domain. In our framework we restricted the syntax of the UML 2 state machines
as follows. We only allow for the following kinds of UML 2 state machine states: ini-
tial state, that represents the entry point of the corresponding class method; final state,



that represents the return point of the corresponding class method; “simple” state, that
represents a generic state of the corresponding class method; conditional states, that
represent conditional branches in the execution of the corresponding method. A transi-
tion of a state machine represents the conditions that determine the change of state. Each
transition is associated with a label of the form event[guard]/activity. The meaning
of the label is that the transition is performed when the event occurs and the guard
(that is a boolean predicate) is true. When the transition is fired the specified activity
is performed. In our framework, the events are restricted to be only class method calls,
while the activity have to be a parallel combination of class method calls and class
attribute assignments.

Sequence Diagrams UML sequence diagrams model the evolution of the specified
objects as a sequence of exchange of messages, focusing on the representation of their
interactions. We use sequence diagrams to model Scenarios requirements that are re-
quested/expected to happen in the domain in terms of exchange of messages. The UML
2 notation for a sequence diagram is restricted as follows: we use objects to represent
the instances of the classes involved in a given interaction; lifelines to represent the
lifetime of the objects involved in the interaction; messages are restricted to be only a
method call performed by an object to a method of another object. We also allow for
the specification of some interaction operators defined in UML 2 that specify partic-
ular configurations of messages, such as: the negation, the alternative, the option, the
parallel and the loop.

Controlled Natural Language In order to allow for the specification of constraints
and temporal properties of the entities in the model, we extend the UML model with a
constraint language. The constraint language is a Controlled Natural Language (CNL)
[30], i.e., a well-defined subset of natural language whose grammar has been restricted
in order to be automatically processable. The language includes temporal operators as
in [25]. We proposed a CNL grammar, based on the subset of the PSL [21] logic that
mixes Linear Temporal Logic (LTL) [28] operators with Regular Expressions [4]. This
choice is motivated by the fact that this fragment, being linear time, is adapt to express
constraints on the evolution of observable events of the system. The grammar has been
defined to include enough syntactic sugar to be easily accepted and then used by non-
experts in computer science or software engineering.

We have classified the CNL constraints we use to annotate the UML concepts and
diagrams in the following five categories.

– Initial: it defines constraints that are valid initially.
– Invariant: it defines a constraint expected to be always valid over time.
– Behavior: it defines a constraint expressing admissible behaviors.
– Scenario: it describes behaviors that are expected to be admitted by the formalized

requirement fragments.
– Property: it defines behaviors that every possible admissible behavior should satisfy

(conversely, it defines a set of behaviors that are not admissible).



Fig. 1. The elevator class model.

Example of formalization Figure 1 represents the class diagram resulting from the for-
malization of the output of the informal analysis phase for the elevator. For requirements
R1.{1-3}we defined the classes Button, Call Button, Floor and Key, Door Open Button,
Door Close Button, and Elevator. Door Open Button, Door Close Button and Call Button
are refinement of class Button. Requirement R1.4 is captured in the diagram by the as-
sociation relationship between the two classes Call Button and Key where is imposed,
via the cardinalities at the two sides of the relationship, that for every Call Button there
could be 0 or at most 1 Key associated. Class Floor has an attribute chosen (from R1.1)
of type Boolean to indicate whether the corresponding floor has been requested. Class
Key has attribute inserted, of type Boolean, to indicate whether the key has been in-
serted. Class Door as attribute is open, of type Boolean, to indicate whether the door is
open or closed. Class Door has methods close and open, from requirement fragments
R2.4 and R2.5 respectively, to model the activity of opening/closing the corresponding
door. Class Button has method push to model the press of the button.

The analysis of the categorized requirement fragments for the elevator lead to the
definition of some CNL constraints. Below we report an excerpt of the constraints clas-
sified Behavior (CB.#) necessary to formalize the elevator.

CB.1 for all Call Button b, whenever b.push(), b.floor.request()
CB.2 for all Call Button b, if b has a key, whenever b.floor.request(), b.key.inserted
CB.3 for all Door Close Button b, whenever b.push(), b.elevator.door.close()

Requirement R1.1 leads to the introduction of the constraint CB.1 to say that pushing
the button related to a floor means to request that floor. Similarly, from R1.5 it is possible
to extract the CNL constraint CB.2, that states that all call buttons that have a key are
such that if the button has been pressed, then the key has been inserted. R2.4 states
that when the door close button is pushed then the elevator door has to close. This is
formalized with by the CNL constraint CB.3. From R1.5, it is possibile to obtain also
the following constraints of type scenario (CS.#) and property (CP.#) respectively:

CS.1 there exists a Call Button b such that b has a key and in the future
b.floor.request()

CP.1 for all Call Button b, b has a key and never b.key.inserted implies never
b.floor.request()



Following the same process, other constraints have been imposed on the model on
the basis of the specification. They have not been reported here for the sake of space.
A more detailed description can be found at http://es.fbk.eu/people/roveri/
tests/fmics08.

Phase M2.2 consists in linking all the elements in the model to the textual require-
ments fragments. For example, the requirement R1.1 will be directly related to the class
Call Button via a data structure that maintains this information (such as for instance the
traceability structures provided by standard tools like IBM Rational RequisitPro and
IBM Rational Software Architect).

5 Formal validation phase

The validation of the formalized requirement fragments aims at improving the quality
of the requirements. This goal is achieved by performing several analysis steps, based
on the use of formal techniques, that may help to pinpoint flaws that are not trivial to
detect in an informal setting.

These steps include checks to identify inconsistencies, and to increase the con-
fidence that the categorized requirement fragment and its corresponding formalized
counterpart meet the design intent: for instance, a flaw may be in the fact that some
desired behaviors have been ruled out by an over-constraining set of requirements; con-
versely, some undesired behavior may have not been ruled out by under-constraining
requirements.

The formal validation phase of the methodology will be accomplished as follows:

M3.1 Check the well-formedness of the formalized requirement fragments. This initial
activity aims at verifying that the formalized requirement fragments syntactically
adhere to the formal language syntax, and that all the elements mentioned have
been previously defined.

M3.2 Narrowing of the formalized requirement fragments. This phase aims at focusing
the validation to a particular subset of interest of the formalized requirement frag-
ments (e.g. to restrict the validation of the classes/functions of a specific module).
In this phase the validation expert selects a set of objects per each class.

M3.3 Formal validation of the identified formalized requirement fragments. The subset
of interest identified in M3.2 is formally analyzed to identify flaws if any.

Whenever a problem is identified in any of the above sub-phases, in order to try and
solve the identified flaw, it may be required to go back to a previous phase. We remark
that, in this phase, the domain expert responsible of the validation can specify additional
desired and undesired behaviors w.r.t. the ones already formalized in previous phases,
in order to guarantee that the design intents are captured, thus further enriching the
formalized requirement fragment.

The phase M3.3 can be further decomposed depending on the scope and on the level
of domain knowledge required to perform it. For this purpose we classify the validation
checks in Domain Independent and Domain Dependent checks. There is a third kind of
checks, aiming at further analyzing the quality of the results produced by the domain
dependent checks e.g. by performing vacuity analysis, coverage analysis and safety
analysis.



Domain Independent Checks These checks aim at verifying properties of the for-
malized requirement fragment that do not require any domain knowledge, i.e. logical
consistency and realizability.

Checking Logical Consistency. The formal notion of logical consistency can be intu-
itively explained as “freedom from contradictions”. It is possible that two formalized
requirement fragments mandate mutually incompatible behaviors. This check aims at
formally verifying the absence of logical contradictions in the considered formalized
requirement fragments. Consistency checking is carried out by dedicated formal verifi-
cation algorithms [16].

Checking Realizability. Realizability [29, 13] intuitively amounts to checking if there
exists an open system implementing the considered formalized requirement fragments.
The variables occurring in the considered formalized requirement fragments are clas-
sified as either controllable (by the specified system), or uncontrollable (depending on
the environment). Moreover, the considered formalized requirement fragments are par-
titioned in two distinct sets, the formalized requirement fragments representing “as-
sumptions” on the behavior of the uncontrollable variables, and the formalized require-
ment fragments representing the “guarantee”, that must be enforced on the controlled
variables. The check consists in verifying the existence of an open system whose con-
trollable variables obey the guarantee for all possible behaviors of the uncontrollable
signals obeying the assumptions. Realizability is substantially more informative than
satisfiability, but also computationally more expensive [29]. Realizability checking is
carried out by dedicated state of the art algorithms for checking and debugging realiz-
ability [15].

Providing Diagnostic Information. The checks for logical consistency and for realiz-
ability not only produce a yes/no answer, but they can also provide the validation expert
with diagnostic information of different forms. For instance, when consistency checking
succeeds, it is possible to produce a trace witnessing the consistency, i.e. satisfying all
the constraints in the considered formalized requirement fragments. Similarly, as out-
come of the realizability check, it is possible to generate a witness of realizability, that in
this case has the form of a Finite State Machine satisfying the considered formalized re-
quirement fragments. We notice that, if the specification is inconsistent, no behavior can
be associated to the considered formalized requirement fragments; similarly, when it is
not realizable, then no Finite State Machine can be associated. In these cases, the verifi-
cation algorithms can also generate diagnostic information. For consistency check, this
has the form of a small un-satisfiable subset of the considered formalized requirement
fragment [16], while for unrealizability check, an un-realizable [15] subset is identi-
fied. This information can be given to the domain expert, to support the identification
and the fix of the flaw. The formalized requirement fragments can be traced back to the
corresponding categorized requirement fragment, and up to the original requirements
in order to remove the identified flaw.

The fact that a given formalized requirement fragments is not consistent can be
traced back to a misinterpretation in the formalization of the corresponding categorized
requirement fragments. In this case, the subset of the considered formalized require-
ment fragments produced as diagnostic information needs to be revised to remove the



ambiguity that led to the misinterpretation of the original requirements. A possible ex-
planation for the un-realizability can also be traced back to a missing assumption on the
environment. In this case, the fix consists in revising the whole set of requirements to
add the missing assumptions.

Domain Dependent Checks These checks aim at verifying that the considered set of
formalized requirement fragments really captures the design intent. In this case, the
formalized requirement fragments are validated against descriptions of desired and un-
desired behaviors identified by the domain expert. Desired behaviors are used to ensure
that the considered formalized requirement fragments are not too strict, and that they
have not been ruled out (scenario compatibility). Dually, undesired behaviours are used
to ensure that the considered formalized requirement fragments are not too weak, and
that they have indeed been ruled out (property checking).

Scenario compatibility. This check aims at verifying whether a set of conditions (also
called a scenario) is possible, given the constraints imposed by the considered formal-
ized requirement fragments. Intuitively, the check for scenario compatibility can be seen
as a form of simulation guided by a set of constraints. The behaviors used in this phase
can be partial, in order to describe a wide class of compatible behaviors.

The check for scenario compatibility can be reduced to the problem of checking the
consistency of the set of considered formalized requirement fragments with the con-
straint describing the scenario. Thus, if the scenario is compatible, we obtain a behavior
trace compatible with both the considered formalized requirement fragments and with
the constraint describing the scenarios. Otherwise, we obtain a subset of the considered
formalized requirement fragments that prevents the scenario to happen.

Property checking. This check aims at verifying whether an expected property is im-
plied by the considered formalized requirement fragments. This check is similar in
spirit to Model Checking [19], where a property is checked against a model. Here the
considered set of formalized requirement fragment plays the role of the model against
which the property must be verified. When the property is not implied by the specifi-
cation, a counterexample is produced. A counterexample is a behavior witnessing the
violation of the property, i.e. a trace that is compatible with the considered formalized
requirement fragment, but does not satisfy the property being analyzed.

Property checking can be reduced to the problem of checking the consistency of
the considered formalized requirement fragments with the negation of the property. If
this set is consistent, then a witness behavior compatible with the considered formal-
ized requirement fragment and satisfying the negation of the property is produced. This
behavior is a counterexample for the property. If such witness does not exist then the
property holds.

If the verification of the property fails, two causes are possible: the first one is that
the property is not correctly formalized; the second possibility is in a wrong formal-
ization of the informal sentences in the categorized requirement fragment that need to
be disambiguated and/or corrected. An inspection of the counterexample can be carried
out in order to discriminate among the two possibilities. If the property is wrong, then
it is corrected and the check is repeated. Otherwise, the formalized requirement frag-



ments has to be corrected, either by modifying the formalization or by adding additional
constraints, until the satisfaction of the given property is achieved.

Quality of the results of Formal Validation The previous analyses can produce di-
agnostic information in several forms (witness/counterexample behaviors). It is worth
noticing that, the fact that the formalized requirement fragment is consistent or that a
property holds can be due to some under-specification in the considered formalized re-
quirement fragment or in the property itself. Moreover, if a property fails, there can be
several reasons that can cause the failure. Thus, before starting to fix the formalized
requirement fragment it would be useful to identify all the causes of the flaw.

The first problem is tackled by performing what we called vacuity checking and
coverage checking, while the second is tackled by safety analysis.

Vacuity checking. corresponds to checking whether a given property holds vacuosly [7].
For instance, consider the property “whenever the signal A is received, a corresponding
signal B must be issued”. If the formalized requirement fragment is such that the signal
A can never be received, then the property trivially holds (the pre-condition of the im-
plication is not satisfiable), and is thus not informative. Vacuity is typically considered
to be a flaw in a specification [7] due to missing or redundant constraints.

Coverage checking. corresponds to checking which elements of the considered formal-
ized requirement fragment have been stimulated (covered) by a generated trace. This
check plays for scenario checking and consistency the role that vacuity plays for prop-
erties. Suppose the validation generates a trace such that a certain signal A is never
issued, and that the considered formalized requirement fragments (possibly together
with a property scenario) for which this trace has been generated is mandating that
“whenever a signal A is received, a corresponding signal B must be issued”. The trace
“trivially” satisfies the considered set of requirements, but it does not stimulate the con-
sequence of the mandating property (which is what the domain expert is interested to
see), thus the trace is not informative. The fact that a generated trace is not informa-
tive, is not a flaw per se, but it can indicate that for instance the assumptions on the
environment are under-specified or that the scenario is under-specified.

Formal safety analysis. It aims to identify all the causes leading to the violation of an
expected property. The domain expert can identify the variables of interest that are to
be considered causes of a specific violation, and advanced algorithms [6, 8, 9] can then
be used to gather a description of the causes, and to organize them in form of a fault
tree.

Validation Loop The above validation steps can be iterated arbitrarily, by correcting
formalized requirement fragments and/or the corresponding categorized requirement
fragments if necessary, creating new scenarios, new properties, and by analyzing dif-
ferent aspects of the requirements specification. The narrowing phase M3.2 allows the
domain experts to focus only on a subset of the formalized requirement fragments by se-
lecting specific modules and consider only some of the functions of the selected module
thus enabling for a modular validation approach. It also allows performing several kinds



of what-if analysis, in particular, it allows checking which properties and scenarios re-
main valid after adding/removing new formalized requirement fragments. Moreover, in
the narrowing phase we can ignore the requirements with low-level details and consider
the requirements at a higher level of abstraction, thus enabling for a hierarchical verifi-
cation approach. This process results in a validation loop where every check increases
the confidence of the domain expert in the correctness of the formalized requirement
fragments.

Example of validation We applied the proposed validation loop to the Elevator exam-
ple. We selected the formalized requirement fragments described in Section 4. In the
narrowing phase (M3.2) we identified the following set of objects: one Elevator, four
Floors, four Call Buttons, one Door, one Door Open Button, one Door Close Button,
and one Key.

We first checked for the consistency of the formalized requirement fragments. We
automatically translated the class diagram and the constraints into the input language of
the model checker NuSMV [14]. The tool provided us with a witness of the example’s
consistency consisting of a loop over the initial state. This trace described the case
where the elevator is initially at the fourth floor with the door open and nothing happens.

We then verified if the model is compatible with a scenario where the elevator is
initially at the first floor, there is a request to go to the third floor, and the elevator goes
to the third floor. The tool provided us a trace witnessing the compatibility with such
scenario: the produced trace is such that it loops over requesting both first and third
floor at the same time, going to the third floor and then going back to the first floor.

Finally, we verified the scenario CS.1 and the property CP.1. The formalized re-
quirement fragments results compatible also with CS.1 and produces a trace where all
buttons have a key, and only the first and the fourth become requested. This trace seems
to contradict the assumption that we have only one key, but the point is that we did
not force the buttons not to share their keys. After adding this new assumption, we get
a new trace where only the second button has a key, and all floors become requested.
Finally, the model checker proved that there are no counterexamples with length less
than 40 time steps for property CP.1.

6 Overview of the Support Tools

Our methodology is supported by a tool chain we developed on top of standard-de-facto
industrial tools.

We used IBM Rational RequisitePro (RRP), interfaced with Microsoft Word, and
IBM Rational Software Architect (RSA), to support the informal analysis phase and
the tracebility of the link between the informal requirement fragments and their formal
counterparts. We used RSA interfaced with RRP and with the validation tool to support
the formalization phase. The developed interface allows mapping the formal model into
the input language of the validation tools. Moreover, it maps back the verification results
as to use them within RSA back to RRP to correct the possible flaws identified during
the validation phase.



The validation tool has been built on top of an extended version of the state-of-
the-art NuSMV [14] verification tool. This extension provides advanced techniques to
compile LTL and PSL properties into automata [18], and advanced abstraction based
verification techniques [12], exploiting the MathSAT [10] SMT solver, to efficiently
deal with infinite-state components.

7 Discussion of the approach

We discuss how the proposed methodology addresses the challenges of requirement
validation we consider most relevant for a successful adoption of formal methods in the
design flow of complex safety-critical systems.

Choice of a formalization language.. The proposed methodology provides a fully for-
mal language. Every statement is associated with a formalized counterpart, that is given
unambiguous semantics. Nevertheless, the language can be used by the domain experts
because it exploits the usability of graphical languages such as UML and the closeness
of CNL to Natural Language. This way, we try to maximize the usability and expres-
siveness of the language. At the same time, we provide the automatic techniques for the
formal analysis.

Ambiguity of natural language.. The proposed methodology addresses the key problem
that the informal requirement fragments are ambiguous and unstructured as follows: the
informal requirement fragments are structured and categorized by means of an informal
requirement analysis; every informal requirement fragment is linked with a precise set
of elements in the formal model; this way, if the validation phase detects some bugs,
the domain expert can easily distinguish if they are due to a wrong formalization or to
the ambiguity of the informal requirement fragment.

Incompleteness of requirements validation.. New verification techniques and tools have
been developed to overcome the inadequacy of traditional tools for model checking and
design verification to validate requirements. The analysis is no longer directed on a de-
sign; rather, the properties themselves become the object of the analysis. It is possible
to check whether the specification is strict enough, by checking whether undesired be-
haviors have been indeed eliminated. Technically, this problem is reduced to checking
whether the expected property is a logical consequence of the set of requirements. Con-
versely, it is possible to check if the specification is not too strict, by checking whether
desirable behaviors have not been eliminated. This approach to requirements analysis
is described in [27] and in [23]; the RAT (Requirements Analysis Tool) has been devel-
oped [15] to this end.

Quality of the validation feedback.. The formal validation phase of our methodology
tries to maximize the information the validation tools can produce in order to help
the domain expert to correct the specification or the formalization: it produces traces
animating the requirements; it can enable the diagnosis of inconsistencies by identifying
inconsistent cores; it can identify vacuous properties and uncovered requirements; it can
enable the formal safety analysis by performing Fault-Tree Analysis (FTA) and Failure
Modes and Effects Analysis (FMEA) using emerging techniques [6, 9].



Complexity of the specification.. The proposed methodology tackles the problem of the
specification complexity by providing a mixed property/model-based approach. This
allows handling and analyze complex system of specifications: each requirement is
encoded in a distinct piece of formalism; the methodology supports incremental and
modular approaches to the validation; and, it enables for analysis at different level of
abstraction. Most importantly, the property-based approach allows verifying the speci-
fication without the need of describing the model of the implementation. The approach
is ideal for early validation when the requirements must be verified before the imple-
mentation of the system.

8 Related Work

The problem of formalizing and analyzing a requirement specification is one of the
main challenges in Requirements Engineering.

Works such as [22] and [5] aim at extracting automatically from a natural language
description a formal model to be analyzed. However, on one hand, their target formal
languages cannot express temporal constraints over object models; on the other hand,
they miss a methodology for an adequate formal analysis of the requirements. Neverthe-
less, our methodology can benefit from mature natural language processing techniques
which are able to automatically dig out the ontology of the domain.

Several formal specification languages such as Z [31], Object-Z [11], VDM [2],
B [3], and OCL [26] have been proposed for formal model-based specification. How-
ever, all of them are not adapt for the use by requirements analysts and domain experts.
They are very expressive but require a deep background in order to write a correct for-
malization, they lack of completely automatic proof support tools, and the use of these
tools requires deep knowledge of them in order to use them efficiently. Moreover, these
languages have been designed for particular applications, and their usage for different
purposes may become awkward and difficult. For instance, they are unable to express
complex temporal constraints like, e.g., fairness.

Formal Tropos (FT) [32] and KAOS [20] are goal-oriented software development
methodologies that provide a visual modelling language that can be used to define an
informal specification. The visual modeling language is supported with annotations that
characterize the valid behaviors of the model, expressed in a typed first-order linear time
temporal logic (LTL). The main differences between the proposed approach and FT and
KAOS are in the expressiveness of the formalization language: both FT and KAOS are
limited to pure LTL and they are hardly committed to the goal representation of the
requirements

In [24], a framework is proposed for the automated checking of requirement specifi-
cations expressed in Software Cost Reduction tabular notation, which aims at detecting
specification problems such as type errors, missing cases, circular definitions and non-
determinism. Although this work has many related points to our approach, the proposed
language is not adapt to formalize requirements that contain functional descriptions of
the system at high level of abstraction with temporal assumptions on the environment.



9 Conclusions

In this paper we have presented a methodology for the validation of a requirements
specification. The methodology first envisages an informal analysis of the requirements
document to categorize each requirement. In the second phase, each requirement frag-
ment is formalized according to the categorization by means of UML diagrams and the
use of a Controlled Natural Language as to facilitate the use by non experts in formal
methods. In the third phase, automatic formal analysis is carried out to identify possible
flaws in the formalized requirements. The methodology is supported by a chain of tools
built on top of standard-de-facto industrial tools (like e.g. Rational RequisitePro and
Software Architect), and on an extended version of the NuSMV model checker.

The methodology and the related tools are currently under evaluation in a real-world
project that aims at formalizing and validating the European Train Control System
(ETCS) specification. The project is in response to the European Railway Agency ten-
der ERA/2007/ERTMS/OP/01 (“Feasibility study for the formal specification of ETCS
functions”), awarded to a consortium composed by RINA SpA, Fondazione Bruno
Kessler, and Dr. Graband and Partner GmbH (see http://es.fbk.eu/events/
formal-etcs/ for further information on the project). The documents under con-
sideration contain a huge set of requirements, that are intended to guarantee the in-
teroperability between trackside railway systems and trains throughout Europe. This
consortium is currenlty applying the methodology, and carrying out a training activity
for domain experts. A detailed reporting of the results of the project is the object of
future activities.
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