Symbolic Fault Tree Analysisfor Reactive Systems

Marco Bozzano, Alessandro Cimatti, and Francesco Tapparo*

ITC-IRST, Via Sommarive 18, 38050 Trento, Italy
bozzano@rst.itc.it
ph.: +39 0461 314367, fax: +39 0461 302040

Abstract. Fault tree analysis is a traditional and well-established technique for
analyzing system design and robustness. Its purpose is to identify sets of basic
events, called cut sets, which can cause a given top level event, e.g. a system
malfunction, to occur. Generating fault trees is particularly critical in the case of
reactive systems, as hazards can be the result of complex interactions involving
the dynamics of the system and of the faults. Recently, there has been a growing
interest in model-based fault tree analysis using formal methods, and in particular
symbolic model checking techniques. In this paper we present a broad range of
algorithmic strategies for efficient fault tree analysis, based on binary decision
diagrams (BDDs). We describe different algorithms encompassing different di-
rections (forward or backward) for reachability analysis, using dynamic cone of
influence techniques to optimize the use of the finite state machine of the system,
and dynamically pruning of the frontier states. We evaluate the relative perfor-
mance of the different algorithms on a set of industrial-size test cases.

1 Introduction

The goal of safety analysis is to investigate the behavior of a system in degraded condi-
tions, that is, when some parts of the system are not working properly, due to malfunc-
tions. Safety analysis includes a set of activities, that have the goal of identifying and
characterizing all possible hazards, and are performed in order to ensure that the system
meets the safety requirements that are required for its deployment and use. Safety anal-
ysis activities are particularly critical in the case of reactive systems, because hazards
can be the result of complex interactions involving the dynamics of the system [29].

Recently, there has been a growing interest in model-based safety analysis [8, 6,4,
1,15,25,17,18,9, 7] using formal methods, and in particular symbolic model checking
techniques. Traditionally, safety analysis activities are performed manually, and rely
on the skill of the safety engineers, hence they are an error-prone and time-consuming
activity, and they may rapidly become impractical in case of large and complex systems.
Safety analysis based on formal methods, on the other hand, aims at reducing the effort
involved and increase the quality of the results, by focusing the effort on building formal
models of the system [8, 7], rather than carrying out the analyses.

Fault Tree Analysis (FTA) [35] is one of the most popular safety analysis activi-
ties. It is a deductive, top-down method to analyze system design and robustness. It

* This work has been partly supported by the E.U.-sponsored project ISAAC, contract no. AST3-
CT-2003-501848.

involves specifying a top level event (TLE hereafter) and a set of possible basic events
(e.g., component faults); the goal is the identification of all possible cut sets, i.e. sets of
basic events which cause the TLE to occur. Fault trees provide a convenient symbolic
representation of the combination of events causing the top level event, and they are
usually represented as a parallel or sequential combination of logical gates. To allow a
quantitative evaluation, the probability of the events is also included in the fault tree.

In this paper, we focus on the problem of FTA for reactive systems, i.e. systems with
infinite behavior over time. The problem is substantially harder than the traditional case,
where the system is abstracted and modeled to be state-less and combinational, due to
the presence of dynamics, that can influence the presence and the effect of failures.

The main contribution of the paper is the definition, implementation and evaluation
of a broad range of algorithms and strategies for efficient fault tree analysis of reactive
systems. The algorithms are based on (extended) reachability analysis of a model of the
system, and apply to a general framework, where different dynamics for failure mode
variables (e.g. persistent and sporadic faults) are possible, thus extending the work in
[7]. We point out several distinguishing features. First, fault trees can be constructed
both by forward and backward search; it is indeed well known that depending on the
structure of the state space of the reactive system, dramatic differences in performance
can result, depending on the search direction. Second, backward search is optimized
with the use of dynamic cone of influence (DCOI), which consists in a lazy generation
of restricted models to be used for computing the backward search steps. Third, we
propose an optimization called dynamic pruning, applicable both to the forward and the
backward reachability algorithms, that detects minimal cut sets during the search, and
thus can limit the exploration and reduce the number of required iterations.

The algorithms leverage techniques borrowed from symbolic model checking, in
particular Binary Decision Diagrams (BDDs for short), that enable the exploration of
very large state spaces. The algorithms have been implemented and integrated within
FSAP [16,7], a platform aiming at supporting design and safety engineers in the de-
velopment and in the safety assessment of complex, reactive systems. The platform
automates the generation of artifacts that are typical of reliability analysis, for example
failure mode and effect analysis tables, and fault trees. FSAP consists of a graphical in-
terface and an engine based on the NuSMV model checker [23, 11]. NuSMV provides
support for user-guided or random simulation, as well as standard model checking ca-
pabilities like property verification and counterexample trace generation.

We experimentally evaluate the different algorithms on a set of scalable benchmarks
derived from industrial designs. The results show that the forward and backward search
directions are indeed complementary, and the proposed optimizations result in a sub-
stantial performance improvement.

The paper is structured as follows. In Sect. 2 we give some background about model
checking reactive systems; in Sect. 3 we discuss fault tree analysis; in Sect. 4 we de-
scribe the algorithms for fault tree generation; in Sect. 5 we outline the implementation
in the FSAP platform; in Sect. 6 we present the experimental evaluation; finally, in Sect.
7 we discuss some related work, and in Sect. 8 we draw some conclusions and outline
future work.

2 Background

2.1 Modeling Reactive Systems

We are interested in the analysis of reactive systems, whose behavior is potentially
infinite over time, such as operating systems, physical plants, and controllers. Reactive
systems are modeled as Kripke structures.

Definition 1 (Kripke Structure). Let P be a set of propositions. A Kripke structure is
atuple M = (S,Z, R, L) where: S is a finite set of states, Z C S is the set of initial
states; R C S x & is the transition relation; £ : S — 2% is the labeling function.

We require the transition relation to be total, i.e. for each state s there exists a suc-
cessor state s’ such that R(s,s’). We notice that Kripke structures can model non-
deterministic behavior, by allowing states to have multiple successors. The labeling
function associates each state with information on which propositions hold in it.

An execution of the system is modeled as a trace (also called a behavior) in such a
Kripke structure, obtained starting from a state s € Z, and then repeatedly appending
states reachable through R.

Definition 2 (Trace). Let M = (S,Z, R, L) be a Kripke structure. A trace for M is a
sequence ™ = sg, $1,- .., Sk Such that sg € Z and R(s;—1,s;) for 1 <i < k.

A state is reachable if and only if there exists a trace containing it. Given the totality
of R, a trace can always be extended to have infinite length. We notice that systems
are often presented using module composition; the resulting structure can be obtained
by composing the sub-structures, but its state space may be exponential in the number
of composed modules. In the following we confuse a system and the Kripke structure
modeling it; we also assume that a Kripke structure M = (S,Z, R, L) is given.

2.2 Symbolic Model Checking

Model checking is a widely used formal verification technique. While testing and simu-
lation may only verify a limited portion of the possible system behaviors, model check-
ing provides a formal guarantee that some given specification is obeyed, i.e. all the
traces of the system are within the acceptable traces of the specification. Given a sys-
tem M, represented as a Kripke structure, and a requirement ¢, typically specified as a
formula in some temporal logic, model checking analyzes whether M satisfies ¢, writ-
ten M = ¢. Model checking consists in exhaustively exploring every possible system
behavior, to check automatically that the specifications are satisfied.

In its simpler form, referred to as explicit state, model checking is based on the
expansion and storage of individual states. These techniques suffer from the so-called
state explosion problem, i.e. they need to explore and store the states of the state tran-
sition graph. A major breakthrough was enabled by the introduction of symbolic model
checking [21]. The idea is to manipulate sets of states and transitions, using a logical
formalism to represent the characteristic functions of such sets. Since a small logical
formula may admit a large number of models, this results in many practical cases in a

Fig. 1. A BDD for the formula (a1 < a2) A (b1 < b2)

very compact representation which can be effectively manipulated. Another key issue is
the use of an efficient machinery to carry out the manipulation. For this, we use Ordered
Binary Decision Diagrams [10] (BDDs for short).

BDDs are a representation for boolean formulae, which is canonical once an order
on the variables has been established. Fig. 1 depicts the BDD for the boolean formula
(a1 < ag) A (by <> by), using the variable ordering a1, as, b1, ba. Solid lines repre-
sent “then” arcs (the corresponding variable has to be considered positive), dashed lines
represent “else” arcs (the corresponding variable has to be considered negative). Paths
from the root to the node labeled with “1” represent the satisfying assignments of the
represented boolean formula (e.g., a1 < 1,a2 < 1,b; < 0,bs < 0). Efficient BDD
packages are available. They rely on caching and uniqueness in order to maximize reuse
among BDDs, provide memoization for the operations, implement constant time nega-
tion by means of pointer’s complement, and include a number of efficient re-ordering
methods. Despite the worst-case complexity (e.g. certain classes of boolean functions
are proved not to have a polynomial-size BDD representation for any order), in practice
it is possible to represent Kripke structures effectively.

We now show how a Kripke structure can be symbolically represented. Without
loss of generality, we assume that there exists a bijection between S and 27 (if the
cardinality of S is not a power of two, standard constructions can be applied to extend
the Kripke structure). Each state of the system assigns a valuation to each variable in
P. We say that a proposition p holds in s, written s |= p, if and only if p € L(s).
Similarly, it is possible to evaluate a boolean formula ¢(P), written s = @(P). The
representation of a Kripke structure with BDDs is as follows. For each proposition in P
we introduce a BDD variable; we use z to denote the vector of such variables, that we
call state variables, and we assume a fixed correspondence between the propositions in
‘P and the variables in . We use z to denote the vector of variables representing the
states of a given system. We write Z(z) for the BDD (corresponding to the formula)
representing the initial states. To represent the transitions, we introduce a set of “next”
variables 2/, used for the state resulting after the transition. A transition from s to s’ is
then represented as a truth assignment to the current and next variables. We use R(z, z)
for the formula representing the transition relation expressed in terms of those variables.

Operations over sets of states can be represented by means of boolean operators.
For instance, intersection amounts to conjunction between the formulae representing
the sets, union is represented by disjunction, complement is represented by negation,
and projection is realized with quantification. BDDs provide primitives to compute effi-
ciently all these operations.

3 Fault Tree Analysisfor Reactive Systems

Safety analysis is a fundamental step in the design of complex, critical systems. The idea
is to analyze the behavior of the system in presence of faults, under the hypothesis that
components may break down. Model-based safety analysis is carried out on formally
specified models which take into account system behavior in the presence of faults. The
first step is to identify a set of state variables, called failure mode variables, to denote
the possible failures, and to identify a set of properties of interest. Intuitively, a failure
mode variable is true in a state when the corresponding fault occurs (different failure
mode variables are associated to different faults). Once this is done, different forms
of analysis investigate the relationship between failures and the occurrence of specific
events (called top level events), typically the violation of some of the properties. In the
rest of this section, we assume that a set of failure mode variables F C P is given.

Two traditional safety analysis activities are Failure Mode and Effects Analysis
(FMEA), and Fault Tree Analysis (FTA). FMEA analyzes which properties are lost,
under a specific failure mode configuration, i.e. a truth assignment to the variables in
F; the results of the analysis are summarized in a FMEA table. FTA progresses in the
opposite direction: given a property, the set of causes has to be identified that can cause
the property to be lost. In the rest of this paper we focus on FTA (although many of the
techniques described here may be applied also to FMEA).

Traditionally, safety analysis is carried out on a combinational view of the system.
Here we specifically focus on reactive systems. In this context, different models of
failure may have different impact on the results. Moreover, the temporal relationships
between failures may be important, e.g. fault f; may be required to occur before another
fault fo (see [9] for a proposal to enrich the notion of minimal cut set).

Our framework is completely general: it encompasses both the case of permanent
failure modes (once failed, always failed), and the case of sporadic or transient ones,
that is, when faults are allowed to occur sporadically (e.g., a sensor showing an invalid
reading for a limited period of time), or when repairing is possible.

Fault tree analysis [35] is an example of deductive analysis, which, given the spec-
ification of an undesired condition, usually referred to as a top level event (TLE), sys-
tematically builds all possible chains of one of more basic faults that contribute to the
occurrence of the event. The result of the analysis is a fault tree, representing the logical
interrelationships of the basic events that lead to the undesired state. In its simpler form
[7] a fault tree can be represented with a two-layer logical structure, namely a top level
disjunction of the combinations of basic faults causing the top level event. Each com-
bination, which is called cut set, is in turn the conjunction of the corresponding basic
faults. In general, logical structures with multiple layers can be used, for instance based
on the hierarchy of the system model [3]. A cut set is formally defined as follows.

Definition 3 (Cut set). Let M = (S,Z, R, L) be a system with a set of failure mode
variables 7 C P, let FC' C F be a fault configuration, and TLE € P. We say that FC
is a cut set of TLE, written ¢cs(FC, TLE) if there exists a trace sg, s1, . .., s for M
suchthat: i) s E TLE; ii)Vf € F fe€ FC < 3 €{0,...,k} (s; E f).

Intuitively, a cut set corresponds to the set of failure mode variables that are active at
some point along a trace witnessing the occurrence of the top level event. Typically,
one is interested in isolating the fault configurations that are minimal in terms of failure
mode variables, that is, those that represent simpler explanations, in terms of faults,
for the occurrence of the top level event. Under the hypothesis of independent faults,
a minimal configuration is a more probable explanation with respect to a configuration
being a proper superset, hence it has a higher importance in reliability analysis. Minimal
configurations are called minimal cut sets and are formally defined as follows.

Definition 4 (Minimal Cut Sets). Let M = (S,Z,R, L) be a system with a set of
failure mode variables 7 C P, let F = 27 be the set of all fault configurations, and
TLE € P. We define the set of cut sets and minimal cut sets of TLE as follows:

CS(TLE) ={FC € F|cs(FC,TLE)}
MCS(TLE) = {cs € CS(TLE) | Vcs' € CS(TLE) (¢s' C es = ¢s' =cs)}

We remark that the notion of minimal cut set can be extended to the more general notion
of prime implicant (see [14]), which is based on a different definition of minimality,
involving both the activation and the absence of faults. We omit the formal definition
for lack of space. We also remark that, although not illustrated in this paper, the fault
tree can be complemented with probabilistic information, as done, e.g., in the FSAP
platform [16]. The probability of occurrence of the top level event can be computed on
the basis of the probabilities of the basic faults.

Based on the previous definitions, fault tree analysis can be described as the activ-
ity that, given a TLE, involves the computation of all the minimal cut sets (or prime
implicants) and their arrangement in the form of a tree.

4 Symbolic Fault Tree Analysis

We now review the different algorithms for fault tree generation, available in FSAP.
We start in Sect. 4.1 with the standard, forward algorithm that we described in [7]. In
this context, we extend the algorithm in order to support sporadic failure modes, which
were not allowed in [7]. Then, we describe a novel backward algorithm in Sect. 4.2,
and its optimization based on dynamic cone of influence in Sect. 4.3; finally, in Sect.
4.4 we introduce an optimization called dynamic pruning, which is applicable both to
the forward and the backward algorithms.

In the following, we assume that a Kripke structure M = (S, Z, R, L) is given, and
we use the following notations. First, i denotes the vector of failure variables. Given
two vectors v = vy ... v, and w = wy ... wy, the notation v = w stands for /\f:1 (v; =
w;). We use ITE(p,q,r) (if-then-else) to denote ((p — ¢) A (—p — r)). Finally,
given a set of states (), the image of @ is defined as {s’' | Is € Q. R(s,s')}. It can

function FTA-Forward (M, T'le) function FTA-Backward (M, T'le)

1 M := Extend(M,R°); 1 M = Extend(M,R?);

2 Reach :=IN (o= f); 2 Reach := Tleﬂ(g:i);

3 Front:=ZIN(=f); 3 Front :=TleN (g = [);

4 while(Front # 0) do 4 while(Front # 0) do

5 temp := Reach; 5 temp := Reach;

6 Reach := Reach U 6 Reach := Reach U
fwd_img(M, Front); bwd_img(M, Front);

7 Front := Reach\temp; 7 Front := Reach\temp;

8 end while; 8 end while;

9 CS := Proj(o, Reach N Tle); 9 CS := Proj(g, ReachNT);

10 MCS := Minimize(CS); 10 MCS := Minimize(CS);

11 return Map o s (MCS); 11 return Map 4. ;(MCS);

Fig. 2. Forward and backward algorithms

be encoded symbolically as follows: fwd_img(M,Q(z)) = Jz. (Q(z) A R(z,z')).
Similarly, the preimage of @ is defined as {s | 3s’ € Q. R(s, s’)} and can be encoded
as bud img(M, Q(2)) = J'. (Q(z') A R(z,z')).

4.1 Forward Fault Tree Analysis

The forward algorithm starts from the initial states of the system and accumulates, at
each iteration, the forward image. In order to take into account sporadic failure modes
(compare Def. 3, condition ¢7), at each iteration we need to “remember” if a failure
mode has been activated. To this aim, for each failure mode variable f; € F, we intro-
duce an additional variable o; (once f;), which is true if and only if f; has been true at
some point in the past. This construction is traditionally referred to as history variable,
and is formalized by the transition relation R° given by the following condition:

/\ ITE(0;,05,0; < f!)
fieF

Let Extend(M,R°) be the Kripke structure obtained from M by replacing the
transition relation R with the synchronous product between R and R°, in symbols
R(z,z') A R°(x,2") and modifying the labeling function £ accordingly.

The pseudo-code of the algorithm is described in Fig. 2 (left). The inputs are M
and T'le (the set of states satisfying the top level event). A variable Reach is used to
accumulate the reachable states, and a variable F'ront to keep the frontier, i.e. the newly
generated states (at each step, the image operator needs to be applied only to the latter
set). Both variables are initialized with the initial states, and the history variables with
the same value as the corresponding failure mode variables. The core of the algorithm
(lines 4-8) computes the set of reachable states by applying the image operator to the
frontier until a fixpoint is reached (i.e, the frontier is the empty set). The resulting set
is intersected (line 9) with T'le, and projected over the history variables. Finally, the

minimal cut sets are computed (line 10) and the result is mapped back from the history
variables to the corresponding failure mode variables (line 11).

Note that all the primitives used in algorithm, including the minimization routine
(see [14,26]) can be realized using BDD data structures, as explained in Sect. 2.2. For
instance, set difference (line 7) can be defined as Reach(z) A ~temp(z), and the map-
ping function (line 11) as Map o,y (#(2)) = Jo.(¢(2) A (2= f)).

4.2 Backward Fault Tree Analysis

The backward algorithm performs reachability via the preimage operator bwd_img.
This time, we need to “remember” if a failure mode has been activated at some step in
the future. To this aim, for each f; € F we introduce an additional variable g; (these
variables are referred to as guess or prophecy variables, and they can be seen as the
dual of history variables). Let RY be the transition relation defined by the condition
Nper ITE(g;, 9is gi < fi) and Extend(M, R7) be defined as in Sect. 4.1.

The backward algorithm is presented in Fig. 2 (right). The core (lines 4-8) is similar
to forward one. It starts from the set of states satisfying the top level event, with the ad-
ditional constraints that the prophecy variables have been initialized with the same value
as the corresponding failure mode variables, and it performs backward reachability un-
til a fixpoint is reached. The resulting set is intersected (line 9) with the initial states,
and projected over the prophecy variables. Finally, the minimal cut sets are computed
(line 10) and the result is mapped back to the failure mode variables (line 11).

4.3 Backward Fault Tree Analysis With Dynamic Cone Of Influence

The algorithm for backward fault tree analysis can be optimized by means of the fol-
lowing technique, referred to as Dynamic Cone of Influence reduction (DCOI). The
idea is based on the fact that often models enjoy some local structure, so that the next
value of a certain variable only depends on a subset of the whole state variables. Sup-
pose that the top level event T'le only depends on a limited set of variables, say z° C z.
Thus, when computing the preimage of T'le (line 6 in Fig. 2, right), it is possible to
consider only those parts of the Kripke structure that influence the next value of T'le.
Such a restricted Kripke structure, referred to as MY, is typically much simpler than
the whole M, and preimages can be computed much more effectively. The resulting
preimage may also depend on a restricted set of variables ! C z, and at the second
step the corresponding M! is used to compute the preimage. The process is iterated
until a fix point is reached; in the worst case, the whole machine is taken into account,
but it is possible that convergence is reached before the whole M is constructed.

The structure of the algorithm (see Fig. 3, left) is the same as the standard backward
algorithm. However, at each step ¢, a different Kripke structure is used, instead of the
global M (lines 7 and 8); the dcoi_get primitive encapsulates the process of lazily
constructing the Kripke structure necessary for the i-th preimage computation.

4.4 Dynamic Pruning

All the algorithms previously discussed can be optimized by using dynamic pruning. We
describe below the extension of the forward algorithm (the other ones can be extended

function FTA-Backward-DCOI (M, T'le) function FTA-Forward-Pruning (M, T'le)

1 i:=0; 1 CS =0

2 M := Extend(M,R?Y); 2 M = Extend(M,R°);

3 Reach :=TleN (g = f); 3 Reach :=Z N (0= f);

4 Front:=Tlen(g = f); 4 Front:=TnN(o=f);

5 while(Front #) do 5 while(Front # () do

6 temp := Reach,; 6 CS :=CS U Proj(o, Reach N Tle);

7 M = dcoi_get(M, Tle, i); 7 temp := Reach;

8 Reach := Reach U 8 Reach := Reach U
bwd_img(M?, Front); fwd_img(M, Front),

9 Front := Reach\temp; 9 Front := Reach\temp;

10 1:=1+1 10 Front := Front\Widen(CS);

11 end while; 11 end while;

12 CS := Proj(g, Reach N I); 12 MCS := Minimize(CS);

13 MCS := Minimize(CS); 13 return Map,—.;(MCS);

14 return Map 4. (MCS);

Fig. 3. Backward algorithm, using DCOI; forward algorithm, with pruning

similarly). The idea is that, at each iteration (lines 4-8 in Fig. 2), it is safe to discard
a state, provided we know that it will not contribute to the set of minimal cut sets. In
particular, this is true whenever we know that the failure modes being active in that state
are a superset of a fault configuration that has already been proved to be a cut set. The
implementation (see Fig. 3, right) is as follows. At each iteration (line 6) a partial set of
cut sets C'S is computed. Based on this set, all the states on the frontier, whose active
failure modes are a superset of any fault configuration in C'S, are pruned (line 10). The
primitive Widen is defined as Widen(CS) = {s | Ics € CS (cs C s)}. Intuitively, it
collects all the states that include any element in C'S as a proper subset (the definition
can be extended to the more general case of prime implicants). Typically, the use of
dynamic pruning may result in a significant reduction of the search space.

5 Implementation in the FSAP Platform

In this section we discuss the implementation of the algorithms described in Sect. 4
in the FSAP platform [16,7]. As advocated in [8], it is important to have a complete
decoupling between the system model and the fault model. For this reason, the FSAP
platform relies on the notions of nominal system model and extended system model. The
nominal model formalizes the behavior of the system when it is working as expected,
whereas the extended model defines the behavior of the system in presence of faults.
The decoupling between the two models is achieved in the FSAP platform by gen-
erating the extended model automatically via a so-called model extension step. Model
extension takes as input a system and a specification of the faults to be added, and auto-
matically generates the corresponding extended system. It can be formalized as follows.
Let M = (S,Z,R, L) be the nominal system model. A fault is defined by the propo-

sition p € P to which it must be attached to, and by its type, specifying the “faulty
behavior” of p in the extended system (e.g., p can non-deterministically assume a ran-
dom value, or be stuck at a particular value). FSAP introduces a new proposition pt™,
the failure mode variable, modeling the possible occurrence of the fault, and two further
propositions pf'@¢? and pF=*, with the following intuitive meaning. The proposition
pFailed models the behavior of p when a fault has occurred. For instance, the follow-
ing condition (where S’ is the set of states of the extended system) defines a so-called

inverted failure mode (that is, p™**¢¢ holds if and only if p does not hold):
Vs €S (s pfled «— st p) (1)

The proposition pE””t models the extended behavior of p, that is, it behaves as the
original p when no fault is active, whereas it behaves as p*"*!¢? in presence of a fault:

VseS shp™ = (s pf" = skp) 2
VSES/ S':pFMi(S':pEzt — S):pFailed) (3)

The extended system MZ%t = (S’ 7' R’ L') can be easily defined in terms of the
nominal system by adding the new propositions, modifying the definition of the (ini-
tial) states and of the transition relation, and imposing the conditions (1) (for an inverted
failure mode), (2) and (3). We omit the details for the sake of simplicity. Finally, sys-
tem extension with respect to a set of propositions can be defined in a straightforward
manner, by iterating system extension over single propositions.

The system model resulting from the extension step is used in FSAP to carry out
the analyses. The algorithms described in Sect. 4 are implemented in FSAP on top of
the NuSMYV tool [23, 11], using BDDs as explained in Sect. 2.2 (we refer to Sect. 8 fora
discussion on alternative algorithms). The FSAP platform can be used to compute both
the minimal cut sets and the prime implicants of a given top level event. In addition,
FSAP can compute the probability of the top level event, on the basis of the probabilities
of the basic faults, under the hypothesis of independent faults.

6 Experimental Evaluation

In this section we describe the experimental evaluation we carried out. Five algorithms
have been evaluated: forward algorithm (FWD in the following), forward algorithm
with dynamic pruning (FWD-PRUN), backward algorithm (BWD), backward algo-
rithm with DCOI (DCOI), and backward algorithm with DCOI and dynamic pruning
(DCOI-PRUN). Two different test-cases have been used. Both models are of industrial
size and have been developed inside the ISAAC project'. We remark that the models
are covered by a non-disclosure agreement, hence they are only briefly described.

The first model (referred to as “TDS model”) is a model of a subsystem of an air-
craft. It consists of a mechanical and a pneumatic line, driving a set of utilities, and
being controlled by a central unit. Faults are attached to different components of the
two lines. We ran different experiments by limiting the faults that can be active at any

"http://ww. i saac-fp6.org

time: in the simplest experiment only 2 faults out of 34 are active. The second test-case
(referred to as “Cassini model”) is a model of the propulsion system of the Cassini-
Huygens spacecraft. The propulsion system is composed of two engines fed by redun-
dant propellant/gas circuit lines. Each line contains several valves and pyrovalves (a
pyrovalve being a pyrotechnically actuated valve, whose status — open or close— can
be changed at most once). Faults are attached to the engines, the propellant/gas tanks,
and the (pyro)valves. We built several variants of the Cassini model by modifying (in-
creasing the redundancy of) the (pyro)valve layer located between the propellant tanks
and the engines. The property used to generate the fault tree is related to a correct input
pressure in (at least one of the) engines in presence of a correct output pressure from
the gas and the propellant tanks.

We ran each experiment with a different invocation of the model checker. For each
model, we list the number of minimal cut sets (column MCS). For each run, we report
the total usage of time (column T, in seconds — in parentheses the fraction of time spent
for compiling the model) and memory (column M, in Mb), and the number of iterations
needed to reach the fixpoint (column K). Compilation includes parsing, encoding of
the variables, and — for all the algorithms except DCOI and DCOI-PRUN - building of
the Kripke structure into BDD (the low compilation time for DCOI and DCOI-PRUN is
due to the fact that building of the Kripke structure is delayed). The experiments have
been run on a 2-processor machine equipped with Intel Xeon 3.00GHz, with 4Gb of
memory, running Linux RedHat Enterprise 4 (only one processor was allowed to run
for each experiment). The time limit was set to 1 hour and the memory limit to 1 Gb. A
‘7’ in the time or memory columns stands for a time-out or memory-out, respectively.

The algorithms have been implemented in NuSMV 2.4.1, and run with the follow-
ing options. In both cases, we used static variable ordering. The motivation is to allow
for a fair comparison between the relative performances of the different algorithms,
as dynamic re-ordering could affect the performances in an unpredictable manner, de-
pending on how the re-ordering is performed inside the BDD package. We notice that,
in general, a good variable ordering is crucial to achieve the best performances, and
typically dynamic re-ordering over-performs static ordering. For the TDS model, given
the high complexity of the model, we used an off-line pre-computed variable ordering,
which has been passed to NuSMV at command line (option - i). For the Cassini model,
we used a pre-defined static ordering available in NuSMV (option - var s_or der
| exi cogr aphi c). Furthermore, for the Cassini model we disabled conjunctive par-
titioning (option - "ONO), in order to purify the results of the DCOI and DCOI-PRUN
algorithms from the effect of a better of worse partitioning choice (for the TDS model,
this option was not necessary, as it will be evident from the experimental data).

The experimental results are reported in Figs. 4 and 5. The first comment is that
there is great variance of performance in the different algorithms. Proceeding forwards
appears to be extremely effective in the TDS model, while for the Cassini model, back-
ward search is very effective. This can be partly justified by the different structure of
the two models: complex but mostly flat for the TDS model, deeply layered (with the
level of layering increasing with the complexity of the model instance) for the Cassini
model. In general, as in model checking, the nature of the state spaces may dramatically

NR_FAIL|MCS FWD FWD-PRUN BWD | DCOI |DCOI-PRUN

T |M|K T |M|K T|M|KT|M|KT|M| K

2 2 58.7(8.2) [30(62] 9.3(8.2) |26|11|7 -1 -1-17 -

3 3 102.9 (8.5) |47 |67| 10.0(8.5) |26 |14|7 -1 -1-17 -

4 4 | 259.0(8.6) |67 |69 12.1(8.6) |27 |14|7 1T -1-1T -

5 5 616.3 (8.9) |138|69| 15.7(8.9) |26 (14|71 -1 -1-17 -

6 6 | 521.6(9.4) |96 |69 13.8(9.4) |27 |14|7 -1 -1-17 -

7 7 609.0 (9.5) [131|69| 16.2(9.5) |27 |14|7 -1 1-1T -

8 8 656.3 (9.6) [124|69| 16.5(9.6) |27 |14|7 I -1-1T -

9 8 [1141.9 (10.0){187|69| 16.7 (10.0) |27 (14|17 -1 - 117 -

10 8 |2371.5(10.1)|318(69| 19.7 (10.1) |27 |14|T 1T -1-1T -

11 8) - | -] 162 (10.2) |27 (14|71 -1 -1-1T -

12 8) - |- 17.4(0.4) |27 |14|7 -1 -1-17 -

13 8) - | -1209@10.7) |28 |14|7 I -1-1T -

14 8) - | -] 324 (11.0) |28 |14]7 1T -1-1T -

15 8) - -] 252(1.0) |28 |14|T -1 -1-17 -

16 8) - | -] 263(11.0) |28 (14]7 1T -1-1T -

17 8) - | -] 25.0(11.7) |28 |14]7 1T -1-1T -

18 8) - | -] 2622.0) |29 (14|71 -1 -1-17 -

19 8) - | -] 27.1.(12.3) |29 (14|17 1T -1-1T -

20 8) - | -1 30.5(12.5) {29 (14|71 1T -1-1T -

34 12) - | -11219.0 (17.8)(129(14| T -1 -1-17 -

Fig. 4. Experimental results for the TDS model

MODEL [MCS| FWD FWD-PRUN BWD DCOI DCOI-PRUN
T |M|K T |M|K T |M|K T |M|K T |M|K
v-2222 | 329 | 6.7 (3.2) [15|5| 9.0 (3.2) [16|5(37.6 (3.2)|14|5] 1.5(0.1) |13{4|1.5(0.1) {13|4
v-3222 | 401 |29.0 (3.6)|19|6| 14.0 (3.6) |19|6 T -1-11.8(0.1) |14[5| 1.8 (0.1) |15|5
v-3322 | 489) -1-129.8 (4.4) |26|6 T -1-12.6(0.1)|17(5(2.7(0.1) |17|5
v-3332 | 599) - |-1578.3 (4.7)[30| 6 T --13.4(0.1)|17(5]3.5(0.1) |17|5
v-3333 | 734) - |- T - |- 1 --14.2(0.1)|17(5]4.3(0.1) |17|5
v-4333 | 869) - |- T - T -1-15.5(0.1)|18]6| 6.1 (0.1) |18]|6
v-4433 1029) - |- T - |- T --17.3(0.1)|18]6| 7.4 (0.1) |18]6
v-4443 | 1221) - |- T - |- T -1-19.4(0.2) |19{6(10.1 (0.2)|19|6
v-4444 | 1449) - |- T - - T - |-111.9 (0.2)|19]6 [12.6 (0.2)|19| 6
v-5444 | 1667) - |- T - |- T - [-117.8 (0.2)|20(7|17.7 (0.2)|20|7
v-5544 1941) - |- T - |- T - 1-125.0(0.2)|21{7|28.3 (0.2)|24|7
v-5554 | - 1 - |- 1 - |- 1 - |- 1 - |- 1 - |-

Fig. 5. Experimental results for the Cassini model

vary depending on the search direction, and it is not predictable in advance. We claim
that, for this reason, it is very important to have available different styles of search.
Second, we notice that the proposed optimizations are always effective, or unnotice-
able. DCOI results in dramatic savings for the Cassini model (in fact, the experiments
show that DCOI is the crucial factor that makes backward search a winning strategy
over forward search). Dynamic pruning has a minor impact in the case of backward
search on the Cassini model, but is an enabling factor for TDS, where it substantially re-
duces the number of iterations needed to reach convergence. In general, dynamic prun-
ing is more effective when lower-order cut sets are found earlier in the search (that is,
they are witnessed by shorter traces), hence its effectiveness is highly model-dependent.

7 Redated Work

A large amount of work has been done in the area of probabilistic safety assessment
(PSA) and in particular on dynamic reliability [29]. Dynamic reliability is concerned
with extending the classical event or fault tree approaches to PSA by taking into con-
sideration the mutual interactions between the hardware components of a plant and the
physical evolution of its process variables [20]. For different approaches to dynamic
reliability see, e.g., [2,24, 12,20, 30]. These approaches are mostly concerned with the
evaluation (as opposed to generation) of a given fault tree. Concerning fault tree evalu-
ation, we also mention DIFTree [19], a methodology for the analysis of dynamic fault
trees, implemented in the Galileo tool [31]. The methodology is able to identify inde-
pendent sub-trees, translate them into suitable models, analyze them and integrate the
results of the evaluation. Different techniques can be used for the evaluation, e.g., BDD-
based techniques, Markov techniques or Monte Carlo simulation. Concerning fault tree
validation, we mention [28, 32], both concerned with automatically proving the consis-
tency of fault trees using model checking techniques; [32] presents a fault tree seman-
tics based on Clocked CTL (CCTL) and uses timed automata for system specification,
whereas [28] presents a fault tree semantics based on the Duration Calculus with Live-
ness (DCL) and uses Phase Automata as an operational model.

The FSAP platform has been developed within ESACS? (Enhanced Safety Assess-
ment for Complex Systems) and ISAAC' (Improvement of Safety Activities on Aero-
nautical Complex systems), two European-Union-sponsored projects involving various
research centers and industries from the avionics sector. For a more detailed descrip-
tion of the project goals we refer to [8, 6, 9]. Within the project, the same methodology
has been also implemented in other platforms, see e.g. [4, 1, 15,25]. Regarding model-
based safety analysis, we mention [17, 18], sharing some similarities with the ISAAC
approach. In particular, the integration of the traditional development activities with the
safety analysis activities, based on a formal model of the system, and the clear separa-
tion between the nominal model and the fault model, are ideas that have been pioneered
by ESACS [8]. The authors propose to integrate this approach into the traditional “V”
safety assessment process. Finally, we mention [22, 33, 34], sharing with ISAAC the ap-
plication field (i.e., avionics), and the use of NuSMYV as a target verification language.

Zhttp://ww. esacs. org

Finally, the routines used to extract the set of minimal cut sets are based on classical
procedures for minimization of boolean functions, specifically on the implicit-search
procedures described in [13, 14,26, 27], based on Binary Decision Diagrams [10].

8 Conclusions

In this paper we have presented a broad range of algorithmic strategies for efficient fault
tree analysis of reactive systems. In particular, we have described algorithms encom-
passing different directions for reachability analysis, and some useful optimizations.
The experimental evaluation showed the complementarity of the search directions and
confirmed the impact of the optimizations on the overall performance.

In the future, we intend to investigate the following research directions. First, we in-
tend to explore the automatic combination of forward and backward search. Second, we
will explore an alternative symbolic implementation, using SAT-based bounded model
checking techniques [5]. As opposed to BDDs, that work by saturating sets of states,
these techniques are typically used to find single traces of bounded length. The chal-
lenge is to make these techniques complete; a possible solution could be the general-
ization of induction techniques. Furthermore, we also want to investigate a “hybrid”
approach combining BDD-based and SAT-based techniques into the same routine.

Acknowledgments We wish to thank Antonella Cavallo from Alenia Aeronautica and
Massimo Cifaldi from AleniaSIA for allowing us to use the TDS model.

References

1. P.A. Abdulla, J. Deneux, G. Stalmarck, H. Agren, and O. Akerlund. Designing Safe, Reliable
Systems using Scade. In Proc. |SoLA 2004, 2004.
2. T. Aldemir. Computer-assisted Markov Failure Modeling of Process Control Systems. |EEE
Transactions on Reliability, R-36:133-144, 1987.
3. R. Banach and M. Bozzano. Retrenchment, and the Generation of Fault Trees for Static,
Dynamic and Cyclic Systems. In Proc. SAFECOMP 2006. Springer, 2006.
4. P.Bieber, C. Castel, and C. Seguin. Combination of Fault Tree Analysis and Model Checking
for Safety Assessment of Complex System. In Proc. EDCC-4. Springer, 2002.
5. A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic Model Checking without BDDs.
In Proc. TACAS1999. Springer, 1999.
6. M. Bozzano, A. Cavallo, M. Cifaldi, L. Valacca, and A. Villafiorita. Improving Safety As-
sessment of Complex Systems: An industrial case study. In Proc. FM 2003. Springer, 2003.
7. M. Bozzano and A. Villafiorita. The FSAP/NuSMV-SA Safety Analysis Platform. Software
Tools for Technology Transfer, 9(1):5-24, 2007.
8. M. Bozzano et al. ESACS: An Integrated Methodology for Design and Safety Analysis of
Complex Systems. In Proc. ESREL 2003. Balkema Publisher, 2003.
9. M. Bozzano et al. ISAAC, a framework for integrated safety analysis of functional, geomet-
rical and human aspects. In Proc. ERTS 2006, 2006.
10. R.E. Bryant. Symbolic Boolean Manipulation with Ordered Binary Decision Diagrams.
ACM Computing Surveys, 24(3):293-318, 1992.
11. A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new symbolic model
checker. Software Tools for Technology Transfer, 2(4):410-425, 2000.

12

13.

14.

15.

16.
17.

18.

19.

20.

21.
22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

G. Cojazzi, J. M. Izquierdo, E. Meléndez, and M. S. Perea. The Reliability and Safety As-
sessment of Protection Systems by the Use of Dynamic Event Trees. The DYLAM-TRETA
Package. In Proc. XVII1 Annual Meeting Spanish Nucl. Soc., 1992.

O. Coudert and J.C. Madre. Implicit and Incremental Computation of Primes and Essential
Primes of Boolean Functions. In Proc. DAC 1992. IEEE Computer Society, 1992.

0. Coudert and J.C. Madre. Fault Tree Analysis: 10%° Prime Implicants and Beyond. In
Proc. RAMS 1993, 1993.

J. Deneux and O. Akerlund. A Common Framework for Design and Safety Analyses using
Formal Methods. In Proc. PSAM7/ESREL’ 04, 2004.

The FSAP platform. htt p: //sra.itc.it/tool s/ FSAP.

A. Joshi and M.P.E. Heimdahl. Model-Based Safety Analysis of Simulink Models Using
SCADE Design Verifier. In Proc. SAFECOMP 2005. Springer, 2005.

A. Joshi, S.P. Miller, M. Whalen, and M.P.E. Heimdahl. A Proposal for Model-Based Safety
Analysis. In Proc. DASC 2005, 2005.

R. Manian, J.B. Dugan, D. Coppit, and K.J. Sullivan. Combining Various Solution Tech-
niques for Dynamic Fault Tree Analysis of Computer Systems. In Proc. HASE 1998. IEEE
Computer Society, 1998.

M. Marseguerra, E. Zio, J. Devooght, and P. E. Labeau. A concept paper on dynamic relia-
bility via Monte Carlo simulation. Math. and Comp. in Smulation, 47:371-382, 1998.

K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publ., 1993.

S.P. Miller, A.C. Tribble, and M.P.E. Heimdahl. Proving the Shalls. In Proc. FM 2003.
Springer, 2003.

The NuSMV model checker. ht t p: // nusmv.itc.it.

I.A. Papazoglou. Markovian Reliability Analysis of Dynamic Systems. In Reliability and
Safety Assessment of Dynamic Process Systems, pages 24-43. Springer, 1994.

T. Peikenkamp, E. Boede, 1. Briickner, H. Spenke, M. Bretschneider, and H.-J. Holberg.
Model-based Safety Analysis of a Flap Control System. In Proc. INCOSE 2004, 2004.

A. Rauzy. New Algorithms for Fault Trees Analysis. Reliability Engineering and System
Safety, 40(3):203-211, 1993.

A. Rauzy and Y. Dutuit. Exact and Truncated Computations of Prime Implicants of Coherent
and Non-Coherent Fault Trees within Aralia. Reliability Engineering and System Safety,
58(2):127-144, 1997.

A. Schifer. Combining Real-Time Model-Checking and Fault Tree Analysis. In Proc. FM
2003. Springer, 2003.

N. O. Siu. Risk Assessment for Dynamic Systems: An Overview. Reliability Engineering
and System Safety, 43:43-74, 1994.

C. Smidts and J. Devooght. Probabilistic Reactor Dynamics II. A Monte-Carlo Study of a
Fast Reactor Transient. Nuclear Science and Engineering, 111(3):241-256, 1992.

K.J. Sullivan, J.B. Dugan, and D. Coppit. The Galileo Fault Tree Analysis Tool. In Proc.
FTCS1999. IEEE Computer Society, 1999.

A. Thums and G. Schellhorn. Model Checking FTA. In Proc. FM 2003. Springer, 2003.
A.C. Tribble, D.L. Lempia, and S.P. Miller. Software Safety Analysis of a Flight Guidance
System. In Proc. DASC 2002, 2002.

A.C. Tribble and S.P. Miller. Software Safety Analysis of a Flight Management System
Vertical Navigation Function - A Status Report. In Proc. DASC 2003, 2003.

W.E. Vesely, EF. Goldberg, N.H. Roberts, and D.F. Haasl. Fault Tree Handbook. Techni-
cal Report NUREG-0492, Systems and Reliability Research Office of Nuclear Regulatory
Research U.S. Nuclear Regulatory Commission, 1981.

