
Object models with temporal constraints

Alessandro Cimatti

cimatti@fbk.eu

Marco Roveri

roveri@fbk.eu

Angelo Susi

susi@fbk.eu

Stefano Tonetta ∗

tonettas@fbk.eu

Fondazione Bruno Kessler - IRST

Via Sommarive 18, 38050 Povo (TN) Italy

Abstract

Flaws in requirements often have a negative impact on

the subsequent development phases. In this paper, we pro-

pose a novel formalism for the formal representation and

validation of requirements. The formalism allows us to rep-

resent and reason about object models and their temporal

evolution. The key ingredients are class diagrams to rep-

resent the objects in the scenarios, fragments of first order

logic to deal with the relationships between their attributes

and with rich data, and elements of temporal logic oper-

ators to deal with the dynamic evolution of the scenario.

Formal validation is carried out by means of satisfiability

checking, for which we propose a novel procedure based on

the reduction to checking the language non-emptiness of a

Fair Transition System.

1. Introduction

A majority of the problems encountered in advanced de-

velopment phases are caused by flaws in the requirements.

For this reason, the development of techniques and tools for

the formal analysis of requirements is an important goal for

safety-critical applications and/or software.

A key factor is clearly the choice of the formal language

used to formalize the requirements. This choice is always

argument of debates and implies trade-offs between expres-

siveness, decidability and complexity. The difficulties lie

in the fact that the requirements for such applications often

involve several dimensions: on the one side, the ability to

express the relationships among the objects having an active

role in the target application, involving rich data types; on

another side, static constraints over their attributes must be

combined with constraints on their temporal evolution.

In this paper, we address this problem by making two

contributions. First, we propose a novel framework where

∗Supported by the Provincia Autonoma di Trento (project ANA-

CONDA).

elements from several formalisms are combined, in order

to enable for a natural specification. Second, we propose

an automatic procedure for satisfiability, leveraging recent

advances in verification.

We characterize the objects and their attributes using

class diagrams, that induce the signature of our logic. The

logic allows for quantifiers over objects and first-order state

formulas. Temporal constraints are expressed by means of

temporal operators, resulting in a fragment of first order

temporal logic [22, 23]. This logic can also be seen as a

“standard” temporal logic whose atoms are constraints in a

first-order theory. We formally define the syntax and the

semantics of the language. We see this combination as im-

proving over known formalisms in several ways. With re-

spect to OCL [25] and Alloy [19], we provide the ability to

express temporal constraints in an adequate manner, while

compared to propositional temporal logic [15] we provide

the ability to deal with richer data and objects.

In terms of verification, we provide a satisfiability pro-

cedure, which is a major building block for requirements

validation, based on the following steps. First, we create an

equi-satisfiable formula φ′ whose variables range over finite
domains; second, we create a fair transition system whose

accepted language is non-empty iff φ′ is satisfiable; finally,
we check for the language accepted by the fair transition be-

ing non-empty. Well-known decision procedures [24, 5, 27]

for equalities and uninterpreted functions can be used to au-

tomatize the finite instantiation of objects. Emerging sym-

bolic model checking techniques, based on the use of SMT

solvers and abstraction [20, 6], can be used to efficiently

check for the non-emptiness of the language of the fair tran-

sition system.

The paper is structured as follows. In Section 2 we

present a motivating scenario. In Section 3 we formalize

the notion of class diagrams, and in Section 4 we define

static constraints over them. In Section 5 we introduce tem-

poral constraints. In Section 6 we present our approach to

satisfiability. In Section 7 we compare our approach with

the state of the art, and in Section 8 we draw conclusions

and discuss directions for future work.

2. Running example: informal description

Let us consider a simple railway system describing the

interoperability between trains and track-side. Each track

consists of a sequence of sections. Every section is delim-

ited by an initial and a final position. At any time, on each

track, a number of trains are running. Each train has a posi-

tion, a current section and aMovement Authority (MA) con-

sisting of a first and an end section, that delimit the part of

the track where the train can move. All positions are given

with regard to the start of the track. The track has also a

final position, called destination.

Within this context, we consider the following require-

ments:

R#1 Every point of the track is covered by some section.

R#2 The position of a train is always within the current sec-

tion.

R#3 The MAs of two trains on a track do not overlap.

R#4 Every train must not go beyond the end section of its

MA.

R#5 A train enters the track from the start of the track.

R#6 A train exits the track only if it reaches the destination

of the track.

R#7 If not all trains are blocked forever, then eventually

some trains will reach the end of the current section.

The following is an expected invariant of the system:

P#1 Two trains are never in the same position.

The following is an expected liveness property:

P#2 If not all trains are blocked forever, then eventually

some trains will reach the destination of the track.

3. Class Diagrams

Our work considers as fundamental modelling concepts

classes of objects. We use the notation of UML2 class dia-

grams1. In particular, we focus on the concepts of classes,

primitive types and attributes of the classes. Attributes have

a type and a multiplicity. If the multiplicity is different from

1..1, the attributes are collections of elements. The multi-

plicity defines the range of the size of such collections.

Definition 1 A class diagram consists of:

Primitive Types A finite set of primitive types PT =
{τ1, . . . , τh}.

Classes A finite set of classes C = {c1, . . . , cn}.

1A description of the concepts can be found in the OMG UML2 meta-

model specification documents [1].

Attributes For each class c ∈ C, a finite set of attributes

c.A = {c.a1, . . . , c.am}. Every attribute c.a has

• a type c.a.Type ∈ C ∪ PT;

• a multiplicity c.a.Mult that defines a bounded in-

teger range n..m, with 0 ≤ n ≤ m; we write

min(c.a.Mult) for n, and max(c.a.Mult) form.

In the following, we assume a class diagramD is given.

For the sake of simplicity, we limit the description to a core

subset of class diagrams. However, our techniques can be

straightforwardly applied to encompass other elements (e.g.

associations, aggregations, inheritance). We also assume

that the attributes are sequences of elements, but we can

handle similarly the other UML collection types such as sets

and bags. Themain restriction, from the point of view of ex-

pressiveness, comes from requiring that multiplicity on the

attributes is bounded. This restriction is essential, because

it allows us to deal with guarded quantifications. On the

other hand, this limitation appears to be acceptable in many

practical cases. Note that this does not mean we assume a

restricted number of objects: in our running example, only

a bounded number of trains are allowed to run on a track

at a time, but infinitely many different trains may pass over

the track.

3.1 Running example

The class diagram of Figure 1 defines the ontology of our

case study. Four concepts are represented via classes: the

Track, the Train, the Movement Authority (MA) and the

Section.

Figure 1. A class diagram

We consider the primitive type Real. The classes have

their properties described via attributes. In the class Train,

the attribute position has type Real, while the attribute ma,

representing the assigned movement authority (for a given

Train), has type MA. In the class Track, the attributes trains

and sections are associated with multiplicities [0 . . .MAX]
and [1 . . .MAX], respectively.

4. Static constraints

4.1 Syntax

Given a class diagram D, we define a language of static

constraints on D. We assume to have an underlying first-

order signature Σ. The symbols in Σ can express relations

over the domains of the types in PT. For example, Σ can

contain constants and functions over Booleans, Reals and

Integers. Finally, we assume a given set of variables Vτ for

each type τ ∈ C ∪ PT. The language LD is defined as

follows:

Definition 2 (LD Terms)

Variables Any variable v ∈ Vτ is a term of type τ .

Constants Any constant in Σ of type τ is a term of type τ .

Functions If t1, . . . , tn are terms of type τ1, . . . , τn resp.,

and f is a function symbol in Σ of type τ1 → . . . →
τn → τ , then f(t1, . . . , tn) is a term of type τ .

Simple Attributes For any term t of class type c ∈ C, for
any attribute a ∈ c.A, if c.a.Type = τ and c.a.Mult =
1..1, then t.a is a term of type τ .

Multiple Attributes For any term t of class type c ∈ C,
for any attribute a ∈ c.A, if c.a.Type = τ and

c.a.Mult = n..m with n..m 6= 1..1, then t.a is a term

of type COLLτ and t.a.size is a term of type n..m.

The distinction between simple and multiple attributes

respects the UML standard [1]. For example, if v is a vari-

able of class c and a is an Integer attribute in c.A, then if

a.Mult = 1..1 then v.a is an Integer, otherwise v.a is a col-

lection of Integers.

Definition 3 (LD Formulas)

Relations If t1, . . . , tn are terms of type τ1, . . . , τn and

R is an n-ary relation in Σ over τ1, . . . , τn, then

R(t1, . . . , tn) is an LD formula.

Comparisons If t1 and t2 are both terms of type τ ∈ C,
then t1 = t2 is an LD formula.

Collection membership If t1 and t2 are LD terms of type

τ and COLLτ respectively, then t1 ∈ t2 is an LD for-

mula.

Boolean Combinations If ϕ1 and ϕ2 are LD formulas,

then ¬ϕ1, ϕ1 ∧ ϕ2 are LD formulas.

Quantifiers If ϕ is an LD formula, v is a variable of type

τ ∈ C, and t is a term of type COLLτ , then ∀v ∈ t.ϕ
is an LD formula.

We denote with LΣ the language LD in the case there

are no attribute symbols.

4.1.1 Abbreviations

We use the following standard abbreviations:

• ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2);

• ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2;

• ∃x ∈ t.(ϕ) ≡ ¬∀x ∈ t.(¬ϕ);

• t1 6∈ t2 ≡ ¬(t1 ∈ t2).

When we specify the constraints of a particular class c ∈
C, we assume there exists a variable THIS of type c, and we
abbreviate THIS.a with a for all attributes a ∈ c.A.

4.2 Semantics

A class diagram D with static constraints is interpreted

over object models. An object modelM consists of a uni-

verse U and of an interpretation I of the symbols in Σ and

of the attribute symbols of D. In particular, every type

τ ∈ C∪PT is associated with a non-empty subset of the uni-

verse Uτ ⊆ U , called the domain. For every class c ∈ C,
for every attribute a ∈ c.A, I(a) is a function from Uc

to Ua.Mult
a.Type

where Ua.Mult
a.Type

denotes the set of tuples over

Ua.Type whose size ranges over a.Mult.

We consider a first-order Σ-theory T that constrains the

interpretation of the primitive symbol in Σ. We consider

only modelsM that satisfy T (M |= T).

Given a term t, an object model M , and an assignment

µ to the free variables of t, we define the interpretation

JtK〈M,µ〉 as follows:

Definition 4 (Interpretation of LD Terms)

Variables JvK〈M,µ〉 = µ(v).

Constants JcK〈M,µ〉 = I(c).

Functions Jf(t1, . . . , tn)K〈M,µ〉 =

I(f)(Jt1K〈M,µ〉 . . . JtnK〈M,µ〉).

Simple Attributes If c.a.Mult = 1..1, and I(a)(JtK〈M,µ〉)

= 〈q〉 for some q ∈ Uc.a.Type, then Jt.aK〈M,µ〉 = q.

Multiple Attributes If c.a.Mult = n..m, then

Jt.aK〈M,µ〉 = I(a)(JtK〈M,µ〉)

Jt.a.sizeK〈M,µ〉 = |I(a)(JtK〈M,µ〉)|.

Given a formula φ, an object model M , and an assign-

ment µ to the free variables of φ, we define the relation

〈M,µ〉 |= φ as follows:

Definition 5 (Interpretation of LD Formulas)

Relations 〈M,µ〉 |= R(t1, . . . , tn) iff
I(R)(Jt1K〈M,µ〉 . . . JtnK〈M,µ〉) holds.

Comparisons 〈M,µ〉 |= t1 = t2 iff Jt1K〈M,µ〉 =

Jt2K〈M,µ〉.

Collection membership 〈ω, µ〉 |= t1 ∈ t2 iff, for some i,
1 ≤ i ≤ |Jt2K〈ω,µ〉|, Jt1K〈ω,µ〉 is the i-th element of

Jt2K〈ω,µ〉.

Boolean Combinations

〈M,µ〉 |= ¬ϕ1 iff 〈M,µ〉 6|= ϕ1,

〈M,µ〉 |= ϕ1∧ϕ2 iff 〈M,µ〉 |= ϕ1 and 〈M,µ〉 |= ϕ2.

Quantifiers 〈M,µ〉 |= ∀v ∈ t.ϕ iff, for all q ∈ JtK〈M,µ〉,

〈M,µ[q/v]〉 |= ϕ.

4.3 Running example

Some of the requirements of the running example can be

expressed as static constraints on the class Track:

R#1 (∃s ∈ sections.(s.initial pos = 0)) ∧
(∀s ∈ sections.(s.final pos = destination ∨
∃n ∈ sections.(n.initial pos ≤ s.final pos ∧
n.final pos > s.final pos)))

R#2 ∀t ∈ trains.(t.position ≥
t.current section.initial pos ∧
t.position ≤ t.current section.final pos)

R#3 ∀t1, t2 ∈ trains.((t1 6= t2) →
(t1.ma.first section.initial pos >
t2.ma.end section.final pos ∨
t2.ma.first section.initial pos >
t1.ma.end section.final pos))

5. Temporal Constraints

5.1 Syntax

We consider a fragment of the First-Order Temporal

Logic of Manna and Pnueli ([23]), and we combine tem-

poral operators with regular expressions in order to get ω-
regular expressiveness [21]. As before, we consider a signa-

ture Σ over the primitive types in PT, and a set of variables

Vτ for each type τ ∈ PT ∪ C. We define the temporal lan-

guage TLD as follows.

Definition 6 (TLD temporal terms) A TLD temporal

term of type τ either is an LD term of type τ or is an ex-

pression NEXT(t), where t is a LD term of type τ .

Definition 7 (TLD transition expressions)

Relations If t1, . . . , tn are temporal terms of type

τ1, . . . , τn, R is an n-ary relation in Σ ∪ ΣU over

τ1, . . . , τn, then R(t1, . . . , tn) is a TLD transition ex-

pression.

Comparisons If t1 and t2 are temporal terms of the same

class type τ ∈ C, then t1 = t2 is a TLD transition

expression.

Collection membership If t1 and t2 are temporal terms of
type τ and COLLτ respectively, then t1 ∈ t2 is a TLD
transition expression.

Boolean Combinations Ifϕ1 andϕ2 are transition expres-

sions, then ¬ϕ1, ϕ1 ∧ ϕ2 are TLD transition expres-

sions.

Quantifiers If ϕ is a TLD transition expression, v is a

variable of type τ ∈ C, and t is a temporal term of

type COLLτ , then ∀t ∈ o.ϕ is a TLD transition ex-

pression.

Definition 8 (TLD regular expressions)

Transition expressions Any transition expression is a

TLD regular expression.

Empty word ǫ is a TLD regular expression.

Regular Operators If r1 and r2 are TLD regular expres-

sions, then r1∗, r1; r2, r1 : r2, r1|r2, r1&&r2 are

TLD regular expressions.

Definition 9 (TLD formulas)

Transition expressions Any transition expression is a

TLD formula.

Boolean Combinations If ϕ1 and ϕ2 are TLD formulas,

then ¬ϕ1, ϕ1 ∧ ϕ2 are TLD formulas.

Temporal Operators If ϕ1 and ϕ2 are TLD formulas,

then X ϕ1, ϕ1 U ϕ2 are TLD formulas.

Suffix Operators If r is a TLD regular expression andϕ is

a TLD linear temporal formula, then {r}ϕ is a TLD
formula.

We denote with TLΣ the language TLD in the case there

are no attribute symbols.

5.1.1 Abbreviations

Besides the abbreviations defined in Section 4.1.1, we use

the following:

• F ϕ ≡ ⊤ U ϕ;
• G ϕ ≡ ¬F ¬ϕ;
• r |→ ϕ ≡ ¬{r}¬ϕ.

In the following we use ϕ[ϕ2/ϕ1] to denote the TLD
formula obtained by substituting any occurrence of TLD
sub-formula ϕ1 of ϕ with the TLD formula ϕ2.

5.2 Semantics

TLD formulas are interpreted over sequences of object

models. Let ω be an infinite sequence of such models. We

denote with ωi the i + 1-th element of the sequence, with

ωi.. the suffix sequence ωi, ωi+1,
As before, we assume to have first-orderΣ-theory T that

constrains the interpretation of some symbols in Σ. Note

that the T is time independent. For this reason, symbols

such as the operations over the primitive types are rigid, i.e.,

their interpretation does not change over time. On the con-

trary the value of attributes and other uninterpreted symbols

is time-dependent.

Definition 10 (TLD temporal terms)

Term JtK〈ω,µ〉 = JtK〈ω0,µ〉.

Next Term JNEXT(t)K〈ω,µ〉 = JtK〈ω1,µ〉.

Definition 11 (TLD transition expressions)

Primitive relations 〈ω, µ〉 |= R(t1, . . . , tn) iff
I(R)(Jt1K〈ω,µ〉 . . . JtnK〈ω,µ〉) holds.

Comparisons 〈ω, µ〉 |= t1 = t2 iff Jt1K〈ω,µ〉 = Jt2K〈ω,µ〉.

Collection membership 〈ω, µ〉 |= t1 ∈ t2 iff, for some i,
1 ≤ i ≤ |Jt2K〈ω,µ〉|, Jt1K〈ω,µ〉 is the i-th element of

Jt2K〈ω,µ〉.

Boolean Combinations

〈ω, µ〉 |= ¬ϕ1 iff 〈ω, µ〉 6|= ϕ1,

〈ω, µ〉 |= ϕ1 ∧ ϕ2 iff 〈ω, µ〉 |= ϕ1 and 〈ω, µ〉 |= ϕ2.

Quantifiers 〈ω, µ〉 |= ∀v ∈ t.ϕ iff, for all q ∈ JtK〈ω,µ〉,

〈ω, µ[q/v]〉 |= ϕ.

Definition 12 (TLD regular expressions)

Transition expressions 〈ω, µ〉 |=i..j ϕ iff j = i + 1 and

〈ωi.., µ〉 |= ϕ.

Empty word 〈ω, µ〉 |=i..j ǫ iff i = j.

Regular Operators

〈ω, µ〉 |=i..j r∗ iff i = j or there exists k, i < k ≤ j,
〈ω, µ〉 |=i..k r, 〈ω, µ〉 |=k..j r∗;

〈ω, µ〉 |=i..j r1; r2 iff there exists k, i ≤ k ≤ j,
〈ω, µ〉 |=i..k r1, 〈ω, µ〉 |=k..j r2;

〈ω, µ〉 |=i..j r1 : r2 iff there exists k, i < k ≤ j,
〈ω, µ〉 |=i..k r1, 〈ω, µ〉 |=k−1..j r2;

〈ω, µ〉 |=i..j r1|r2 iff 〈ω, µ〉 |=i..j r1 or

〈ω, µ〉 |=i..j r2;
〈ω, µ〉 |=i..j r1&&r2 iff 〈ω, µ〉 |=i..j r1 and

〈ω, µ〉 |=i..j r2.

Definition 13 (TLD formulas)

Boolean Combinations

〈ω, µ〉 |= ¬ϕ1 iff 〈ω, µ〉 6|= ϕ1,

〈ω, µ〉 |= ϕ1 ∧ ϕ2 iff 〈ω, µ〉 |= ϕ1 and 〈ω, µ〉 |= ϕ2.

Temporal Operators

〈ω, µ〉 |= Xϕ iff 〈ω1.., µ〉 |= ϕ;
〈ω, µ〉 |= ϕ1 U ϕ2 iff there exists i ≥ 0 such that

〈ωi.., µ〉 |= ϕ2 and for all 0 ≤ j < i 〈ωj.., µ〉 |= ϕ1.

Suffix Operators 〈ω, µ〉 |= {r}ϕ iff there exists i ≥ 0 such
that 〈ωi.., µ〉 |= ϕ and 〈ω, µ〉 |=0..i+1 r.

Definition 14 (Satisfiability) Given a formula φ, the satis-
fiability problem consists of finding a sequence of models

ω, and an assignment µ to the free variables of φ, such that
〈ω, µ〉 |= φ.

Definition 15 (Equi-Satisfiability) Given two formulas φ1

and φ2, we say that φ1 and φ2 are equi-satisfiable when φ1

is satisfiable iff φ2 is satisfiable.

Definition 16 (Entailment) Given two formulas φ and ψ,
the entailment problem consists of proving that, for all se-

quence of models ω, and assignments µ to the free variables

of φ and ψ, if 〈ω, µ〉 |= φ then 〈ω, µ〉 |= ψ.

It is possible to check whether φ entails ψ by check-

ing the unsatisfiability of φ ∧ ¬ψ. If φ entails ψ,
then ∀x.(φ(x) → ψ(x)) is valid (and not the stronger

∀x.(φ(x)) → ∀x.(ψ(x))).

Remark 1 When Σ contains only uninterpreted Boolean

constant symbols (thus, with T empty), TLΣ turns to be

propositional Linear-time Temporal Logic (LTL) [26] ex-

tended with Regular Expressions (RELTL) [21].

5.3 Running example

We can express the remaining requirements and the

properties of the running examples as TLD formulas on the

class Track:

R#4 G ∀t ∈ trains.(t.current section =
t.ma.end section→ NEXT(t.position) ≤
t.current section.final position)

R#5 G ∀t ∈ trains.(t 6∈ NEXT(trains) → t.position =
destination)

R#6 G ∀t ∈ NEXT(trains).(t 6∈ trains →
NEXT(t.position) = 0)

R#7 G ((¬G ∀t ∈ trains.(NEXT(t.position) =
position)) → F ∃t ∈ trains.(NEXT(t.position) =
t.current section.final position))

P#1 G ∀t1 ∈ trains.∀t2 ∈ trains.(t1.position 6=
t2.position)

P#2 G ((¬G ∀t ∈ trains.(NEXT(t.position) =
position)) → F ∃t ∈ trains.(NEXT(t.position) =
destination))

6. Formal Analysis

6.1. Formal analysis and satisfiability

Given a set of requirements Φ = {φ1, . . . , φn}, the re-
quirement validation process consists of checking if the re-

quirements are: consistent, i.e. if they do not contain some

contradiction; not too strict, i.e. if they do allow some de-

sired behavior ψd; not too weak, i.e. if they rule out some

undesired behavior ψu. Each of these checks can be car-

ried out by solving a satisfiability problem: consistency is

checked by solving the satisfiability problem of
∧

1≤i≤n φi;
the set of requirements is not too strict if

∧
1≤i≤n φi ∧ ψd

is satisfiable; it is not too weak if the
∧

1≤i≤n φi ∧ ¬ψu is

unsatisfiable.

We now outline our satisfiability procedure, based on a

sequence of steps, each detailed in the rest of this section:

1. the formula is rewritten into an equi-satisfiable one free

of quantifiers, by introducing a finite number of new

function symbols;

2. the formula is rewritten into an equi-satisfiable one free

of attributes symbols, by encoding the object variables

into a finite domain;

3. the formula is encoded into a Fair Transition System

(FTS) [22], which is a symbolic representation of an

infinite-state system; the conversion is carried out by

separating the temporal part from the first-order con-

straints;

4. finally, the FTS can be checked for language non-

emptiness.

6.2 Removing guarded quantifiers

Given a TLD formula φ, we can obtain an equi-

satisfiable quantifier-free formula φG. First, for every class
c ∈ C, for every attribute a ∈ c.A we introduce a new func-

tion symbol ai for all 1 ≤ i ≤ max(c.a.Mult). Second, we
perform the following top-down transformation

• χ(∀v ∈ e.a.(φ)) =
∧

1≤i≤m(e.a.size ≥ i→
φ[e.ai/v]), withm = max(e.a.Mult).

• χ(¬ϕ1) = ¬χ(ϕ1).
• χ(ϕ1 ∧ ϕ2) = χ(ϕ1) ∧ χ(ϕ2).
• χ(t ∈ e.a) =

∨
1≤i≤m(e.a.size ≥ i ∧ t = e.ai), with

m = max(e.a.Mult).
• χ(φ) = φ otherwise.

Theorem 1 ϕ is satisfiable iff χ(ϕ) is satisfiable.

Proof. If 〈ω, µ〉 |= ϕ, we consider the extension ω′ of

ω that interprets the symbols introduced by χ as follows:

for all j ≥ 0, for all class c ∈ C, for all a ∈ c.A with

multiplicity different from 1..1, for all o ∈ Uc, Ij(ai)(o)

is the i-th element of Ij(a)(o) if |Ij(a)(o)| ≥ i, otherwise
Ij(ai)(o) is equal to an arbitrary element of Ua.Type. Then

〈ω′, µ〉 |= χ(ϕ).
If 〈ω, µ〉 |= χ(ϕ), we consider the extension ω′ of ω that

interprets the symbols not in χ as follows: for all j ≥ 0, for
all class c ∈ C, for all a ∈ c.A, for all o ∈ Uc, Ij(a)(o) is
the sequence 〈o1, . . . , oh〉 where h = |Ij(a)(o)| and oi =
Ij(ai)(o). Then 〈ω′, µ〉 |= ϕ. ⋄

6.3. Automatic finite instantiation

Given a formula φ, we can translate the formula into an

equi-satisfiable one where all object variables are encoded

into a finite domain. More precisely, given a class type c, let
nc be the number of temporal terms of type c that occur in φ.
For all variable x of type c that occurs in φ, let us introduce a
new variable xb over the range [1..nc]. For all attributes a of
the class c that occurs in φ, let introduce a new uninterpreted

function ab such that: if a is of class type d, then ab is of
type [1..nc] → [1..nd]; if a is of primitive type τ , then ab
is of type [1..nc] → Uτ . Let φb be the result of substituting
in φ every variable v with vb, and every attribute expression
e.a recursively with ab(e).

Theorem 2 φ and φb are equi-satisfiable.

Proof. Let 〈ω, µ〉 |= φ. For every i ≥ 0, for every
class c, let us consider the set Di

c ⊆ Uc such that o ∈ Di
c

if and only if there exists a temporal term t in φ such that

JtK〈ωi,µ〉 = o. Let us consider an infinite sequence of injec-

tive functions mi
c : Di

c → [1..nc], such that for all i ≥ 0,
for all terms t in φ of type c, if JtK〈ωi,µ〉 = JtK〈ωi+1,µ〉 =

o ∈ Di
c, then m

i
c(o) = mi+1

c (o). Let us consider a model

〈ωb, µb〉 such that for all i ≥ 0, for all terms tb in φb of

type c, if JtK〈ωi,µ〉 = o then JtbK〈ωi

b
,µb〉

= mi
c(o). Then

〈ωb, µb〉 |= φb
Let 〈ωb, µb〉 |= φb. For every i ≥ 0, for every class c, let

us consider an injective functionmc : [1..nc] → Uc. Let us
consider a model 〈ω, µ〉 such that for all i ≥ 0, for all terms

t in φ of type c, if JtbK〈ωi

b
,µb〉

= j then JtK〈ωi,µ〉 = mc(j).

Then 〈ω, µ〉 |= φ ⋄

Note in particular, that if φ contains only Boolean at-

tributes, φb is propositional, and we can check its satisfia-

bility by classic finite-state model checking.

6.4. Reduction to Fair Transition Systems
Non-Emptiness

Fair Transition Systems (FTS) [22] are a symbolic rep-

resentation of infinite-state systems. We generalize the def-

inition in order to use formulas with symbols in Σ.

Definition 17 (FTS) A Fair Transition System (FTS) is a

tuple S = 〈Σ, V, I, T, F 〉, where

• Σ is a first-order signature, that defines the state space;

the states of the system are defined as the interpreta-

tions of the symbols in Σ; we consider only the inter-

pretations that satisfy a given Σ-theory T .

• V is a finite set of variables that represent parameters

of the system.

• I is the initial condition expressed as a LΣ formula.

• T is the transition condition expressed as a TLΣ tran-

sition expression.

• F is the set of fairness conditions, each condition ex-

pressed as a LΣ basic expression.

Given an infinite sequence ω of Σ-interpretations and

an assignment µ to the parameters in V , S accepts 〈ω, µ〉
iff 〈ωi.., µ〉 |= T for every i ≥ 0, 〈ω0, µ〉 |= I , and, for all
ψ ∈ F , there exist infinitely many i, such that 〈ωi, µ〉 |=
ψ. The language L(S) is defined as the set of pairs 〈ω, µ〉
accepted by S.

In the case of RELTL, there exist efficient techniques to

convert a temporal formula φ into an equivalent FTS Sφ
(see, e.g., [10]). Formally,

Theorem 3 Given a TLΣ formula φ that contains only un-

interpreted Boolean constants and Boolean variables V ,

there exists an FTS Sφ = 〈Σ, V, I, T, F 〉 such that 〈ω, µ〉 |=
φ iff 〈ω, µ〉 ∈ L.

Thus, the check for the satisfiability of φ can be performed

verifying that L(Sφ) 6= ∅.
As for the general case, we solve the satisfiability prob-

lem of a temporal formulaφ as follows. First, for every tran-
sition expression ψ in φ, we introduce a new Boolean un-

interpreted constant aψ. Second, we consider the Boolean

abstraction φA of φ where every transition expressionψ has

been substituted with the corresponding Boolean constant

aψ.

Theorem 4 φ is equi-satisfiable to φA ∧
∧

ψ∈φ

G (aψ ↔ ψ).

Proof. Suppose 〈ω, µ〉 |= φ, where Ii is the interpre-

tation of ωi for all i ≥ 0. Let us consider a new sequence

of models ω′ such that, for all i ≥ 0, the interpretation I ′i

of ω′i is defined as follows: I ′i(s) = Ii(s) for all symbols

occurring in φ, while I ′i(aψ) = ⊤ iff 〈ω′i, µ〉 |= ψ. Then
〈ω′, µ〉 |= φA ∧

∧
ψ∈φG (aψ ↔ ψ).

Suppose 〈ω, µ〉 |= φA ∧
∧
ψ∈φG (aψ ↔ ψ) Note that,

for all i ≥ 0, 〈ωi, µ〉 |= aψ iff 〈ωi, µ〉 |= ψ. Thus 〈ω, µ〉 |=
φ. ⋄

Theorem 5 If φA is equivalent to the FTS SφA , then φA ∧∧
ψ∈φG (aψ ↔ ψ) is equivalent to the FTS Sφ obtained by

adding
∧
ψ∈φ(aψ ↔ ψ) to the transition condition of SφA .

Proof. Suppose 〈ω, µ〉 |= φA ∧
∧
ψ∈φG (aψ ↔ ψ). In

particular, 〈ω, µ〉 |= φA. Thus, 〈ω, µ〉 ∈ L(SφA). More-

over, 〈ω, µ〉 |=
∧
ψ∈φG (aψ ↔ ψ). Then, for all i ≥ 0,

〈ωi.., µ〉 |=
∧
ψ∈φ(aψ ↔ ψ). Thus, 〈ω, µ〉 ∈ L(Sφ).

Suppose 〈ω, µ〉 ∈ L(Sφ). Thus, 〈ω, µ〉 ∈ L(SφA)
and 〈ω, µ〉 |= φA. Moreover, for all i ≥ 0, 〈ωi.., µ〉 |=∧
ψ∈φ(aψ ↔ ψ). Then 〈ω, µ〉 |= φA∧

∧
ψ∈φG (aψ ↔ ψ).

⋄

Corollary 1 φ is satisfiable iff L(Sφ) 6= ∅.

Therefore, we can check the satisfiability of φ, by check-
ing the non-emptiness of the language accepted by Sφ.

6.5. Non-Emptiness Checking for FTS

Counterexample-Guided Abstraction Refinement We

check the non-emptiness of Sφ by means of predicate ab-

straction. We adopt a counterexample-guided abstract re-

finement (CEGAR) loop [11], where the abstraction gener-

ation and refinement are completely automatized. The loop

consists of four phases:

• abstraction, where the abstract system is built accord-

ing to a given set of predicates;

• verification, where the non-emptiness of the language

of the abstract system is checked; if the language is

empty, it can be concluded that also the concrete sys-

tem has an empty language; otherwise, an infinite trace

is produced;

• simulation: if the verification produces a trace, the

simulation checks whether it is realistic by simulating

it on the concrete system; if the trace can be simulated

in the concrete system, it is reported as a real witness

of the satisfiability of the formula;

• refinement: if the simulation cannot find a concrete

trace corresponding to the abstract one, the refinement

discovers new predicates that, once added to the ab-

straction, are sufficient to rule out the unrealistic path.

The abstraction is performed by computing a Boolean
formula equivalent to:

∃V ∃V
′(T (V, V ′) ∧

^

p∈P

(v̂p ↔ p(V) ∧ v̂′p ↔ p(V ′))) (1)

The quantifiers are removed by passing the formula to a

decision procedure, and enumerating the satisfying assign-

ments to the abstract variables v̂p, v̂
′
p [13].

As in [20] and [6], T is a first-order formula and the com-

putation of all solutions is carried out by a SAT-modulo-

Theories (SMT) solver.

We encode the simulation of the abstract trace on the
concrete system into a Bounded Model Checking (BMC)
problem [2], as proposed by [12]. Since the counterexample
may be infinite, we consider lasso-shape paths. This way, if
the counterexample is given by the abstract states ŝ0, . . . , ŝk
with ŝl = ŝk for l < k, we then generate the SMT formula:

I(V0) ∧
^

0≤i<k

T (Vi, Vi+1) ∧
^

0≤i≤k

Si(Vi) ∧
^

v∈V

vl = vk (2)

where the predicates Si identify the abstract states ŝi. If

the formula is not satisfiable, we refine the abstraction. As

noted in [28], this concretization step is sound but not com-

plete: we are fixing a specific lasso shape, so it may happen

that the above formula is not satisfiable, but the counterex-

ample is concretizable.

The initial predicates are arbitrarily chosen from the ex-

pressions that occur in φ. The new predicates discovered

during the refinement are generated by analyzing the proof

of the unsatisfiability of (2). To this purpose, for instance

it is possible to use the interpolation-based techniques de-

scribed in [8].

Bounded Model Checking via SMT Although incom-

plete, the CEGAR loop is often able to prove the incon-

sistency of a property φ by finding the right abstraction. On

the opposite, if we aim at looking for a witness of the for-

mula’s satisfiability, a more effective procedure is to look

for a lasso-shape trace of length up to a given bound.

In this case, we encode the simulation of such trace with
the following SMT formula:

I(V0) ∧
^

0≤i<k

T (Vi, Vi+1) ∧
_

0≤l<k

^

v∈V

vl=vk ∧
^

ψ∈F

_

l≤h<k

ψ(Vh) (3)

6.6. Running Example

We first consider the consistency problem of the require-

ments of the running example. After removing the quanti-

fiers, the formulas will be in the form:

R#1 G ((
∨

1≤i≤MAX(sections.size ≥ i ∧
(sectionsi.initial pos = 0))) ∧
(
∧

1≤i≤MAX(sections.size ≥ i →
(sectionsi.f inal pos = destination ∨∨

1≤j≤MAX(sections.size ≥ j ∧
sectionsj.initial pos ≤ sectionsi.f inal pos ∧
sectionj.f inal pos > sectioni.f inal pos)))))

R#2 G (
∧

1≤i≤MAX(trains.size ≥ i →
(trainsi.position ≥
trainsi.current section.initial pos ∧
trainsi.position ≤
trainsi.current section.final pos)))

R#3 G (
∧

1≤i≤MAX(trains.size ≥ i →∧
1≤j≤MAX(trains.size ≥ j →

((trainsi 6= trainsj) →
(trainsi.ma.first section.initial pos >
trainsj .ma.end section.final pos ∨
trainsj .ma.first section.initial pos >
trainsi.ma.end section.final pos))))

R#4 G (
∧

1≤i≤MAX(trains.size ≥ i →
(trainsi.current section =
trainsi.ma.end section →
NEXT(trainsi.position) ≤
trainsi.current section.final pos))

R#5 G (
∧

1≤i≤MAX(trains.size ≥ i →
((

∧
1≤j≤MAX(NEXT(trains.size) ≥ j →

NEXT(trainsj) 6= trainsi)) → trainsi.position =
destination)))

R#6 G (
∧

1≤i≤MAX(NEXT(trains.size) ≥ i →
((

∧
1≤j≤MAX(trains.size ≥ j →

trainsj 6= NEXT(trainsi))) →
NEXT(trainsi.position) = 0)))

R#7 G ((¬G
∧

1≤i≤MAX(trains.size ≥ i →
(NEXT(trainsi.position) = position))) →
F

∨
1≤i≤MAX(trains.size ≥ i ∧

(NEXT(trainsi.position) =
trainsi.current section.final pos)))

The temporal terms of type Train that occur in the for-

mula are trainsi, for 1 ≤ i ≤MAX . Thus, we can encode

the objects of type Train with [1..MAX]. The temporal

terms of type Section that occur in the formula are

• sectionsi for 1 ≤ i ≤MAX ;

• trainsi.current section for 1 ≤ i ≤MAX ;

• trainsi.ma.first section for 1 ≤ i ≤MAX ;

• trainsi.ma.end section for 1 ≤ i ≤MAX ;

Thus, we can encode the objects of typeSectionwith [1..4∗
MAX]. Similarly MAs are encoded into [1..MAX] and
Tracks into [1..1].

We use NUSMV [7] to convert the proposition tempo-

ral part of the formula into an automaton. The resulting

FTS is obtained by combining the automaton with the first-

order temporal expressions. We check the language non-

emptiness of the automaton by using an extended version

of NUSMV that provides CEGAR functionalities [6] and

has been interfaced with MathSAT [4]. We were able to

prove the consistency of the running example in the case

MAX = 10 in about 30 secs on an Intel 2.3GHz Laptop

equipped with 1Gb of memory running Linux using a mem-

ory limit of 512Mb. The two properties were proved not to

hold respectively in about 35 secs and 75 secs. The reason

of the failure in both cases is due to missing assumptions. In

order to modify the specification as to prove the two proper-

ties hold several iterations of refinement of the specification

aiming to add assumptions and verification of the new spec-

ification have been performed. At the end we were able to

prove the two properties hold for the final version of the

specification.

7. Related Work

Several attempts to the formal specification and valida-

tion of requirements have been proposed. The works that

aim at solving problems similar to the ones tackled in this

paper are Alloy [19], Formal Tropos [16] and OCL [25].

Alloy [19] is a language for describing structural proper-

ties of a system relying on a small kernel formal language

based on the subset of Z [29] that allows for object model-

ing. An Alloy specification consists of basic structures rep-

resenting classes together with constraints and operations

describing how the structures change dynamically. Alloy

only allows to specify attributes belonging to finite domains

(no Reals or Integers). Thus, it would have been impossi-

ble to model the Train position of the running example pre-

sented in this paper in Alloy. Although Alloy supports the

“next” operator (“prime” operator), that allow to specify the

temporal evolution of a given object, it does not allow to ex-

press properties using LTL and regular expressions (at the

basis of the logic presented in this paper). Thus, it is lim-

ited to state or transition invariants, and it does not allow to

specify fairness conditions that are crucial in our context.

Similarly to the approach proposed in this paper, Alloy sup-

ports two kinds of analysis: simulation and checking. In

simulation the consistency of an invariant or operation is

demonstrated by generating witness (a state or a transition).

In checking a consequence of the specification is tested by

attempting to generate a counterexample of a user specified

length. Alloy, in order to perform the verification, requires

the user to specify the bounds on the maximum number of

class instances and a limit for the counterexample/witness

length. Thus, it is only able to prove/disprove a property for

the given bounds and for the given length. The approach

presented in this paper overcomes these problems with the

automatic finite instantiation that preserves satisfiability and

with a reduction to known verification techniques that allow

to prove/disprove a property regardless of any bound on the

witness/counterexample length.

Tropos [3, 30] is a goal-oriented software development

methodology which provides a visual modelling language

that can be used to define an informal specification, al-

lowing to model intentional and social concepts, such as

those of actor, goal, and social relationships between actors.

Formal Tropos (FT) [16] extends a Tropos specification

with annotations that characterize the valid behaviors of the

model. A FT specification consists of a sequence of class

declarations such as actors, goals, and dependencies. Each

declaration associates a set of attributes to the class. The

temporal behavior of the instances is specified by means of

temporal constraints expressed in a typed first-order LTL.

FT is similar in spirit to the approach proposed in this pa-

per. The difference between the proposed approach and FT

are in the expressiveness of the formalization language. FT

is limited to LTL temporal operators, while this approach

allows to express constraints and properties with a logic

that mixes LTL with regular expression (which is more ex-

pressive than LTL). FT, like Alloy, requires for the formal

analysis the specification of bounds one the maximum num-

ber of class instances, and can only deal with finite domain

class attributes and constraints over such finite domain val-

ues. The novel approach does not require the specification

of the bounds on the number of class instances, and allows

for the use of class attributes of infinite range like e.g. Inte-

gers and Reals.

OCL [25] is a formal language developed as a business

modelling language to express additional constraints about

the objects in an UML model. It is a pure specification lan-

guage, so an OCL expression is guaranteed to be without

side effects on the model. This means that the state of the

system will never change because of the evaluation of an

OCL expression, even though an OCL expression can be

used to specify a state change. In fact, in a post-condition,

and only in this context, the expression can refer to values

for each property of an object (via the operator @pre) at
two different time instants: the value of a property at the

start of the operation or method and the value of a property

upon completion of the operation or method. This allows to

express and predicate on the temporal evolution of a prop-

erty. Similarly to Alloy, OCL cannot express some temporal

properties, such as fairness. In OCL no commitment is done

on the possibility to execute analysis, such as model check-

ing, moreover, as a general observation, the language is not

decidable.

As far as the combination of temporal with first-order

state formulas logic is concerned, we remark that it was

proposed by Manna and Pnueli in [22, 23] as specifica-

tion language for reactive systems. Many works studied the

decidability of particular fragments of the logic (cf., e.g.,

[18, 14, 17]). We also considered a fragment of the lan-

guage, by restricting temporal quantifications to the guarded

quantifiers over bounded sets of objects and to implicit

freezing quantifiers that relate next and current values in the

transition expressions. Rather than focusing on which are

the decidable theories we can use in the state formulas, our

work focus more on object models, their specification and

validation.

8. Conclusions

In this paper, we have proposed a formalism for the rep-

resentation and the analysis of requirements. The formalism

builds on class diagrams, and combines fragments of first

order logic (to describe rich data and relationships between

attributes and entities) with temporal operators (to describe

the evolution of the scenarios). We also proposed a proce-

dure to automatically check the satisfiability based on the

finite domain encoding and on the reduction to language

non-emptiness for FTS, and the application of verification

techniques based on SMT and abstraction-refinement.

In the future, we plan to extend the expressiveness of the

formalism to encompass richer data. We will also investi-

gate enhancements in the verification engine, along the lines

outlined in [9], and to more aggressive (problem-specific)

abstraction techniques. Finally, we will investigate issues

related to contract-based specifications, where only a part of

the scenario is considered to be controllable, and to address

problems beyond satisfiability, such as realizability and syn-

thesis.

References

[1] UML Version 2.1.2. http://www.omg.org/spec/

UML/2.1.2/.

[2] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic

Model Checking without BDDs. In TACAS, pages 193–207,

1999.

[3] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and

A. Perini. Tropos: An Agent-Oriented Software Develop-

ment Methodology. Autonomous Agents and Multi-Agent

Systems, 8(3):203–236, 2004.

[4] R. Bruttomesso, A. Cimatti, A. Franzn, A. Griggio, and

R. Sebastiani. The MathSAT 4 SMT Solver. In CAV, pages

299–303, 2008.

[5] R. E. Bryant, S. M. German, and M. N. Velev. Exploiting

Positive Equality in a Logic of Equality with Uninterpreted

Functions. In CAV, pages 470–482, 1999.

[6] R. Cavada, A. Cimatti, A. Franzén, K. Kalyanasundaram,

M. Roveri, and R. K. Shyamasundar. Computing predicate

abstractions by integrating BDDs and SMT solvers. In FM-

CAD, pages 69–76. IEEE, 2007.

[7] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri.

NuSMV: A new symbolic model checker. STTT, 2(4):410–

425, 2000.

[8] A. Cimatti, A. Griggio, and R. Sebastiani. Efficient In-

terpolant Generation in Satisfiability Modulo Theories. In

TACAS, pages 397–412, 2008.

[9] A. Cimatti, M. Roveri, V. Schuppan, and S. Tonetta. Boolean

abstraction for temporal logic satisfiability. In CAV, volume

4590 of LNCS, pages 532–546. Springer, 2007.

[10] A. Cimatti, M. Roveri, and S. Tonetta. PSL Symbolic Com-

pilation. IEEE Trans. on CAD of Integrated Circuits and

Systems, 2008. To appear.

[11] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.

Counterexample-Guided Abstraction Refinement. In CAV,

pages 154–169, 2000.

[12] E. Clarke, A. Gupta, J. Kukula, and O. Strichman. SAT

Based Abstraction-Refinement Using ILP and Machine

Learning Techniques. In CAV, pages 265–279, 2002.

[13] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Pred-

icate Abstraction of ANSI-C Programs Using SAT. Formal

Methods in System Design, 25(2-3):105–127, 2004.

[14] S. Demri, R. Lazic, and D. Nowak. On the freeze quantifier

in Constraint LTL: Decidability and complexity. Inf. Com-

put., 205(1):2–24, 2007.

[15] E. A. Emerson. Temporal and modal logic. In Handbook

of Theoretical Computer Science, Volume B: Formal Models

and Sematics (B), pages 995–1072. 1990.

[16] A. Fuxman, L. Liu, J. Mylopoulos, M. Roveri, and

P. Traverso. Specifying and analyzing early requirements

in Tropos. Requirements Engineering, 9(2):132–150, 2004.

[17] S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Com-

bination Methods for Satisfiability and Model-Checking of

Infinite-State Systems. In CADE, pages 362–378, 2007.

[18] I. M. Hodkinson, F. Wolter, and M. Zakharyaschev. Decid-

able fragment of first-order temporal logics. Ann. Pure Appl.

Logic, 106(1-3):85–134, 2000.

[19] D. Jackson. Alloy: a lightweight object modelling notation.

ACM Trans. Softw. Eng. Methodol., 11(2):256–290, 2002.

[20] S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT tech-

niques for fast predicate abstraction. In CAV, LNCS, pages

424–437. Springer, 2006.

[21] M. Lange. Linear Time Logics Around PSL: Complexity,

Expressiveness, and a Little Bit of Succinctness. In CON-

CUR, pages 90–104, 2007.

[22] Z. Manna and A. Pnueli. The Temporal Logic of Reactive

and Concurrent Systems, Specification. Springer, 1992.

[23] Z. Manna and A. Pnueli. Temporal verification of reactive

systems: safety. Springer-Verlag New York, Inc., New York,

NY, USA, 1995.

[24] G. Nelson and D. C. Oppen. Fast Decision Procedures Based

on Congruence Closure. J. ACM, 27(2):356–364, 1980.

[25] OMG. Object Constraint Language: OMG available speci-

fication Version 2.0, 2006.

[26] A. Pnueli. The temporal logic of programs. In Proceedings

of 18th IEEE Symp. on Foundation of Computer Science,

pages 46–57, 1977.

[27] A. Pnueli, Y. Rodeh, O. Strichman, and M. Siegel. The

small model property: How small can it be? Inf. Comput.,

178(1):279–293, 2002.

[28] R. Sebastiani, S. Tonetta, and M. Vardi. Property-Driven

Partitioning for Abstraction Refinement. In TACAS, pages

389–404, 2007.

[29] J. M. Spivey. The Z Notation: a reference manual, 2nd edi-

tion. Prentice Hall, 1992.

[30] A. Susi, A. Perini, P. Giorgini, and J. Mylopoulos. The Tro-

pos Metamodel and its Use. Informatica, 29(4):401–408,

2005.

