
1 INTRODUCTION  

The dramatic improvement in the computational 
power of hardware brings about increasingly sophis-
ticated software-based embedded controllers that 
take over complex functionality in an efficient, pre-
cise, and flexible way. These benefits allow the use 
of such systems in environmental conditions where 
delays in delivering products and/or economical 
losses are not the only things at stake, but also envi-
ronmental hazards and public confidence. 

This development, however, entails an unavoid-
able increase in the complexity of systems, which is 
expected to continue in the future. Therefore, in order 
to retain the benefits from more sophisticated con-
trollers, a corresponding increase in the capability of 
the design and safety engineers to maintain adequate 
safety and reliability levels is required. 

One of the most challenging issues in system de-
velopment today is to take into consideration, during 
development, all possible failures modes of a system 
and to ensure safe operation of a system under all 
conditions. Current informal methodologies, like 
manual fault tree analysis (FTA) and failure mode 
and effect analysis (FMEA) (Vasely, 1981; Ligges-
meyer & Rothfelder, 1998; Rae 2000), that rely on 
the ability of the safety engineer to understand and to 
foresee the system behavior are not ideal when deal-
ing with highly complex systems, due to the diffi-
culty in understanding the system under development 
and in anticipating all its possible behaviors. 

Emerging techniques like formal methods (Wing, 
1990) have the potential of dealing with such a com-
plexity and are increasingly being used for the devel-
opment of critical systems (see, for instance, (Hin-
chey & Bowen, 1999)). Formal methods allow a 

ESACS: an integrated methodology for design and safety analysis of 
complex systems 
 
 
 
M. Bozzano 1 & A. Villafiorita 1 & O. Åkerlund 2 & P. Bieber 3 & C. Bougnol 4 & E. Böde 5 & 
M. Bretschneider 6 & A. Cavallo 7 & C. Castel 3 & M. Cifaldi 8 & A. Cimatti 1 & A. Griffault 9 & 
C. Kehren 3 & B. Lawrence 10 & A. Lüdtke 11 & S. Metge 4 & C. Papadopoulos 10 & R. Passarello 8 & 
T. Peikenkamp 5 & P. Persson 12 & C. Seguin 3 & L. Trotta 7 & L. Valacca 8 & G. Zacco 1 
 

1  IRST 
via Sommarive 38, 38100 Trento, Italy 

2 Prover Technology AB, 
Stockholm, Sweden 

3 ONERA, Centre de Toulouse, 
2 avenue E. Belin, F-31055 Toulouse, France  

4 AIRBUS 
1 rond point M. Bellonte, 31707 Blagnac, France 

5 OFFIS 
26121 Oldenburg, Germany 

6 Airbus Deutschland GmbH, 
21129 Hamburg, Germany 

7  Alenia Aeronautica S.p.A, 
Strada Malanghero 17, 10072 Caselle (TO), Italy 

8 Società Italiana Avionica  
Strada Antica di Collegno, 253 10146 Torino, Italy 

9 LaBri, Université de Bordeaux  
Domaine Universitaire  351, cours de la Libération 
33405 Talence Cedex 1 33405 Talence, France 

10 Airbus UK Ltd. 
New Filton House, Golf Course Lane 
Filton, Bristol BS99 7AR, UK 

11 University of Oldenburg 
26129 Oldenburg, Germany 

12 Saab AB 
58188 Linköping, Sweden 

 ABSTRACT: The continuous increase of system complexity – stimulated by the higher complexity of the 
functionality provided by software-based embedded controllers and by the huge improvement in the computa-
tional power of hardware – requires a corresponding increase in the capability of design and safety engineers 
to maintain adequate safety and reliability levels. Emerging techniques, like formal methods, have the poten-
tial of dealing with the growing complexity of such systems and are increasingly being used for the develop-
ment of critical systems (e.g., aircraft systems, nuclear plants, railways systems), where at stake are not only 
delays in delivering products and economical losses, but also environmental hazards and public confidence. 
However, the use of formal methods during certain critical system development phases, e.g. safety analysis, is 
still at an early stage. In this paper we propose a new methodology, based on these novel techniques and sup-
ported by commercial and state-of-the-art tools, whose goal is to improve the safety analysis practices carried 
out during the development and certification of complex systems. The key ingredient of our methodology is 
the use of formal methods during both system development and safety analysis. This allows for a tighter inte-
gration of safety assessment and system development activities, fast system prototyping, automated safety as-
sessment since the early stages of development, and tool-supported verification and validation. 



more thorough verification of the system’s correct-
ness with respect to the requirements, by using auto-
mated procedures. However, the use of formal meth-
ods for safety analysis purposes is still at an early 
stage. Moreover, even when formal methods are ap-
plied during system development, the information 
linking the design and the safety assessment phases is 
often carried out by means of informal specifications. 
The link between design and safety analysis may be 
seen as an “over the wall process”  (Fenelon et al., 
1994). 

A solution to the issues mentioned above is to per-
form the safety assessment analysis in some auto-
mated way, directly from a formal system model 
originating from the design and safety engineer. 

This approach is being developed and investigated 
within the ESACS project (Enhanced Safety Assess-
ment for Complex Systems), an European Union 
sponsored project in the area of safety analysis, in-
volving several research institutions and leading 
companies in the fields of avionics and aerospace. 
The methodology developed within the ESACS pro-
ject is supported by state-of-the-art and commercial 
tools for system modeling and traditional safety 
analysis tools and is being trialed on a set of indus-
trial case studies. 

 
Outline of the paper. This paper is structured as 

follows. In the next section we present the ESACS 
approach and illustrate its use through a simple ex-
ample. In section 3 we present the architecture of the 
ESACS platform. Finally, in section 4 we draw some 
conclusions and discuss related work. 

2 ESACS METHODOLOGY 

2.1 Methodology 

The ESACS methodology aims to: 
− Support system development and safety analyses 

processes. 
− Provide a tight link between design and safety 

analysis. 
− Support automated verification and validation of 

the design. 
− Support automated safety assessment of the de-

sign. 
The goals mentioned above are being achieved 

through two basic ingredients: firstly, the use of for-
mal notations both for design and for safety assess-
ment of systems and secondly, the extension of state-
of-the-art tools, to provide users with a set of basic 
functionality that can be combined in different ways.  

The use of formal methods allows for automation 
of analyses and for a tighter integration between sys-
tem design and safety analysis (as the information 
exchanged between design and safety engineers is 

based on the same formal models, with a clear and 
unambiguous syntax and semantics). Tool support, 
achieved by implementing a set of basic functionality 
in state-of-the-art tools, allows for automated support 
of the methodology and for its flexible integration in 
various development and safety processes. 

The ESACS methodology takes into account and 
supports two main scenarios. In the first scenario the 
process is initiated by the design engineer, who pro-
vides a formal model of the design (at a given level 
of abstraction) using formal modeling tools (System 
Model Definition). The model is then automatically 
enriched with failures in order to perform safety 
analyses (Failure Mode Definition and Failure Mode 
Injection). The second scenario is useful when  safety 
assessment activities must be carried out when there 
is still no formal design model to start with, e.g. to 
evaluate a proposed system architecture. In this case, 
the process is initiated by the safety engineer, who 
builds a high-level model of the system using a li-
brary of components enriched with failure modes. 
Such model can then be used to perform safety as-
sessment on the system (System Model Prototyping 
for Safety Assessment). 

The scenarios sketched above entail for the defini-
tion of the following, tool-supported, basic function-
ality: 
− System Model Definition: definition, using for-

mal notations, of an executable specification (at a 
given level of abstraction) of the model of the sys-
tem under development (what we call design 
model). 

− System Model Prototyping for Safety Assess-
ment: definition, using a library of pre-defined 
components, of a model suitable for safety as-
sessment. This functionality allows performing 
safety analyses in the early phases of the devel-
opment process. 

− Failure Mode Definition and Failure Mode In-
jection: definition of the failure modes of the 
components constituting the design model. The 
failure modes can be automatically injected into 
the design model, in order to produce what we call 
an extended system model (ESM). The ESM is an 
executable specification of the design model in 
which components can fail according to the failure 
mode specification. Extended system models can 
be used by safety engineers to perform safety 
analyses. 

− Functional and Safety Requirements Defini-
tion: definition of the functional requirements and 
of the safety requirements of the system, using a 
formal language (e.g. linear temporal logic and 
computation tree logic (Emerson, 1990)). 

− Design Assessment: automated assessment of the 
design model against the functional requirements, 
using standard formal methods techniques (e.g.,    
simulation, theorem proving (Boyer & Moore, 
1979), and model checking (Clarke et al., 1999)). 



− Safety Assessment: automated safety assessment 
of the extended system model against the safety 
requirements, using automated techniques based 
on formal methods for automated fault tree analy-
sis and automated failure mode and effect analy-
sis. 

 
Note that the basic functionality provided by the plat-
form, which we have described, can be combined in 
different ways, in order to comply with any given 
development methodology one has in mind. For in-
stance, it is possible to support an incremental ap-
proach, based on iterative releases of a given system 
model at different levels of detail (e.g., model re-
finement, addition of further failure modes and/or 
safety requirements). Furthermore, it is possible to 
have iterations in the execution of the different 
phases (design and safety assessment), e.g., it is pos-
sible to let the model refinement process be driven by 
the safety assessment phase outcome (e.g., disclosure 
of system flaws requires fixing the physical system 
and/or correcting the formal model). 

2.2 A simple example 

To illustrate the basic concepts of the methodology 
we will show its application to the design of a con-
troller that regulates the level of a fluid in a tank. 

The goal of the controller is computing the capac-
ity of two pumps that regulate the inflow and the out-
flow of a liquid contained in a tank, so that the tank 
level remains between the two “Activation levels”  in 
the middle of the tank. At the same time, the control-
ler services a request, coming from the user of the 
system, for a minimum outflow capacity. If the tank 
level, obtained through a dedicated sensor, becomes 
either too low or too high, the controller must issue 
an alarm, and close the input or the output emergency 
valves. The user request for a minimum outflow is 
the only “external”  input to the system. The control-
ler monitors the tank level through a sensor providing 
the actual tank level. Figure 1 illustrates the compo-
nents in the system. 

In the following we focus on one of the two sce-
narios supported by the methodology, namely the 
scenario in which the model is built by the design 
engineer. 

The first step of the methodology, therefore, is the 
definition of the design model of the system on 
which we will perform the automated analyses, using 
formal notations. Such step is performed using stan-
dard modeling tools: Figure 2 illustrates the high 
level decomposition of the model highlighting the 
inputs/outputs of the system. The model is written in 
SCADE1. The model also includes a definition of the 
environment with which the controller interacts: this 
allows the verification of the whole system (i.e., con-
troller + sensors + actuators + tank) to ensure that it 
behaves as expected. 

The next steps of the methodology are the defini-
tion of the functional requirements of the system and 
the formal assessment, to verify and validate the sys-
tem against the functional requirements, in its nomi-
nal working conditions. The goal of this activity is to 
acquire confidence on the behavior of the system 
when all the components work as expected. Thus, we 
assume that the environment is functioning correctly 
and verify that the controller satisfies certain re-
quirements. For example, we assume that the pumps 
and valves are functioning according to controller 
demand and that the level indicator is sending correct 
information. We investigate properties like: (1) is it 
possible to have an overflow, (2) is it possible to 
have a drain, (3) can there be a false alarm or (4) can 
there be an overflow without alarm, etc. The proper-
ties are formalized using standard logical formalisms 
and the verification of the nominal system behavior 
is performed automatically using theorem proving 
and model checking techniques. After this step we 
are confident that the design model behaves as ex-
pected in nominal situations. 

This is, however, not sufficient to ensure that the 
system behaves as expected in all the possible situa-
tions. Having confirmed that all the requirements are 
fulfilled in the nominal case, it is then necessary to 
                                                 

1 See http://www.esterel-technologies.com 

Figure 2. The model of the tank controller. 
 

Figure 1. A simplified Tank Controller 
 



investigate if failures modes can make the system fail 
to meet the defined requirements. In order to do so, 
we must first identify and formalize the possible fail-
ure modes (FM) of the various components of the 
system. This is done in the failure mode definition 
phase, during which safety engineers identify and al-
locate all the possible failures of the components. 
This is performed, in the ESACS methodology, by 
retrieving, from a library of pre-defined failure 
modes, the failure modes of the different components 
of the system and by allocating such failures to the 
various components. The allocation of the failure 
modes to the components (Failure Mode Injection) 
automatically transforms the design model into a new 
model, that we call an extended system model. The 
extended system model enriches the possible behav-
iors of the system taking into account all the situa-
tions in which some of the components may fail ac-
cording to the specifications provided by the safety 
engineers. 

In the tank example, for instance, we can assume 
that the input pump (Pump_in, in Figure 1) can fail in 
two ways: (1) no flow can be produced or (2) the 
pump delivers full capacity all the time. In this case 
the model of the pump (whose output is modeled by 
the variable Pump_in_capacity) becomes, in the ex-
tended system model: 
 

if (Pump_in_status = stuck_zero) then 
Pump_in_capacity = 0 

elseif (Pump_in_status = stuck_max_flow)  then 
Pump_in_capacity = max_capacity 

else 
Pump_in_capacity = nominal, (that is, the flow  

required by the controller) 

 
Notice that the occurrence of failure is revealed by 
the variable Pump_in_status that is automatically 
generated during failure injection. So, if no failures 
occur, then the pump will react as required by the 
controller. However, if any of the failures occurs, 
then the output produced by the pump is determined 
by the failure. The model extension algorithm also 
takes care of defining the behaviour of the variables 
encoding the failures: it is for instance possible to 
express the condition that no two different failures 
can occur at the same time on the same component or 
that no more that four different failures can happen 
for a certain simulation, etc. 

Once we have an extended system model (either 
built using failure injection on the design model or 
by directly building a model with failures from the 
library of components), we can perform safety as-
sessment on the model, either via failure mode and 
effect analysis (FMEA) or via fault tree analysis. 
This is done using algorithms based on model check-
ing and theorem proving techniques for, e.g., auto-
matically building fault trees. The algorithms sup-
ported by the ESACS methodology are similar to 
those described in (Liggesmeyer & Rothfelder, 1998; 
Coudert & Madre, 1993) and allow to analyze both 
monotonic and non-monotonic systems; the results 
produced by the analyses can be shown using com-
mercial safety analysis tools. Figure 3, for instance, 
shows a simple fault tree automatically generated by 
ESACS algorithms and imported in FaulTree+. 

3 ESACS PLATFORM 

As illustrated in the previous section, an important 
aspect of the ESACS methodology is the support 
provided to the design and safety engineer by tools. 
This support is provided by the ESACS Platform, 
which has been defined and is being developed 
within the ESACS project. 

The starting point for the development of the 
ESACS platform has been the tools used by the in-
dustrial partners for design and for performing safety 
assessment, that include (but are not limited to) Ce-
cilia-OCAS, Statemate, SCADE, Simulink, Fault-
Tree+. However, the task of providing a single plat-
form that integrated all these tools and delivers to the 
user an interoperable environment, in which different 
tools and different modeling languages could be used 
interchangeably, was judged to be too risky for the 
time span and goals of the project. For instance, the 
problem of providing sound translators for the vari-
ous input languages would have been a project in it-
self. 

The approach taken in the ESACS project, thus, 
was to provide different configurations. Each con-
figuration uses its own input language (tailored to the 
needs of an industrial partner) and its own set of sup-
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Figure 3. A simple fault tree, generated by the ESACS plat-
form, of the safety requirement “ it is not possible to have a 
high level alarm while the input valve is not closed”  



port tools. All the configurations have been devel-
oped using the same underlying principles and the 
same architectural schema. 

This has allowed the development and the deliv-
ery of the following four different configurations: 
− Altarica configuration, based on the Cecilia-

OCAS tool. 
− NuSMV configuration, based on the NuSMV 

model checker. 
− SCADE configuration, based on the on SCADE 

tool and on the PROVER plug-in. 
− Statemate configuration, based on Statemate 

tool and on the VIS model checker. 
 
3.1  ESACS architecture 
 
The ESACS reference architecture is depicted in 
Figure 4. In particular, we distinguish the following 
blocks: 

 
− Model Capturing Tools, the block used for de-

fining the models for the analyses. It is used by 
the design engineer to define the design model 
and by the safety engineer to design models en-
riched with failures for safety assessment.  

− Components Library, a library of components, 
extended with failures, which can be used for pro-
viding fast prototypes for safety assessment. It is 
used by the safety engineer to fast prototype sys-
tems on which to perform preliminary safety 
analysis. 

− Requirements Capturing, the block for defining 
the functional and safety requirements. It is used 
both by design and safety engineers. The design 
engineer uses this block to define functional re-
quirements against which to check the consistency 

of the design model. The safety engineer uses this 
block to define the safety requirements, against 
which to test the extended system model. 

− SAT Repository, the central repository of the 
ESACS platform. The SAT (Safety Analysis 
Task) repository stores all the information about a 
system, like, for instance, the analyses to be per-
formed. 

− Failure Mode Capturing & Injection, the block 
for defining failure modes and injecting them into 
the system model; the injection yields the ex-
tended system model. This block is used by the 
safety engineer to define what are the degraded 
behaviors of the system model and to generate the 
extended system model, on which to perform 
safety analyses. 

− Model Analysis, the block for performing all the 
analyses both on the design model and on the ex-
tended system model. The ESACS Platform con-
figurations support standard formal verification 
analyses (e.g., simulation, model checking, and 
theorem proving) and safety analyses (fault tree 
construction and FMEA table construction). 

− Result Extraction, the block responsible for pre-
senting the results produced during the analyses in 
formats understood by commercial tools (e.g., 
fault trees in the FaultTree+ format). 

− Safety Analysis Tools, a block that comprehends 
various commercial safety analysis tools (e.g., 
FaultTree+), that are used to display results in a 
way that is familiar to safety engineers. 
 
Some of the components of the ESACS platform 

(i.e. Model Capturing tools and Safety Analysis 
Tools) are based on standard commercial tools: 
therefore, we do not illustrate them here any further. 

Figure 4. The ESACS Platform Reference Architecture. 
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The rest of this section, instead, focuses on the com-
ponents that are particular to the ESACS Platform 
(namely, Components Library, Generic Failure 
Model Library, Failure Mode Capturing and Failure 
Injection, Model Analysis, and Result Extraction). 
 

Components Library. The library of components 
gathers formal models of basic system components 
immediately suitable for safety analysis. Thus, each 
formal model describes both nominal and faulty be-
haviour of a specific system component. In the earli-
est phases of the system design, details of physical 
components are not fixed and safety engineers work 
with simple functional blocks and failure modes. 
Usually, a block offers a service (outputs) provided 
that some inputs and resources are available in the 
nominal case. Only permanent failures are consid-
ered and, after a failure, the block no longer provides 
an output. Some other blocks do not require inputs or 
resource to play their role (e.g., source of energy), or 
they do not provide any output (receptor). The library 
contains a first family of such generic blocks. It is re-
sponsibility of the safety engineer to select the ap-
propriate failure modes to be assigned to the different 
components, among the available ones. During the 
"preliminary system safety assessment", the system 
components are better known and the safety engi-
neers take into account more specific failure modes. 
At this stage, the library contains two other families 
of components. One is dedicated to components of 
hydraulic systems (reservoir, pump, valve, pipe, …) 
and deals with failure modes such as total loss, leak 
in a component, … The second family of compo-
nents is dedicated to components of electrical sys-
tems (generator, bus, switch, receptor, …) and han-
dles failures such as total loss, short-circuit, … The 
library is currently written in the AltaRica language 
(Arnold et al., 2000). Basically, each AltaRica model 
consists of two parts. An automaton describes which 
failure or nominal mode may be activated when a 
failure or a normal event occurs.  Then, a set of logi-
cal assertions describes the relationship between the 
input/output of the components according to the cur-
rent modes (see for instance (Bieber et al., 2002)). 
The library is implemented within the Cecilia-OCAS 
environment. The environment offers graphical fa-
cilities and a system model is built by drag and drop 
of icons of the components from the library panel to 
the graphical editor window. Then, the components 
are connected by drawing links between icons. A 
translator from AltaRica to Lustre has been devel-
oped [http://altarica.labri.fr/Tools/AltaLustre/] and 
will allow the ability to have similar libraries written 
in the Lustre language, usable in the SCADE envi-
ronment. 

 
Failure Mode Capturing and Failure Injection. 

In the design model of a system, the goal is to specify 
the nominal behaviour of the system fulfilling all the 

functionality. Suppose it is verified that this design, 
i.e. its nominal behaviour, fulfils all requirements. 
Also assume some of the inputs to and outputs from 
the design model represent signals coming from or 
going to “components” , which can malfunction – i.e. 
there is a possibility that the nominal behaviour can 
be changed due to a component failure mode (FM), 
e.g. a valve may fail in a stuck position. In order to 
include FM in the analyses we extend all input and 
output signals, which can malfunction, with FM 
nodes. Having this extended system model, it is now 
possible to investigate if requirements are fulfilled 
when FMs are allowed.   

FM are defined through the Failure mode captur-
ing module that safety engineers use firstly to iden-
tify the components of the model that have to be en-
riched, secondly to specify the parameters of the 
failure, and thirdly to assign possible failures to the 
elements of the design. Failures are retrieved from a 
Generic Failure Mode Library. The Generic Failure 
Mode Library defines and specifies the kind of fail-
ures that can be injected into the system model: the 
library supports all the common failure modes, such 
as “stuck at” , “ inverted” , “glitch”  (the “glitch”  failure 
allows for transient changes in the outputs delivered 
by a component). 

Once defined, failure modes can be automatically 
injected into a design model via the Failure Injection 
module. Failure injection takes as input a design 
model coming from the design engineer, the failure 
modes defined by the safety engineers, and produces 
an extended system model, namely a model in which 
components may fail. 

Only permanent failures are supported so far. The 
modeling of FM nodes is done such that the occur-
rence of a FM has priority over the nominal behav-
iour (see the example in Section 2). 

 
Requirements Capturing. This module is used to 

define the functional requirements and the safety re-
quirements of the extended system model. The re-
quirements are written using standard logic formal-
isms (e.g. linear temporal logic and computation tree 
logic) using the facilities provided by the tools sup-
porting the design of models. 

 
SAT Management. The SAT is the central re-

pository of all the information related to the (safety) 
assessment of a system. Within the SAT are stored 
references to design model, functional and safety re-
quirements, references to the extended system model, 
and analyses task specifications, namely, the specifi-
cation of the (safety) analyses that have been per-
formed on the system. 

In order to provide easy accessibility and portabil-
ity, the SAT is stored in XML format (W3C, 2000). 
The XML tags provide the structure of the SAT and 
encode, through attributes, information on how the 
content of the tags shall be interpreted. In this way, 



all the different configurations share the same XML 
structure to encode the information and can share the 
same computing facilities (e.g. transformation into 
HTML). 

The SAT is currently supported by the 
FSAP/NuSMV-SA configuration line, an extension 
of the NuSMV model checker (Cimatti et al., 2002). 
We conclude this section by discussing the model 
analysis and result extraction modules of the ESACS 
architecture. 

 
3.2  ESACS verification engine 
 
The model analysis and result extraction modules in-
clude the verification engines to perform verification 
and safety analyses on the design, and the necessary 
conversions algorithms to present the results of 
safety analyses using commercial safety analysis 
tools. At the moment, the following analyses are 
supported. 
 

Bottom up analysis. As soon as a simulator of 
formal specification is available, it can be used to as-
sist the failure mode and effect analysis. The safety 
engineer injects one or more failure event; the simu-
lator computes the effects of the failure according to 
the propagation laws encoded in the formal texts; fi-
nally, the engineer inspects the reached states and 
analyses the effects. Thanks to the hierarchies of 
formal models, local effects can be propagated to 
higher views so that global effects can be identified. 
Let us consider an aircraft whose surfaces (spoilers, 
flap, ...) and some other devices are displaced thanks 
to hydraulic power. The aircraft model is the top 
level of the hierarchy. It includes surfaces and hy-
draulics system models. In turn, the hydraulics sys-
tem model consists of models of atomic components 
(pumps, pipes, etc.). Failures affect these atomic 
components whereas the global impact is perceptible 
at the aircraft level. It is worth noting that a good 
graphical simulator makes this kind of analysis easy 
and intuitive for safety engineers (see a snapshot of a 
Cecilia OCAS simulation for instance). 

 

Dynamic failure behaviour. Traditional FTA is a 
static analysis – i.e. it is done for a given system con-
figuration – investigating the influence of failure 
modes on unwanted system behaviour. In our ap-
proach, since the general design includes the dy-
namic system behaviour, we can also investigate the 
influence of FM in dynamic situations. This gives us 
the possibility of doing new types of dynamic analy-
ses, e.g., to see if the order of occurrence of FM is 
important or if an intermittent FM has the same im-
pact as a constant FM.  Given that the analysis result 
shows the system can malfunction, then a so-called 

counter-model – showing a sequence of values for all 
system variables – is generated. In such a case it is 
important to analyze the whole sequence and not 
only the last time-step of the sequence. Another pos-
sibility is to define the top level event, i.e. the un-
wanted system behaviour, with regard to the system 
dynamics. For example we could regard a top event 
to occur not until the unwanted event has existed 
continuously for a certain time.  

 

Traditional fault tree generation. The ESACS 
Platform can compute fault trees using algorithms 
based on formal methods techniques. The imple-
mented algorithms support both monotonic and non-
monotonic systems; the minimization of non-
monotonic systems is based on algorithms presented, 
e.g., in (Coudert & Madre, 1993). The underlying 
principle for model-checking based fault tree con-
struction is as follows. The algorithm starts from an 
extended system model and a top level event and 
generates, using standard symbolic model checking 
techniques, a formula representing all the possible 
ways in which the top level event is not satisfied by 
the extended system model. From such a formula it is 
possible to extract all the possible combinations of 
failures of components. If the design model behaves 
correctly with respect to the top level event (i.e. if the 
top level event is verified by the design model), such 
combinations of failures are exactly the reason for 
the top level event not being fulfilled anymore in the 
extended system model (failure modes being the only 
change between design model and extended system 
model). Standard minimization techniques are then 
run on the combination of failures identified thus far, 
in order to extract from them the combinations that 
are minimal. The algorithm produces outputs that are 
suitable for integration with commercial safety 
analysis tools (e.g., FaultTree+).  

 

Fault tree with ordering information. When the 
failure mode behaviour of a system includes both 
primitive and derived failures, it is also possible to 
perform ordering analyses on the model. This is done 
by selecting a minimal cut set and by verifying 
whether the failures related to a particular top level 
event only occur in a particular order. We refer the 
reader to (Bozzano & Villafiorita, 2003) for a de-
tailed discussion on this topic. 

4 RELATED WORK AND CONCLUSIONS 

In this paper we presented the methodology that we 
are investigating within the ESACS project. The 
ESACS methodology is based on a tight integration 



between system design and safety analysis and on the 
use of formal methods for performing both design 
and safety assessment. The methodology is supported 
by state-of-the-art tools that have been extended with 
innovative algorithms for the safety assessment of 
systems. 

Currently, the ESACS methodology and the 
ESACS platform are being tested in the following 
case studies: 
− Air inlet control system APU (Auxiliary Power 

Unit) JAS39 Gripen, related to a critical subsys-
tem of an airplane; 

− Wheel Steering System, related to a critical sub-
system of a family of Airbus airplanes; 

− A controller of the Airbus A340 High Lift Sys-
tem; 

− Hydraulic System A320, related to the hydraulic 
system of the Airbus A320; 

− Secondary Power System (SPS) related to power 
system of the Eurofighter Typhoon. 

 
All the case studies have been chosen to show a 

reasonable degree of complexity. For instance, the 
SPS comprises two independent channels controlled 
by two independent computers. The SPS normal op-
eration consists in transmitting the mechanical power 
from the engines to the relevant hydraulic and elec-
trical generators. In case of an engine failure the SPS 
computers automatically initiates a “cross-bleed”  
procedure consisting in driving the hydraulic and 
electrical generators by means of an air turbine motor 
using bled air from the opposite engine. This is an 
example of one safety requirement of the system. 

A set of formal models have been produced for 
the different case studies and a first series of tests 
have been run. The results are interesting. As com-
mon with formal methods techniques, the algorithms 
are sensitive to the models and to the properties pro-
vided as input and are subject to the state explosion 
problem. In particular, failure injection contributes to 
increasing the size of models, as it increases the pos-
sible behaviors. 

Current work is focused on the direction of mak-
ing the algorithms more efficient and in the direction 
of making interaction with the user easier. 
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