
1 INTRODUCTION

The dramatic improvement in the computational
power of hardware brings about increasingly sophis-
ticated software-based embedded controllers that
take over complex functionality in an efficient, pre-
cise, and flexible way. These benefits allow the use
of such systems in environmental conditions where
delays in delivering products and/or economical
losses are not the only things at stake, but also envi-
ronmental hazards and public confidence.

This development, however, entails an unavoid-
able increase in the complexity of systems, which is
expected to continue in the future. Therefore, in order
to retain the benefits from more sophisticated con-
trollers, a corresponding increase in the capability of
the design and safety engineers to maintain adequate
safety and reliability levels is required.

One of the most challenging issues in system de-
velopment today is to take into consideration, during
development, all possible failures modes of a system
and to ensure safe operation of a system under all
conditions. Current informal methodologies, like
manual fault tree analysis (FTA) and failure mode
and effect analysis (FMEA) (Vasely, 1981; Ligges-
meyer & Rothfelder, 1998; Rae 2000), that rely on
the ability of the safety engineer to understand and to
foresee the system behavior are not ideal when deal-
ing with highly complex systems, due to the diffi-
culty in understanding the system under development
and in anticipating all its possible behaviors.

Emerging techniques like formal methods (Wing,
1990) have the potential of dealing with such a com-
plexity and are increasingly being used for the devel-
opment of critical systems (see, for instance, (Hin-
chey & Bowen, 1999)). Formal methods allow a

ESACS: an integrated methodology for design and safety analysis of
complex systems

M. Bozzano 1 & A. Villafiorita 1 & O. Åkerlund 2 & P. Bieber 3 & C. Bougnol 4 & E. Böde 5 &
M. Bretschneider 6 & A. Cavallo 7 & C. Castel 3 & M. Cifaldi 8 & A. Cimatti 1 & A. Griffault 9 &
C. Kehren 3 & B. Lawrence 10 & A. Lüdtke 11 & S. Metge 4 & C. Papadopoulos 10 & R. Passarello 8 &
T. Peikenkamp 5 & P. Persson 12 & C. Seguin 3 & L. Trotta 7 & L. Valacca 8 & G. Zacco 1

1 IRST
via Sommarive 38, 38100 Trento, Italy

2 Prover Technology AB,
Stockholm, Sweden

3 ONERA, Centre de Toulouse,
2 avenue E. Belin, F-31055 Toulouse, France

4 AIRBUS
1 rond point M. Bellonte, 31707 Blagnac, France

5 OFFIS
26121 Oldenburg, Germany

6 Airbus Deutschland GmbH,
21129 Hamburg, Germany

7 Alenia Aeronautica S.p.A,
Strada Malanghero 17, 10072 Caselle (TO), Italy

8 Società Italiana Avionica
Strada Antica di Collegno, 253 10146 Torino, Italy

9 LaBri, Université de Bordeaux
Domaine Universitaire 351, cours de la Libération
33405 Talence Cedex 1 33405 Talence, France

10 Airbus UK Ltd.
New Filton House, Golf Course Lane
Filton, Bristol BS99 7AR, UK

11 University of Oldenburg
26129 Oldenburg, Germany

12 Saab AB
58188 Linköping, Sweden

 ABSTRACT: The continuous increase of system complexity – stimulated by the higher complexity of the
functionality provided by software-based embedded controllers and by the huge improvement in the computa-
tional power of hardware – requires a corresponding increase in the capability of design and safety engineers
to maintain adequate safety and reliability levels. Emerging techniques, like formal methods, have the poten-
tial of dealing with the growing complexity of such systems and are increasingly being used for the develop-
ment of critical systems (e.g., aircraft systems, nuclear plants, railways systems), where at stake are not only
delays in delivering products and economical losses, but also environmental hazards and public confidence.
However, the use of formal methods during certain critical system development phases, e.g. safety analysis, is
still at an early stage. In this paper we propose a new methodology, based on these novel techniques and sup-
ported by commercial and state-of-the-art tools, whose goal is to improve the safety analysis practices carried
out during the development and certification of complex systems. The key ingredient of our methodology is
the use of formal methods during both system development and safety analysis. This allows for a tighter inte-
gration of safety assessment and system development activities, fast system prototyping, automated safety as-
sessment since the early stages of development, and tool-supported verification and validation.

more thorough verification of the system’s correct-
ness with respect to the requirements, by using auto-
mated procedures. However, the use of formal meth-
ods for safety analysis purposes is still at an early
stage. Moreover, even when formal methods are ap-
plied during system development, the information
linking the design and the safety assessment phases is
often carried out by means of informal specifications.
The link between design and safety analysis may be
seen as an “over the wall process” (Fenelon et al.,
1994).

A solution to the issues mentioned above is to per-
form the safety assessment analysis in some auto-
mated way, directly from a formal system model
originating from the design and safety engineer.

This approach is being developed and investigated
within the ESACS project (Enhanced Safety Assess-
ment for Complex Systems), an European Union
sponsored project in the area of safety analysis, in-
volving several research institutions and leading
companies in the fields of avionics and aerospace.
The methodology developed within the ESACS pro-
ject is supported by state-of-the-art and commercial
tools for system modeling and traditional safety
analysis tools and is being trialed on a set of indus-
trial case studies.

Outline of the paper. This paper is structured as

follows. In the next section we present the ESACS
approach and illustrate its use through a simple ex-
ample. In section 3 we present the architecture of the
ESACS platform. Finally, in section 4 we draw some
conclusions and discuss related work.

2 ESACS METHODOLOGY

2.1 Methodology

The ESACS methodology aims to:
− Support system development and safety analyses

processes.
− Provide a tight link between design and safety

analysis.
− Support automated verification and validation of

the design.
− Support automated safety assessment of the de-

sign.
The goals mentioned above are being achieved

through two basic ingredients: firstly, the use of for-
mal notations both for design and for safety assess-
ment of systems and secondly, the extension of state-
of-the-art tools, to provide users with a set of basic
functionality that can be combined in different ways.

The use of formal methods allows for automation
of analyses and for a tighter integration between sys-
tem design and safety analysis (as the information
exchanged between design and safety engineers is

based on the same formal models, with a clear and
unambiguous syntax and semantics). Tool support,
achieved by implementing a set of basic functionality
in state-of-the-art tools, allows for automated support
of the methodology and for its flexible integration in
various development and safety processes.

The ESACS methodology takes into account and
supports two main scenarios. In the first scenario the
process is initiated by the design engineer, who pro-
vides a formal model of the design (at a given level
of abstraction) using formal modeling tools (System
Model Definition). The model is then automatically
enriched with failures in order to perform safety
analyses (Failure Mode Definition and Failure Mode
Injection). The second scenario is useful when safety
assessment activities must be carried out when there
is still no formal design model to start with, e.g. to
evaluate a proposed system architecture. In this case,
the process is initiated by the safety engineer, who
builds a high-level model of the system using a li-
brary of components enriched with failure modes.
Such model can then be used to perform safety as-
sessment on the system (System Model Prototyping
for Safety Assessment).

The scenarios sketched above entail for the defini-
tion of the following, tool-supported, basic function-
ality:
− System Model Definition: definition, using for-

mal notations, of an executable specification (at a
given level of abstraction) of the model of the sys-
tem under development (what we call design
model).

− System Model Prototyping for Safety Assess-
ment: definition, using a library of pre-defined
components, of a model suitable for safety as-
sessment. This functionality allows performing
safety analyses in the early phases of the devel-
opment process.

− Failure Mode Definition and Failure Mode In-
jection: definition of the failure modes of the
components constituting the design model. The
failure modes can be automatically injected into
the design model, in order to produce what we call
an extended system model (ESM). The ESM is an
executable specification of the design model in
which components can fail according to the failure
mode specification. Extended system models can
be used by safety engineers to perform safety
analyses.

− Functional and Safety Requirements Defini-
tion: definition of the functional requirements and
of the safety requirements of the system, using a
formal language (e.g. linear temporal logic and
computation tree logic (Emerson, 1990)).

− Design Assessment: automated assessment of the
design model against the functional requirements,
using standard formal methods techniques (e.g.,
simulation, theorem proving (Boyer & Moore,
1979), and model checking (Clarke et al., 1999)).

− Safety Assessment: automated safety assessment
of the extended system model against the safety
requirements, using automated techniques based
on formal methods for automated fault tree analy-
sis and automated failure mode and effect analy-
sis.

Note that the basic functionality provided by the plat-
form, which we have described, can be combined in
different ways, in order to comply with any given
development methodology one has in mind. For in-
stance, it is possible to support an incremental ap-
proach, based on iterative releases of a given system
model at different levels of detail (e.g., model re-
finement, addition of further failure modes and/or
safety requirements). Furthermore, it is possible to
have iterations in the execution of the different
phases (design and safety assessment), e.g., it is pos-
sible to let the model refinement process be driven by
the safety assessment phase outcome (e.g., disclosure
of system flaws requires fixing the physical system
and/or correcting the formal model).

2.2 A simple example

To illustrate the basic concepts of the methodology
we will show its application to the design of a con-
troller that regulates the level of a fluid in a tank.

The goal of the controller is computing the capac-
ity of two pumps that regulate the inflow and the out-
flow of a liquid contained in a tank, so that the tank
level remains between the two “Activation levels” in
the middle of the tank. At the same time, the control-
ler services a request, coming from the user of the
system, for a minimum outflow capacity. If the tank
level, obtained through a dedicated sensor, becomes
either too low or too high, the controller must issue
an alarm, and close the input or the output emergency
valves. The user request for a minimum outflow is
the only “external” input to the system. The control-
ler monitors the tank level through a sensor providing
the actual tank level. Figure 1 illustrates the compo-
nents in the system.

In the following we focus on one of the two sce-
narios supported by the methodology, namely the
scenario in which the model is built by the design
engineer.

The first step of the methodology, therefore, is the
definition of the design model of the system on
which we will perform the automated analyses, using
formal notations. Such step is performed using stan-
dard modeling tools: Figure 2 illustrates the high
level decomposition of the model highlighting the
inputs/outputs of the system. The model is written in
SCADE1. The model also includes a definition of the
environment with which the controller interacts: this
allows the verification of the whole system (i.e., con-
troller + sensors + actuators + tank) to ensure that it
behaves as expected.

The next steps of the methodology are the defini-
tion of the functional requirements of the system and
the formal assessment, to verify and validate the sys-
tem against the functional requirements, in its nomi-
nal working conditions. The goal of this activity is to
acquire confidence on the behavior of the system
when all the components work as expected. Thus, we
assume that the environment is functioning correctly
and verify that the controller satisfies certain re-
quirements. For example, we assume that the pumps
and valves are functioning according to controller
demand and that the level indicator is sending correct
information. We investigate properties like: (1) is it
possible to have an overflow, (2) is it possible to
have a drain, (3) can there be a false alarm or (4) can
there be an overflow without alarm, etc. The proper-
ties are formalized using standard logical formalisms
and the verification of the nominal system behavior
is performed automatically using theorem proving
and model checking techniques. After this step we
are confident that the design model behaves as ex-
pected in nominal situations.

This is, however, not sufficient to ensure that the
system behaves as expected in all the possible situa-
tions. Having confirmed that all the requirements are
fulfilled in the nominal case, it is then necessary to

1 See http://www.esterel-technologies.com

Figure 2. The model of the tank controller.

Figure 1. A simplified Tank Controller

investigate if failures modes can make the system fail
to meet the defined requirements. In order to do so,
we must first identify and formalize the possible fail-
ure modes (FM) of the various components of the
system. This is done in the failure mode definition
phase, during which safety engineers identify and al-
locate all the possible failures of the components.
This is performed, in the ESACS methodology, by
retrieving, from a library of pre-defined failure
modes, the failure modes of the different components
of the system and by allocating such failures to the
various components. The allocation of the failure
modes to the components (Failure Mode Injection)
automatically transforms the design model into a new
model, that we call an extended system model. The
extended system model enriches the possible behav-
iors of the system taking into account all the situa-
tions in which some of the components may fail ac-
cording to the specifications provided by the safety
engineers.

In the tank example, for instance, we can assume
that the input pump (Pump_in, in Figure 1) can fail in
two ways: (1) no flow can be produced or (2) the
pump delivers full capacity all the time. In this case
the model of the pump (whose output is modeled by
the variable Pump_in_capacity) becomes, in the ex-
tended system model:

if (Pump_in_status = stuck_zero) then
Pump_in_capacity = 0

elseif (Pump_in_status = stuck_max_flow) then
Pump_in_capacity = max_capacity

else
Pump_in_capacity = nominal, (that is, the flow

required by the controller)

Notice that the occurrence of failure is revealed by
the variable Pump_in_status that is automatically
generated during failure injection. So, if no failures
occur, then the pump will react as required by the
controller. However, if any of the failures occurs,
then the output produced by the pump is determined
by the failure. The model extension algorithm also
takes care of defining the behaviour of the variables
encoding the failures: it is for instance possible to
express the condition that no two different failures
can occur at the same time on the same component or
that no more that four different failures can happen
for a certain simulation, etc.

Once we have an extended system model (either
built using failure injection on the design model or
by directly building a model with failures from the
library of components), we can perform safety as-
sessment on the model, either via failure mode and
effect analysis (FMEA) or via fault tree analysis.
This is done using algorithms based on model check-
ing and theorem proving techniques for, e.g., auto-
matically building fault trees. The algorithms sup-
ported by the ESACS methodology are similar to
those described in (Liggesmeyer & Rothfelder, 1998;
Coudert & Madre, 1993) and allow to analyze both
monotonic and non-monotonic systems; the results
produced by the analyses can be shown using com-
mercial safety analysis tools. Figure 3, for instance,
shows a simple fault tree automatically generated by
ESACS algorithms and imported in FaulTree+.

3 ESACS PLATFORM

As illustrated in the previous section, an important
aspect of the ESACS methodology is the support
provided to the design and safety engineer by tools.
This support is provided by the ESACS Platform,
which has been defined and is being developed
within the ESACS project.

The starting point for the development of the
ESACS platform has been the tools used by the in-
dustrial partners for design and for performing safety
assessment, that include (but are not limited to) Ce-
cilia-OCAS, Statemate, SCADE, Simulink, Fault-
Tree+. However, the task of providing a single plat-
form that integrated all these tools and delivers to the
user an interoperable environment, in which different
tools and different modeling languages could be used
interchangeably, was judged to be too risky for the
time span and goals of the project. For instance, the
problem of providing sound translators for the vari-
ous input languages would have been a project in it-
self.

The approach taken in the ESACS project, thus,
was to provide different configurations. Each con-
figuration uses its own input language (tailored to the
needs of an industrial partner) and its own set of sup-

TOP LEVEL EVENT

(Ctrl.Alarm_high_level
& Pump_in_capacity >

0)

FAULT_CFG_0

Fault
Configuration 0

VALVE_IN_STATUS_STUCK_OPEN

Valve_in_status
stuck_open

I E

r=0

PUMP_IN_STATUS_STUCK_MAX_FLOW

Pump_in_status
stuck_max_flow

I E

r=0

Figure 3. A simple fault tree, generated by the ESACS plat-
form, of the safety requirement “ it is not possible to have a
high level alarm while the input valve is not closed”

port tools. All the configurations have been devel-
oped using the same underlying principles and the
same architectural schema.

This has allowed the development and the deliv-
ery of the following four different configurations:
− Altarica configuration, based on the Cecilia-

OCAS tool.
− NuSMV configuration, based on the NuSMV

model checker.
− SCADE configuration, based on the on SCADE

tool and on the PROVER plug-in.
− Statemate configuration, based on Statemate

tool and on the VIS model checker.

3.1 ESACS architecture

The ESACS reference architecture is depicted in
Figure 4. In particular, we distinguish the following
blocks:

− Model Capturing Tools, the block used for de-

fining the models for the analyses. It is used by
the design engineer to define the design model
and by the safety engineer to design models en-
riched with failures for safety assessment.

− Components Library, a library of components,
extended with failures, which can be used for pro-
viding fast prototypes for safety assessment. It is
used by the safety engineer to fast prototype sys-
tems on which to perform preliminary safety
analysis.

− Requirements Capturing, the block for defining
the functional and safety requirements. It is used
both by design and safety engineers. The design
engineer uses this block to define functional re-
quirements against which to check the consistency

of the design model. The safety engineer uses this
block to define the safety requirements, against
which to test the extended system model.

− SAT Repository, the central repository of the
ESACS platform. The SAT (Safety Analysis
Task) repository stores all the information about a
system, like, for instance, the analyses to be per-
formed.

− Failure Mode Capturing & Injection, the block
for defining failure modes and injecting them into
the system model; the injection yields the ex-
tended system model. This block is used by the
safety engineer to define what are the degraded
behaviors of the system model and to generate the
extended system model, on which to perform
safety analyses.

− Model Analysis, the block for performing all the
analyses both on the design model and on the ex-
tended system model. The ESACS Platform con-
figurations support standard formal verification
analyses (e.g., simulation, model checking, and
theorem proving) and safety analyses (fault tree
construction and FMEA table construction).

− Result Extraction, the block responsible for pre-
senting the results produced during the analyses in
formats understood by commercial tools (e.g.,
fault trees in the FaultTree+ format).

− Safety Analysis Tools, a block that comprehends
various commercial safety analysis tools (e.g.,
FaultTree+), that are used to display results in a
way that is familiar to safety engineers.

Some of the components of the ESACS platform

(i.e. Model Capturing tools and Safety Analysis
Tools) are based on standard commercial tools:
therefore, we do not illustrate them here any further.

Figure 4. The ESACS Platform Reference Architecture.

Design

Engineer

Safety

Engineer

Model Capturing

Tools

Components Library

Requirements

Capturing

Failure Mode Library

SAT Repository

Model Analysis

Failure Mode

Capturing & Injection

Safety Analysis

Tools

Result Extraction

The rest of this section, instead, focuses on the com-
ponents that are particular to the ESACS Platform
(namely, Components Library, Generic Failure
Model Library, Failure Mode Capturing and Failure
Injection, Model Analysis, and Result Extraction).

Components Library. The library of components
gathers formal models of basic system components
immediately suitable for safety analysis. Thus, each
formal model describes both nominal and faulty be-
haviour of a specific system component. In the earli-
est phases of the system design, details of physical
components are not fixed and safety engineers work
with simple functional blocks and failure modes.
Usually, a block offers a service (outputs) provided
that some inputs and resources are available in the
nominal case. Only permanent failures are consid-
ered and, after a failure, the block no longer provides
an output. Some other blocks do not require inputs or
resource to play their role (e.g., source of energy), or
they do not provide any output (receptor). The library
contains a first family of such generic blocks. It is re-
sponsibility of the safety engineer to select the ap-
propriate failure modes to be assigned to the different
components, among the available ones. During the
"preliminary system safety assessment", the system
components are better known and the safety engi-
neers take into account more specific failure modes.
At this stage, the library contains two other families
of components. One is dedicated to components of
hydraulic systems (reservoir, pump, valve, pipe, …)
and deals with failure modes such as total loss, leak
in a component, … The second family of compo-
nents is dedicated to components of electrical sys-
tems (generator, bus, switch, receptor, …) and han-
dles failures such as total loss, short-circuit, … The
library is currently written in the AltaRica language
(Arnold et al., 2000). Basically, each AltaRica model
consists of two parts. An automaton describes which
failure or nominal mode may be activated when a
failure or a normal event occurs. Then, a set of logi-
cal assertions describes the relationship between the
input/output of the components according to the cur-
rent modes (see for instance (Bieber et al., 2002)).
The library is implemented within the Cecilia-OCAS
environment. The environment offers graphical fa-
cilities and a system model is built by drag and drop
of icons of the components from the library panel to
the graphical editor window. Then, the components
are connected by drawing links between icons. A
translator from AltaRica to Lustre has been devel-
oped [http://altarica.labri.fr/Tools/AltaLustre/] and
will allow the ability to have similar libraries written
in the Lustre language, usable in the SCADE envi-
ronment.

Failure Mode Capturing and Failure Injection.

In the design model of a system, the goal is to specify
the nominal behaviour of the system fulfilling all the

functionality. Suppose it is verified that this design,
i.e. its nominal behaviour, fulfils all requirements.
Also assume some of the inputs to and outputs from
the design model represent signals coming from or
going to “components” , which can malfunction – i.e.
there is a possibility that the nominal behaviour can
be changed due to a component failure mode (FM),
e.g. a valve may fail in a stuck position. In order to
include FM in the analyses we extend all input and
output signals, which can malfunction, with FM
nodes. Having this extended system model, it is now
possible to investigate if requirements are fulfilled
when FMs are allowed.

FM are defined through the Failure mode captur-
ing module that safety engineers use firstly to iden-
tify the components of the model that have to be en-
riched, secondly to specify the parameters of the
failure, and thirdly to assign possible failures to the
elements of the design. Failures are retrieved from a
Generic Failure Mode Library. The Generic Failure
Mode Library defines and specifies the kind of fail-
ures that can be injected into the system model: the
library supports all the common failure modes, such
as “stuck at” , “ inverted” , “glitch” (the “glitch” failure
allows for transient changes in the outputs delivered
by a component).

Once defined, failure modes can be automatically
injected into a design model via the Failure Injection
module. Failure injection takes as input a design
model coming from the design engineer, the failure
modes defined by the safety engineers, and produces
an extended system model, namely a model in which
components may fail.

Only permanent failures are supported so far. The
modeling of FM nodes is done such that the occur-
rence of a FM has priority over the nominal behav-
iour (see the example in Section 2).

Requirements Capturing. This module is used to

define the functional requirements and the safety re-
quirements of the extended system model. The re-
quirements are written using standard logic formal-
isms (e.g. linear temporal logic and computation tree
logic) using the facilities provided by the tools sup-
porting the design of models.

SAT Management. The SAT is the central re-

pository of all the information related to the (safety)
assessment of a system. Within the SAT are stored
references to design model, functional and safety re-
quirements, references to the extended system model,
and analyses task specifications, namely, the specifi-
cation of the (safety) analyses that have been per-
formed on the system.

In order to provide easy accessibility and portabil-
ity, the SAT is stored in XML format (W3C, 2000).
The XML tags provide the structure of the SAT and
encode, through attributes, information on how the
content of the tags shall be interpreted. In this way,

all the different configurations share the same XML
structure to encode the information and can share the
same computing facilities (e.g. transformation into
HTML).

The SAT is currently supported by the
FSAP/NuSMV-SA configuration line, an extension
of the NuSMV model checker (Cimatti et al., 2002).
We conclude this section by discussing the model
analysis and result extraction modules of the ESACS
architecture.

3.2 ESACS verification engine

The model analysis and result extraction modules in-
clude the verification engines to perform verification
and safety analyses on the design, and the necessary
conversions algorithms to present the results of
safety analyses using commercial safety analysis
tools. At the moment, the following analyses are
supported.

Bottom up analysis. As soon as a simulator of
formal specification is available, it can be used to as-
sist the failure mode and effect analysis. The safety
engineer injects one or more failure event; the simu-
lator computes the effects of the failure according to
the propagation laws encoded in the formal texts; fi-
nally, the engineer inspects the reached states and
analyses the effects. Thanks to the hierarchies of
formal models, local effects can be propagated to
higher views so that global effects can be identified.
Let us consider an aircraft whose surfaces (spoilers,
flap, ...) and some other devices are displaced thanks
to hydraulic power. The aircraft model is the top
level of the hierarchy. It includes surfaces and hy-
draulics system models. In turn, the hydraulics sys-
tem model consists of models of atomic components
(pumps, pipes, etc.). Failures affect these atomic
components whereas the global impact is perceptible
at the aircraft level. It is worth noting that a good
graphical simulator makes this kind of analysis easy
and intuitive for safety engineers (see a snapshot of a
Cecilia OCAS simulation for instance).

Dynamic failure behaviour. Traditional FTA is a
static analysis – i.e. it is done for a given system con-
figuration – investigating the influence of failure
modes on unwanted system behaviour. In our ap-
proach, since the general design includes the dy-
namic system behaviour, we can also investigate the
influence of FM in dynamic situations. This gives us
the possibility of doing new types of dynamic analy-
ses, e.g., to see if the order of occurrence of FM is
important or if an intermittent FM has the same im-
pact as a constant FM. Given that the analysis result
shows the system can malfunction, then a so-called

counter-model – showing a sequence of values for all
system variables – is generated. In such a case it is
important to analyze the whole sequence and not
only the last time-step of the sequence. Another pos-
sibility is to define the top level event, i.e. the un-
wanted system behaviour, with regard to the system
dynamics. For example we could regard a top event
to occur not until the unwanted event has existed
continuously for a certain time.

Traditional fault tree generation. The ESACS
Platform can compute fault trees using algorithms
based on formal methods techniques. The imple-
mented algorithms support both monotonic and non-
monotonic systems; the minimization of non-
monotonic systems is based on algorithms presented,
e.g., in (Coudert & Madre, 1993). The underlying
principle for model-checking based fault tree con-
struction is as follows. The algorithm starts from an
extended system model and a top level event and
generates, using standard symbolic model checking
techniques, a formula representing all the possible
ways in which the top level event is not satisfied by
the extended system model. From such a formula it is
possible to extract all the possible combinations of
failures of components. If the design model behaves
correctly with respect to the top level event (i.e. if the
top level event is verified by the design model), such
combinations of failures are exactly the reason for
the top level event not being fulfilled anymore in the
extended system model (failure modes being the only
change between design model and extended system
model). Standard minimization techniques are then
run on the combination of failures identified thus far,
in order to extract from them the combinations that
are minimal. The algorithm produces outputs that are
suitable for integration with commercial safety
analysis tools (e.g., FaultTree+).

Fault tree with ordering information. When the
failure mode behaviour of a system includes both
primitive and derived failures, it is also possible to
perform ordering analyses on the model. This is done
by selecting a minimal cut set and by verifying
whether the failures related to a particular top level
event only occur in a particular order. We refer the
reader to (Bozzano & Villafiorita, 2003) for a de-
tailed discussion on this topic.

4 RELATED WORK AND CONCLUSIONS

In this paper we presented the methodology that we
are investigating within the ESACS project. The
ESACS methodology is based on a tight integration

between system design and safety analysis and on the
use of formal methods for performing both design
and safety assessment. The methodology is supported
by state-of-the-art tools that have been extended with
innovative algorithms for the safety assessment of
systems.

Currently, the ESACS methodology and the
ESACS platform are being tested in the following
case studies:
− Air inlet control system APU (Auxiliary Power

Unit) JAS39 Gripen, related to a critical subsys-
tem of an airplane;

− Wheel Steering System, related to a critical sub-
system of a family of Airbus airplanes;

− A controller of the Airbus A340 High Lift Sys-
tem;

− Hydraulic System A320, related to the hydraulic
system of the Airbus A320;

− Secondary Power System (SPS) related to power
system of the Eurofighter Typhoon.

All the case studies have been chosen to show a

reasonable degree of complexity. For instance, the
SPS comprises two independent channels controlled
by two independent computers. The SPS normal op-
eration consists in transmitting the mechanical power
from the engines to the relevant hydraulic and elec-
trical generators. In case of an engine failure the SPS
computers automatically initiates a “cross-bleed”
procedure consisting in driving the hydraulic and
electrical generators by means of an air turbine motor
using bled air from the opposite engine. This is an
example of one safety requirement of the system.

A set of formal models have been produced for
the different case studies and a first series of tests
have been run. The results are interesting. As com-
mon with formal methods techniques, the algorithms
are sensitive to the models and to the properties pro-
vided as input and are subject to the state explosion
problem. In particular, failure injection contributes to
increasing the size of models, as it increases the pos-
sible behaviors.

Current work is focused on the direction of mak-
ing the algorithms more efficient and in the direction
of making interaction with the user easier.

5 ACKNOWLEDGMENTS

The work described in this paper has been and is be-
ing developed within the ESACS Project, an Euro-
pean sponsored project, G4RD-CT-2000-00361.
Several other people contributed to the work pre-
sented in this paper. We wish in particular to thank:
André Arnold from LaBri-Université de Bordeaux,
Jack Foisseau from ONERA, Jean Gauthier from
Dassault Aviation, Jean-Pierre Heckmann from Air-
bus, Torgny Knutsson from SAAB, Sylvain La-
jeunesse from GFI Consulting, Antoine Rauzy from

IML-Université de Marseille, and Paolo Traverso
from IRST.

REFERENCES

Arnold, A. & Griffault, A. & Point, G. & Rauzy, A. 2000. The
AltaRica formalism for describing concurrent systems. Fun-
damenta Informaticae, 40:109—124.

Bieber, P. & Castel, C. & Seguin, C. 2002. Combination of
Fault Tree Analysis and Model Checking for Safety As-
sessment of Complex System. In proceedings of 4th Euro-
pean Dependable Computing Conference, LNCS 2485, page
19-31.

Boyer, R.S. & Moore, J.S. 1979. A Computational Logic. Aca-
demic Press, New York.

Bozzano, M. & Villafiorita, A. Integrating Fault Tree Analysis
with Event Ordering Information. In Proc. European Safety
and Reliability Conference(ESREL 2003).

Cimatti A. & Clarke, E.M. & Giunchiglia, E. & Giunchiglia, F.
& Pistore, M. & Roveri, M. & Sebastiani, R. & Tacchella,
A. 2002. NuSMV2: An OpenSource Tool for Symbolic
Model Checking, International Conference on Computer-
Aided Verification (CAV 2002). Copenhagen, Denmark.

Clarke, E. & Grumberg, O. & Peled, D. 1999. Model Checking.
MIT Press.

Coudert, O. & Madre, J. 1993. Fault Tree Analysis: 1020 Prime
Implicants and Beyond. In Proc. Annual Reliability and
Maintainability Symposium.

Emerson, E. 1990. Temporal and Modal Logic In J. van Leeu-
wen (Ed.), Handbook of Theoretical Computer Science,
Volume B, pp. 995-1072. Elsevier Science.

 Fenelon, P., J.A. McDermid, D.J. Pumfrey, and M. Nicholson.
1994. Towards Integrated Safety Analysis and Design. In
ACM Applied Computing Review.

Hinchey, M. G. & Bowen, J. P. 1999. Industrial Strength For-
mal Methods in Practice. Springer-Verlag, London.

Liggesmeyer, P. & Rothfelder, M. 1998. Improving System Re-
liability with Automatic Fault Tree Generation. In Proc. 28th
International Symposium on Fault Tolerant Computing
(FTCS’98), Munich, Germany, pp. 90-99. IEEE Computer
Society Press.

Rae, A. 2000. Automatic Fault Tree Generation – Missile De-
fence System Case Study. Technical Report 00-36, Software
Verification Research Centre, University of Queensland.

Vesely, W. & Goldberg, F. & Roberts, N. & Haasl D. 1981.
Fault Tree Handbook, Technical Report NUREGF-0492,
Systems and Reliability Research Office of Nuclear Regula-
tory Research U.S. Nuclear Regulatory Commission.

W3C 2000. Extensible Markup Language (XML) 1.0 (Second
Edition), W3C Recommendation. Available on the internet
http://www.w3.org/TR/2000/REC-xml-20001006.

Wing, J. M. 1990. A specifier’s introduction to formal methods.
IEEE Computer 23(9):8-24.

