
The FSAP/NuSMV-SA Safety Analysis Platform
�

Marco Bozzano, Charles Jochim, and Francesco Tapparo

ITC-IRST, Via Sommarive 18, 38050 Povo, Trento, Italy�
bozzano,jochim,tapparo � @itc.it

1 The FSAP/NuSMV-SA Platform

FSAP/NuSMV-SA [1] consists of a graphical user interface (FSAP) and an engine
(NuSMV-SA) based on the NuSMV model checker [2]. FSAP/NuSMV-SA is imple-
mented in C++ as a cross-platform tool and it currently runs under Windows and Linux.

2 Description of the demo

The FSAP/NuSMV-SA platform

Fig. 1. Demo steps

aims to improve the development
cycle of safety-critical systems,
by providing a uniform environ-
ment that can be used both at
design time and for safety as-
sessment. Below we sketch the
organization of the demo, by pre-
senting a typical scenario of use
of the platform, that can be il-
lustrated by the steps in Fig. 1.

2.1 Model Capturing

The starting point is a formal model of the system, called system model, written in some
formal language. This model includes only the nominal behaviour of the system (that
is, the system is assumed to be working as expected). This model is used by the design
engineer to verify the functional requirements, and it is then passed to the safety en-
gineer for safety assessment. In order to validate the system with respect to the safety
requirements, the safety engineers enrich the behaviour of the system model by inject-
ing failure modes, as described below.

2.2 Failure Mode Capturing and Model Extension

The second step includes the failure modes capturing and the model extension phases.
The system model written by the design engineer must be extended by injecting the
failure modes, that is, a specification of how the various components of the system can

�
This work has been supported by the E.U. ISAAC project, contract no. AST3-CT-2003-
501848.



fail. This step yields a model that we call extended system model, in which all the com-
ponents of the SM can fail according to the specified failure modes. The failure mode
types to be injected into a system model can be stored and retrieved from a library of
generic failure modes, called the generic failure modes library, and then automatically
injected into the formal system model through an extension facility.

2.3 Safety Requirements Capturing
As long as a (extended) system model is available, it is possible to verify its behaviour
with respect to the desired functional (nominal behaviour) and safety requirements (de-
graded behaviour). At this stage, design and safety engineers define the requirements
that will be used to assess the behaviour of the system. The requirements can be ei-
ther written using the temporal logic formula notation, or loaded from a library, called
the generic safety requirement library, which provides a pattern-based definition for
temporal formulas.

2.4 Model Analysis
At this stage, the behaviour of a system is assessed against the functional and safety
requirements, by running the formal verification engine, that is, the NuSMV-SA model
checker. Model analysis includes two main verification tasks. In the case of a system
property, the model checking engine can test validity of the property, and generate a
counterexample in case the system property is not verified. In case of a safety require-
ment, the model checking engine can be used to generate all possible minimal combi-
nations of components failures, called minimal cut sets, that violate the safety require-
ments. Minimal cut sets can be arranged in the fault tree representation, a typical artifact
of reliability analysis. They provide a convenient representation of the combination of
events resulting in the violation of a given top level event, and are usually represented in
a graphical way, as a parallel or sequential combination of AND/OR logical gates. The
platform also supports the generation of another classical artifact of reliability analysis,
that is, FMEA tables.

2.5 Result Extraction and Analysis
During this phase, the results produced by the model analysis phase are processed and
presented in human-readable format. In particular, the result extraction phase is re-
sponsible for displaying all the outputs automatically generated by the model checking
engine (e.g., simulation traces, fault trees, FMEA tables) and to present results of safety
analyses in formats that are compatible with traditional fault tree analysis tools used by
safety engineers. It is possible to visualize traces in textual, structured (XML), graph-
ical, or tabular fashion. Fault trees can be viewed using commercial tools or using a
displayer provided with the platform.

References
1. The FSAP/NuSMV-SA platform. http://sra.itc.it/tools/FSAP.
2. The NuSMV model checker. http://nusmv.itc.it.


