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Abstract Flaws in requirements often have a negative impact on the subsequent

development phases. In this paper, we present a novel approach for the formal rep-

resentation and validation of requirements, which we used in an industrial project.

The formalism allows us to represent and reason about object models and their

temporal evolution. The key ingredients are class diagrams to represent classes

of objects, their relationships and their attributes, fragments of first order logic to

constrain the possible configurations of such objects, and temporal logic operators

to deal with the dynamic evolution of the configurations. The approach to for-

mal validation allows to check whether the requirements are consistent, if they are

compatible with some scenarios, and if they guarantee some implicit properties.

? Supported by the Provincia Autonoma di Trento (project ANACONDA).
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The validation procedure is based on satisfiability checking, which is carried out

by means of finite instantiation and model checking techniques.

Key words Formal requirement engineering; temporal logic; railway domain;

ETCS

1 Introduction

Often problems encountered in late development phases can be traced back to

flaws in the requirements. For this reason, the development of techniques and tools

for the analysis of requirements is an important objective, in particular for safety-

critical applications and/or software. Formal methods can provide substantial sup-

port, by providing mathematically precise representation languages and inference

mechanisms.

In the context of hardware design and verification, formal languages to specify

the requirements have been standardized [1,2] and the validation techniques have

been engineered. The formal language used is a combination of temporal logic

with regular expressions, while the validation is performed with a series of checks

that aim at assuring that the formal specification correspond to what the designer

intended to write. The validation checks are accomplished with algorithms to solve

the satisfiability of temporal formulas.

In the context of safety-critical applications, the choice of the language used

to formalize the requirements is still an open issue, requiring a delicate balance

between expressiveness, decidability, and complexity of inference. The difficulty
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in finding a suitable trade-off lies in the fact that the requirements for many real-

world applications involve several dimensions. On the one side, the objects having

an active role in the target application may have complex structure and mutual

relationships, whose modeling may require the use of rich data types. On the other

side, static constraints over their attributes must be complemented with constraints

on their temporal evolution.

In this paper, we address the problem of validating requirements in complex

domains, by presenting the core of a framework used for the formalization and

validation of railways requirements in an industrial project.

We define the syntax and semantics of a rich specification language, which

combines the elements of several formalisms in order to enable a natural modeling.

The objects and their attributes are characterized using class diagrams, which in-

duce the signature of our logic. The logic includes first-order formulas with quan-

tifiers over the objects of a class. Temporal constraints are expressed by means of

temporal operators, resulting in a fragment of first order temporal logic [28,29]

(the fragment depends on the particular adopted first-order theory). The language

extends the one presented in [12] trading-in the automation of the analysis. In

fact, we allow quantifiers to range over the objects of a certain class and to be in-

terleaved with temporal operators (while in [12] quantifications were only allowed

to range over the elements of attributes and they were restricted to occur within

atomic formulas).

The validation of the requirements is based on an approach that combines fi-

nite instantiation of objects and a reduction to model checking problems. Each
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validation check defines a finite instantiation of the objects and a set of constraints

over some classes. We exploit the techniques described in [12] to avoid limiting the

number of objects for non-constrained classes. The satisfiability procedure is based

on several reduction steps: first, we obtain a first-order temporal formula ϕ which

is equi-satisfiable to the original specification. and free of object terms and free of

quantifiers; second, we create a fair transition system whose accepted language is

non-empty iff ϕ is satisfiable; finally, we check for the language accepted by the

fair transition system being non-empty. The resulting problem is in turn addressed

with automatic model checking techniques. Emerging symbolic model checking

techniques, based on the use of SMT solvers and abstraction [26,7], can be used to

efficiently check for the non-emptiness of the language of the fair transition sys-

tem. The described approach has been implemented within an extended version of

the NUSMV model checker, which is able to verify infinite-state systems.

The language has been used by railway experts within the EuRailCheck project

funded by the European Railway Agency, with the purpose of formalizing and

validating a significant subset of the ETCS specification. We consider as case study

some paradigmatic requirements and we prove that the specification is satisfiable,

that few desired scenarios are allowed, and that a property holds.

The paper is structured as follows. In Section 2 we present a motivating ap-

plication domain. In Section 3 we formalize the notion of class diagrams, and in

Section 4 we introduce the formalism used to specify constraints. In Section 5 we

present our approach to requirements validation, and in Section 6 we discuss the

reduction procedure for checking satisfiability. In Section 7 we present the im-
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plementation of the method and the experimental analysis aiming at showing the

applicability of the proposed approach on a subset of a real case study. In Sec-

tion 8 we compare our approach with the state of the art, and in Section 9 we draw

conclusions and discuss directions for future work.

2 Motivating Application Domain

2.1 Formalizing and validating the ETCS specification

The European Train Control System (ETCS) [19] is a specification that provides a

standard for train control systems to guarantee the interoperability with trackside

system across different European countries. The ETCS specification is a set of

requirements related to the automatic supervision of the location and the speed of

the train performed by the on-board system.

ETCS is already installed on important railway lines in different European

countries. It is based on the implementation on board of a set of safety critical

functions of speed and distance supervision and of information to the driver. Such

functions rely on data transmitted by trackside installations through two commu-

nication channels: physical devices that lie on the track, called balises, and radio

communication with control centers, called Radio Block Centers (RBCs).

In 2007, the European Railway Agency (ERA) issued a call for tender for the

development of a methodology complemented by a set of support tools, for the

formalization and validation of the ETCS specifications.

During the EuRailCheck project [21], that originated from the successful re-

sponse to the call for tender, we developed a requirements validation framework [11].
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The aim of this framework consists in analyzing the ETCS specifications, in order

to eliminate various kinds of flaws. First, we exploit the framework identifies and

eliminate ambiguities during the formalization, so that the requirements can be

uniquely interpreted by the system designers. This is particularly important in the

case of ETCS, since the requirements are to be applied in different cultural contexts

such as the different national railway manufacturers. Second, via the framework

it should be possible to detect inconsistencies in the specifications, which would

invalidate any system verification.

In order to do this, we rely on formal specification, which guarantees the im-

provement of the clarity of the requirements, and on formal verification, in order to

automate the analysis and the search for possible flaws. We remark that the project

poses requirements that are significantly different from “more traditional” appli-

cations of formal methods. Traditionally, in formal verification, the entity under

analysis is a design, which is to be verified against a set of requirements, assumed

to be correct. Here, the purpose of the activity is the analysis of the ETCS re-

quirements, and thus the use of formal methods, traditionally oriented to design

verification, has to be re-thought before being applicable.

The main issue in achieving these goals is that ETCS is a huge complex system,

with many functional modules, which need to be clearly separated between on-

board and trackside functionalities, and is contributed by a vast set of people. Many

ambiguities come from the use of natural language, from corrections applied by

different people, with different cultures, and of different mother tongues.
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For these reasons, the ETCS specification poses demanding requisites to the

formal methods adopted for its validation. First, the formalism should be able to

capture the meaning of the requirements. Second, it should be as simple as pos-

sible to be used by non-experts in formal methods: the requirements are usually

ambiguous English sentences that only an expert in the domain can formalize and

validate.

A property-based approach to requirements validation relies on the availabil-

ity of an expressive temporal logic, so that each informal statement has a formal

counterpart with similar structure. This is in contrast with the model-based ap-

proach that formalizes the requirements with a high-level design and requires more

efforts in the formalization and its traceability.

A natural choice of the logic is the Linear-time Temporal Logic (LTL) [31]

extended with Regular Expressions (RELTL) [6] and first-order predicates [28].

The temporal formulas often resemble their informal counterparts because many

natural language words used for temporally connecting events can be precisely

mapped to operators in the temporal logic. First-order predicates have already been

proven adequate to describe relationships among objects (see, e.g., [25]). Finally,

regular expressions have been proven valuable in specification languages such as

PSL [1], for describing sequences of events.

We show how complex statements find a natural formalization in the proposed

language through a running example. This is of paramount importance when ex-

perts in the application domain have the task of disambiguating and formalizing

the requirements.
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2.2 Running example

Let us consider parts of the ETCS specification describing the interoperability be-

tween trains and trackside. In particular, we refer to the System Requirements

Specification (SRS), subset 26 of the ETCS [20].

Focusing on a set of requirements describing the interaction between trains

and trackside, some objects, called balises, are located on the track and are able to

send messages to the trains in order to communicate/refine the information about

the train position. In particular, the balises are usually positioned sequentially on

the track in groups of different size called balise groups. Each balise stores its

internal number in the group (in general from 1 to 8), the identity of the balise

group and the number of the balises inside the group the balise belongs to. Each

balise group maintains also a linking information describing the position of the

next balise group on the track. Each balise sends messages to the train, the on-

board, passing over it. The messages, called telegrams, inform the train about its

position and orientation on the track, and about the next balise group on the track

(via the linking information). In case the train cannot understand its orientation

(simply using the information from the balise groups, or the train does not have

the linking information available), the train has to memorize the information of

several balise groups found during the trip (and in particular of the Last Relevant

Balise Group), send this information to the Radio Block Center (RBC) device,

which is a trackside system communicating via radio with the on-board, and wait

for an answer by the RBC. Figure 1 illustrates this scenario.
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Fig. 1 The scenario of the train running on a track with the signalling devices and informa-

tion exchanges.

The requirements in Table 1 are excerpts of the ETCS specification describ-

ing part of the scenario envisaged so far, that have been formalized during the

EuRailCheck project by domain experts. We use these requirements as running

example to explain the techniques presented in this paper.

3 Class Diagrams

Our work considers as fundamental modeling concepts classes of objects. We use

the notation of UML2 class diagrams (we refer the reader to the OMG UML2

metamodel specification documents [35] for a detailed description of these con-

cepts). The choice of the UML2 visual modeling language, and in particular of

the classes and class diagrams offered by this language, has been motivated by

the need to easily represent the relevant entities of the domain under analysis and

their relationships. UML2 is a well established language in Software Engineering;

the fact that it is a visual language is an important characteristic in its exploitation

in the software engineering process, in particular for the requirements and design

phases.



10 Alessandro Cimatti et al.

Req. id. SRS Code Requirements

R#1 3.4.1.1 A balise group shall consist of between one and eight balises.

R#2 3.4.1.2 In every balise shall at least be stored:

R#2.a 3.4.1.2.a the internal number (from 1 to 8) of the balise

R#2.b 3.4.1.2.b the number of balises inside the group

R#2.c 3.4.1.2.c the balise group identity.

... ... ...

R#3 3.4.1.3 The internal number of the balise describes the relative po-

sition of the balise in the group.

R#4 3.4.2.3.3.1 If [...] no linking information is available on-board, the RBC

shall be requested to assign a co-ordinate system as follows

... ... ...

R#4.d 3.4.2.3.3.1.d The Last Relevant Balise Groups (LRBG) reported to the

Radio Block Center (RBC) shall be memorised by the on-

board equipment, [...], until the RBC has assigned a co-

ordinate system.

... ... ...

R#5 3.16.2.1.1 The information that is sent from a balise is called a balise

telegram.

Table 1 An excerpt of the ETCS specification formalized during the EuRailCheck project.

Definition 1 A class diagram D consists of:

Primitive types A finite set of primitive types PT = {τ1, . . . , τh}.

Classes A finite set of classes C = {c1, . . . , cn}.
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Attributes For each class c ∈ C, a finite set of attributes c.A = {c.a1, . . . , c.am}.

Every attribute c.a has

– a type c.a.Type ∈ C ∪ PT;

– a multiplicity c.a.Mult that defines an interval of natural numbers; we de-

note with m..n, 0 ≤ m ≤ n, the interval {i|m ≤ i ≤ n} and with m..∗,

m ≥ 0, the interval {i|m ≤ i}; we write min(c.a.Mult) for the lower

bound (m), and max(c.a.Mult) for the upper bound (n or ∗).

To simplify the presentation, we limit the description to a core subset of the

UML2 class diagrams which only encompasses the concepts of classes and class

attributes. We also assume that the attributes are sequences of elements. We re-

mark that our techniques capture UML2 associations, aggregations, inheritance,

and can be extended to handle the other UML2 collection types such as sets and

bags. Each attribute has a type and a multiplicity m..n, with 0 ≤ m ≤ n, where

m and n indicate the minimum and maximum number of elements, respectively.

When the multiplicity is m..∗, the number of elements in unbounded. The case of

multiplicity equal to 1..1 is treated in a special manner, since the collection has

exactly one element.

3.1 Running example

The set of UML2 classes represented in Figure 2 defines the ontology of our case

study, as specified in the set of requirements we introduced in Table 1. Each class

contains a list of attributes with the type and the multiplicity. If not specified, the

multiplicity is 1 . . . 1.
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internal_number: integer
bg_balise_number: integer
bg_id: Balise_Group
relative_position: real
telegram: Telegram
send_tlg: boolean

Balise

send_coordinate_system: boolean
RBC

receive_linking_information: boolean
received_linking_information: Linking_Information
last_relevant_balise_group_memorised: boolean
received_coordinate_system_RBC: boolean

On_Board_SS

 
Linking_Information

 
Telegram

balises: Balise [1..8]
Balise_Group

Fig. 2 The classes representing the basic concepts described by the requirements of Table 1.

In particular:

– To represent the requirement R#1, we introduced two classes: the Balise and

the Balise Group. Moreover, we also introduced an attribute of the class

Balise Group, called balises that is an array of type Balise containing

from 1 to 8 Balises.

– To formalize the three statements of the requirement R#2 we introduced three

attributes in the class Balise: internal number, for R#2.a, bg balise number,

for R#2.b and bg id to formalize R#2.c.

– To formalize R#3 we introduced the attribute relative position in class

Balise.
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– To formalize R#4 we introduced: the class On Board SS, to formalize the on-

board sub-system; the class RBC to represent the Radio Block Center; the class

Linking Information to represent the linking information; the attributes

receive linking information and received linking information in

the class On Board SS, to translate the reception of the linking information;

the attribute received coordinate system of the class On Board SS. The

paragraph R#4.d of the requirement introduces the last relevant balise group

that is stored on-board, so it becomes the attribute

last relevant balise group memorised of the class On Board SS.

– the requirement R#5 introduces the concept of balise telegram, which is sent

from the balise to the on-board; this is translated into a new class Telegram

and two attributes telegram and send tlg of the class Balise.

4 Temporal Constraints

4.1 Syntax

We consider a fragment of the First-Order Temporal Logic of Manna and Pnueli

([29]), and we combine temporal operators with regular expressions in order to get

ω-regular expressiveness [27].

We assume that some requirements have already been formalized with some

classes and attributes. The temporal constraints are used to annotate the class dia-

gram in order to formalize further requirements. Thus, the syntax of the language

depends on a given class diagram D with a set C of classes and a set PT of primi-

tive types. We assume to have an underlying first-order signature Σ. The symbols
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in Σ can express relations over the domains of the primitive types. For example,

Σ can contain constants and functions over Booleans, Reals, Bounded Integers,

and Integers. We denote with COLLτ for τ ∈ C ∪ PT the type representing the

collection of elements of type τ . Finally, we assume to be given a set of variables

VARτ for each type τ ∈ C ∪ PT.

We define the temporal language TLD as follows. Let VAR, CONST, FUN, REL,

TYPE, and ATTR be respectively the set of variables, Σ constant symbols, Σ func-

tion symbols, Σ relational symbols, type symbols, and attributes symbols.

Definition 2 (TLD static terms) The set TERM of terms is defined as follows:

TERM := VAR | CONST | FUN(TERM, . . . , TERM) | TERM.ATTR |

TERM.ATTR.size | TERM.ATTR[TERM]

For each term f(t1, . . . , tn) ∈ TERM, if the type of f is τ1 → . . .→ τn → τ , then

t1, . . . , tn must be terms of type τ1, . . . , τn. For each term t.a, if the type of t is

c ∈ C, then it is required that a ∈ c.A. For each term t.a.size or t.a[i], if the type

of t is c ∈ C, then it is required a ∈ c.A, a.Mult 6= 1..1 and i to be a term of type

a.Mult.

Respecting the UML2 standard [35], if a.Type = τ and a.Mult = 1..1, then

t.a if a term of type τ , otherwise t.a is a term of type COLLτ . For example, if v is

a variable of class c and a is an Integer attribute in c.A, then if a.Mult = 1..1 then

v.a is an Integer, otherwise v.a is a collection of Integers.
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Definition 3 (TLD temporal terms) The set TTERM of temporal terms is defined

as follows:

TTERM := TERM | next(TERM)

Atomic formulas combine terms with relational symbols and include Boolean

operations and quantifiers. As in PSL, they are used as atoms of regular expres-

sions and temporal formulas allowing a compact and intuitive specification (w.r.t.

languages where atomic formulas cannot contain Boolean operations and quanti-

fiers).

Definition 4 (TLD atomic formulas) The set ATOM of atomic formulas is defined

as follows:

ATOM := REL(TERM, . . . , TERM) | TERM = TERM | TERM ∈ TERM |

¬ATOM | ATOM ∧ ATOM |

∀VAR ∈ 1..TERM.ATTR.size (ATOM) | ∀VAR : TYPE (ATOM)

For each atomic formula r(t1, . . . , tn) ∈ TERM, if the type of r is τ1 × . . . × τn,

then t1, . . . , tn must be terms of type τ1, . . . , τn. For each atomic formula t1 = t2,

t1 and t2 must be of the same type. For each atomic formula t1 ∈ t2, if t1 is a term

of type τ , t2 must be of type COLLτ . For each atomic formula ∀i ∈ 1..t.a.size (ϕ),

it is required a ∈ c.A, a.Mult 6= 1..1 and i to be a variable of type a.Mult.

Definition 5 (TLD regular expressions) The set SERE of regular expressions is

defined as follows:

SERE := ATOM | ε | SERE∗ | SERE; SERE | SERE : SERE |

SERE ∨ SERE | SERE ∧ SERE
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Definition 6 (TLD formulas) The set FORM of formulas is defined as follows:

FORM := ATOM | ¬FORM | FORM ∧ FORM |

X FORM | FORM U FORM | SERE |→ FORM |

∀VAR ∈ 1..TERM.ATTR.size (FORM) | ∀VAR : TYPE (FORM)

For each formula ∀i ∈ 1..t.a.size (ϕ), it is required a ∈ c.A, a.Mult 6= 1..1 and i

to be a variable of type a.Mult.

We use the following standard abbreviations:

– true ≡ v 6= v for some variable v;

– false ≡ ¬true;

– ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2);

– ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2;

– t1 6∈ t2 ≡ ¬(t1 ∈ t2);

– F ϕ ≡ true U ϕ;

– G ϕ ≡ ¬F ¬ϕ;

– r♦→ϕ ≡ ¬r |→¬ϕ.

– ∃i ∈ 1..t.size (ϕ) ≡ ¬∀i ∈ 1..t.size (¬ϕ);

– ∃v : τ (ϕ) ≡ ¬∀v : τ (¬ϕ);

– ∀v ∈ t(ϕ) ≡ ∀v : τ (x ∈ t→ ϕ);

– ∃v ∈ t(ϕ) ≡ ¬∀v ∈ t(¬ϕ);

In the following we use ϕ[ϕ2/ϕ1] to denote the TLD formula obtained by substi-

tuting any occurrence of TLD sub-formula ϕ1 of ϕ with the TLD formula ϕ2.
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Formulas in the form G ϕwhere ϕ is a Boolean combination of atomic formu-

las where next does not occur are called static constraints or invariants. Atomic

formulas without next operators are called state formulas. Finally, we denote with

TLΣ the language TLD in the case there are no attribute symbols.

Remark 1 If ϕ is a state formula, then ∀v ∈ t (ϕ) ≡ ∀v : τ ((∀i ∈ 1..t.size (t[i] =

v))→ ϕ) ≡ ∀i ∈ 1..t.size (ϕ[t[i]/v]).

4.2 Semantics

TLD formulas are interpreted over sequences of object models. An object model

M consists of a universe U and of an interpretation I of the symbols in Σ and of

the attribute symbols of D. In particular, every type τ ∈ C ∪PT is associated with

a non-empty subset of the universe Uτ ⊆ U , called the domain. For every class

c ∈ C, for every attribute a ∈ c.A, I(a) is a function from Uc to Ua.Mult
a.Type where

Ua.Mult
a.Type denotes the set of tuples over Ua.Type whose size ranges over a.Mult.

We consider a first-order Σ-theory T that constrains the interpretation of the

primitive symbols in Σ. We consider only models M that satisfy T (M |= T ).

We remark that the T does not vary over the elements of a sequence of object

models. For this reason, symbols such as the operations over the primitive types

are rigid, i.e., their interpretation does not change over the different elements of

the sequence of object models. On the contrary the value of attributes and other

uninterpreted symbols can vary over the different elements of a sequence of object

models.
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In the following we denote with: ω an infinite sequence of such object mod-

els; with ωi the i + 1-th element of the sequence; with ωi.. the suffix sequence

ωi, ωi+1, . . .; withUn, for a setU and for n ≥ 1, the Cartesian product

n times︷ ︸︸ ︷
U × . . . × U ;

with |U | the cardinality of a set U ; with |t| the size of a tuple t.

Given a term t, an object model M , and an assignment µ to the free variables

of t, we define the interpretation JtK〈M,µ〉 as follows:

Definition 7 (Interpretation of TLD static terms)

– JvK〈M,µ〉 = µ(v) for any variable v;

– JcK〈M,µ〉 = I(c) for any constant c;

– Jf(t1, . . . , tn)K〈M,µ〉 = I(f)(Jt1K〈M,µ〉 . . . JtnK〈M,µ〉).

– If c.a.Mult = 1..1, and I(a)(JtK〈M,µ〉) = 〈q〉 for some q ∈ Uc.a.Type, then

Jt.aK〈M,µ〉 = q.

– If c.a.Mult = m..n, then Jt.aK〈M,µ〉 = I(a)(JtK〈M,µ〉) and Jt.a.sizeK〈M,µ〉 =

|I(a)(JtK〈M,µ〉)|.

– If JtK ∈ Unτ and 1 ≤ JiK ≤ n, then Jt[i]K is the JiK-th element of the sequence

JtK; otherwise Jt[i]K is any element in Uτ .

Definition 8 (TLD temporal terms)

– JtK〈ω,µ〉 = JtK〈ω0,µ〉 for any term t;

– Jnext(t)K〈ω,µ〉 = JtK〈ω1,µ〉 for any term t.

Definition 9 (TLD atomic formulas)

– 〈ω, µ〉 |= R(t1, . . . , tn) iff I(R)(Jt1K〈ω,µ〉 . . . JtnK〈ω,µ〉) holds.

– 〈ω, µ〉 |= t1 = t2 iff Jt1K〈ω,µ〉 = Jt2K〈ω,µ〉.
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– 〈ω, µ〉 |= t1 ∈ t2 iff for some i, 1 ≤ i ≤ |Jt2K〈ω,µ〉|, Jt1K〈ω,µ〉 is the i-th

element of Jt2K〈ω,µ〉.

– 〈ω, µ〉 |= ¬ϕ1 iff 〈ω, µ〉 6|= ϕ1,

〈ω, µ〉 |= ϕ1 ∧ ϕ2 iff 〈ω, µ〉 |= ϕ1 and 〈ω, µ〉 |= ϕ2.

– 〈ω, µ〉 |= ∀i ∈ 1..t.size (ϕ) iff for all j, 1 ≤ j ≤ Jt.sizeK, 〈ω, µ′〉 |= ϕ, where

µ′(v) = µ(v) for all free variables in ∀i ∈ 1..t.size (ϕ), and µ′(i) = j.

– 〈ω, µ〉 |= ∀v : τ (ϕ) iff for all q ∈ Uτ , 〈ω, µ′〉 |= ϕ, where µ′(v) = µ(v) for

all free variables in ∀v : τ (ϕ), and µ′(v) = q.

Definition 10 (TLD regular expressions)

– 〈ω, µ〉 |=i..j ϕ iff j = i+ 1 and 〈ωi.., µ〉 |= ϕ for any atomic formula ϕ;

– 〈ω, µ〉 |=i..j ε iff i = j;

– 〈ω, µ〉 |=i..j r∗ iff i = j or there exists k, i < k ≤ j, 〈ω, µ〉 |=i..k r,

〈ω, µ〉 |=k..j r∗;

– 〈ω, µ〉 |=i..j r1; r2 iff there exists k, i ≤ k ≤ j, 〈ω, µ〉 |=i..k r1, 〈ω, µ〉 |=k..j

r2;

– 〈ω, µ〉 |=i..j r1 : r2 iff there exists k, i ≤ k < j, 〈ω, µ〉 |=i..k+1 r1,

〈ω, µ〉 |=k..j r2;

– 〈ω, µ〉 |=i..j r1 ∨ r2 iff 〈ω, µ〉 |=i..j r1 or 〈ω, µ〉 |=i..j r2;

– 〈ω, µ〉 |=i..j r1 ∧ r2 iff 〈ω, µ〉 |=i..j r1 and 〈ω, µ〉 |=i..j r2.

Definition 11 (TLD formulas)

– 〈ω, µ〉 |= ¬ϕ1 iff 〈ω, µ〉 6|= ϕ1;

– 〈ω, µ〉 |= ϕ1 ∧ ϕ2 iff 〈ω, µ〉 |= ϕ1 and 〈ω, µ〉 |= ϕ2;
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– 〈ω, µ〉 |= Xϕ iff 〈ω1.., µ〉 |= ϕ;

– 〈ω, µ〉 |= ϕ1 U ϕ2 iff there exists i ≥ 0 such that 〈ωi.., µ〉 |= ϕ2 and for all

0 ≤ j < i 〈ωj.., µ〉 |= ϕ1;

– 〈ω, µ〉 |= r |→ϕ iff for all i ≥ 0 if 〈ω, µ〉 |=0..i+1 r then 〈ωi.., µ〉 |= ϕ;

– 〈ω, µ〉 |= ∀i ∈ 1..t.size (ϕ) iff for all j, 1 ≤ j ≤ Jt.sizeK, 〈ω, µ′〉 |= ϕ, where

µ′(v) = µ(v) for all free variables in ∀i ∈ 1..t.size (ϕ), and µ′(i) = j;

– 〈ω, µ〉 |= ∀v : τ (ϕ) iff for all q ∈ Uτ , 〈ω, µ′〉 |= ϕ, where µ′(v) = µ(v) for

all free variables in ∀v : τ (ϕ), and µ′(v) = q.

Definition 12 (Satisfiability) Given a formula ϕ, the satisfiability problem con-

sists of finding a sequence of object models ω, and an assignment µ to the free

variables of ϕ, such that 〈ω, µ〉 |= ϕ.

Definition 13 (Equi-Satisfiability) Given two formulas ϕ1 and ϕ2, we say that ϕ1

and ϕ2 are equi-satisfiable when ϕ1 is satisfiable iff ϕ2 is satisfiable.

Remark 2 The decidability of the satisfiability problem depends on the theory T .

When Σ contains only uninterpreted Boolean constant symbols (thus, with T

empty), TLΣ turns out to be propositional Linear-time Temporal Logic (LTL) [31]

extended with Regular Expressions (RELTL) [27]. Thus, the satisfiability problem

can be reduced to a finite-state model checking problem. On the contrary, if the

satisfiability problem for the theory T is undecidable, also the problem for TLD,

which subsumes the set of T formulas, is undecidable. Finally, note that even if

the problem is decidable for T , it might be undecidable for TLD (see, e.g., [23]).
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4.3 Running example

Here we complete the representation of the requirements proposed in the running

example via the specification of constraints.

C#1 G ∀bg : Balise Group (∀b ∈ bg.balises

(b.internal number ≥ 1) ∧ (b.internal number ≤ 8))

C#2 G ∀bg : Balise Group (∀b ∈ bg.balises

(b.bg balise number = bg.balises.size))

C#3 G ∀bg : Balise Group (∀b ∈ bg.balises (b.bg id = bg))

C#4 G ∀bg : Balise Group (∀b1 ∈ bg.balises (∀b2 ∈ bg.balises

(b1.relative position < b2.relative position↔

b1.internal number < b2.internal number)))

C#5 G ∀o : On Board SS(o.receive linking information)

→ ((o.last relevant balise group memorised) U

(o.received coordinate system RBC)

The constraint C#1 (from R#2) expresses that the attribute internal number of

a balise associated with a balise group assumes values in the range [1..8]. The

constraint C#2 (from R#2) expresses that the attribute bg balise number of a

balise associated with a balise group is exactly the number of balises in the balise

group. The constraint C#3 (again from R#2) states that the attribute bg id of a

balise associated with a balise group is exactly the identity of the balise group.

The constraint C#4 (from R#3) gives a relationship between the physical relative

position of two balises in a balise group and their internal number. Finally, con-
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straint C#5 (from R#4.d) states that, if the on-board has not received the linking

information, then the Last Relevant Balise Group shall be memorised on board

until a coordinate system is received.

5 Formal Analysis and Satisfiability

Given a set of requirements Φ = {ϕ1, . . . , ϕn}, the requirement validation process

consists of checking if the requirements are: consistent, i.e. they do not contain

some contradiction; not too strict, i.e. they do allow some desired behavior ψd;

not too weak, i.e. they rule out some undesired behavior ψu. Each of these checks

can be carried out by solving a satisfiability problem. Consistency checking is

performed by solving the satisfiability problem of
∧

1≤i≤n ϕi. The check that the

requirements are not too strict is performed by checking whether
∧

1≤i≤n ϕi ∧ψd

is satisfiable. Finally, the check that the requirements are not too weak is performed

by checking whether
∧

1≤i≤n ϕi ∧ ψu is unsatisfiable.

Unfortunately, for many underlying theories, the satisfiability problem of TLD

is undecidable (see Remark 2). Nevertheless, we want to keep its expressiveness

in order to faithfully represent the informal requirements in the formal language.

Thus, we rely on some simplifications that rule out the models with infinite sets

of objects. In particular, we assume, first, that the cardinality of attributes of col-

lection type is bounded, second, that the number of objects of some classes is

bounded.

In the EuRailCheck project, we asked the user to specify a bound for every

class of the formal specification. Exploiting the techniques presented in [12], we
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can limit this manual operation only to the classes τ ∈ C for which a quantifier of

the form ∀v : τ occurs in the formula under analysis. This way, we can automat-

ically find a bound for the remaining classes, we can translate the formula into a

Fair Transition System [28] whose accepted language is not empty if the formula

is satisfiable, and we can rely on efficient techniques and tools to check for the

non-emptiness of the accepted language.

Therefore, the problem that is taken as input by the automatic translation pro-

cedure is the following:

Definition 14 (Validation problem) A validation problem consists of a triple 〈ϕ, cb, cacb〉,

where ϕ is a TLD temporal formula, and cb and cacb are natural numbers.

A solution for the validation problem 〈ϕ, cb, cacb〉 is a sequence of object mod-

els ω satisfying ϕ such that:

1. for all classes c ∈ C with ∀v : c occurring in ϕ, |Uc| ≤ cb;

2. for all classes c ∈ C, for all attributes a in c.A with multiplicity in the form

m..∗, for all objects o ∈ Uc, |o.a| ≤ cacb.

Intuitively, cb represents the bound on the number of objects for each class c ∈ C;

and, cacb represents the bound on the cardinality of attributes of type collection.

6 Reduction to Fair Transition Systems

6.1 Reduction procedure

We now outline a procedure which reduces a validation problem into checking

whether the language of a Fair Transition System (FTS) [28] is not empty: namely,
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the language of the FTS is not empty iff there exists a solution to the validation

problem. The procedure is based on three steps:

1. the TLD formula is rewritten into an equi-satisfiable one free of quantifiers;

2. the TLD formula free of quantifiers is further rewritten into an equi-satisfiable

one free of attribute symbols;

3. the resulting TLD formula is encoded into an FTS with standard techniques

for the compilation of temporal formulas.

6.2 Removing guarded quantifiers

Given a validation problem 〈ϕ, cb, cacb〉, we can obtain a quantifier-free formula

ϕG, which is satisfiable iff the validation problem has a solution.

In the following, for a given attribute term t, we denote with mt the maximum

between max(t.Mult) and cacb.

We perform the following recursive transformation:

– χ(∀v : τ(ϕ)) =
∧
o∈Uτ (χ(ϕ[o/v])).

– χ(∀v ∈ 1..t.size(ϕ)) =
∧

1≤i≤mt(t.size ≥ i→ χ(ϕ)).

– χ(t1 ∈ t2) =
∨

1≤i≤mt2
(t2.size ≥ i ∧ t1 = t2[i]).

– χ(¬ϕ1) = ¬χ(ϕ1).

– χ(ϕ1 ∧ ϕ2) = χ(ϕ1) ∧ χ(ϕ2).

– χ(r1 ./ r2) = χ(r1) ./ χ(r2), for ./∈ {; , :, |,&&}.

– χ(r∗) = χ(r)∗.

– χ(X ϕ) = X χ(ϕ).

– χ(ϕ1 U ϕ2) = χ(ϕ2) U χ(ϕ2).



Formalizing requirements with object models and temporal constraints 25

– χ(r |→ϕ) = χ(r) |→χ(ϕ).

– χ(ϕ) = ϕ otherwise.

Theorem 1 〈ϕ, cb, cacb〉 is satisfiable iff χ(ϕ) is satisfiable.

Proof (Sketched proof) Given the assumptions on the validation problem, every

quantifier is guarded by a condition with a finite number of models. The quantifiers

elimination is therefore straightforward obtained by enumerating these models.

6.3 Finite instantiation

Given the quantifier-free formula ϕG, we can translate the formula into an equi-

satisfiable one where all object variables are encoded into a finite domain. More

precisely, given a class type c whose domain is not bounded, let nc be the number

of temporal terms of type c that occur in ϕG. For the classes with a bounded

domain, let nc be equal to cb. For each variable v of type c that occurs in ϕG, let

us introduce a new variable vb over the range [1..nc]. For each attribute a of the

class c that occurs in ϕG, let us introduce a new function symbol ab such that: if a

is of class type d, then ab is of type [1..nc] → [1..nd]; if a is of primitive type τ ,

then ab is of type [1..nc]→ Uτ .

Let ϕb be the result of substituting in ϕG every variable v with vb, and every

attribute expression c.a recursively with ab(c).

Theorem 2 ϕG and ϕb are equi-satisfiable.

Proof Let 〈ω, µ〉 |= ϕG. For every i ≥ 0, for every class c, let us consider the

set Di
c ⊆ Uc such that o ∈ Di

c if and only if there exists a temporal term t in ϕG
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such that JtK〈ωi,µ〉 = o. Let us consider an infinite sequence of injective functions

mi
c : Di

c → [1..nc], such that for all i ≥ 0, for all terms t in ϕG of type c,

if JtK〈ωi,µ〉 = JtK〈ωi+1,µ〉 = o ∈ Di
c, then mi

c(o) = mi+1
c (o). Let us consider a

model 〈ωb, µb〉 such that for all i ≥ 0, for all terms tb in ϕb of type c, if JtK〈ωi,µ〉 =

o then JtbK〈ωib,µb〉 = mi
c(o). Then 〈ωb, µb〉 |= ϕb

Let 〈ωb, µb〉 |= ϕb. For every i ≥ 0, for every class c, let us consider an

injective function mc : [1..nc]→ Uc. Let us consider a model 〈ω, µ〉 such that for

all i ≥ 0, for all terms t in ϕG of type c, if JtbK〈ωib,µb〉 = j then JtK〈ωi,µ〉 = mc(j).

Then 〈ω, µ〉 |= ϕG

Note in particular, that if ϕ (and thus ϕG) contains only Boolean attributes,

ϕb is propositional, and we can check its satisfiability by classic finite-state model

checking.

6.4 Reduction to Fair Transition Systems Non-Emptiness

FTSs are a symbolic representation of infinite-state systems. We generalize the

definition in order to use formulas with symbols in Σ.

Definition 15 (FTS) A Fair Transition System is a tuple S = 〈Σ,V, I, T, F 〉,

where

– Σ is a first-order signature, that defines the state space; the states of the system

are defined as the interpretations of the symbols in Σ; we consider only the

interpretations that satisfy a given Σ-theory T .

– V is a finite set of variables that represent parameters of the system.
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– I is the initial condition expressed as a TLΣ state formula.

– T is the transition condition expressed as a TLΣ atomic formula.

– F is the set of fairness conditions, each condition expressed as a TLΣ state

formula.

Given an infinite sequence ω of Σ-interpretations and an assignment µ to the

parameters in V , S accepts 〈ω, µ〉 iff 〈ωi.., µ〉 |= T for every i ≥ 0, 〈ω0, µ〉 |= I ,

and, for all ψ ∈ F , there exist infinitely many i, such that 〈ωi, µ〉 |= ψ. The

language L(S) is defined as the set of pairs 〈ω, µ〉 accepted by S.

In the case of RELTL, there exist efficient techniques to convert a temporal

formula ϕ into an equivalent FTS Sϕ (see, e.g., [13]). Formally,

Theorem 3 Given a TLΣ formula ϕ that contains only uninterpreted Boolean

constants and Boolean variables V , there exists an FTS Sϕ = 〈Σ,V, I, T, F 〉

such that 〈ω, µ〉 |= ϕ iff 〈ω, µ〉 ∈ L(Sϕ).

Thus, the check for the satisfiability of ϕ can be performed verifying that L(Sϕ) 6=

∅.

As for the general case, we solve the satisfiability problem of a temporal for-

mula ϕ as follows. Let A(ϕ) the set of atomic sub-formulas of ϕ. First, for every

atomic formula ψ inA(ϕ), we introduce a new Boolean uninterpreted constant aψ .

Second, we consider the Boolean abstraction ϕA of ϕ where every atomic formula

ψ has been substituted with the corresponding Boolean constant aψ .

Theorem 4 ϕ is equi-satisfiable to ϕA ∧
∧

ψ∈A(ϕ)

G (aψ ↔ ψ).
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Proof Suppose 〈ω, µ〉 |= ϕ, where Ii is the interpretation of ωi for all i ≥ 0. Let

us consider a new sequence of models ω′ such that, for all i ≥ 0, the interpretation

I ′i of ω′i is defined as follows: I ′i(s) = Ii(s) for all symbols occurring in ϕ,

while I ′i(aψ) = true iff 〈ω′i, µ〉 |= ψ. Then 〈ω′, µ〉 |= ϕA ∧
∧
ψ∈A(ϕ) G (aψ ↔

ψ).

Suppose 〈ω, µ〉 |= ϕA ∧
∧
ψ∈A(ϕ) G (aψ ↔ ψ) Note that, for all i ≥ 0,

〈ωi, µ〉 |= aψ iff 〈ωi, µ〉 |= ψ. Thus 〈ω, µ〉 |= ϕ.

Theorem 5 If ϕA is equivalent to the FTS SϕA , then ϕA ∧
∧
ψ∈A(ϕ) G (aψ ↔

ψ) is equivalent to the FTS Sϕ obtained by adding
∧
ψ∈A(ϕ)(aψ ↔ ψ) to the

transition condition of SϕA .

Proof Suppose 〈ω, µ〉 |= ϕA∧
∧
ψ∈A(ϕ) G (aψ ↔ ψ). In particular, 〈ω, µ〉 |= ϕA.

Thus, 〈ω, µ〉 ∈ L(SϕA). Moreover, 〈ω, µ〉 |=
∧
ψ∈A(ϕ) G (aψ ↔ ψ). Then, for

all i ≥ 0, 〈ωi.., µ〉 |=
∧
ψ∈A(ϕ)(aψ ↔ ψ). Thus, 〈ω, µ〉 ∈ L(Sϕ).

Suppose 〈ω, µ〉 ∈ L(Sϕ). Thus, 〈ω, µ〉 ∈ L(SϕA) and 〈ω, µ〉 |= ϕA. More-

over, for all i ≥ 0, 〈ωi.., µ〉 |=
∧
ψ∈A(ϕ)(aψ ↔ ψ). Then 〈ω, µ〉 |= ϕA ∧∧

ψ∈A(ϕ) G (aψ ↔ ψ).

Corollary 1 ϕ is satisfiable iff L(Sϕ) 6= ∅.

Therefore, we can check the satisfiability of ϕ, by checking the non-emptiness

of the language accepted by Sϕ.
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6.5 Running Example

We first consider the consistency problem of the requirements of the running ex-

ample. If we consider for example C#1 (see Section 4.3), the quantifier-free corre-

sponding formula would be:

C#1’ G
∧

bg∈UBalise Group
(
∧

i∈1..8(i ≤ bg.balises.size→

(bg.balises[i].bg balise number ≥ 1)∧

(bg.balises[i].bg balise number ≤ 8)))

In the constraints introduced in Section 4.3, the classes for which there are no

occurring quantifiers are RBC, Linking Information, Telegram, and Balise.

For the first three classes, there is no term of the corresponding type in the con-

straints. Thus, we can consider an empty set of objects for these classes. For the

class Balise, we note that the constraint C#1’ contains 8 × |UBalise Group| terms

of type Balise. Constraints C#2-5 do not add new terms of type Balise. Thus,

we can encode the objects of type Balise with 1..8× |UBalise Group|.

7 Experimental evaluation

7.1 Implementation

The reduction procedure described in previous sections was implemented on top

of the NUSMV symbolic model checker [8]. The internal functionalities provided

by NUSMV were used as a basis for the implementation of the various steps of the

procedure (the elimination of the guarded quantifiers discussed in Section 6.2, the

finite instantiation step discussed in Section 6.3, and the conversion into an FTS of
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the resulting formula discussed in Section 6.4). The analysis of the emptiness of

the language of the resulting FTS was carried out by means of an extended version

of NUSMV, that provides abstraction refinement functionalities [7] and has been

interfaced with the MathSAT [5] Satisfiability Modulo Theory (SMT) solver. In

the following, we briefly present the Counterexample-Guided Abstraction Refine-

ment and Bounded Model Checking techniques that we used to check whether the

language of the FTS resulting from the reduction is empty.

Counterexample-Guided Abstraction Refinement (CEGAR) We check the non-

emptiness of Sϕ by means of predicate abstraction. We adopt a CEGAR loop [14],

where the abstraction generation and refinement are completely automated. The

loop consists of four phases (Fig. 3 provides a pictorial representation of the CE-

GAR loop):

NewPreds[i+1]

ACex

Refinement Model Check

Counterexample
Analysis

No CCex

CCex No ACex

AProg[i]

CProg

Preds[0]

Predicate
Abstraction

Fig. 3 The CEGAR loop.

– abstraction, where the abstract system is built according to a given set of pred-

icates;
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– verification, where the non-emptiness of the language of the abstract system is

checked; if the language is empty, it can be concluded that also the concrete

system has an empty language; otherwise, an infinite trace is produced;

– simulation: if the verification produces a trace, the simulation checks whether it

is realistic by simulating it on the concrete system; if the trace can be simulated

in the concrete system, it is reported as a real witness of the satisfiability of the

formula;

– refinement: if the simulation cannot find a concrete trace corresponding to the

abstract one, the refinement discovers new predicates that, once added to the

abstraction, are sufficient to rule out the unrealistic path.

The abstract FTS Sa = 〈Σ,Vp, Ia, Ta, Fa〉 of an FTS S = 〈Σ,V, I, T, F 〉

with regards to the set of predicates P at each iteration can be computed with the

following Boolean formulas:

Ia(V̂ ) = ∃V (I(V ) ∧
V
p∈P (v̂p ↔ p(V )))

Ta(V̂ , V̂
′) = ∃V ∃V ′(T (V, V ′) ∧

V
p∈P (v̂p ↔ p(V ) ∧ v̂′p ↔ p(V ′)))

Fa = {fa(V̂ )|fa(V̂ ) = ∃V (f(V ) ∧
V
p∈P (v̂p ↔ p(V ))) for f ∈ F}

The quantifiers are removed by passing each formula to a decision procedure, and

enumerating the satisfying assignments to the abstract variables v̂p ∈ V̂ , v̂′p ∈ V̂ ′

[17].

As in [26] and [7], I , T and each f ∈ F are first-order formulas and the com-

putation of all solutions is carried out by a SAT-modulo-Theories (SMT) solver.

In the abstract space we search for a lasso-shaped trace ŝ0, . . . , ŝk with ŝl = ŝk

for l < k such that for all fa ∈ Fa there exists a state ŝi with l ≤ i ≤ k such that
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ŝi ∈ fa (i.e. the fa fairness condition is satisfied in ŝi). This trace can be generated

by any standard model checking techniques [15].

To check whether the abstract trace corresponds to a concrete one, we encode

the simulation of the abstract trace on the concrete system into a Bounded Model

Checking (BMC) problem [3], as proposed by [16]. Since the abstract trace is

lasso-shaped, i.e. it is given by the abstract states ŝ0, . . . , ŝk with ŝl = ŝk for

l < k, we then generate the SMT formula:

I(V0) ∧
∧

0≤i<k

T (Vi, Vi+1) ∧
∧

0≤i≤k

ŝ(V̂i) ∧
∧

0≤i≤k

∧
v∈V̂

(v̂i ↔ p(Vi)) ∧
∧
v∈V

vl = vk(1)

If the formula is not satisfiable, we refine the abstraction, otherwise we have found

a concrete trace that witnesses the non emptiness of the language accepted by the

concrete FTS. As noted in [32], this concretization step is sound but not complete:

we are fixing a specific lasso shape, so it may happen that the above formula is not

satisfiable, but the counterexample is concretizable.

The initial set of predicates is empty. The new predicates discovered during the

refinement are automatically generated by analyzing the proof of the unsatisfiabil-

ity of (1). To this purpose, for instance it is possible to use the interpolation-based

techniques described in [9].

Bounded Model Checking via SMT Although incomplete, the CEGAR loop is of-

ten able to prove the inconsistency of a property ϕ by finding the right abstraction.

On the opposite, if we aim at looking for a witness of the formula’s satisfiability, a

more effective procedure is to look for a lasso-shape trace of length up to a given

bound. In this case, we encode the simulation of such trace in the concrete FTS
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with the following SMT formula:

I(V0) ∧
^

0≤i<k

T (Vi, Vi+1) ∧
_

0≤l<k

^
v∈V

vl=vk ∧
^
ψ∈F

_
l≤h<k

ψ(Vh) (2)

If the above formula is satisfiable, then we have found a concrete trace witnessing

the non emptiness of the language of the concrete FTS. If the formula is unsat-

isfiable, we increment the k in the above formula and we re-submit the resulting

formula to an SMT solver.

7.2 Case study

In this work we refer to a subset of the ETCS specifications. In particular, we refer

to 25 requirements from the subset 3 of the SRS 026 [20]. These requirements are

related to the fragments 3.4 and 3.16, that describe the structure and behavior of

the balises and balise groups (including the requirements of the running example),

and to the fragment 3.8, that is focused on the description of the structure of the

Movement Authority, i.e., the part of the trackside a given train is authorized to

move by the ground control system. The 25 requirements have been formalized in

10 classes, each one with an average of 8 attributes, and 22 constraints. We remark

that this subset contains part of the requirements we analyzed and validated during

the EuRailCheck project.

7.3 Results

We ran the experiments on a 2.20GHz Intel Core2 Duo Laptop equipped with 2GB

of memory running Linux version 2.6.24. We fixed a memory limit of 1Gb and a
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BMC k = 5 BMC k = 10 BMC k = 15 CEGAR

Name: #r,#i,#b Sat Mem Time Sat Mem Time Sat Mem Time Sat Mem Time

(MB) (sec) (MB) (sec) (MB) (sec) (MB) (sec)

SAT 408,132,200 Y 116.2 31.65 Y 170.6 75.50 Y 228.8 131.14 - - -

SCEN 1 440,132,200 Y 118.8 42.49 Y 174.0 63.74 Y 234.1 197.27 - - -

SCEN 2 440,132,232 Y 120.6 44.97 Y 175.9 85.71 Y 236.1 119.06 - - -

SCEN 3 442,132,236 Y 121.9 32.79 Y 180.2 69.07 Y 239.9 105.44 - - -

PROP 408,132,200 - - T.O. - - - - - - N 94.0 3.03

Table 2 The results of the experimental evaluation.

CPU limit of 10min. All the data and binaries necessary to reproduce the results

here presented are available at http://es.fbk.eu/people/tonetta/tests/

sosym09/.

We checked whether the specification is consistent, i.e. if it is satisfiable (SAT).

Then, we validated the formalization with 3 different scenarios (SCEN {1,2,3}),

checking the satisfiability of the conjunction of the formula representing the sce-

nario and the whole specification. Finally, we checked a property (PROP), proving

that the conjunction of the specification with the negation of the formula is unsatis-

fiable. For each case we considered the validation problem with cb = 4, cacb = 10.

We asked the tool to generate witness traces of different increasing lengths k (5,

10, and 15 respectively) using BMC with SMT techniques, and when the BMC ap-

proach was not able to conclude, we tried with the CEGAR approach. We obtained

the results reported in Table 2. In the table we also report the size, in terms of num-

ber of variables of the FTS we submit to the underlying verification tool. (We use

#r,#i,#b with the meaning, r Real variables, i Integer variables, and b Boolean

variables.) We use T.O. to report that the tool was not able to find a solution in
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the given time limit. We were able to generate witnesses for the satisfiability and

for the compatibility with the 3 considered scenarios using BMC with SMT tech-

niques quite efficiently. For this reason, we have not tried to use the more expensive

CEGAR approach (that it is more suitable to prove unsatisfiability of the formula).

While checking the PROP problem, BMC techniques reached time out with bound

k = 5. We thus tried to prove with CEGAR whether the property holds. In a

few seconds, CEGAR concluded that the language of the abstract FTS is empty,

thus showing that the property holds. The abstraction refinement was completely

automatic and no manual intervention was necessary. This demonstrates that the

different checking techniques are able to complement each other.

7.4 Discussion on scalability

The results show that the validation is feasible. The performance of the valida-

tion engine depends on the number of considered requirements. Nevertheless, the

property-based approach, by formalizing every requirement with a different for-

mula, allows us to partition the requirements in different sets controlling the com-

plexity of the analysis. Moreover, the checks based on BMC depend on the length

of the shortest trace satisfying the requirements; while the checks based on CE-

GAR depend on the predicates necessary to prove the inconsistency. In our experi-

ence, most of time, the problems are satisfiable and the length of witnessing traces

is sufficiently small.
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8 Related Work

Several attempts to the formal specification and validation of requirements have

been proposed. The works that aim at solving problems similar to the ones tackled

in this paper are Alloy [25], Formal Tropos [22] and OCL [30].

Alloy [25] is a language for describing structural properties of a system rely-

ing on a small kernel formal language based on the subset of Z [33] that allows

for object modeling. An Alloy specification consists of basic structures represent-

ing classes together with constraints and operations describing how the structures

change dynamically. Alloy only allows to specify attributes belonging to finite

domains (no Reals or Integers). Thus, it would have been impossible to model ex-

actly the Train position of the running example presented in this paper in Alloy,

and some manual abstraction would be necessary. Although Alloy supports the

“next” operator (“prime” operator), that allow to specify the temporal evolution

of a given object, it does not allow to express properties using LTL and regular

expressions (at the basis of the logic presented in this paper). Thus, it is limited to

state or transition invariants, and it does not allow to specify fairness conditions

that are crucial in our context. Similarly to the approach proposed in this paper,

Alloy supports two kinds of analysis: simulation and checking. In simulation, the

consistency of an invariant or operation is demonstrated by generating witness (a

state or a transition). In checking, a consequence of the specification is tested by

attempting to generate a counterexample of a user specified length. Alloy, in order

to perform the verification, requires the user to specify the bounds on the maxi-

mum number of class instances and a limit for the counterexample/witness length.
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Thus, it is only able to prove/disprove a property for the given bounds and for the

given length. The approach presented in this paper overcomes these problems with

the automatic finite instantiation that preserves satisfiability and with a reduction

to known verification techniques that allow to prove/disprove a property regardless

of any bound on the witness/counterexample length.

Tropos [4,34] is an agent-oriented software engineering methodology which

provides a visual modelling language that can be used to define an informal speci-

fication, allowing to model intentional and social concepts, such as those of actor,

goal, and social relationships between actors. Formal Tropos (FT) [22] extends a

Tropos specification with annotations that characterize the valid behaviors of the

model. A FT specification consists of a sequence of class declarations such as ac-

tors, goals, and dependencies. Each declaration associates a set of attributes to the

class. The temporal behavior of the instances is specified by means of temporal

constraints expressed in a typed first-order LTL. FT is similar in spirit to the ap-

proach proposed in this paper. The difference between the proposed approach and

FT are in the expressiveness of the formalization language. FT is limited to LTL

temporal operators, while this approach allows to express constraints and proper-

ties with a logic that mixes LTL with regular expression (which is more expres-

sive than LTL). FT, like Alloy, requires for the formal analysis the specification

of bounds on the maximum number of class instances, and can only deal with fi-

nite domain class attributes and constraints over such finite domain values. Our

novel approach does not require the specification of the bounds on the number of
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class instances, and allows for the use of class attributes of infinite range like e.g.

Integers and Reals.

OCL [30] is a formal language developed as a business modelling language

to express additional constraints about the objects in an UML model. It is a pure

specification language, so an OCL expression is guaranteed to be without side

effects on the model. This means that the state of the system will never change

because of the evaluation of an OCL expression, even though an OCL expression

can be used to specify a state change. In fact, in a post-condition, and only in

this context, the expression can refer to values for each property of an object (via

the operator @pre) at two different time instants: the value of a property at the

start of the operation or method and the value of a property upon completion of

the operation or method. This allows to describe and to predicate on the temporal

evolution of a property. Similarly to Alloy, OCL cannot express some temporal

properties, such as fairness. In OCL no commitment is done on the possibility to

execute analysis, such as model checking, moreover, as a general observation, the

language is not decidable.

As far as the combination of temporal with first-order state formulas logic is

concerned, we remark that it was proposed by Manna and Pnueli in [28,29] as

specification language for reactive systems. Many works studied the decidability

of particular fragments of the logic (cf., e.g., [24,18,23]). We also considered a

fragment of the language, by restricting temporal quantifications to the guarded

quantifiers over bounded sets of objects and to implicit freezing quantifiers that

relate next and current values in the transition expressions. Rather than focusing
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on which are the decidable theories we can use in the state formulas, our work

focus more on object models, their specification and validation.

9 Conclusions

In this paper, we have proposed a formalism for the representation and the analysis

of requirements. The formalism builds on class diagrams, and combines fragments

of first order logic (to describe rich data and relationships between attributes and

entities) with temporal operators (to describe the evolution of the scenarios). We

proposed a procedure to check the satisfiability based on the finite domain encod-

ing, on the reduction to language non-emptiness for FTS, and on the application

of verification techniques based on SMT and abstraction-refinement. We imple-

mented the procedure within an extended version of the NUSMV model checker.

The language has been used by railway experts within the EuRailCheck project

funded by the European Railway Agency, with the purpose of formalizing and val-

idating a significant subset of the ETCS specification. We consider as case study

some paradigmatic requirements and we prove that the specification is satisfiable,

that few desired scenarios are allowed, and that a property holds.

In the future, we plan to extend the expressiveness of the formalism to encom-

pass richer data. We will also investigate enhancements in the verification engine,

along the lines outlined in [10], and to more aggressive (problem-specific) ab-

straction techniques. Finally, we will investigate issues related to contract-based

specifications, where only a part of the scenario is considered to be controllable,

and to address problems beyond satisfiability, such as realizability and synthesis.
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