Formalization and Validation of a subset of the
European Train Control System’

A. Chiappini A. Cimatti L. Macchi
European Railway Agency Fondazione Bruno Kessler Registro Italiano Navale
Valenciennes, France Trento, ltaly Genova, ltaly
angelo.chiappini@era.europa.eu cimatti@fbk.eu luca.macchi@rina.org
O. Rebollo M. Roveri, A. Susi, S. Tonetta B. Vittorini
European Railway Agency Fondazione Bruno Kessler Registro Italiano Navale
Valenciennes, France Trento, ltaly Genova, ltaly

oscar.rebollo@era.europa.eu {roveri,susi,tonettas}@fbk.eu

ABSTRACT

The European Train Control System (ETCS) is a control
system for the interoperability of the railways across Europe.

In this paper, we report on the activities of the EuRailCheck

project, promoted by the European Railway Agency, for the
development of a methodology and tools for the formaliza-
tion and validation of the ETCS specifications. Within the
project, we achieved three main results. First, we devel-
oped a methodology for the formalization and validation of
the ETCS specifications. The methodology is based on a
three-phases approach that goes from the informal analysis
of the requirements, to their formalization and validation.
Second, we developed a set of support tools, covering the
various phases of the methodology. Third, we formalized
a realistic subset of the specification in an industrial set-
ting. The results of the project were positively evaluated by
domain experts from different manufacturing and railway
companies.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications—

Methodologies

General Terms

Languages, Verification

Keywords

Requirements validation, formal methods, methodology

*The activities described in this paper have been funded
by the European Railway Agency under the project Eu-
RailCheck, service contract ERA/2007/ERTMS/02. S.
Tonetta has been supported by the Provincia Autonoma di
Trento (project ANACONDA).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE ’10, May 2-8 2010, Cape Town, South Africa

Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

berardino.vittorini@rina.org

1. INTRODUCTION

The European Train Control System (ETCS) is a project
supported by the European Union aiming at the implemen-
tation of a common train control system in all European
countries. This has been judged as a prerequisite for the un-
interrupted movement of train across the borders, being the
existing train control system in different countries totally in-
compatible. ETCS is already installed in important railway
lines in different European countries (like Spain, Italy, The
Netherlands, Switzerland) and installations are in progress
in other countries, such as Sweden, UK, France, Belgium and
also non-European railways such as China, India, Turkey,
Arabia, South Korea, Algeria and Mexico.

Since 2005, the European Commission decided to give the
European Railway Agency (ERA) the role of system au-
thority for ETCS, with the responsibility of managing the
evolution of the specifications (change control management),
ensuring their consistency, and guaranteeing the backwards
compatibility of new versions with the old ones.

In 2007, ERA issued a call to tender for the development
of a methodology complemented by a set of support tools, for
the formalization and validation of the ETCS specifications.
The activity posed many hard problems. First, the ETCS
documents are written in natural language, and may thus
contain a high degree of ambiguity. Second, the ETCS spec-
ifications are still in progress, and receive contribution by
many people with different culture and background. Third,
the ETCS comprises a huge set of documents, and comes
with severe issues of scalability.

In this paper, we report on the activities of the EuRailCheck
project, that originated from the successful response to the
call to tender by the consortium composed by “Registro Ital-
iano Navale (RINA)”, a railway certifying body, “Fondazione
Bruno Kessler - irst”, a research center, and “Dr. Graband
and Partners”, a railway consultancy company. Within the
project, we achieved three main results. First, we devel-
oped a methodology for the formalization and validation of
the ETCS specifications. The methodology is based on a
three-phases approach that goes from the informal analysis
of the requirements, to their formalization and validation.
Second, we developed a set of support tools, covering the
various phases of the methodology, based on the integration
of algorithmic formal verification techniques within tradi-
tional design tools. Third, a realistic subset of the specifi-

cation was formalized and validated applying the developed
methodology and tools.

The results of the project were then further exploited and
validated by domain experts external to the consortium.
The evaluation was carried out in form of a workshop, fol-
lowed by hands-on training courses. These events were at-
tended by experts from manufacturing and railways compa-
nies, who provided positive feedback on the applicability in
the large of the methodology.

This paper is structured as follows. In Section 2, we de-
tail the goals of the project. In Section 3, we describe the
methodology. In Section 4, we overview the support tools.
In Section 5, we report the results of the project. In Sec-
tion 6, we discuss the lessons learned in the experience. In
Section 7, we discuss some related work. In Section 8, we
draw some conclusions and outline the future work.

2. GOALS OF THE PROJECT

High-quality specifications are of paramount importance
for the development process. Flaws in the requirements can
lead to correct systems that do not do what they are sup-
posed to. In the ETCS setting, manufacturers of ETCS com-
ponents can use correct specifications to verify the compli-
ance of the system being developed, and railway companies
can use them for acceptance. The goal of the project is to
provide a methodology and tools to analyze the ETCS spec-
ifications, and to eliminate various kinds of flaws. First, the
methodology should support the identification and elimina-
tion of ambiguities, so that the requirements can be uniquely
interpreted by the system designers. This is particularly im-
portant in the case of ETCS, since the requirements are to
be applied in different cultural contexts such as the different
national railway manufacturers. Second, it should be possi-
ble to detect inconsistencies in the specifications, that may
invalidate the system verification, which is usually resource
and time consuming. Finally, although ETCS is an avail-
able standard, its specification is in continuous progress for
maintenance and evolution; thus, the methodology and tools
should support early validation of extensions, modifications
and maintenance of the current specifications.

In order to do this, we rely on formal methods, both on
formal specification, which guarantees the absence of ambi-
guity, and on formal verification, in order to automate the
analysis and the search for possible flaws. We remark that
the project poses requirements that are significantly differ-
ent from “more traditional” applications of formal methods.
Traditionally, in formal verification, the entity under anal-
ysis is a design, that is to be verified against a set of re-
quirements, assumed to be correct. Here, the purpose of the
activity is the analysis of the ETCS requirements, indepen-
dently from any system design. A standard check on formal
requirements is to verify that they are consistent, but is not
sufficient to assure that the requirements are correct, and
that they specify exactly what the experts have in mind.
Thus, the use of formal methods, traditionally oriented to
design verification, has to be re-thought before being appli-
cable.

The main issues in achieving these goals are that ETCS
is a huge complex system, with many functional modules,
which need to be clearly separated between on-board and
track-side functionalities, and is contributed by a vast set of
people. Many ambiguities come from the use of the natural
language, from corrections applied by different people, with

different cultures, of different mother tongues.

Finally, the methodology should meet some user needs
in order to facilitate the adoption of the methodology by
non experts in formal methods. In particular, the follow-
ing non-functional requirements are important to make the
methodology applicable in practice.

e The methodology should use a “light” language for the
formalization avoiding intricate formalisms.

e The methodology should hide the interaction with the
underlying verification tool.

3. METHODOLOGY OVERVIEW

In this Section we recall the main phases of our method-
ology, whose complete characterization is described in [9].

3.1 The methodology at a glance

In order to formalize the requirements, our approach ex-
ploits a subset of the Unified Modeling Language version 2 [1]
(referred as UML from now on), and on a constraint lan-
guage, based on a subset of the Property Specification Lan-
guage (PSL) [13]. The constraint language mixes Linear
Time temporal Logic (LTL) [24], regular expressions [4],
first-order logic and hybrid aspects such as constraints on
the continuous evolution of real-time and physical entities.
It combines mathematical and English expressions for a nat-
ural correspondence with the textual requirements, result-
ing into a Controlled Natural Language (CNL), although the
subset of handled English is minimal. In the following, we
will refer to the constraints and the language as the CNL
constraints and the CNL language.

Our methodology consists of the the following three main
steps (also depicted in Fig. 1):

M1 Informal analysis phase. It consists of the catego-
rization and structuring of the informal requirement
fragments described in the requirements document to
produce categorized requirement fragments.

M2 Formalization phase. The categorized requirement frag-
ments are described through the set of concepts and
diagrams in UML, and through additional constraints
in the defined CNL to produce formalized requirement
fragments.

M3 Formal validation phase. It consists of the definition
of a series of validation problems, their automatic val-
idation check, and the analysis of the results.

Each step of the methodology is supported by a specific tool.

3.2 Informal analysis phase

In the informal analysis, the set of requirements is first
categorized on the basis of their characteristics, and some
dependencies are imposed among them. In particular, we
recognize the following steps:

M1.1 Isolation and Categorization of the informal require-
ment fragments to identify a requirement fragment of
the domain requirements document and to categorize
it according to a given taxonomy.

M1.2 Creation of the dependencies among the informal re-
quirement fragments.

M1.3 Analysis of the informal requirement fragments based
on standard inspection-based requirements engineering.

Textual
Specification _
7 -
- -
s

- " Fragment
Category driven requirements (/// - Categories

—p-| fragmentation and fragments
linking ~o ‘-—_D
~
~
~
_ Categorized
_-7 Fragments

\d -7/ -
_>| Fragments formalization |‘/\ // Fragments

— _network
™. ~--

/N
/
/ Formalization

4 constructs
Requirements fragments _ _ _ _UML,CNL (UML, CNL)
validation ~~__ Model

¥ —

@ RIS/

Trace

Figure 1: The methodology and the artifacts pro-
duced in the three phases.

Examples of the requirement fragments categories consid-
ered in step M1.1 are (see [9] for additional details):

e Glossary, to identify the fragments describing terms in
the domain (e.g., the train, its position, the track);

e Architecture for the fragments describing particular
parts of the ETCS domain (e.g., on-board subsystems,
track-side subsystems);

Functional, for the fragments mandating constraints
on the authorized configurations and behaviors of the
objects of the domain (e.g., the starting of the train);

Scenario, for fragments describing an example of inter-
action among specific instances of the domain concepts
(such as, an example of exchange of messages between
two trains and one track-side radio device);

Property, for the fragments describing a property which
is expected to hold if the system fulfills the functional
requirements (e.g, two trains cannot be in the same
position at the same time).

The categories help the analyst in understanding the do-
main and are used in the next steps of the methodology to
guide the formalization of the domain by suggesting the use
of specific UML or CNL constructs. For the step M1.2 we
identified three categories of dependencies:

e given two requirements we say that A Strongly Depends
on B if A cannot exist without B;

o A Weakly Depends on B if A can exist without B but
there is a link between them;

o A is a Refinement of B if A redefines some notions of
B at a lower level of abstraction.

3.3 Formalization phase

In this phase, the categorized requirement fragments pro-
duced as artifact of the informal analysis phase are formal-
ized. The formalization phase consists of the following steps:

M2.1 Formalization of each requirement fragment by spec-
ifying the corresponding UML concepts and diagrams,
and/or the CNL constraints;

M2.2 Linking the formal elements introduced in the previ-
ous step to the tertual requirements; the link is used for
requirements traceability of the formalization against
the informal textual requirements, and to select di-
rectly from the domain requirements document a cat-
egorized requirement fragment to be validated.

In particular, in the step M2.1, we adopted classes and
class diagrams, to formalize the requirements that have been
classified as Glossary, and CNL constraints to specify re-
quirements that have been classified as Functional, Prop-
erty, and Scenario, and to impose constraints on the class
diagrams derived by the Glossary requirements. Moreover,
we exploited state machines and sequence diagrams to model
elements that in the specifications were represented by sim-
ilar artifacts. In particular, state machines were used to for-
malize requirements classified as Functional, while sequence
diagrams to represent those requirements classified as Sce-
nario that describe the interaction among a set of objects.
The selection of UML diagrams and concepts has been per-
formed on the basis of the expressive power of the UML
concepts and on the need related to the formalization of the
UML constructs in a formal language. Details on the under-
lying object model extended with temporal constraints are
given in [8].

3.3.1 UML

In our framework, a class represents a concept in the do-
main and is associated with a set of class attributes, repre-
senting the set of characteristics of the concept, and a set
of class methods, representing actions/procedures the class
can perform. Relationships among classes represent the re-
lations existing between domain concepts. In our context we
allow only for the association, aggregation and generalization
UML relationships. We use state machines to model the be-
havior of the methods of a class in the domain. We restricted
the syntax of the UML state machines, and in particular
of their states, allowing only the representation of “simple”
states, each representing a generic state of the correspond-
ing class method, initial state, to represent the entry point of
the corresponding class method, final states, each represent-
ing the termination of the corresponding class method, and
conditional states, each representing conditional branches in
the execution of the corresponding method. UML sequence
diagrams model the evolution of the specified objects as a
sequence of exchange of messages, focusing on the represen-
tation of their interactions. We use sequence diagrams to
model Scenario requirements that are requested/expected
to happen in the domain in terms of exchange of messages.
The UML notation for the sequence diagram has been re-
stricted only to messages that correspond to method calls of
the object itself or of another object. We also allow the use
of some interaction operators defined in UML that specify
particular configurations of messages, such as: negation of
messages configurations, alternative configurations, option,
parallel and loop.

3.3.2 Constraints

In order to allow the specification of constraints and tem-
poral properties of the entities in the model, we extended the
UML model with a constraint language. CNL languages are
well-defined subsets of natural language whose grammar has
been restricted in order to be automatically processable (cfr.
for instance [16]). In our choice, the language includes tem-

poral operators as in [22]. We proposed a grammar, based
on the subset of the PSL [13] that mixes LTL operators with
Regular Expressions (RELTL). This choice is motivated by
the fact that this fragment, being linear time, is suitable
to express constraints on the evolution of observable events
of the system. The language has been extended with con-
straints on the continuous evolution of real-time and physi-
cal entities [10]. The grammar has been defined to include
enough syntactic sugar to be easily accepted and then used
by non-experts in formal methods or software engineering.
We have classified the constraints we use to annotate the
UML concepts and diagrams in the following five categories:

e [nitial, defining constraints that are valid at the begin-
ning of any system behavior;

e [nvariant, defining a constraint expected to be always
valid over time;

e Behavior, defining a generic constraint formalizing Func-
tional requirements;

e Scenario, defining a generic constraint formalizing Sce-
nario requirements;

e Property, defining a generic constraint formalizing Prop-
erty requirements.

An example of such CNL constraints could be the specifi-
cation of the Property that: “two trains cannot be in the
same position on the track at the same time”, that can be
expressed as follows:

for all Train t1, t2, such that t1 != t2 then
never(t1l.position = t2.position)

where for all, such that, then and never are keywords of
the CNL grammar.

3.4 Formal validation phase

The validation of the formalized requirement fragments
alms at improving the quality of the requirements. This
goal is achieved by performing several analysis steps, based
on the use of formal techniques, which may help to pinpoint
flaws that are not trivial to detect in an informal setting.

The formal validation phase of the methodology is accom-
plished as follows:

M3.1 Check the well-formedness of the formalized require-
ment fragments. This activity aims at verifying that
the formalized requirement fragments syntactically ad-
here to the formal language syntax, and that all the
elements mentioned in them have been previously de-
fined.

M3.2 Narrowing of the formalized requirement fragments.
This phase aims at focusing the validation to a par-
ticular subset of interest of the formalized requirement
fragments (e.g. to restrict the validation to the ele-
ments of a specific module). In this phase the domain
expert defines a set of wvalidation problems consisting
of a set of objects per each class and, possibly, a set of
scenario constraints or a property to be checked.

M3.3 Formal validation of the identified formalized require-
ment fragments. The validation problems defined in
M3.2 are passed to the automatic verification engine
(see details below), and the domain expert analyzes
the results.

The validation problems defined in the phase M3.2 can be
of three types: consistency checking, scenario compatibility,
and property checking.

3.4.1 Consistency checking

The formal notion of logical consistency can be intuitively
explained as “freedom from contradictions”. It is possible
that two formalized requirement fragments mandate mutu-
ally incompatible behaviors. This check aims at formally
verifying the absence of logical contradictions in the consid-
ered formalized requirement fragments. Therefore, it does
not require any domain knowledge. Consistency checking is
carried out by checking the satisfiability of the conjunction
of the involved constraints.

3.4.2 Scenario compatibility

This check aims at verifying whether a scenario is admit-
ted given the constraints imposed by the considered formal-
ized requirement fragments. The check can be reduced to
the problem of checking the satisfiability of the conjunction
of the set of considered formalized requirement fragments
and the constraints describing the scenario. Thus, if the sce-
nario is compatible, we obtain a behavior trace compatible
with both the considered formalized requirement fragments
and with the constraint describing the scenarios. Otherwise,
we obtain a subset of the considered formalized requirement
fragments that prevents the scenario to happen.

3.4.3 Property checking

This check aims at verifying whether an expected prop-
erty is implied by the considered formalized requirement
fragments. This check is similar in spirit to Model Check-
ing [11], where a property is checked against a model. Here
the considered set of formalized requirement fragment plays
the role of the model against which the property must be
verified. When the property is not implied by the specifi-
cation, a counterexample is produced. A counterexample is
a behavior witnessing the violation of the property, i.e. a
trace that is compatible with the considered formalized re-
quirement fragment, but does not satisfy the property being
analyzed.

Property checking can be reduced to the problem of check-
ing the satisfiability of the conjunction of the considered
formalized requirement fragments with the negation of the
property. If this set is consistent, then a witness behav-
ior compatible with the considered formalized requirement
fragments and satisfying the negation of the property is pro-
duced. This behavior is a counterexample for the property.
If such witness does not exist then the property holds.

3.4.4 Problem verification

As described above, the validation problems are reduced
to a satisfiability problem for the specification language.
The satisfiability problem is solved with the following two
automatic steps:

1. the specification (including constraints and diagrams)
is translated into an symbolically represented, infinite-
state transition system;

2. the transition system is analyzed to look for an accept-
ing path by applying standard model checking tech-
niques for infinite-state systems; the path has a one-
to-one correspondence with a model for the original
specification.

3.4.5 Validation Loop

The above validation steps can find problems such as in-
consistency, incompatibility with a scenario, or failure of
a property. The results must by analyzed to discover if
the issue was due to a wrong formalization (of the require-
ments or of the scenario/property) or if it is present also
in the original informal specification. The validation steps
can be iterated arbitrarily, by correcting formalized require-
ment fragments and/or the corresponding categorized re-
quirement fragments if necessary, creating new scenarios,
new properties, and by analyzing different aspects of the
requirements specification. The narrowing phase M3.2 al-
lows the domain experts to focus only on a subset of the
formalized requirement fragments by selecting specific mod-
ules and consider only some of the functions of the selected
module thus enabling for a modular validation approach. It
also allows them to perform several kinds of what-if analy-
sis, in particular, it allows them to check which properties
and scenarios remain valid after adding/removing new for-
malized requirement fragments. Moreover, in the narrowing
phase we can ignore the requirements with low-level details
and consider the requirements at a higher level of abstrac-
tion, thus enabling for a hierarchical verification approach.
This process results in a validation loop where every check
increases the confidence of the domain expert in the correct-
ness of the formalized requirement fragments.

4. TOOL SUPPORT

Within the project, a tool supporting the methodology
has been designed and developed. Several requirements were
taken into account, such as easy of use, and openness.

The technological basis was identified in two tools pro-
vided by IBM: the RequisitePro suite was used as a front
end for the management of the ETCS informal requirements;
and, the Rational Software Architect (RSA) was used for the
management of the formalization with UML and CNL of the
ETCS requirements.

RSA was used for its openness in the manipulation of
UML specification, and its customizability thanks to the em-
bedded Eclipse platform it is built upon.

RSA was used as a gluing platform, and all the modules
were developed as plug-ins for RSA. The main functionalities
include RequisitePro custom tagging, annotation of UML
diagrams with CNL (syntax checking, completion), support
for the instantiation to finite domains, control of the valida-
tion procedure. Moreover, we also developed, relying on the
API provided by RequisitePro and on the Eclipse platform,
the traceability links among the informal requirements clas-
sified in RequisitePro and their formal counterpart in UML
and CNL inside RSA.

The verification back-end is based on an extended version
of the NuSMV [7] model checker, able to deal with contin-
uous variables, and to analyze temporally complex expres-
sions in RELTL [13, 8, 10].

S. THE METHODOLOGY IN PRACTICE

This section reports the three phases of the validation
and use of the methodology. A first phase has been car-
ried on to refine the proposed methodology concepts and
process and to validate them internally to the consortium.
A second phase has been the use of the methodology and
the support tool by the certification body to formalize and

validate a large set of requirements from the ETCS speci-
fications. A third phase has been that of training experts
from other European railway organizations and companies
to the exploitation of the methodology.

5.1 Internal validation

An internal validation of the methodology has been car-
ried out within the project.

The validation relied on the complementarity of the con-
sortium. The choices proposed by the methodology experts
have been analyzed by the railway experts. The methodol-
ogy has thus been iteratively refined, polishing the concepts
and process. This was achieved by formalizing and vali-
dating an increasing number of relevant requirement frag-
ments, explicitly selected in order to assess ease of modeling
and scalability of the methodology. We considered several
parts of the ETCS specifications in order to exercise all the
constructs defined in the methodology. We categorized and
formalized a set of 90 requirements. The number of artifacts
produced out of this effort has been around 150 classes and
350 different CNL constraints.

The model that has been produced and refined during
the first three months of the project, allowed to refine the
methodology concepts and process, while, after the third
month the size of the model has been increased in order to
verify the methodology and tool scalability.

5.2 Validation in an industrial setting

5.2.1 Reference ETCS subset

The methodology has been used to formalize and validate
large pieces of the System Requirements Specification, sub-
set 26 of the ETCS specifications [2]. This activity has been
carried out by project partners working in notified bodies
of the railway sector, experts in the domain of ETCS. The
purpose was also to test the feasibility of the formalization
of the whole specification. Thus, a representative set of re-
quirements has been identified. In particular, the parts of
the ETCS specifications analyzed by the study are described
in the following.

e Data exchange between On-Board Subsystem (OBSS)
and Trackside Subsystem (T'SS). It has been modeled
using a generic channel, with a buffer to contain the
messages and a messages management strategy (e.g.
FIFO), that can be specialized in each of the commu-
nication channels foreseen in the ETCS specifications
(e.g. EuroBalise channel or Euroradio Channel).

e Balise linking information. The linking mechanism has
been introduced as an interesting case study of the in-
teraction between OBSS and TSS that can bring, when
a fault occurs, to a OBSS reaction (e.g. emergency
brake).

o Movement Authority Management. The movement au-
thority is the authorization to move given by the TSS
to the OBSS on the basis of the information exchanged.

e RBC/RBC Handover. The handover between two RBCs
(Radio Block Centre), which means the sharing of the
Movement Authority supervision and then its transfer
from one controller (RBC1, which supervises the area

Radio Block

Center
)f‘ = => Authorization to move
On Board Subsystem / Train N
S5 35
R N o o o o o o o o o o
| |
Section 1 Section ' End Section Section

Movement Authority

End Of Authority

Figure 2: A scenario with some of the relevant concepts described in the ETCS specifications.

the train is leaving) to another one (RBC2, which man-
ages an adjacent area to the one of RBC1, in which the
train is entering).

A sketch of the scenario is illustrated in Figure 2.

5.2.2 Results

We have been considering 79 requirements in the whole
activity. During the informal analysis phase, 83 require-
ment fragments have been identified, of which 34 were cat-
egorized as Glossary, 30 as Behavioral, 11 as Architecture,
5 as Scenarios and 3 were annotations. For example, the
requirement 3.8.1.1 lists the elements that compose a Move-
ment Authority (MA) starting from the End of Authority.
In particular, the requirement 3.8.1.1.a says

3.8.1.1.a: “The End Of Authority (EOA) is the
location to which the train is authorized to move.”

We split it into the two requirement fragments

3.8.1.1.a_EoA: “The End Of Authority (EOA) is
the location”

3.8.1.1.a_authorized: “to which the train is au-
thorized to move.”

Both have been categorized as Glossary. A Strong depen-
dency link has been added to relate 3.8.1.1.a_authorized to
3.8.1.1.a_Eo0A, and another one to relate 3.8.1.1.a_EoA to
the requirement fragment defining the MA.

Totally, the formalization produced 113 classes, 3 state
machines, 43 CNL constraints, of which 24 of type Invariant
and 19 of type Behavior. For example the requirement frag-
ment 3.8.1.1.a_FoA has been formalized by adding the at-
tribute “eca” of type Real to the class “Movement_Authority”
(that was already present in the model, see Figure 3).

The requirement fragment 3.8.1.1.a_authorized, instead,
has been formalized with a invariant CNL constraint at-
tached to the class “Movement_Authority” stating

on_board_ss.location > eoa implies not
on_board_ss.authorized_to_move

where “on_board_ss” is the role of an association linking
the classes “Movement_Authority” and “On_Board_SS”, while
“location” and “authorized_to_move” are two attributes of the
class “On_Board_SS”, respectively of type Real and Boolean.

5.2.3 Model validation results

In the validation, we concentrated on the requirements
that describe the Movement Authority Management, and we
selected the corresponding formalized fragments. We suc-
cessfully checked the consistency and different scenarios of

= Movement_authority

Egena ; Real
£ end_section : Section
£ LRBG_coardinate_systern : Integer

1 | -movement_autharity

1 -on_hoard_ss
= On_Board_ss

[autharized_to_move: Bodlean

[Eg min_safe_front_end_location ; Integer

5@ max_safe_front_end_location : Integer

g message | Message

[infarmation : Integer

[location © Real

[direction ; Direction

[Eg ma_request_repetition_time : Intager

5@ ma_request_elapsed_time : Continuous

[teceived_ma : Boolean

5@ Ma_request_time_out_expired : Bodean

[Eg ma_reguest_parameters : MA_Request_Parameters
[Eg ma_reguest_repetition_count ; Integer

g level : Integer

[linking_infarmation_used : Bodlean

[Eg bg_accepted : Bodlean

[Eg antenna_offset : Integer

g sl Real

[repasitioning_information_evaluated : Boolean

Figure 3: Excerpt from class diagram.

increasing complexity. The scenarios first forced a train to
move from a starting location for 50 kilometers. Then, we
forced the train to pass over a set of specified balises. As
responses to these scenarios we obtained traces describing
not admissible behaviors in real settings; for example, given
the specifications, a balise can move along the track, or a
balise can transmit also to trains that are not passing over
it. In all the runs, we obtained several traces, whose length
has a maximum of 18 passes, and containing a maximum
of 454 variable assignments. On the bases of these output,
we added several constraints to strengthen the assumptions
of the scenario in order to obtain the expected trace: for
example, we forced the balises not to move, we constrained
the balises to send messages when the train was passing
over, or the train to proceed always forward. Such addi-
tional constraints and modelling elements can be exploited
by the expert during the refinement and/or modification of
the ETCS requirements specifications.

5.2.4 Feedback

Based on the application of the methodology, the domain
experts identified the following main advantages.

Traceability. The application of the methodology yields a
high degree of traceability between the various parts of the

specification, the different parts of the formal model and
verification artifacts. Thus, all the validation results can be
directly related to the set of requirements under analysis.

Incremental approach. The overall ETCS model is started
up from the most general definition of the System Architec-
ture. Some components have been only modeled at their
highest level of abstraction while others, more fitted to the
topic the scenario referred to, have been worked out more
and more deeply as long as new sentences and definitions
were elaborated. This opens up the possibility to parallelize
the modeling activity, and thus to enhance scalability.

Validation effectiveness the formalization and analysis of
the specifications allowed for an early discovery of lacks of
definitions and minor inconsistencies that could lead to mis-
understanding. This information can contribute, in conjunc-
tion to the traceability features, to revisions of further ver-
sions of the specifications.

5.3 Training other industrial users

After the project, the results were presented for validation
to domain experts, in the form of a workshop and training
sessions, attended by national railway companies and in-
dustrial experts. In the following we briefly describe these
experiences and the qualitative and quantitative feedback
obtained by the experts.

5.3.1 The workshop

The first stage of the training to industrial users was
a two-day workshop (http://es.fbk.eu/events/formal-
etcs/), where ERA invited potential users coming from dif-
ferent railway organizations including International Union
of Railways (UIC), Deutsche Bahn, Rete Ferroviaria Ital-
iana (RFI), Gestionnaire des infrastructure Ferroviaires
(RFF), Ansaldo, Alstom, CEDEX, German Aerospace Cen-
ter (DLR). The discussion was open and we received a gen-
eral positive feedback on the work done in the project. Par-
ticular emphasis was shown on the new aspects of the formal
verification techniques that target the requirements rather
than the design of the system. We also received constructive
suggestions such as, e.g., to limit the formal language to a
core removing the diversity of some UML constructs.

5.3.2 Training setting

The second stage were training courses organized in form
of three different sessions of one week. The courses were at-
tended by 22 railway experts. The attendees were employes
of national railways-related administrations and railways in-
dustries from eight different European countries: Spain,
France, Germany, Belgium, Czech Republic, Switzerland,
Netherlands, and Italy. Their background was mainly re-
lated to the definition and management of railway signal-
ing systems. Some of the experts are directly involved in
the definition and maintenance of the ETCS specifications.
Only few of them have been previously exposed to the use
of formal methods and model checking techniques during
their activities of verification of railways requirements spec-
ifications. The program of each course included two days of
theoretical lectures, with exercises related to a small num-
ber of requirements extracted from the ETCS specifications,
followed by three days of hands-on training exploiting the
methodology with the supporting tool to formalize and vali-
date 18 ETCS requirements extracted from one of the ETCS
documents sections. The experts worked in team of two per-

Questions

Q1 | Effectiveness of the informal analysis of the specifica-
tion (and supporting tool)

Q2 | Effectiveness of the formalization phase of the specifica-
tion (and supporting tool)

Q3 | Effectiveness and the wsability of formal wvalidation
phase of the previously defined model (and supporting
tool)

Q4 | Effectiveness of the overall proposed methodology

Q5 | Effectiveness of the tool in the overall modeling process
Q6 Usability of the tools
Q7 | Clarity of the output traces produced by the tool

Table 1: Questions proposed to the training experts.

sons each in order to stimulate the internal discussions. The
work on the requirements went through the whole method-

ology.

5.3.3 Training operative results

During the categorization phase the experts extracted an
average of 28 requirement fragments (mainly related to Glos-
sary and Behavioral requirements due to the nature of the
selected fragments).

The formalization phase led to the specification of several
class diagrams all related to the same model that on average
contained 16 classes. State machines have been specified to
describe the behavioral requirements. In the same phase
each team specified about 12 CNL constraints to translate
behavioral fragments, to impose constraints on the classes
and relationships of the model, and to refine the definition
of the Glossary requirements. The validation phase allowed
the teams to reason about the traces produced by the tool,
and to discuss several possible refinements and modifications
to the piece of specifications analyzed.

5.3.4 Feedback and discussion

At the end of the course we collected the feedback, both
quantitative and qualitative. A questionnaire was filled in
by 18 participants anonymously.

The questions, in Table 1, focused on the methodology and
the supporting tool and in particular on their effectiveness
(questions Q1-Q5), usability (Q6) and clarity (Q7). Each
question was rated in a standard scale, with 5 grades (1:
“very poor”; 2: “poor”; 3: “sufficient”; 4: “good”; 5: “very
good”; 0: “unsure”). In all the questions, the “good” answer
is prevalent, and it is also the median value (see Figure 4).
The standard deviation goes from 1.14 for Q4, for which the
mean is 3.61 and the mode is 5, to 0.607 for Q2, for which
the mean is 3.88 and the mode is 4.

Focusing on the analysis of critical values, some experts
gave a poor judgment to the overall methodology (Q4), but
a positive judgment to all three phases of the methodology
(Q1-3). This incoherence could come from the different ways
of perceiving and adopting the ETCS specifications and vali-
dation in the different organizations. This has been reflected
in doubts related to the need of their methodological vali-
dation proposed here. Moreover, many of the experts are
used to adopt model based techniques in their daily activity
of validation, verification and application of systems speci-
fications. A property based approach, like the one proposed
here, determines an heavy shift of paradigm that needs more
time to be completely accepted.

Comments have also been requested to the user in sup-

Methodology and tool evaluation

effectiveness (Q1-Q5), usabilty (Q6), clearness (Q7)

T T T T T T T
Q1 Q2 Q3 Q4 Q5 Q6 Q7

Figure 4: Boxplots of the results of the evaluation
questionnaire: methodology and tool effectiveness
(Q1-Q5), tool usabilty (Q6), methodology output
clarity (Q7). The scale is: 1 “very poor”; 2 “poor”;
3 “sufficient”; 4 “good”; 5 “very good”; 0 “unsure”.

port of the quantitative judgment; both positive and neg-
ative important issues emerged. Some experts judged the
methodology to be a good candidate also in the phase of
the requirements specifications, but also pointed out that
applying the methodology to real-world specifications may
be complex and time consuming. Finally, an issue emerged
from one of the experts with respect to the criticality, in
a real project, of having a design validation more than a
specifications validation, as in our case. Perhaps, as claimed
by another expert, both these validation phases are needed
together with a clear traceability between them.

In our experience we identified some threats to consider
in future structured empirical studies [28]. Threats concern
the relationship between theory and observation (construct
validity). Usability, clarity and effectiveness are subjective
measures; a means to objectively weight them has been that
of evaluating the number of requirements the experts effec-
tively formalized and validated during the three days. Other
threats concern the generalization of the findings (external
Validity). Since the selected subjects represent a popula-
tion with good knowledge on requirements specifications and
strong industrial experience, and the requirements we ex-
ploited are real world artifacts, we expect similar results for
other industrial experts. Only further studies with different
types of domains, higher number of requirements and sub-
jects can confirm the results. However, the small number of
requirements in the training session (18), has its counterpart
in the industrial experience of formalization and validation
we described in Section 5.2 where a higher number of re-
quirements have been managed.

6. LESSONS LEARNED

On the bases of the three different exploitation experi-
ences, we discuss some interesting positive and negative
emerged lessons, which should be considered in the next
releases of the methodology and supporting tool and in the
exploitation of the methodology in other industrial settings.

6.1 Use of the methodology
6.1.1 Advantages

The domain experts identified in the industrial exploita-
tion, as well as in the training courses, the following main
advantages: traceability from the informal requirements to
the formalized requirements to the trace that exercised those
requirements, possibility to apply an incremental approach
to the model building, and early detection of lacks and con-
tradictions in the requirements. Based on these observa-
tions, it seems that the property-based approach used in the
methodology and in the verification engine, which encodes
each requirements fragments in a distinct piece of formalism,
is able to support the incremental and modular approaches
to the formalization and enabled for reasoning at different
level of abstraction in the specification.

From the methodology exploitation perspective, the main
interesting point has been the good acceptance of the
methodology by experts in signalling systems with few
knowledge about formal methods. Another interesting ob-
servation raises from the different expertises in the team
both during the industrial exploitation and during the train-
ing. The team members can be divided in three categories:
the requirements definition experts, in particular the group
of experts who defined the ETCS specifications; the analy-
sis and validation experts, from industry and institutional
organization; and the certification experts, from the certi-
fied body. All these three categories found the methodology
useful from their own perspective.

6.1.2 Disadvantages

During the application of the methodology all the experts
highlighted the need of more structured guidelines during
all the phases. The experts identified the fragmentation and
categorization of the requirements phase of the methodol-
ogy as the one where the need of more structured guidelines
would be more important than the other phases because of
the possible implications in the effectiveness of the method-
ology. Some of the experts asked for a more detailed set of
indications related to the use of natural language syntactic
categories, such as names or verbs, as indicators of the dif-
ferent classification categories the requirements belongs to.
In our application experience our policy has been to initially
leave free the experts in choosing their own way of catego-
rizing the requirements, and then to gather feedback from
this initial work to specify precise guidelines if needed.

6.2 Proposed specification language

6.2.1 Advantages

As a general observation, the methodology addresses the
key problem of the interaction between natural and formal
languages. The natural language cannot be substituted in
the description of the ETCS, but it is possible to struc-
ture and annotate it by means of the Rational RequisitePro
tool. The formal languages are made more accessible for the
domain expert with the use of UML diagrams; the restric-
tions imposed on the UML diagrams guarantee the formality
of the approach. The experts seem to have addressed this
point with few problems and in particular during the train-
ing courses they seem to have quickly acquired the expertise,
having the possibility to specify also complex constraints in
CNL after the two days learning phase. Another interesting

point in this line has been that the formalization task has
been useful to reason on the exact semantics of each ETCS
requirement since users had to pass from a rich but ambigu-
ous language (natural language) to a (formal) limited one.
This has been recognized by the experts as a result per se.

6.2.2 Disadvantages

The mixing of visual and textual paradigms for the specifi-
cation of the domain concepts and of the constraints respec-
tively, in the initial phases of the working sessions resulted
in some doubts. This effect decreased in the following ses-
sions. In any case we observed that it is useful to provide
the analysts with the possibility to specifying entities in al-
ternative ways, e.g., allowing them to specify the ontological
part of the domain specification not only via class diagrams
but also exploiting textual specifications in a form similar
to the CNL.

As for the expressive power of the language, there may be
some aspects of requirements different from the considered
ones, which cannot be represented in the proposed language;
for example, probabilistic aspects or deontic modalities that
can be found in the case of privacy, security or legal require-
ments. This fact can lead to the extension of the formalism
with logic construct for example from modal logics.

Anyway, although from an expressive point of view the
language considered so far is quite powerful, a better level of
usability could lead to extend the set of the logic constructs
we exploited in the project to better formalize certain as-
pects such as knowledge representation.

6.3 Validation process

6.3.1 Advantages

The full automation of the validation checks has been ap-
preciated by the people who used the tool and that had
previous experience with formal methods. The generated
traces have been found particularly useful to understand the
informal and formal specifications. The time required by the
verification engine to check the validation problems was not
an issue, also because the size of the problems created during
the training courses was not excessive.

6.3.2 Disadvantages

Two main aspects of the interaction with the underlying
verification engine emerged to be possible issues for the us-
ability of the tool.

A first issue is the knowledge that the user needs in or-
der to understand the traces generated by the underlying
verification engine. In the nominal case, the traces are in-
tuitive and easy to understand, but when unexpected traces
are generated it may be difficult to understand why the un-
derlying verification engine produces them.

Second, the underlying verification engine showed to be
particularly effective in picking the models that the user did
not expect. This is particularly effective to disprove some
properties, but it may result in a long process of refine-
ment of the assumptions and/or of the properties to check if
desired behaviors were indeed compatible with the require-
ments.

7. RELATED WORK

The problem of formalizing and analyzing a requirement
specification is one of the main challenges in requirements

engineering. Many methodologies have been proposed to
solve different aspects, which are related to the management,
the elicitation, the representation, the analysis, and the val-
idation of the requirements. The works that encompass for-
mal methods for requirement engineering can be divided into
two categories: on one hand, there are many research papers
which propose expressive formal languages to represent the
requirements written in natural language, but they usually
lack of techniques to analyze the produced formal artifacts;
on the other hand, there are papers with languages, method-
ologies and tool to elicit, represent, and analyze the require-
ments also with formal techniques, but they do not focus
on the formalization of requirements written in natural lan-
guage, and thus they do not fill the gap between existing
documents and the new produced requirements.

In the first category, we can list works such as [14] and [5],
which aim at extracting automatically from a natural lan-
guage description a formal model to be analyzed. However,
on one hand, their target formal languages cannot express
temporal constraints over object models; on the other hand,
they miss a methodology for an adequate formal analysis of
the requirements. Other works such as [17, 6] provided ex-
pressive formal languages to represent the requirements. Al-
though, the proposed languages have some similarities with
ours such as the adoption of first-order temporal logic, they
do not allow specification of hybrid aspects which are nec-
essary for safety-critical applications. Also these works miss
a methodology for the analysis of the formal requirements
and the verification algorithms are perform either with in-
teractive theorem proving or with model checking restricted
to propositional sub-cases.

In the second category, we can list the framework of Heit-
meyer [19], which proposes to express the requirements in
the Software Cost Reduction tabular notation. This aims at
detecting specification problems such as type errors, missing
cases, circular definitions and non-determinism. Although
this work has many related points to our approach, the pro-
posed language is not suitable to formalize functional re-
quirements which describe relational constraints of the sys-
tem at high level of abstraction, with temporal assumptions
on the environment. Tropos [26] and KAOS [12, 27] are
goal-oriented software development methodologies that pro-
vide a visual modeling language that can be used to define
an informal specification. The visual modeling language is
supported with annotations that characterize the valid be-
haviors of the model, expressed in a first-order temporal
logic. Also for these specification languages, the expressive
power is not sufficient because they are restricted to finite
domains.

Several other formal specification languages such as Ab-
stract State Machines [18], Z [25], B [3], Alloy [20], and
OCL [23] have been proposed for formal model-based speci-
fication. Similarly, the requirement engineering phase of the
DENTUM project [15] proposes to formalize the require-
ments with some variants of state machine. These model-
based approaches are not suitable to formalize functional
requirements which constrain the temporal evolution of the
system (e.g., fairness) and assumptions on the physical en-
vironment. Indeed, we claim that such requirements found
a more natural and traceable formalization with a temporal
logic.

A different approach is proposed in [21], within the
VeriSoft XT project, which validates the requirements

against the design under verification. This approach may
lead to a vacuous validation of the requirements, if the de-
sign is not correct. Our techniques aim at validating the
requirements before the design is created.

8. CONCLUSIONS AND FUTURE WORK

In this paper we described the EuRailCheck project,
where we developed an end-to-end methodology for the anal-
ysis of requirements. The property-based approach guaran-
tees traceability, by allowing for a direct correspondence be-
tween the components of the informal specification and their
formalized counterparts. The methodology is supported by
tools that integrate, within a commercial environment for
traditional requirements management and model-based de-
sign, advanced techniques for formal validation. The vali-
dation techniques allow the user to check consistency, en-
tailment of required properties, and possibility of desirable
scenarios.

Within the project, we formalized a realistic subset of the
specification. The results were positively evaluated by do-
main experts and potential end users external to the con-
sortium.

In the future, we will pursue the following lines of activity.
First, we will investigate the application of automated tech-
niques for Natural Language Processing (e.g. automated tag
extraction, discourse representation theory), in order to in-
crease the automation of the first phase of the methodology.
Second, we will explore extensions to the expressiveness of
the formalism, the relative scalability issues of the verifica-
tion tools, and optimization such as the ones described in [8,
10].

9. REFERENCES

[1] UML Version 2.1.2. http://www.ong.org/spec/UML/2.1.2/.

[2] System Requirements Specification - ETCS Subset 026
v230, 2006.

[3] J.-R. Abrial. The B-book: assigning programs to
meanings. Cambridge University Press, 1996.

[4] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers -
Principles, techniques and tools. A.-W., 1986.

[6] V. Ambriola and V. Gervasi. On the Systematic
Analysis of Natural Language Requirements with
CIRCE. Autom. Softw. Eng., 13(1):107-167, 2006.

[6] P. D. Bois, E. Dubois, and J.-M. Zeippen. On the Use
of a Formal R. E. Language - The Generalized
Railroad Crossing Problem. In RE, pages 128—, 1997.

[7] A. Cimatti, E. M. Clarke, F. Giunchiglia, and
M. Roveri. NuSMV: A new symbolic model checker.
STTT, 2(4):410-425, 2000.

[8] A. Cimatti, M. Roveri, A. Susi, and S. Tonetta.
Formalizing requirements with object models and
temporal constraints. Journal of Software and Systems
Modeling (SoSyM). DOI 10.1007/s10270-009-0130-7.

[9] A. Cimatti, M. Roveri, A. Susi, and S. Tonetta. From
Informal Requirements to Property-Driven Formal
Validation. In FMICS 2008, volume 5596 of LNCS.
Springer, 2008.

[10] A. Cimatti, M. Roveri, and S. Tonetta. Requirements
Validation for Hybrid Systems. In CAV 2009, volume
5643 of LNCS, pages 188-203. Springer, 2009.

[11] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 1999.

[12] R. Darimont, E. Delor, P. Massonet, and A. van
Lamsweerde. GRAIL/KAOS: an environment for
goal-driven requirements engineering. In ICSE’97,
pages 612-613. ACM, 1997.

[13] C. Eisner and D. Fisman. A Practical Introduction to
PSL. Springer-Verlag, 2006.

[14] A. Fantechi, S. Gnesi, G. Ristori, M. Carenini,

M. Vanocchi, and P. Moreschini. Assisting
Requirement Formalization by Means of Natural
Language Translation. Formal Methods in System
Design, 4(3):243-263, 1994.

[15] M. Feilkas, A. Fleischmann, F. Holzl, C. Pfaller,

K. Scheidemann, M. Spichkova, and D. Trachtenherz.
A Top-Down Methodology for the Development of
Automotive Software. Technical report, Technische
Universitat Miinchen, 2009.

[16] N. Fuchs, U. Schwertel, and R. Schwitter. Attempto
Controlled English - Not Just Another Logic
Specification Language. In LOPSTR, number 1559 in
LNCS. Springer, 1999.

[17] C. Ghezzi, D. Mandrioli, and A. Morzenti. Trio: A
logic language for executable specifications of
real-time systems. Journal of Systems and Software,
12(2):107-123, 1990.

[18] Y. Gurevich. Evolving Algebras 1993: Lipari Guide,
1995.

[19] C. Heitmeyer. Formal Methods for Specifying,
Validating, and Verifying Requirements. J. UCS,
13(5):607-618, 2007.

[20] D. Jackson. Alloy: a lightweight object modelling
notation. ACM Trans. Softw. Eng. Methodol.,
11(2):256-290, 2002.

[21] U. Kiihne, D. Grofe, and R. Drechsler. Property
analysis and design understanding. In DATE, pages
1246-1249, 2009.

[22] R. Nelken and N. Francez. Automatic Translation of
Natural Language System Specifications. In CAV
1996, volume 1102 of LNCS, pages 360-371, 1996.

[23] OMG. Object Constraint Language: OMG available
specification Version 2.0, 2006.

[24] A. Pnueli. The temporal logic of programs. In FOCS,
pages 4657, 1977.

[25] J. M. Spivey. The Z Notation: a reference manual,
2nd edition. Prentice Hall, 1992.

[26] A. Susi, A. Perini, P. Giorgini, and J. Mylopoulos.
The Tropos Metamodel and its Use. Informatica,
29(4):401-408, 2005.

[27] A. van Lamsweerde. Requirements Engineering: From
System Goals to UML Models to Software
Specifications. Wiley, 2009.

[28] C. Wohlin, P. Runeson, M. Host, M. Ohlsson,

B. Regnell, and A. Wesslén. Ezxperimentation in
Software Engineering - An Introduction. Kluwer
Academic Publishers, 2000.

