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Abstract. Safety critical systems are becoming more complex, both in
the type of functionality they provide and in the way they are demanded
to interact with their environment. Such growing complexity requires an
adequate increase in the capability of safety engineers to assess system
safety, including analyzing the bahaviour of a system in degraded situa-
tions. Formal verification techniques, like symbolic model checking, have
the potential of dealing with such a complexity and are more often being
used during system design. In this paper we present the FSAP/NuSMV-
SA platform, based on the NuSMV2 model checker, that implements
known and novel techniques to help safety engineers perform safety anal-
ysis. The main functionalities of FSAP/NuSMV-SA include: failure mode
definition based on a library of failure modes, fault injection, automatic
fault tree construction for monotonic and non-monotonic systems, fail-
ure ordering analysis. The goal is to provide an environment that can be
used both by design engineers to formally verify a system and by safety
engineers to automate certain phases of safety assessment. The platform
is being developed within the ESACS project (Enhanced Safety Analy-
sis for Complex Systems), an European-Union-sponsored project in the
avionics sector, whose goal is to define a methodology to improve the
safety analysis practice for complex systems development.

1 Introduction

Controllers for safety critical systems are typically required to operate effectively
not only in nominal conditions — i.e., when all the (sub)components of the system
work as expected — but also in degraded situations — that is, when some of the
(sub)components of the system are not working properly. This requirement is
common in various safety critical sectors like, e.g., aeronautics, in which degraded
operational conditions are stated as a set of safety requirements, available in
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the System Requirements Specification. Therefore, the standard development
process is paired by a new set of activities (safety analysis), whose goal is to
identify all possible hazards, together with their relevant causes, and to certify
that the system behaves as expected in all the operational conditions.

Safety critical systems are becoming more complex, both in the type of func-
tionality they provide and in the way they are demanded to interact with their
environment. Such growing complexity requires an adequate increase in the ca-
pability of safety engineers to assess system safety. Current informal methodolo-
gies, like manual fault tree analysis (FTA) and failure mode and effect analysis
(FMEA) [34], that rely on the ability of the safety engineer to understand and
to foresee the system behaviour, are not ideal when dealing with highly com-
plex systems. Emerging techniques like formal methods [35] are increasingly
being used for the development of critical systems (see, e.g., [12,9,8,21]). For-
mal methods allow a more thorough verification of the system’s correctness with
respect to the requirements, by using automated and hopefully erhaustive verifi-
cation procedures. In particular, model checking [13] is increasingly being used
for several real-world safety-critical industrial applications. However, the use of
formal methods for safety analysis purposes is still at an early stage. Moreover,
even when formal methods are applied, the information linking the design and
the safety assessment phases is often carried out informally. The link between
design and safety analysis may be seen as an “over the wall process” [18].

In this paper we present the FSAP/NuSMV-SA platform, which is being
developed at ITC-IRST. FSAP/NuSMV-SA is based on two main components:
FSAP (Formal Safety Analysis Platform), that provides a graphical front-end
to the user, and NuSMV-SA, based on the NuSMV2 [10] model checker, that
provides an engine to perform safety assessment. The main functionality of
FSAP/NuSMV-SA include: support for model construction (e.g., failure mode
definition based on a library of predefined failure modes), automatic fault injec-
tion, support for safety requirements definition (in the form of temporal logic
formulas), automatic fault tree construction for both monotonic and non mono-
tonic systems, user-guided or random simulation, counterexample trace genera-
tion, and failure ordering analysis. FSAP/NuSMV-SA provides an environment
that can be used both by design engineers to formally verify a system and by
safety engineers to automate certain phases of safety assessment.

The major benefits provided by the FSAP/NuSMV-SA platform are a tight
integration between the design and the safety analysis teams, and a (partial)
automation of the activities related to both verification and safety assessment.
The basic functions provided by the platform can be combined in different ways,
in order to comply with any given development methodology one has in mind. It
is possible to support an incremental approach, based on iterative releases of a
given system model at different levels of detail (e.g., model refinement, addition
of further failure modes and/or safety requirements). Furthermore, it is possible
to have iterations in the execution of the different phases (design and safety as-
sessment), e.g., it is possible to let the model refinement process be driven by the
safety assessment phase outcome (e.g., disclosure of system flaws requires fixing



The FSAP/NuSMV-SA Safety Analysis Platform 3

the physical system and/or correcting the formal model). Therefore, in order to
support the flow of information which is likely to be required between design
and safety engineers, the FSAP/NuSMV-SA platform implements the concept
of repository for safety analysis task results. The repository contains information
about which safety analysis tasks (e.g., verification of temporal properties, fault
tree generations) have been performed for which model, keeping trace of which
properties do hold for a particular model and which do not, and marking tasks
as being up-to-date or not. The repository thus provides traceability capabilities
and makes reuse and evolution of safety cases easier.

The FSAP/NuSMV-SA platform has been and is being developed within
the ESACS project [6] (Enhanced Safety Assessment for Complex Systems, see
http://www.esacs.org), an European-Union-sponsored project in the area of
safety analysis, involving several research institutions and leading companies
in the fields of avionics and aerospace. The methodology developed within the
ESACS project is supported by state-of-the-art and commercial tools for system
modeling and traditional safety analysis. The tools, collectively referred with
the name of ESACS platform, have been extended to support the methodology
and to automate certain phases of safety analysis. Both the methodology and
the ESACS platform are being trialed on a set of industrial case studies. The
ESACS platform comes in different configurations, tailored to the needs of the
industrial partners participating in the project.

The rest of the paper is structured as follows. In Section 2 we give an overview
of the safety analysis process, we discuss its connection with model checking and
the safety analysis capabilities integrated into FSAP/NuSMV-SA. In Section 3
we give an overview of the FSAP/NuSMV-SA platform. In Section 4 we discuss
some related work, and, finally, in Section 5 we draw some conclusions.

2 Safety Analysis via Model Checking

Model checking [13] is a well-established method for formally verifying temporal
properties of finite-state concurrent systems. It has been applied for the formal
verification of a number of real-world safety-critical industrial systems [22, 23,
10]. In particular, the engine of FSAP/NuSMV-SA is an extension of the model
checking tool NuSMV2 [10], a BDD-based symbolic model-checker developed at
ITC-IRST, originated from a re-engineering and re-implementation of SMV [28].
NuSMV2 is a well-structured, open, flexible and well-documented platform for
model checking, and it has been designed to be robust and close to industrial
standards [11]. Typically, system specifications are written as temporal logic
formulas, and efficient symbolic algorithms (based on data structures like BDDs
[7]) are used to traverse the model and check if the specification holds or not.
Being an extension of NuSMV2, FSAP/NuSMV-SA provides all the func-
tionality of NuSMV2. Below, however, we will focus on the safety assessment
capabilities of FSAP/NuSMV-SA. We do so by providing a typical scenario of
usage of the platform on a toy example, namely a two-bit adder. The presented
scenario derives from the ESACS methodology (see [6], for more details). The
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MODULE bit(input) MODULE main
VAR VAR

out : {0,1}; randoml : {0,1};
ASSIGN random2 : {0,1};

out := input; bit1l : bit(randoml);

bit2 : bit(random?2);

MODULE adder(bitil,bit2) adder : adder (bitl.out,bit2.out);
VAR

out : {0,1};
ASSIGN

out := (bitl + bit2) mod 2;

Fig.1. A NuSMV model for a two-bit adder

example is deliberately simple for illustration purposes and should not be re-
garded as modeling a realistic system. Following the ESACS methodology, the
use of the FSAP/NuSMV-SA platform is based on the following phases:

System Model Definition In this phase a formal model of the system under
development, called system model, is provided.

Requirements Definition It is the phase in which the desired properties of
the system model are specified. The properties may refer to the behaviour
of the system both in nominal and in degraded situations.

Failure Mode Definition In this phase, the failure modes of the components
of the design model are identified.

Fault Injection and Model Extension In this phase the failure modes de-
fined in the previous phase are injected into the system model. As a result, a
new model, called extended system model, is generated. The extended system
model enriches the behaviour of the system model by taking into account all
the set of degraded behaviours identified during the previous phase.

Formal Verification and Safety Assessment It is the phase in which the
system model and/or the extended system model are checked against a set
of requirements. Verification strategies may include, e.g., guided or random
simulation, formal verification of properties, generation of fault trees.

Note that the responsibility of the different phases described above may belong
to different disciplines, e.g., design engineers or safety engineers. As discussed in
the introduction, there are no strict constraints on the way in which the different
functions can be invoked, and the overall process in which FSAP/NuSMV-SA is
used can be shaped up so as to comply with different development methodologies.

2.1 System Model and Failure Mode Definition

System model definition provides an executable specification (at a given level
of abstraction) of the model of the system under development. As an example,
consider the simple example, written in the syntax of NuSMV2 [10], in Figure 1.
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(R Failure Mode Editor [®] [XSR Editor [)
Noce Identier —
tviodule Name: [ adder Yariable Name: [ output ‘ [ adder_prop1
Attribut
Failure Mode D
Type:[stuck_at ~ Type: UL - Severity:[MAJOR =]
Name: | power failure
B : Formula
=Sl prio] AG (random1 = 0 & randomz = 0 & adder.output = 0 —=
Power fallure stucks the oUtpUt of the adder to zero (adderoutput FallreMode - stuck gt 1)) LT
Description
Parameters "IT0+0 s ot equal o 0, then power hias not faled”
This property holds
VALUE | O
oK Cancel K Cancel

Fig. 2. Inputing of failure modes and safety requirements in FSAP

It is composed of three modules: the bit module, which simply copies the input
bit to the output, the adder module, which computes the sum (module two) of
two given input bits, and the main module, which defines the overall system as
composed of an adder which takes as input two bits that may vary in a random
way. In order to study the behaviour of the adder circuit in presence of degraded
situations, failure mode definitions can be added to the previous specification.
In FSAP/NuSMV-SA, failure modes are defined using a graphical user in-
terface, in which the safety engineer specifies which nodes of the system model
can fail, in what ways, and according to what parameters. Figure 2 (left-hand
side) shows an example of the interface currently provided by FSAP/NuSMV-
SA for defining failure modes. Failure modes are retrieved from a library, called
Generic Failure Mode Library (GFML, for short). The library contains the spec-
ifications of the behaviours induced by the failures and the specification of the
parameters (whose values must be set by the user) that characterize the failures.
The standard GFML, that is the library distributed with the platform, provides
specification of failures like, e.g., stuck-at, random output, glitch, inverted. The
library can be extended to include user-defined failure modes. In the adder case,
examples of failure modes may include, e.g., the adder output being stuck at a
given value (zero or one), and an input bit corruption (inverted failure mode).

2.2 Fault Injection and Model Extension

The failure modes defined at the previous step can be automatically injected
by FSAP/NuSMV-SA into a system model. The result is the so-called extended
system model, that is a model in which some of the nodes can fail according
to the specification of the failure modes. As an example, consider the inverted
failure mode for the output of the bit module in Figure 1. Injection of this failure
mode causes the system model to be extended with a new piece of NuSMV code
(instantiated from the GFML), that is automatically inserted into the extended



6 M. Bozzano and A. Villafiorita

VAR out_nominal : {0,1};
out_FailureMode : {no_failure, inverted};
ASSIGN out_nominal := input;
DEFINE out_inverted := ! out_nominal;
DEFINE out := case
out_FailureMode = no_failure : out_nominal;
out_FailureMode = inverted : out_inverted;

esac;
ASSIGN next(out_FailureMode) := case
out_FailureMode = no_failure : {no_failure, inverted};
out_FailureMode = inverted : inverted;
esac;

Fig. 3. Injecting a fault in the bit module

system model. The new piece of code (see Figure 3) replaces the old definition
of the out variable by taking into account a possible corruption of the input bit.

2.3 Requirements Definition

System model definition, failure mode definition and model extension are just
a part of the verification and safety assessment process. Formal verification is
carried out by defining properties in the form of temporal specifications. For
instance, the following properties may be specified for the adder example:

AG (randoml = 0 & random2 = 0 — adder.out = 0)
AG (randoml = 0 & random2 = 0 & adder.out != 0) —
(bitl.out_FailureMode = inverted | bit2.out_FailureMode = inverted)

The first one states that the output of the adder must be zero whenever both
input bits are zero (this is clearly not the case in degraded situations), whereas
the second one states that whenever the sum of the zero input bits yields one it is
the case that at least one of the two input bits is corrupted. Requirements defined
in this way can subsequently be exhaustively verified via the underlying model
checking verification engine provided by NuSMV. Properties in FSAP/NuSMV-
SA are defined via a graphical user interface, in which users can enter information
such as type and severity of the safety requirement. Figure 2 (right-hand side), for
instance, shows how safety requirements are specified by the user. The graphical
user interface does not provide, at the moment, facilities for simplifying inputing
of formulas, such as patterns or visual representations.

2.4 Formal Verification and Safety Assessment

During this phase the model under development is tested against safety require-
ments. Using the facilities provided by the NuSMV2 engine, it is possible to
perform guided or random simulation, and several kinds of formal verification
analyses. In particular, below we will focus on fault tree construction and failure
ordering analysis, which are more specific to the safety analysis process.
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Fig. 4. A fault tree generated for the adder model

Fault Tree Construction Fault Tree Analysis (FTA) [34,24,30] is a safety
assessment strategy which is complementary with respect to exhaustive property
verification. It is a deductive, top-down method to analyze system design and
robustness. It usually involves specifying a top level event (TLE hereafter) to be
analyzed (e.g., a failure state), and identifying all possible sets of basic events
(e.g., basic faults) which may cause that TLE to occur. FTA allows one to iden-
tify possible system reliability or safety problems and find out root causes of
equipment failures. Fault trees provide a convenient symbolic representation of
the combination of events resulting in the occurrence of the top event. They are
usually represented in a graphical way, as a parallel or sequential combination
of AND/OR gates. The FSAP/NuSMV-SA platform can be used to automati-
cally generate fault trees starting from a given model and TLE. Model checking
techniques are used to extract automatically all collections of basic events (called
minimal cut sets) which can trigger the TLE. The generated cut sets are minimal
in the sense that only failure events that are strictly necessary for the top level
event to occur are retained.

Each cut set produced by FSAP/NuSMV-SA represents a situation in which
the top level event has been violated owing to the occurrence of some failures.
Under the hypothesis that the system model does not violate the top level event,
such failures are the cause of the violation of the top level event. Notice that
the violation may be due not to a static analysis of the system but, rather, to
complex interactions caused by the various failing and non-failing components of
the system. Since the fault tree representation provides a static representation,
NuSMV-SA associates, to each cut set, a counter-example that shows a trace,
step by step, of how the top level event is violated by the failures represented in
the cut set. Figure 4 shows an example of fault tree computed for the adder. It
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has been generated for the top level event
randoml = 0 & random2 = 0 & adder.out != 0

and it comprises three cut sets (the first one of them is a single failure, whereas

the remaining two include three basic events). The fault tree states that the top
level event may occur if and only if either the output of the adder is stuck at
one, or one of the input bits (and only one) is corrupted (with the adder working
properly). We note that minimality of the generated cut sets implies that, e.g.,
the case in which both input bits and the adder are failed is not considered
(though causing the top level event as well).

Finally, we note that the fault tree in Figure 4 shows an example of non-
monotonic fault tree analysis, i.e., basic events requiring system components
not to fail can be part of the results of the analysis. The traditional monotonic
analysis (i.e., where only failure events are considered) is also supported by
FSAP/NuSMV-SA. The choice between the different kinds of analyses is left to
the user, which may label a system model as being monotonic or non-monotonic.

Failure Ordering Analysis A further functionality of the FSAP/NuSMV-SA
platform is the so-called event ordering analysis. For further information on the
material of this section, we refer the reader to [5], which describes the algorithm
for ordering analysis, its implementation and applications in detail.

In traditional FTA, cut sets are simply flat collections (i.e, conjunctions) of
events which can trigger a given TLE. However, there might be timing con-
straints enforcing a particular event to happen before or after another one, in
order for the TLE to be triggered (i.e., the TLE would not show if the order
of the two events were swapped). Ordering constraints can be due, e.g., to a
causality relation or a functional dependency between events, or caused by more
complex interactions involving the dynamics of a system. Whatever the reason,
event ordering analysis can provide useful information which can be used by the
design and safety engineers to fully understand the ultimate causes of a given
system malfunction, so that adequate countermeasures can be taken.

The ordering analysis phase can be tightly integrated with fault tree analysis,
as described below. Given a system model, the verification process consists of the
following phases. First of all, a top level event to analyze is chosen (clearly, the
analysis can be repeated for different top level events). Then, fault tree analysis
is run in order to compute the minimal cut sets relative to the top level event.
For each cut set, the event ordering analysis module of the platform generates a
so-called ordering information model and performs ordering analysis on it. The
outcome of the ordering analysis is a precedence graph showing the order among
events (if any) which must be fulfilled in order for the top level event to occur.

3 FSAP/NuSMV-SA Platform Overview

This section briefly describes the architecture of FSAP/NuSMV-SA. The plat-
form is based on two main components: FSAP (Formal Safety Analysis Platform)
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Fig. 5. The FSAP/NuSMV-SA components

provides a graphical user interface and a manager for a repository that can be
used by safety engineers and design engineers to share information related to the
system under development and the analysis performed; NuSMV-SA, based on
the NuSMV2 model checker, provides the core algorithms for formal analysis.

FSAP is implemented in C++ as a cross-platform environment. The graphi-
cal user interface is based on the FLTK (see http://www.f1ltk.org) cross plat-
form toolkit. The data produced by the platform are stored in XML format, and
the parser is based on the expat library (see http://www.expat.org). As a re-
sult, FSAP/NuSMV-SA currently runs on Windows and Linux platforms (as for
NuSMV, running NuSMV-SA on Windows currently requires the Cygwin envi-
ronment to be installed). Figure 5 shows the components of FSAP/NuSMV-SA
and the data flow (solid lines). We distinguish the following blocks:

SAT Manager The SAT manager is the central module of the platform. It is
used to store all the information relevant to verification and safety assess-
ment. It contains references to the system model, failure modes, location
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of the extended system model, safety requirements, and analyses to be run.
From the SAT, it is possible to call all the other components of the platform.

Model Capturing System models are written using the NuSMV input lan-
guage, that is text based. FSAP/NuSMV-SA provides users with the possi-
bility of using their preferred text editor for editing the system model.

Failure Mode Editor & Fault Injector These are the modules for, respec-
tively defining failure modes and generating an extended system model.

Analysis Task Handler This is the module to define analysis tasks. Analysis
tasks are a convenient way to store the specification of the analyses to be
run, they are saved in the SAT and can be retrieved across different sessions.

NuSMV-SA This is the core, based on the NuSMV2 model checker.

Result Extraction and Displayers All the results produced by the platform
can be viewed using the result extraction and displayers. In particular, it is
possible to view counterexamples in textual, structured (XML), graphical,
or tabular fashion. Fault trees generated by the platform can be viewed using
commercial tools (e.g. FaultTree+ v9.0 and v10.0) or using a displayer we
especially developed within the project and can be exported in XML format.

4 Related Work

The FSAP/NuSMV-SA platform has been and is being developed within the
ESACS project (Enhanced Safety Analysis for Complex Systems), an European-
Union-sponsored project involving various research centers and industries from
the avionics sector. For a more detailed description of the ESACS methodology
and the project goals, we refer the reader to [6], which also discussed more
realistic examples to which the methodology has been applied.

The safety analysis capabilities provided by the platform include traditional
fault tree generation [34, 24, 30] together with formal verification capabilities typ-
ical of model checking [28,13,22,23,10]. The algorithms for cut set and prime
implicant computation described in Section 2.4 are based on classical procedures
for minimization of boolean functions, specifically on the implicit-search proce-
dure described in [15, 16], which is based on Binary Decision Diagrams (BDDs)
[7]. This choice was quite natural, given that the NuSMV model checker makes a
pervasive use of BDD data structures. The ordering analysis procedure described
in Section 2.4 also makes use of these algorithms (we refer the reader to [5] for a
discussion of the related literature). Explicit-search and SAT-based techniques
for computation of prime implicants are described, e.g., in [26].

We also mention [25, 33], which describe DIFTree (Dynamic Innovative Fault
Tree), a methodology supporting (however, still at the manual level) fault tree
construction and allowing for different kinds of analyses of sub-trees (e.g., Marko-
vian or Monte Carlo simulation for dynamic ones, and BDD-based evaluation
for static ones). The notation for non-logical (dynamic) gates of fault trees and
the support for sample probabilistic distributions could be nice features to be
integrated in our framework.
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A large amount of work has been done in the area of probabilistic safety
assessment (PSA) and in particular on dynamic reliability [31]. Dynamic relia-
bility is concerned with extending the classical event or fault tree approaches to
PSA by taking into consideration the mutual interactions between the hardware
components of a plant and the physical evolution of its process variables [27].
Examples of scenarios taken into consideration are, e.g., human intervention,
expert judgment, the role of control/protection systems, the so-called failures
on demand (i.e., failure of a component to intervene), and also the ordering of
events during accident propagation. Different approaches to dynamic reliability
include, e.g., state transitions or Markov models [1,29], the dynamic event tree
methodology [14], and direct simulation via Monte Carlo analysis [32, 27].

Concerning ordering analysis (see Section 2.4), the work which is probably
closer to ours is [14], which describes dynamic event trees as a convenient means
to represent the timing and order of intervention of a plant sub-systems and
their eventual failures. With respect to the classification the authors propose,
our approach can support simultaneous failures, whereas, at the moment, we are
working under the hypothesis of persistent failures (i.e., no repair is possible).

5 Conclusions

In this paper we have presented the FSAP/NuSMV-SA safety analysis platform.
The verification engine of the platform is based on the NuSMV2 model checker
[10]. FSAP/NuSMV-SA can be used as a tool to assist the safety analysis process
from the early phases of system design to the formal verification and safety as-
sessment phases. The goal is to provide an environment that can be used both by
design engineers to formally verify a system and by safety engineers to automate
certain phases of safety assessments. To achieve these goals, FSAP/NuSMV-SA
provides a set of basic functions which can be combined in arbitrary ways to
realize different process development methodologies.

The functionalities provided by FSAP /NuSMV-SA integrates traditional anal-
ysis methodologies like fault tree generation, together with exhaustive property
verification capabilities typical of model checking, plus model construction fa-
cilities (e.g., automatic failure injection based on a library of predefined failure
modes) and traceability capabilities, which improve exchange of information and
make reuse and evolution of safety cases easier. The FSAP /NuSMV-SA platform
supports automatic fault tree generation, both in the case of monotonic sys-
tems (computation of minimal cut sets) and in the case of non-monotonic ones
(computation of prime implicants). Furthermore, the results provided by fault
tree generation can be conveniently integrated by the so-called ordering analysis
phase, which allows one to extract ordering constraints holding between basic
events in a given cut set, thus providing a deeper insight into the ultimate causes
of system malfunction. As discussed in [5], timing constraints can arise very nat-
urally in industrial systems. For a more extensive discussion about the use of
model checking for safety analysis, the tool usage experience, and for a more
realistic example of application of the methodology, we refer the reader to [4].
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Concerning the works on dynamic reliability cited in Section 4, the most no-
table difference between our approach and the works mentioned there is that we
present automatic techniques, based on model checking, for both fault tree gen-
eration and ordering analysis, whereas traditional works on dynamic reliability
rely on manual analysis (e.g., Markovian analysis [29]) or simulation (e.g., Monte
Carlo simulation [27], the TRETA package of [14]). Automation is clearly a point
in our favour. Furthermore, we support automatic verification of arbitrary CTL
properties (in particular, both safety and liveness properties).

Current work is focusing on some improvements and extensions in order
to make the methodology competitive with existing approaches and usable in
realistic scenarios. First of all, there are some improvements at the modeling
level. The NuSMV models used so far are discrete, finite-state transition models.
In order to allow for more realistic models, we are considering an extension of
NuSMV with hybrid dynamics, along the lines of [19, 20]. This would allow both
to model more complex variable dynamics, and also a more realistic modeling of
time (which, currently, is modeled by an abstract transition step). Furthermore,
we need to extend our framework to deal with probabilistic assessment. Although
not illustrated in this paper, associating probabilistic estimates to basic events
and evaluating the resulting fault trees is straightforward. However, more work
needs to be done in order to support more complex probabilistic dynamics (see,
e.g., [17]). We also want to overcome the current limitation to permanent failures.

Concerning the FSAP/NuSMV-SA platform, we are currently working on
further improving user interaction (e.g., by working on pattern-based input-
ing of top level events) and experimenting on SAT based techniques [3,2] for
fault tree construction. The FSAP/NuSMV-SA platform is available for evalua-
tion purposes from http://sra.itc.it/tools/FSAP (the download is currently
password protected; the password can be obtained by sending an e-mail to the
authors).
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