PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE CRYSTAL CONSORTIUM. NEITHER THIS
DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED BY ANY
MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE CESAR
CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT. THE
RESEARCH LEADING TO THESE RESULTS HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S SEVENTH
FRAMEWORK PROGRAM (FP7/2007-2013) FOR CRYSTAL — CRITICAL SYSTEM ENGINEERING ACCELERATION JOINT
UNDERTAKING UNDER GRANT AGREEMENT N° 332830 AND FROM SPECIFIC NATIONAL PROGRAMS AND / OR FUNDING
AUTHORITIES.

CRYSTAL
CRitical SYSTem Engineering AcceLeration

First MSE SEE (Prototype)
D203.020

D203.020 First MSE SEE (Prototype) CRYSTAL
DOCUMENT INFORMATION
Project CRYSTAL
Grant Agreement No. ARTEMIS-2012-1-332830
Deliverable Title First MSE SEE (Prototype)
Deliverable No. D203.020
Dissemination Level 6]0)
Nature R
Document Version V1.00
Date 2014-02-10
Contact Ralf BOGUSCH
Organization EADS-CAS
Phone + 49 7545.8-2745
E-Mail ralf.bogusch@cassidian.com
Version Nature Date Page
V1.00 R 2014-02-10 20f 74

D203.020 First MSE SEE (Prototype) CRYSTAL
AUTHORS TABLE
Name Company E-Mail
Ralf BOGUSCH EADS-CAS ralf.bogusch@cassidian.com
REVIEW TABLE
Version Date Reviewer
V0.10 2014-01-31 |Inga BINDER (EADS-CAS)
V020 2014-02-05 Frédéric AUTRAN (EADS-CAS), Adeline SCHAFER (FhG), Herbert KLENK
' (EADS-CAS), Marc MALOT (SAGEM), Andreas MITSCHKE (EADS IW-G)
CHANGE HISTORY
. Pages
Version Date Reason for Change Affected
V0.10 2014-01-31 | Initial Version for internal review All
V0.20 2014-02-05 | Version for external review All
V1.00 2014-02-10 | Version for release
Version Nature Date Page
V1.00 R 2014-02-10 3of 74

D203.020 First MSE SEE (Prototype) C-'\’YSTAL

CONTENT
N |V I =@ 11U I N RO RP 9
1.1 ROLE OF THE DELIVERABLEuuviiieittitteiettteeesassteeesansteeesassaeesassaeasaassseasaassseeeaansseeesansseeesansseeessnssenessnnses 9
1.2 RELATIONSHIP TO OTHER CRYSTAL DOCUMENTSutiiiiiiiiie ittt e eeitee e e ettt e e e eatee e e e ntae e e e snnneaeeenaeeeeennns 9
1.3 STRUCTURE OF THIS DOCUMENTctiiiiiitiieie ittt e ettt e e ettt e e et e e e et e e e s atae e e e sabaeeeasnsbeeeeannseeesenteeeeennres 9
2 OVERVIEW OF THE SEE PROTOTYPEooiiiiiiiiie ittt ettt et e e st e e sntaeee s sntaeeesantaeeeeanes 11
2.1 LANDING SYMBOLOGY FUNCTIONutiiieiiiiiiesitieeeeattteeesstteeaesauteeeesanteeaessnbeeeesasaeeessasseeessanseeeesanseneesanes 11
2.2 SUPPORTED USAGE SCENARIOSuutieiittiieeitteeeeaateeeaeaauteeaesauteeeesateeeesaseeeesaassseessassseessaseeeessnseeessanes 12
2.3 CREATED LIFECYCLE DATA AND USED TOOLS....ceiiiitiieeeitiieeestieeeeeieeaesensteeeesasteeesasnteeasssnseeaesaseeeesannes 13
3 DESCRIPTION OF THE TOOL CHAIN ...coiiiiiii ettt ettt e e e aiae e e s s nben e s s nnbaeaesnntaeaeenns 15
R T I O AV = U ERR 15
Y = o RSP RRR 15
e N =7 LU =] SRR 16
314 DOORS ...t — e e — e e e e ———e e e e ———eeeah—eeeeaaa——eaeaaataeaeaareeeeaanraeaeeanrees 16
S = (O) TR OPPPRTO 17
K G N RSP 17
K N A T RSP 18
K V1Y 2T 0) U 18
R T e PSSR 19
3.10 e 10 1Y 0 1 =1 SRR 19
4 DESCRIPTION OF THE USAGE SCENARIOSoooii ittt ettt e e s e e e s nnnaee s 20
A1 OVERVIEW oiiiiiutiieeeiteeee e ettt e e sttt e e e satteeeeaasteeeeasteeeeaassaeeeaassaeaeeanteeaeeansseaesansaeaeesnsaeeeeansseeeesnsaneesnsaneenanns 20
4.2 SCENARIO SC1 — DEFINE PRODUCT FAMILY SCOPE AND VARIABILITY MODELovvveiiiiieeeiiiieeeeeiieeeeenns 21
421 Step 1.1 — Define product family SCOPEuuuiiiieeiiiiiiiiee e 22
4.2.2 Step 1.2 — Create variability MOlcooiiuiiiiiiie e 22
4.3 SCENARIO SC2 — DEVELOP DOMAIN SYSTEM REQUIREMENTScetiiiiiieeeiiieeeeanireeeessneeeeessneneeessnneeeaeans 24
4.3.1 Step 2.1 — Define structure of the requIrements repoOSItOrYcccuveeeeeeeeiiiiiiieie e 25
4.3.2 Step 2.2 — Define data model for requirements modulesccccceeeiiiiiiiiiiiee e, 25
4.3.3 Step 2.3 — Create reQUINEIMENTS........uiiiii ettt e e et e e e e e e et a bt et e e e e e s e ababbeeeeaaeeeaaannnbeeeeas 26
4.3.4 Step 2.4 — Allocate requirements t0 fEALUIES.ooiiiiiiiiiiie e 27
4.4 SCENARIO SC3 — ANALYZE AND IMPROVE REQUIREMENTS QUALITYvviieiiiiieeeiiieeeeesnieeeeessreeeessneneeeens 28
441 Step 3.1 — Select requiremMents MOAUIE.oooiiiiiiiiiiiiie e 30
442 Step 3.2 — Configure quality analysis for requirements moduleccccoviiiiiiniie e, 31
4.4.3 Step 3.3 — Defing ONtOIOQIES.........uiiiiiiiie e 34
4.4.4 Step 3.4 — Analyze quality of requirements ModUulecooeeeiiiiiiiiiii e 34
4,45 Step 3.5 — Provide fiNAINGScociiiiiiie e e e e e e e as 36
4.4.6 Step 3.6 — Create requirements qUality rEPOM.........ccccuviiiiiiee e e e e 38
4.4.7 Step 3.7 — IMProve rEQUITEMENESuveiieieeeiiiiiieee e e e e e e s e st e e e e e e s e s s e e e e e e e s s sesanbeeeeeaeeesannnnreees 39
4.5 SCENARIO SC4 — CREATE PRODUCT SYSTEM REQUIREMENTS......ceiiiiiieeeiiiieeeeireeeeessteeeessseeeeesssneeeeans 39
451 Step 4.1 — ConfiguIe PrOOUCT..........uuiiiiiie ittt e e e e e e eb b e e e e e e e e s aananeeeeeas 39
452 Step 4.2 — Create product SyStem reqUINEMENTSc.ueiieiiiieieiiiiiie et 41
4.6 SCENARIO SC5— PERFORM SYSTEM FUNCTIONAL ANALYSISuviiieeiiiieeeitteeeeeniteeeesssseeeessssaeeesssaneanans 42
4.6.1 Step 5.1 — Create initial MOAEl SEIUPcciiiiiiiiiiie e 43
4.6.2 Step 5.2 — Import input requirements to the Modelccccoeeoiviiii e 44
Version Nature Date Page

V1.00 R 2014-02-10 4 of 74

D203.020 First MSE SEE (Prototype) C-'\’YSTAL

4.6.3 Step 5.3 — Define system context and system-level USE CaSES........cccceevvivvviieireeeeeicciiiieeeeeeen, 45
4.6.4 Step 5.4 — Allocate requUIremMENtS t0 USE CASESccccuvrririeeeeeiiiiirireeeee e e s essaraeereeee e s s e ssnrnaeeeeees 46
4,65 Step 5.5 — Analyze the use case uninterrupted floWcccccoviiiiiiiiii e 47
4.6.6 Step 5.6 — Define black bOX SCENANIOScuuiiiiiiiiiiie e 47
4.6.7 Step 5.7 — Create system external ports and interfaces...........cccuveieieiiiiiiiiiiiiie e 48
4.6.8 Step 5.8 — Define state-based Dehaviour ... 49
4.6.9 Step 5.9 — Verify model by model @XECULIONooiiiiiiiiiiiiii e 50

4.7 SCENARIO SCB — PERFORM REPORT GENERATIONuviiiiitiieesiitteeeesssteeeesssseeeesssseeeessssseessnssseessnssseesans 55
4.7.1 Step 6.1 — Define template for document generationcccovcvveieiiiieee e 56
4.7.2 Step 6.2 — Create GOCUMENT........c..eiiiieee e e e st r e e e e e s e e e e e e s st e e e eeesssnsanteeeeeeeeeaeannrnneees 56

4.8 SCENARIO SC7 — PROVIDE PROCESS GUIDANCEcueiiiiitiiieeiitteeeesetteeeessateeeessraeeesstasesssssaeeessasseeaeans 56
4.8.1 Step 7.1 — Create method contents and practice libraryccccoceeiei i, 59
4.8.2 Step 7.2 — Defing AeIIVEIY PrOCESScccciii ittt e e e e e e e e e e e st rreeeaaeeean 60
4.8.3 Step 7.3 — PUDIISh AelIVEIY PIrOCESS....cccci ittt e e e e e s st rreae e e e 60

5 CONCLUSIONS AND WAY AHEADciii ittt ettt ettt ettt e e st e e s sntae e e e antbe e e s stbe e e e anbeeeeansteeeeenns 63
5.1 PRELIMINARY EVALUATION AND PLANNED FUTURE WORKcuuuiiiiiiiiieeeiiieeeeieeeeeeiteeeseneeeeeneeee e s 63
511 US202 — SAFELY ANGIYSIS ...eeiiiiiiieeiiitiie ettt ettt e et e st e e e e sbb e e e sbbe e e e sbb e e e e s anreee e 63
5.1.2 US203 — Variability ManagemMENTcooiuuiiiiiiiiiie ittt 63
5.1.3 US204 — Ontology-based Requirements ENGINEEIiNG.........cvoiiiiiiiiiiiiiii e 63
5.1.4 US205 — Process Automation, Guidance and MONItONNGccccuverereeeeeiiiiiieiee e ceieeee e e 64
5.1.5 US206 — Project compliance monitoring based on advanced traceability..............ccccvvvveereeenn. 64

5.2 ENVISAGED SEE ...ttt e e e e e e e b e enaeas 65

6 TERMS, ABBREVIATIONS AND DEFINITIONScoiiiiiiiiiiiie ettt siteee e s snree e e snnaeeeean 67
8.1 ABBREVIATIONS.tttteittteteittteeeaettteeesaatteeesaaeeeeeeaaseeeeeasseeee s sseeee e nseeeeaansteeesannteeeeannteeeeanbeeeeaanseeeesnneas 67
G €TI0 11 .Y RSSO 69

T REFERENCES.......ooti ittt ettt ettt s et e et e e e st e e e s te e e e e e bt e e e e atbeee e e tbeeeesasbeeeesasbaaesasbaeeesansaeeeeanes 74
Version Nature Date Page

V1.00 R 2014-02-10 50f74

D203.020 First MSE SEE (Prototype) C-'\’YSTAL

List of Figures

Figure 2-1 Degraded visual ENVIFONMENTS.........cciciiiiiiiiiiiee et e e s e e e e e e e st ee e e e e e e e e snsraaeeeaaeesaannns 11
Figure 2-2 Display of the Landing SYMDOIOGYccuuiiiiiiiiiiii e 11
Figure 2-3 Overview of the supported USAge SCENAIIOS............uuviiiiiee i it e e e eeeeee e e e e e s e e e e e e e earnraees 12
Figure 2-4 Overview of the integrated t00l Chain................oiiiiiii e 14
Figure 3-1 Ontology layers [CRYSTAL DBO7.04T].....coiiiiiieeiiieee et e esieeeeesteee e e sneeeeessneeeeessnsseeeesnsseeesnnneeeas 18
Figure 4-1 Define the scope of the product family with product feature matrix............ccccccoovviii e, 22
Figure 4-2 Create variability model USiNg OVM..........oooiiiiiiii e 23
Figure 4-3 Create variability model using feature tre€S...........oocuuriiiiii i 24
Figure 4-4 Define the structure of the RM reposSitory ... 25
Figure 4-5 Define the data model for requirements MOAUIESeoviiiiiiiiiiiiiee e 26
Figure 4-6 Create reqQUITEIMENTScoii it e et e e e e e et e e e e e e e e s et e e e e eaeeesaasntaeeeaeeeesannnnrenes 27
Figure 4-7 Allocate requirements 10 fEatUMESocuuiiii i s 28
Figure 4-8 Select a requirements module fOr @analySiSccccuiiiiiieiiiiiceee e e 31
Figure 4-9 Configure quality metrics in RQA ..o e 33
Figure 4-10 Configure vague phrases in RQA ...t 33
Figure 4-11 Define new boilerplates in KMc.uiiiiiiiii et e e e a e e e 34
Figure 4-12 Analyze requirements quality of requirements Set............cooiiiiiii e 35
Figure 4-13 Identify requirements that need to be iImMpProved.............cccoociiiiiiie e 36
Figure 4-14 Provide the quality summary for a requirement ..o 37
Figure 4-15 Analyze the findings for @ reqUIrEMENTooiiiiiii i 37
Figure 4-16 Create @ QUAlILY FEPOM ... e e e e e e e e e e ee e e e e e s e e snsteareeaaeeananns 38
Figure 4-17 Store the quality evaluation results in DOORSocuiiiiii e 38
Figure 4-18 Improve requirement USING RAT ...t e e e e e e e e st e e e e e s annraees 39
Figure 4-19 SferiAssist300 CONfIGUIatioN.uiii e e 40
Figure 4-20 SferiAssist500 CONfIGUIAtioN.c.uiiiiiiiiiie et e e e e e e e e snnae e e e ennaeeeeenees 40
Figure 4-21 SferiAssiSt300 reqQUIFEMENESciii it e e e e e e e e e e e e e s rer e e e e e e seannraees 41
Figure 4-22 SferiAssiStS500 reqQUIMEMENTSoiuiiiiiiiiiie e e e nnne s 42
Figure 4-23 Model setup in RNAPSOAY..........uuiiiiiiiiiiieee e e e e e e e e re e e e e e e e e sanraaeeeeaeseeanns 44
Figure 4-24 Import input requirements from DOORS to Rhapsody using Rhapsody Gateway....................... 45
Figure 4-25 Define system context and system level use cases (use case diagram)cccoeccveveeviveerennnnnnn. 46
Figure 4-26 Allocate system requirements to system-level use cases (use case diagram)cceeuuvneee 46
Figure 4-27 Analyze the use case uninterrupted flow (activity diagram)...........ccccconiiiiiii e, 47
Figure 4-28 Define black box scenarios (sequence diagram)...........cccoeccuiiiiieee e ciccieee e 48
Figure 4-29 Create system external ports and interfaces (internal block diagram)ccccoooiiiiiinnnen. 49
Figure 4-30 Define state-based behaviour (state chart diagram)............ccccooiiiiiiii e, 50
Figure 4-31 Enhanced model setup using UML testing profilecoooriiiiiie i 51
Figure 4-32 Generate test context for the system under test (internal block diagram)...........cccccviiiiiinninen. 52
Figure 4-33 Define test scenarios for the system under test (sequence diagram)ccccccoeevciiiiieeeeeeeiicinns 53

Version Nature Date Page

V1.00 R 2014-02-10 6 of 74

D203.020 First MSE SEE (Prototype) C-'\’YSTAL

Figure 4-34 Execute tests in Rhapsody using simulation of state-based behaviour..............ccocccciiinnnen. 54
Figure 4-35 Analyze model-based coverage Of teSt CASESoii i 55
Figure 4-36 Define the RPE template for document export in RPE Document Studiocccccceeeeeeiiinnneee, 56
Figure 4-37 Define method contents using EPF COMPOSEr ..o 59
Figure 4-38 Define delivery process using EPF COMPOSETcooiiiiiiiiiiiii et 60
Figure 4-39 View published method CONENESoiiiiiiiii s 61
Figure 4-40 View published practice including additional guidancCe.............coccueeviiiiiiiiiiie e 62
Figure 5-1 EnviSAged SEEoooeiiiii et e annnrraes 66

Version Nature Date Page

V1.00 R 2014-02-10 7of74

D203.020 First MSE SEE (Prototype) CRYSTAL

List of Tables

Table 2-1 Overview of the created lifecycle data and the used tO0IS............cooociiiiiiii i, 13
Table 3-1 Tools integrated in the SEE Prototypeoueieioiiiiiiii e 15
Table 4-1 Relation of usage scenarios with user stories and engineering methods.............cccccceee v, 20
LIz o] L= G B o] o =AY = 4o o 1P 69
LIz o L= G =Y o USRI 73
TabIE 7-1 REFEIENCES ...ttt ettt e ettt e e s bt e e e e hte e e e e eateeeeeanteeesanteeeeeanbeeeeeanneeeaeans 74

Version Nature Date Page

V1.00 R 2014-02-10 8of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

1 Introduction

1.1 Role of the Deliverable

This document has the following major purposes:

e Describe the model-based systems engineering approach and the technical status of the
implemented Systems Engineering Environment (SEE) prototype for the Mission Support Equipment
(MSE) use case:

a. Provide an overview of the current tool chain of the SEE prototype

b. Describe the usage of the tool chain in the frame of process activities and engineering
methods covered by the SEE prototype

c. Exemplify the artefacts created for the MSE use case, e.g. system requirements and model
entities

d. Describe the envisaged SEE and planned future work
e Provide input to WP601 (I0OS Development) required to derive specific |IOS-related requirements
e Provide input to WP602 (Platform Builder) required to derive adequate meta models

o Establish the technology baseline with respect to the MSE use case, and the expected progress
beyond, i.e. existing functionalities vs. functionalities that are expected to be developed in
CRYSTAL.

1.2 Relationship to other CRYSTAL Documents
This document is the first in a series of three reports:

e D203.020 - First MSE SEE (Prototype) — this document

e D203.030 — Enhanced MSE SEE

e D203.040 — Final MSE SEE

The description of the SEE prototype is linked to D203.011, which provides a detailed definition of the
process activities and engineering methods, selected to support the model-based systems engineering
paradigm adopted in the MSE use case:

e D203.011 — MSE Report V1

1.3 Structure of this Document

This document is composed of three main chapters:

e Chapter 1 gives an overview of the scope of the deliverable, relationship with other CRYSTAL
documents and this description of the document structure.

e Chapter 2 provides an introduction to the SEE prototype. It briefly describes the Landing Symbology
function, which is used for prototyping and evaluation purposes. Further, it provides an overview of
the usage scenarios covered by the prototype as well as the created lifecycle data and the related
tool chain.

Version Nature Date Page
V1.00 R 2014-02-10 9 of 74

D203.020 First MSE SEE (Prototype) C-'\’YSTAL

Chapter 3 describes the tool chain of the SEE prototype in detail. This includes descriptions of the
individual tool functions.

Chapter 4 provides in-depth descriptions of the usage scenarios of the prototype that exemplify the
use of the SEE prototype in the frame of the related process activities and engineering methods as
defined in D203.011.

Chapter 5 provides the conclusions including an initial assessment of the current technical status. It
describes the envisaged SEE and the planned way ahead.

Version Nature Date Page

V1.00

R 2014-02-10 10 of 74

D203.020 First MSE SEE (Prototype) C-'\’YSTAL

2 Overview of the SEE Prototype

2.1 Landing Symbology Function

For demonstration and evaluation purposes the Landing Symbology function, which is part of a situational
awareness suite Sferion™, is applied in this use case. The Landing Symbology supports helicopter pilots
during the final landing approach in degraded visual environments which can be caused by e.g. rain, fog,
sand, dust and snow (see Figure 2-1). Many accidents can be directly attributed to such degraded visual
environments where pilots often loose spatial and environmental orientation.

Figure 2-1 Degraded visual environments

The Landing Symbology function allows to mark the landing point on ground using a head-tracked helmet
mounted display. During the final landing approach it enhances the spatial awareness of flying crews by
displaying 3D conformal visual cues on a helmet-mounted display (see Figure 2-2). In addition it employs a
surface grid conformal to the measured terrain for the landing area.

The Landing Symbology function provides the following functionality:

e Display 3D conformal visual cues on a helmet mounted display visualizing the helicopter attitude and
position relative to the intended landing point.

e Determine and visualize the condition of the anticipated landing zone with respect to roughness and
slope based on real time 3D data.

o Display obstacles on a helmet mounted display relevant for the start and landing phase. The
obstacles are taken from the real-time obstacle fusion, thus considering obstacles from the obstacle
data bases and from real-time sensor obstacle classification.

Figure 2-2 Display of the Landing Symbology

Version Nature Date Page
V1.00 R 2014-02-10 11 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

2.2 Supported Usage Scenarios

Usage scenarios illustrate how the tool chain of the SEE prototype can be used in order to perform certain
engineering activities. In the current status of the SEE prototype, the early phases of systems engineering
are covered. This includes the following usage scenarios:

e SC1 — Define Product Family Scope and Variability Model
e SC2 — Develop Domain System Requirements

e SC3 - Analyze and Improve Requirements Quality

e SC4 — Create Product System Requirements

e SC5 — Perform System Functional Analysis

Two further usage scenarios are transversal, i.e. they may be used at any time of the development lifecycle:
e SC6 — Perform Report Generation
e SC7 — Provide Process Guidance

Figure 2-3 provides an overview of the usage scenarios and relates them to the user stories covered by the
SEE prototype. The user stories are introduced in [CRYSTAL D203.011].

Define Product
Family Scope and
Variability Model

Develop Domain
System
Requirements

Analyze and Improve
Requirements Quality

Create Product
System
Requirements

Perform Report
Generation

Perform System
Functional Analysis

Provide Process

/ Guidance
US203 — Variability Management
D US204 — Ontology-based Requirements Engineering

US205 — Process Automation, Guidance and Monitoring

D US206 — Project Compliance Monitoring based on Advanced Traceability

Figure 2-3 Overview of the supported usage scenarios

Version Nature Date Page

V1.00 R 2014-02-10 12 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

2.3 Created Lifecycle Data and Used Tools

For the Landing Symbology function a data set has been created, which will be enhanced in future
demonstrator versions. The following table lists the created artefacts and the related tools:

Usage Scenario Artefacts Tools
SC1 - Define Product Family Scope and |, o piiity models FeaturelDE, Vedit
Variability Model
SC2 — Develop Domain System Top-level system requirements for

. . DOORS
Requirements product family
SC3 — Analyze and Improve DOORS, RQA,

Quality metrics, Boilerplates

Requirements Quality RAT, kM
SC4 — Create Product System Top-level system requirements for

. . DOORS
Requirements product variant
SC5 - Perform System Functional Top-lgvel functional analysis model DOORS, Rhapsody
Analysis including test cases
SC6 — Perform Report Generation Template for report generation RPE

Method contents describing the systems

SC7 — Provide Process Guidance . .
engineering process

EPF Composer

Table 2-1 Overview of the created lifecycle data and the used tools

Figure 2-4 shows the SEE prototype setup as of January 2014. The current prototype is mainly based on
IBM Rational Software products and the Requirements Quality Suite from The Reuse Company. Colours
illustrate how the individual tools are related with the user stories introduced in [CRYSTAL D203.011].

The individual tools are described in chapter 3. The created lifecycle data is illustrated in the description of
the usage scenarios in chapter 4.

Version Nature Date Page
V1.00 R 2014-02-10 13 of 74

e L -
D203.020 First MSE SEE (Prototype)

Excel — Vedit FeaturelDE 2
Composer

— Firefox

/

Rhapsody + DOORS RQA Server RQA Client
RPE DOORS
Database
| US203 - Variability Management
D US204 - Ontology-based Requirements Engineering
Word

US205 — Process Automation, Guidance and Monitoring

D US206 — Project Compliance Monitoring based on Advanced Traceability

Figure 2-4 Overview of the integrated tool chain

Version Nature

Date Page
V1.00 R

2014-02-10 14 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

3 Description of the Tool Chain

3.1 Overview

Table 3-1 provides information on tool versions and tool vendors for all tools integrated in the first SEE
prototype.

Tool Short Name Version Tool Vendor
IBM Rational DOORS DOORS 9.2.0.5 IBM Rational
IBM Rational Rhapsody

including the add-ons Rhapsody 8.0 IBM Rational

Gateway and TestConductor
IBM Rational Publishing

Engine Document Studio RPE 1.1.2.2 IBM Rational
Requirements Quality RQA 4.1.4892 The Reuse Company
Analyzer

Requirements Authoring Tool | RAT 4.1 The Reuse Company
knowledgeManager kM 6.1 The Reuse Company
Microsoft SQL Server 2008 SQL Server 10.0.5500 Microsoft

Express Edition

Paluno, The Ruhr Institute for

VarMod Editor Vedit N/A Software Technology, University
of Duisburg-Essen

FeaturelDE FeaturelDE 26.5 University of Magdeburg

Eclipse Process Framework EPF Composer 1.5.1.5 Eclipse Foundation

Composer

Mozilla Firefox Firefox 26.0 Mozilla

Microsoft Word Word 2007 Microsoft

Microsoft Excel Excel 2007 Microsoft

Table 3-1 Tools integrated in the SEE prototype

In the following sections a short description of each tool is given.

3.2 Vedit

The Vedit tool is an Eclipse plug-in that is based on the EMF and GMF. It supports the specification of
product family variability models which are documented in the OVM notation (Orthogonal Variability
Modelling). The editor has been developed based on the variability meta model of the OVM and the OVM
notation [OVM]. Vedit provides a graphical editor and performs syntax checks based on the OVM language
model. It provides the following tool functions:

o Definition of variation points and variants: name, short description, artefact reference, internal /
external (visible to customer) variation points

Version Nature Date Page
V1.00 R 2014-02-10 15 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

o Definition of variability constraints: optional, mandatory, range of alternatives
o Definition of constraint dependencies: requires, excludes
e Import and export of variability models

The Vedit tool was developed at the Software Systems Engineering institute of the Ruhr Institute for
Software Technology (PALUNO), University of Duisburg-Essen.

Within EADS-CAS, Vedit is not used yet.

3.3 FeaturelDE

FeaturelDE is a development tool that supports feature-oriented programming. The idea of feature-oriented
programming is that features realize functionalities which are implemented in program fragments. In a
software product line a family of program variants can be defined by a composition of selected features.
Different composition engines such as AHEAD, FeatureC++ or FeatureHouse are available in FeaturelDE,
which support different programming languages and paradigms. The selection of features can be done in a
tree-style configuration dialog. During the configuration process it is assured that only valid configurations
are defined. Valid configurations are specified in the feature model, which is graphically represented by a
feature diagram. The feature diagram contains mandatory or optional features which can be grouped with
and / or / alternative relations. Logical constraints can be added such as “feature A implies feature B”. The
following functions of FeaturelDE are used in the SEE prototype:

o Definition of a feature model including cross-tree constraints

o Creation of configurations

3.4 DOORS

IBM Rational DOORS is a requirements management tool which aims to support requirements-based
engineering activities. DOORS offers the following functions:

¢ Requirements management in a centralized location (DOORS database)
e Requirements capture by importing requirements from other sources (e.g. MS Word or MS Excel)

¢ Requirements definition by creating and editing requirements objects which can be further described
by a customizable set of attributes

e Traceability by linking requirements with other requirements or test cases (if present in the DOORS
database)

e Custom views to aid traceability and impact analysis

e Creation of requirements documents

Based on custom DXL (DOORS Extension Language) scripts several company-specific extensions have
been introduced:

o Completeness and consistency checks, e.g. have all attributes been specified according to the
applicable requirements management plan?

e Simple linguistic checks, e.g. have vague phrases been avoided in the requirements statements?
e Calculation of metrics and KPls
e Improved report generation

Version Nature Date Page
V1.00 R 2014-02-10 16 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

e Support for product family management. This includes integration with feature models and automatic
generation of requirements modules for given product configurations.

Within EADS-CAS, DOORS is used as standard tool to manage requirements in all large projects and
programmes.

3.5 RQA

Requirements Quality Analyzer (RQA) belongs to the Requirements Quality Suite (RQS), a set of tools
aimed to customize, manage and improve the quality of a set of requirements. The main goals of RQA are
summarized from [CRYSTAL D607.021]:

o Allowing the customization of quality metrics for the whole suite, so that the suite could provide
recommendations to different end-users

e Forcing the re-check of the quality for a set of requirements
e Editing individual requirements by following a set of quality hints
e Generating quality reports:

0 Correctness report: including the quality hints for a set of metrics measured individually, i.e.
requirement by requirement

o0 Completeness report: this report is based on boilerplates and lists all the boilerplates defined
to represent a set of different types of requirements, together with the list of requirements
matching any of those boilerplates

Consistency report: based on the measurement units used in different requirements
Coupling analysis: showing those requirements with a similar semantic graph

Within EADS-CAS, RQA is not used yet.

3.6 RAT

Requirements Authoring Tool (RAT) belongs to Requirements Quality Suite (RQS), a set of tools aimed to
customize, manage and improve the quality of a set of requirements. The main goals of RAT are
summarized from [CRYSTAL D607.031]:

e Typing (either adding or editing) requirements on top of a requirements management tool
e Generating correctness information on the fly
e Highlighting the defects (or order relevant information) found during the quality analysis

e Accessing the details of the quality metrics: actual quantitative value, qualitative value, expressions
found in the requirement which raised the metric...

e Assistance in writing requirements by following a set of agreed upon boilerplates

e Use of the right vocabulary by showing suggestions coming from domain ontologies
e Consistency information based on measurement units

e Similar requirements based on their semantic graphs

e Suggestion management: that allows to send suggestions to the “owners” of the ontology about new
concepts or even new boilerplates

Version Nature Date Page
V1.00 R 2014-02-10 17 of 74

AJxLL
D203.020 First MSE SEE (Prototype) CRYSTAL

7TAYY

Within EADS-CAS, RAT is not used yet.

3.7 kM

knowledgeMANAGER (kM) belongs to Requirements Quality Suite (RQS), a set of tools aimed to customize,
manage and improve the quality of a set of requirements. The main goals of kM are the following are
summarized from [CRYSTAL D607.041]:

¢ Managing the indexing process based on Natural Language tools (NL tools)
e Manage controlled vocabulary to be used in RAT and RQA
e Manage thesaurus and links among the concepts in the controlled vocabulary

e Manage requirements patterns needed to generate the proper formalization of requirements (or any
other text-based artefact)

¢ Manage the communication between the team in charge of creating the requirements and the team
in charge of managing all the layers on the ontology. This communication is modelled as a
suggestion system for the requirements authors.

All the previous information defines an ontology formed by the following layers:

Other customized
formalization content (source
code) Inference layer
The grammar which defines

the structure (allowed

How th tenti . . content) of the pattern
owthe content is Formalization layer
stored in the Asset

Store by means of
semanticitems Used for
Correctness

purposes in RQS

Pattern layer

Clusters of Verbs,

Nouns, Adj:ectif.res. or Classitication Determiners, prepositions...
Adverbs with similar _——@ IBVET used for the NL analysis
meaning/role Yy

Nouns, together with Domain

hierarchies, synonyms o thesaurus NL Concepts Invalid concepts
and other

relationships

Verbs, nouns and _/.. Controlled vocabulary

other types of words

Figure 3-1 Ontology layers [CRYSTAL D607.041]
Within EADS-CAS, kM is not used yet.

3.8 Rhapsody

IBM Rational Rhapsody is a UML/SysML modelling tool which supports model-based development (MBD)
and model-based systems engineering (MBSE) for real-time or embedded systems engineering. It can
improve productivity, quality, and communication by abstracting complex designs and assisting in finding
defects early. It supports the requirements analysis and traceability to design and allows automate the

Version Nature Date Page
V1.00 R 2014-02-10 18 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

testing process with visualization of test cases and execution of automated tests using the IBM Rational
TestConductor add-on. It is able to import requirement objects from the requirements management database
DOORS via the IBM Rational Rhapsody Gateway add-on. It can generate C, C++, Java and ADA code
which can be executed together with the Rhapsody Object Execution Framework (OXF).

Within EADS-CAS, Rhapsody is used in some projects and programmes, which have deployed MBD and/ or
MBSE.

3.9 RPE

IBM Rational Publishing Engine automates document generation from Rational products and select third-
party tools. RPE can be used to automate the generation of documents for ad hoc use, formal reviews,
contractual obligations or regulatory compliance. Built-in capabilities extract data from a range of data
sources to help reduce manual work and risk of errors. RPE provides the following features:

e Documents and reports: generate high-quality documents with flexible formatting as well as
composite reports containing data from multiple sources

e Outputs: support multiple output formats and concurrent document generation to multiple target
formats from a single template.

e Templates: include predefined templates and provide a graphical template editing environment for
custom report design.

e Data sources: extract data from a single source or combine data from multiple sources.

Within EADS-CAS, RPE is used in combination with Rhapsody in some projects and programmes.

3.10 EPF Composer

The Eclipse Process Framework (EPF) is an open source project that is managed by the Eclipse Foundation.
It has two goals:

e To provide an extensible framework and exemplary tools for process engineering - method and
process authoring, library management, configuring and publishing a process.

e To provide exemplary and extensible process content for a range of development and management
processes supporting iterative, agile, and incremental development, and applicable to a broad set of
development platforms and applications.

By using EPF Composer you can create your own development process by structuring it in one specific way
using a predefined schema. This schema is based on the SPEM OMG specification and is referred to as the
Unified Method Architecture (UMA). The UMA and SPEM schemata support the organization of large
amounts of descriptions for methods and processes. Such method content and processes do not have to be
limited to software or systems engineering, but can also cover other design and engineering disciplines.

Within EADS-CAS, EPF Composer is not used in the operational environment.

Version Nature Date Page
V1.00 R 2014-02-10 19 of 74

First MSE SEE (Prototype)

D203.020 CRYSTAL

4 Description of the Usage Scenarios

4.1 Overview

This chapter describes the engineering activities applied with the integrated tool chain of the first SEE
prototype. It provides an overview of the data that has been defined for specifying the Landing Symbology
feature. Table 4-1 provides references to the related user stories and engineering methods as described in
[D203.011].

Usage Scenario

Related User Story

Related Engineering Method

SC1 — Define Product Family
Scope and Variability Model

US203 — Variability Management

N/A

SC2 — Develop Domain System
Requirements

US203 — Variability Management

EM203 01_01 - Develop
Domain System Requirements

SC3 — Analyze and Improve
Requirements Quality

US204 — Ontology-based
Requirements Engineering

EM204_01_03 — Analyze
Requirements Quality

EM204_01_01 — Define
Requirements

SC4 — Create Product System
Requirements

US203 - Variability Management

EM203_02 01 — Create Product
System Requirements

SC5 — Perform System
Functional Analysis

US206 — Project Compliance
Monitoring based on Advanced
Traceability

EM206_01_01 — Retrieve Valid
Traces

EM206_01_02 — Analyse Trace

EM206_02_01 — Perform
Coverage Analysis

EM206_03 01 — Create
Verification Objective

EM206_03 02 — Create
Verification Case

EM206_03 03 — Create
Verification Procedure

SC6 — Perform Report
Generation

US206 — Project Compliance
Monitoring based on Advanced
Traceability

Will be defined in the next issue
of [CRYSTAL D203.011]

SC7 — Provide Process Guidance

US205 — Process Automation,
Guidance and Monitoring

Will be defined in the next issue
of [CRYSTAL D203.011]

Table 4-1 Relation of usage scenarios with user stories and engineering methods

Version
V1.00 R

Nature

Date

2014-02-10

Page
20 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

In the following sections the scenarios, applied in the first SEE prototype, are described in detail. For each
scenario the related user story, engineering methods and the tool chain is given. The scenarios are
exemplified using the data set created for the Landing Symbology function.

4.2 Scenario SC1 — Define Product Family Scope and Variability Model

Related user story: US203 — Variability Management
Related engineering methods: N/A
Related tool chain: Vedit, FeaturelDE

Product family domain engineering consists of two main activities: scoping and variability modelling. During
the scoping, relevant product features and future product configurations are identified based on business
and market information. This involves:

¢ Identify features which could provide value to at least one customer.

o Classify features according to the categories mandatory, optional, customizable, range of
alternatives.

o Assess the relevance of each feature in terms of value (ability to contribute to customer satisfaction),
risk (maturity of development) and cost (effort required for development).

o Define the scope of the product family by including only feature with high relevance.

The result of the scoping can be formalized using the Orthogonal Variability Model (OVM) approach [OVM].
The Vedit tool is employed for developing variability models in the OVM language. The main modelling
elements of OVM are:

e Variation points: representation of a variable item or property of an item. What varies?
e Variant: particular instance of a variable item or property. How does it vary?

e Variability dependency: the specified variation point allows choosing the specified variant. An
optional variant can be, but does not have to be bound for a variation point. A mandatory variant
must be bound whenever its variation point is considered. An alternative choice groups a set of
optional variability dependencies. In this case the allowed number of variants that can be selected
has to be defined.

e Variability constraints: requires (selection of one variant requires another variant to be selected),
excludes (selection of one variant excludes selection of another variant).

In the next step, variabilities have to be related to development artefacts. These are the outputs of the
product family domain engineering such as requirements, system design, components, or tests. For this
purpose traceability links that relate variants to development artefacts, need to be created. The formal
representation of OVM allows reasoning about the consistency and correctness of the OVM and the derived
products. However, in the current version of the SEE prototype this step is not considered yet.

Instead, a second approach has been implemented based on feature models. The configuration of valid
variants is well supported by the feature approach. Selected features can easily be allocated to requirement
artefacts. The derivation of requirements for different product variants can then be achieved by composition
of the requirements corresponding to selected features.

Version Nature Date Page
V1.00 R 2014-02-10 21 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

The following steps are performed in this scenario:
e Step 1.1 — Define the scope of the product family
o Step 1.2 — Create variability model

4.2.1 Step 1.1 — Define product family scope

In this step the results of the scoping process are recorded in an Excel sheet — the Product Feature Matrix
(see Figure 4-1). First, the characteristics of potential products (e.g. low-cost or high-end variants) are
collected. Then, features of these products are identified by analyzing the capabilities (functions and
performance), interfaces (to human operator or other systems), and technologies (development approaches
and tools) of the potential products. An initial classification of each feature is performed (e.g. feature is
optional; feature is refined into a range of alternatives). Finally, each feature is assessed by the stakeholders
with respect to customer satisfaction, development risk and cost yielding a relevance factor. A threshold for
the relevance is defined in order to get the list of features which should be in the scope of the product family.

E Microsoft Excel - LS _Product_Feature_Matrix_¥d.xls

I’__‘I_] File Edit Wew Insert Format Tools Data Window Help Type aquestion for help » - & X
DEHS S Qv E| &G 719 - 8> -4l %o e gl -0 -8 ru|EE= B
31 - B ox
ﬂ i = B
7 o o o o
1[2[3]4[5]s] A c [b e[T [J] K [LIMINT]TO]
. b
2 Assessment Products
g
£ 25 8
ID Feature Name % g) H
£ gz 2 12 1. s
3 - [=R L= - hahd 1A -SRI
4 F1_ |System Dom
[5 | F2 | Capatilities Darm
[5| F3 Functions Dam
[7 F4 Terrain slope, roughness indication for the landing point Opt 2 1 1 2.00 b
g F& Display real reference objects (sensor-based) Opt 2 2 2 1.33 X
9 F& Display artificial reference objects Fir 3 1 1 2.33 ¥ ¥ k]
10| F7 Approach line Ftr
1, F6 Direct Alt 2 1 1 2.00 b ¥
12| F9 Flightpath ta landing position Alt 3 1 2 2.00 ¥
= 13| F10 Take-off grid Ftr
o 14 1 Avtificial Alt 2 1 1 2.00 b b
[o 15| F12 Sensor-based Alt 3 1 2 2.00 b
= 16| F13 Set landing point Fir 3 1 1 2.33 b % #
17| F14 Handling pilot only Alt 3 1 1 2.33 ¥ k]
|- 18| F15 Both pilots Alt 2 2 2 1.33 b
E] 19| F23 Data fusion (with way points) Opt 3 2 2 1.67 X
E] 20| Flb Hhll Do
[21| F17 Presentation symbology [static) Ftr
22| F18 Doghouse Alt 3 1 2 2.00 b
23| F18 WATO T Al 2 i} 1 233 X
24| F20 Helipad H Alt 2 0 1 233 #
o 25| F21 Low-cost doghouse Alt 1 1 1 1.67 b
= 26| F22 Distance-dependent symbology (dynamic) Cst 3 1 1 2.33 C C C -
W o4 b M} Meta Product Description, Product Feature Matrix { Overview JLI | _le
Ready UM A

Figure 4-1 Define the scope of the product family with product feature matrix

4.2.2 Step 1.2 — Create variability model

Based on the Product Feature Matrix, two variability models have been setup in order to formalize the results
of the product family scoping.

The variability model depicted in Figure 4-2 is based on the Orthogonal Variability Modelling (OVM)
approach. The identified features are represented by variation elements. Dependencies are added

Version Nature Date Page
V1.00 R 2014-02-10 22 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

expressing options and alternatives. Constraints are introduced between variation elements. For example,
the feature “Mark landing position” can be realized in two ways: either the handling pilot only or both pilots
are allowed to set the landing position. All product variants provide the feature “Check for no ground”.
However, the feature “Check for obstacle” is optional. If selected, an Obstacle Warning System (OWS) is
required. In this case, one of the sensor equipments ELOP or HELLAS has to be selected.

The main advantage of the OVM approach is that the variation elements can be linked with other
development artefacts (e.g. requirements, system model elements, or test cases). This will be further
investigated when mature 10S adapter for accessing development artefacts in other tools are available.

& Java - LS_Vedit_O¥M_Basic/Sferifssist.vedit_diagram - Eclipse

Elle Edt Diagram Mavigate Search Project Run Window Help

[CI- &3 - 0 - @@ @il |
|[Tahom Hle DB 7| A -8 s | B85 . - % - [[100% - [Quick access 2 |[& v
Erpx = 8 *Sferisssist. vedit_diagram 53 = g
= & =l =
= | [Mark LP by handing pilat only [Mark LP by both plots ETHOCAS Honeywell = o Palette b
= R
A HOCAS (= Variation Elements
11 1/1 E variant
SFeriAssis £ Mariation Point
Constraint:)
ETHOCAS GE Aviation Systems i ensirants
< requUires: -~ 7 Requires
A Mark landing position Constraint
<2 Excludes
[Chedk for no ground Constraint
A HMS/D (= Dependencies <0
“requiress I HrsS/D Elbit
i AlFork Node
o AlFork-to-yP
Dependency
<reguires> [Check for obstacles 1/1 © AlkFork-to-y
Dependency
Mandatory
B HMSD Thales Dependency
A Provide slope indication for LP ,<" Optional Dependency
<requiress
H1 A OWS
CIELOP (Elbit}
<requiress
351 from DB 191 sensor-based 11
<requires:s, EIHELLAS (CAS)
A Database A Display reference abjects in landing zone <TequIres
-
Al | »
] Properties £3 = E kS v =R

Figure 4-2 Create variability model using OVM

The second approach is based on feature modelling. The identified features have been introduced in a
feature tree (see Figure 4-3). Subsequently, feature dependencies (graphical) and cross-tree constraints
(textual) have been added. The main advantage of the feature modelling approach is that based on the
feature model, configuration dialogs are generated automatically which assure that only valid configurations
are defined. This has been further exploited in the SEE prototype (see section 4.5.1).

Version Nature Date Page
V1.00 R 2014-02-10 23 of 74

D203.020 First MSE SEE (Prototype) ChYS':I.'.AL

& FeaturelIDE - LS_FeatureIDE/model.xml - Eclipse
Fle Edit Mavigaste Search Project Run Window Help

- = - |e - N NSRS cR R | FET -] = | WA Fectureipe) 2
] Packag &3 =0 4 L5 _FeaturslDE Model &3 | SferiAssist300, equation W e| SferiassistS00.equation] =4
=2
=i
El 5 L5 _FeaturelDE
= configs Root Legend:
€] SFerifssistann - T & Mandatory
B sferiassistson || — & optional
[F-[= Features Functions ﬁ Qlt:rnatlve
B[src — — m
4% model.xml I -— —— o
OWr'S Landing_Paint Visualization
—) \ -— o o - ~—a
HOCAS Honeywell | HELLAS | ELOP Mark_Landing_Postion Pin | | &pproach_Line | Doghouse | Ref_Objects
A
o N T o & o =,
Both_Pilcts | Handling_Pilot_Only | Check_Obstacles Check_MNo_Ground | Slope_Indication Real_Ref_Ohjects Artificial_Ref_Ohbjects
o
S1_Sensor_Bssed | S1_Database_Based
Check_Uhstackes = OWS
S|_Senzor_Based = OWS
Real_Ref_Chjects = OW S
5|_Dstshaze_Based = Database
] |
Feature Diagram I Feature Crder | Source |
Collaboration Diagram (Feature Model Edits ﬁ"_ Prablems &3 =] Conso\ew ¥ =8
0 ikems
Description = | Resource | Path | Location | Type |
| | b
[fa | [alo=®

Figure 4-3 Create variability model using feature trees

4.3 Scenario SC2 — Develop Domain System Requirements

Related user story: US203 — Variability Management
Related engineering methods: EM203_01_01 — Develop Domain System Requirements
Related tool chain: DOORS

The scenario "Develop Domain System Requirements" describes the systems engineering activities related
to the elicitation, development and analysis of system requirements. The purpose is to transform the
stakeholder, user-oriented view of desired capabilities into a technical view of a solution that meets the
operational needs of the user. It involves creating a set of verifiable system requirements that specify what
characteristics, attributes, and functional and performance requirements the system is to possess, in order to
satisfy stakeholder requirements.

System requirements shall be recorded in a form suitable for requirements management throughout the life
cycle. These records establish the system requirements baseline. System requirements are the basis for
traceability to stakeholder requirements and subsequent system elements. In order to fulfil these needs a
DOORS requirements management repository has been setup and an initial set of top-level system
requirements for the Landing Symbology function has been defined. Since the system requirements are
supposed to specify all supported variants of the Landing Symbology function in the frame of the Sferion
product family, features identified in Step 1.1 and formalized Step 1.2 are allocated to the system
requirements.

Version Nature Date Page
V1.00 R 2014-02-10 24 of 74

D203.020 First MSE SEE (Prototype) ChYS':I.'.AL

The following steps are performed in this scenario:
e Step 2.1 — Define structure of the requirements management repository
e Step 2.2 — Define data model for requirements modules
e Step 2.3 — Create requirements

e Step 2.4 — Allocate requirements to features

4.3.1 Step 2.1 — Define structure of the requirements repository

A DOORS database has been setup. Different folders are introduced in order to separate different concerns
(e.g. domain engineering and product realization) and different levels of decomposition (e.g. stakeholder,
system, system element, and component level). Requirements modules and link modules defining the
traceability scheme are created (see Figure 4-4).

D0OORS Database: /Sferion/D3_Domain Engineering/Landing Symbology 3D,02_System - DODDRS =]
File Edit Wiew Favorites Tools Help
FFELEE IR 7|
J Favoritesl j “ Location I.f'SferionIDB_Domain Engineering/Landing Symbalogy 3002 Syste ™
{3 Sandbox ;I Name | Type
=& Sferion -é LM_Req satisfies Req Link,
B0 01 _Basis ﬁ REL_LandingSymbology3D_System Reguirements Farmal

-3 02_Product Definition
= 03_Domain Engineering
Ehj Landing Symbology 30
[O_Stakeholdar
_;i' 0Z2_Spstem
--]:I 03_System Elements
--]:i 04_Components
{1 04_Product Realization 4| |]

-

|_|Username: Bogusch |User twpe: Database Manager | 4

Figure 4-4 Define the structure of the RM repository

4.3.2 Step 2.2 — Define data model for requirements modules

In this step the data model for requirements modules is defined. Attributes are used to provide additional
information for each requirement object. Examples are rationale, status, involved stakeholders, and
verification methods (see Figure 4-5). In addition, views are created, which present the attributes relevant for
performing certain engineering activities such as “Agree input requirements”, Generate requirements” or
“Validate output requirements”.

Version Nature Date Page
V1.00 R 2014-02-10 25 of 74

D203.020

First MSE SEE (Prototype)

CRYSTAL

&1 /Sferion/03_Domain Engineering;/Landing Symbology 3D/02_System/RED_LandingSymbology3D_Syste... =]

Columns Attributes | Types I

Mame | [escription | Type | Default value | Inherit value | Ewists for =
Abzolute Mumber Systern Attribute Integer Mo Object
Attr_additional- nformation Text Mo Object
Attr_agreement-Comments Text Ho Object
Attr_Allocation Type_Allocation Mo Object
Attr_Allocation-8 greement Type_allocationd greement ? Mo Object
Attr_Assumption Text Ho Object
Attr_Configuration Type_Configuration Mo Object
Attr_|sDerived Boolean Mo Object
Attr_ObjectType Type_ObjectType ? Ho Object
Attr_Owner Tent Ho Object
Attr_Phaze Shing Mo Object
Attr_R ationale Text Mo Object
Attr_ReqType Type_ReqType ? Ho Object
Attr_Source Tent Mo Object
Attr_Stakeholders Text Mo Object
Attr_Status Type_Status ? Ho Object
Attr_Werficationk ethod Type_VerificationMethad ? Mo Object -

dl | _'I_|

Mew. .. I | Import... I Capy.. | [1elete | Edit... |
Close | Help |

Figure 4-5 Define the data model for requirements modules

4.3.3 Step 2.3 — Create requirements

After organizing the requirements management repository structure and data model in DOORS, a first set of
system requirements for the Landing Symbology function has been created (see Figure 4-6). The
requirements have been written in structured (tabular) form in order to ease formalization and analysis. The
requirement type is assigned. This enables filtering requirements according to their type, e.g. gathering all
functional requirements as input for the functional analysis (see Step 5.2).

Version
V1.00

Nature

Date
2014-02-10

Page
26 of 74

D203.020 First MSE SEE (Prototype) CﬁYS':I.'AL

E 'REQ_LS_ProductFamilySystem Requirements’ current 0.2 in /Sferion/03_Domain Engineering/Landing Symbology 3D/02_System {Formal module) - DOORS

File Edt Wew Insert Lnk Analysis Table Tools Discussions Authoring DESIRe epf matelo OFFISTools ProduckAdministration pwsync r2a user Ubls46 WEXP Rhapsody 8.0 RGE.0
Rhapsody 7.5.3 RG7.5.3 Help

| H&E |sa= || 55 PFta ||

e &) aff gf
JViewlZ_GeneraleHequiremenls jHA\Ilevels j |J dih ;ﬁ' & “ "ﬂ_ﬁ T L E T ‘75‘ / 2l

E1 REQ_LS_ProductFamiySystem Requirsments 18] | Object Typel Fequirements Statement B Status Fequirement Type | Owine 2
-1 5cope e
- 2 Dverview LS3D- Primary The LS3D function shall Proposed Functional Ralf
El- 3 Requirements SRO-38 Data wisualize "NO GROUND" BagL
- 3.1 General on
= 3.2 Functional Requirements reception of the trigger mark_landing_symbol,
[#1-3.2.1 Mark Landing Pasition if
3.2.2 Visualize Pin Symbol the landing symbology has been activated
3.2.3Vizualize Approach Line and
[324 Visualize Daghouse there is no intersection betwesn LoS of the tracker of the
[#- 3.2.5 Visualize Aeference Objects HMS/D and
33 Performance Requirements the ground surface for the marked landing position.
B 34 Interface Requiements LS3D- Primary | |The LS3D function shall Proposed Functional Ralf
- 3.5 Safety and Reliability Aequirements SRO-20 [Data visLalize "" BogL
- 3.6 Installation and Environmental Requirsmer an

3.7 Maintenance Reguirements reception of the trigger mark_landing_symbal,

if
the landing symbology has been activated
and J
there is a sensor classified obstacle within the doghouse
sguare with
edge length of 40 m for the marked landing position as
specified in [REF-5].

LS30- Heading 3,2.2 Visualize Pin Symbol h/d Mt
SRD-24

LS30- Primary The LS30 function shall Proposed Functional Ralf
SRD-28 Data visualize a pin symbal at the marked landing position as Boge

specified in [REF-5]

the marked landing position is valid
d| | 4] |

|Usemama: Administrator Exclusive edit mode |

sLF_

Figure 4-6 Create requirements

4.3.4 Step 2.4 — Allocate requirements to features

In this step the system requirements are allocated to features. A DOORS add-on has been developed that
provides support for product family management [Stocker 2011]. The add-on comprises the following
functions for this step:

o Read a feature model (see Step 1.2) and identify all concrete features (omitting abstract features)

o Define a new attribute “feature” in the DOORS requirements module and specify the value range
such that only valid features can be allocated to requirements

e Synchronize with changes in the feature model on request

When a feature is allocated to a requirement by choosing a feature, the requirement type is automatically
changed from “Common Platform” to “Variable Platform” indicating that this requirement is not realized in all
product configurations (see Figure 4-7).

Version Nature Date Page
V1.00 R 2014-02-10 27 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

E 'REQ_LS_ProductFamilySystem Requirements’ current 0.2 in /Sferion/03_Domain Engineering/Landing Symbology 3D/02_System {Formal module) - DOORS

File Edt Wew Insert Lnk Analysis Table Tools Discussions Authoring DESIRe epf matelo OFFISTools ProduckAdministration pwsync r2a user Ubls46 WEXP Rhapsody 8.0 RGE.0
Rhapsody 7.5.3 RG7.5.3 Help

| H&E |se= || 7 F @& e -

> s el g
| View [7_PFM view e =] || 4 EEEEEE LYY
=) Fl_EQ_LS_Pdeuchami_\JSyslem Requirements Requirements Statement Feature e Toes ;I
-1 gcope_ The L53D function shall Check_Mo_Ground ariaole Platfiorm
: WEIVIER yisualize "MO GROUND"
[=]- 3 Requirements

31 General) reception of the trigger mark_landing_symbaol,
[=]- 3.2 Functional Requirements if
| Mark Landing Pasition the landing symbology has been activated
3.2.2 Vizualize Fin Symbol and
3.2.3 Visualize #ppioach Line there is no intersection between LoS of the tracker of the HMS/D and
- ggg S\sua:!ze gofghouse b the ground surface for the marked landing position,
B 3.25 Visualize Fie erence iects The LS3D function shall Check_Obstacles Yariable Platform
- 3.3 Performance Requirements visualize "
[3.4 Interface Fequirsments
- 3.5 Safety and Reliability Aequirements on " .
- 3.6 Installation and Environmental Requirsmer i reception of the frigger mark_landing_symool,
37 Maintenance Requiements the landing syrmbology has been activated
and

there is a sensor classified obstacle within the doghouse squars with
edge length of 40 m for the marked landing position as J
specified in [REF-S].

3.2.2 Visualize Pin Symbol

The LS3D function shall Pin Yariable Platform
visualize a pin symbol at the marked landing position as
specified in [REF-5]

if
the marked landing position is valid

and
0.08 Mr <= distance HAC o landing position < 1.8 MM,

The LS3D function shall SI_Sensor_Based “ariable Platform

| cH visualize a slone indication based on sensor data within the oin svmbol as
1 o

|Usemama: Administrator Exclusive edit mode |

sLF_

Figure 4-7 Allocate requirements to features

4.4 Scenario SC3 — Analyze and Improve Requirements Quality

Related user story: US204 — Ontology-based Requirements Engineering

Related engineering methods: EM204_01_03 — Analyze Requirements Quality, EM204_01_01 — Define
Requirements

Related tool chain: DOORS, RQM, RAT, kM

The quality of requirements has a major impact on the three main project constraints for every project: time,
cost and scope. Badly written requirements are a well-known source of project failure. For this reason,
project management requires collecting and analyzing metrics or Key Performance Indicators (KPIs) on a
regular basis to measure quality of requirements and support evaluation of the effectiveness of the
requirements engineering process.

According to [ISO/IEC 29148] the result of requirements engineering is a hierarchy of requirements that
enable an agreed understanding between stakeholders, is validated against stakeholders' needs, and
provides a basis for verifying designs and accepting solutions. Well-formed requirements contribute to
requirements validation with the stakeholders, and ensure that the requirements accurately capture
stakeholder needs. If a requirement is expressed in natural language, the statement should be formulated in
active voice and comprise a subject, a verb and a complement. The keyword "shall" indicates that a
requirement is a mandatory binding provision. Requirement boilerplates should be used, since they provide
standardized requirement syntax and ease communication with stakeholders.

When writing requirements, the quality of requirements shall be assessed. According to [ISO/IEC 29148]
individual requirements shall possess the following quality characteristics:

Version Nature Date Page
V1.00 R 2014-02-10 28 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

Necessary. The requirement defines an essential capability, characteristic, constraint, and/or quality
factor. If it is removed or deleted, a deficiency will exist, which cannot be fulfilled by other capabilities
of the product or process.

Implementation free. The requirement, while addressing what is necessary and sufficient in the
system, avoids placing unnecessary constraints on the architectural design. The objective is to be
implementation-independent. The requirement states what is required, not how the requirement
should be met.

Unambiguous. The requirement is stated in such a way so that it can be interpreted in only one way.
The requirement is stated simply and is easy to understand.

Consistent. The requirement is free of conflicts with other requirements.

Complete. The stated requirement needs no further amplification because it is measurable and
sufficiently describes the capability and characteristics to meet the stakeholder’s need.

Atomic. The requirement statement includes only one requirement with no use of conjunctions.

Feasible. The requirement is technically achievable and fits within system constraints (e.g. cost,
schedule, technical, legal, regulatory).

Traceable. The requirement is upwards traceable to specific documented stakeholder statement(s)
of need, higher tier requirement, or other source (e.g. a trade or design study). The requirement is
also downwards traceable to the specific requirements in the lower tier requirements specification or
other system definition artefacts. That is, all parent-child relationships for the requirement are
identified in tracing such that the requirement traces to its source and implementation.

Verifiable. The requirement has the means to prove that the system satisfies the specified
requirement. Verifiability is enhanced when the requirement is measurable.

According to [ISO/IEC 29148] each set of requirements shall possess the following quality characteristics:

Complete. The set of requirements needs no further amplification because it contains everything
pertinent to the definition of the system or system element being specified. In addition, the set
contains no To Be Defined (TBD), To Be Specified (TBS), or To Be Resolved (TBR) clauses.

Consistent. The set of requirements does not have individual requirements which are contradictory.
Requirements are not duplicated. The same term is used for the same item in all requirements.

Affordable. The complete set of requirements can be satisfied by a solution that is feasible within life
cycle constraints (e.g. cost, schedule, technical, legal, and regulatory).

Bounded. The set of requirements maintains the identified scope for the intended solution without
increasing beyond what is needed to satisfy user needs.

When writing textual requirements, the following considerations will help ensure that good requirements
characteristics are employed. Vague and general terms shall be avoided. They result in requirements that
are often difficult or even impossible to verify or may allow for multiple interpretations. The following are
types of unbounded or ambiguous terms, see [ISO/IEC 29148]:

Superlatives (such as 'best’, 'most')

Subjective language (such as 'user friendly', 'easy to use', 'cost effective')

Vague pronouns (such as 'it', 'this', 'that’)

Ambiguous adverbs and adjectives (such as 'almost always', 'significant’, 'minimal’)
Open-ended, non-verifiable terms (such as 'provide support’, 'but not limited to', 'as a minimum")

Comparative phrases (such as 'better than', 'higher quality')

Version Nature Date Page

V1.00

R 2014-02-10 29 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

e Loopholes (such as 'if possible', 'as appropriate', ‘as applicable')

e Incomplete references (not specifying the reference with its date and version number; not specifying
just the applicable parts of the reference to restrict verification work)

o Negative statements (such as statements of system capability not to be provided)

A more theoretical treatment of requirement quality and a comprehensive set of rules how to write
requirements is provided by [INCOSE RWG]. In addition, significant work has done in the CESAR project,
which has been taken as a starting point. This work refers to completeness, consistency and correctness of
requirements [CESAR CCC] as well as boilerplates, patterns and ontologies [CESAR RSL].

The following steps are performed in this scenario:

e Step 3.1 — Select requirements module

e Step 3.2 — Configure quality analysis for requirements module
e Step 3.3 — Define ontologies

e Step 3.4 — Analyze quality of requirements module

e Step 3.5 — Provide findings

o Step 3.6 — Create requirements quality report

e Step 3.7 — Improve requirements

4.4.1 Step 3.1 — Select requirements module

The purpose of this step is to select the DOORS module that is to be analyzed by RQA. When RQA is
started, a connection to the DOORS server is established. The structure of DOORS projects and folders
containing DOORS modules is displayed as shown in Figure 4-8. When a DOORS module is selected, RQA
will perform quality analysis for the selected module.

Version Nature Date Page
V1.00 R 2014-02-10 30 of 74

D203.020 First MSE SEE (Prototype) CﬁYS':I.'AL

E] Requirements Quality Analyzer for DODRS - Connection _ (O]

Requirements Quality Analyzer for DOORS
By The REUSE Compary

— Crendentials —Open project
| zermarne Wergion
|Administrator I 9.2 j
Password Server
I........ IPDDD183
Fort
¥ Remember password ISEE??
—Available servers additional parameters
Port | Server I
Projects Load projects |
-0 Sandbox |
= Sferion
=) 01_Basis
i -P= Glossany

--[F= References
i .[F= Regulations
E_J 03_Domain Engineering
E_J Landing Symbalogy 30
[P 01 _Stakeholder

2

=42 Buality Functions
o[MLY —

[Keepthe DOORS console open when it appears

Canfigure zerver | Abaout uz . | Help | Ok I Exit |

Figure 4-8 Select a requirements module for analysis

4

4.4.2 Step 3.2 — Configure quality analysis for requirements module

In this step the quality analysis process that should be employed for the selected DOORS module is
configured. The customization takes into account the needs of different projects, teams, or types of
requirements modules. A filter can be specified to identify requirements to be analyzed and ignore headlines
and other information contained in the DOORS module. Moreover, it can be defined whether RQA stores the
results of the analysis in the RQA database only or in the analyzed DOORS module additionally.

A set of more than 30 pre-defined correctness metrics is provided by RQA. A sub-set of correctness metrics
may be chosen for quality analysis. During the evaluation, RQA takes every individual requirement, one by
one, and gets a series of indicators for every requirement (e.g. text length, readability, ambiguous
sentences...). Every indicator is now transformed into a qualitative value thanks to the associated quality
function. During the correctness checking process, every metric rated as medium or low quality will generate
a hint that leads the requirement author or reviewer in the best way to get rid of the problem and enhance
the quality of the requirement. The quality functions may be customized for each metric. Moreover, weights
can be assigned to selected metrics to change the sensitivity of the indicators. Figure 4-9 depicts the
configuration of correctness metrics.

According to [CRYSTAL D607.021] the following correctness metrics are provided:

o Size: expressed in paragraphs, chars, nouns or verbs. Long requirements will be difficult to
understand

Version Nature Date Page
V1.00 R 2014-02-10 310f 74

D203.020 First MSE SEE (Prototype) CRYSTAL

Readability: number of letters between punctuation marks and some other formulas that indicate
whether the requirement will be easy to read. Ease to read requirements generates less problems all
over the project

Conditional sentences vs. imperative sentences: avoid “would” and use “shall”, “should” and “will” in
the right way

Active vs. passive voice: avoid using passive voice to increase the readability of the requirement

Optional sentences: maybe... Optional requirements must be stated by an attribute, never in the
body of the requirement

Ambiguous sentences: fast, user-friendly... Analysts, developers and customers understand
ambiguous sentences in different ways

Subjective sentences: in my opinion, | think that... Don’t show your ideas, but what the system
should do

Implicit sentences: it must be provided by them... Too many pronouns make your requirements
difficult to understand

Abuse of connectors: and, or. Many times connectors reveal different needs enclosed within the
same requirement, losing the atomic characteristic

False friends: customized according to “mother language” of your project

Negations: no, never... Two or more negations in the same sentence make it difficult to understand
Speculative sentences: usually, almost always... Make the requirement imprecise

Design terms: loop, hash... Remember, avoid How, concentrate on What

Flow terms: while, if, else... Remember avoid How, concentrate on What

Number of domain nouns and verbs: domain terms and verbs should be involved in the requirement
specification, nevertheless, too many different terms in the same requirement often means multiple
needs

Acronyms: avoid those that don’t belong to the domain representation

Hierarchical levels: don’t complicate your specification with too many indentation levels
Volatility: if a requirement suffers many changes, you must be very careful with it

Number of dependencies: the same if your requirement is the source of too many dependences

In addition, special sentences such as ambiguous phrases, design terms, speculative sentences can be
defined, see Figure 4-10. Further, measurement units (magnitudes) can be customized. This is used in the
consistency analysis based on measurement units (e.g. both “miles” and “km” are used in the same set of
requirements). Domain verbs and domain nouns can be defined in the so-called light ontology. This is used
in some of the correctness metrics.

Version Nature Date Page

V1.00

R 2014-02-10 32 of 74

i

D203.020 First MSE SEE (Prototype) CRYSTAL

E Requirements Quality Analyzer for DOORS [3667 7@P000183 - 02_System { Adn

Requirements Quality Analyzer for DOORS 3 4
By The REUSE Company b
Obiects Selected moduls IF|EQ_LandingSymboIogySD_System Hequirenj Set Affect averall qualiy true in all ranges w
Modules
Confi i — Metrics
CHgH e Mame Used ‘weight
D Test length [paragraphs] ' | 1 Ej
Batch state Mame [Used | Mwfeight | -
ACIonyrs True 3 I
Ambiguous sentences True 10
EBoilerplates matching True 1
: Conditional mode True 1
Metrics Cornectors True 1
Dependencies True 1
1 =l

” Mesian sentences Trie
;5)

Mo, of metrics: 31
Special
sentences

— Selected metric ranges

ﬁ_\q?’: LowerJI_i'l:_n'i_t | Upper [m'tl Affects overall gualitg | Qualit:,l lewvel | Summary
i 1. False Must be revized A requiremnent must have at least one paragraph
. 1 2 False
I agnitud, .] . ;
e 2 3 False Should be revized Long requirements [measured in paragraphsz] must be avoided
1 3 +2 Falze Must be revizad Lang requirernents [measured in paragraphs] must be avaided
Ontology
4| |
Help

Exit Mo, of ranges: 4 QI AI ijl AI

Figure 4-9 Configure quality metrics in RQA

| Requirements Quality Analyzer for DOORS [3667

Requirements Quality Analyzer for DOORS 3 74
By The REUSE Company b
Dhjects —Awailable zpecial sentence types
Modules | Special Sentence Type i Ambiguous A=
Configuration
Connectors alot of
EI Design about
Falze Friends adequate
Batch state Flow al
Implicit ancillary
Incomplete ary
Matrics Megative appropriste
Fationale appraximate
” Speculative appraximately
(5) e .
Subjective as a masimum
Special az & minimum
sentences

ag appropriate
az far as possible

¥

az little as possible
I agnitudes az much as possible
as Meceszany

‘k az possible

as required
izt at least

biad
bazed on
be capable of

hest nnesible

Help

=l
Esit Mo. of types: 11 Al ﬂl il Mo. of sentences: 109 il ﬂl il

Figure 4-10 Configure vague phrases in RQA

Version Nature Date Page
V1.00 R 2014-02-10 330f 74

D203.020

First MSE SEE (Prototype)

CRYSTAL

4.4.3 Step 3.3 — Define ontologies
The requirements quality analysis can be extended towards more advanced metrics by
e Managing the controlled vocabulary (concepts) to be used in RAT and RQA

e Managing the thesaurus (links between concepts in the controlled vocabulary)

o Definition of boilerplates which support the proper formalization of requirements

Figure 4-11 exemplifies the definition of a simple boilerplate that follows a trigger-action pattern. For more
information on kM, see [CRYSTAL D607.041].

. knowlegdeMANAGER

knowlegdeMANAGER
By The REUSE Company

Indexing & Search

Documents

Configuration

M=l E3

Inference rules

G Standard inference rules

Complex inference rules

Inference rule wizard

Inference rules metaproperties

«|9 ™| FE

Inference ule figlds:

Identifier:

Dieseription: Itrigger - action patterr|

Original examnple: Iwhanever trigger occurs, the function shall do

Current exarmple: Iwhanever trigger occurs, the function shall do

Inference rule suggestions i~ Configure the syntax:
] [& WHEM ACTIVATION [DKJs] c:}'[NOUN] c:}'[ABSOLUTE VERE]q'}'[DEFIMITE ARTICLE]q'}'
TIME ADVERE £ e £ £
|£] Terminology EDH E'JH EDH
@ Tokenization q}l
@ z =
e - - - =
€4 Light Dntology g E g -E g -E g E
gk sz Z z = T
@ Inference rules < £ w £ w = < £
g = oy I o= “ o3 _ILI
&2 Clusterization 1 | 4
< Back | Metaproperties > Hest > | LCancel |

|Ready

| Connected as ‘Admin' ko Rga Quality Anakyzer v4.1' from '0leDBI0LServer' @ 'PO00133\SQLEXFRESS .:

Figure 4-11 Define new boilerplates in kM

4.4.4 Step 3.4 — Analyze quality of requirements module

RQA is able to create a range of different reports. The metric report (see Figure 4-12) shows all the
correctness metrics, the number of requirements assessed as high/medium/low quality on that metric,
maximum and minimum values, average and standard deviations. This allows getting a quick overall view of
the requirements quality of the selected DOORS module. In addition the most frequent errors are shown
which allows creating focused corrective actions (e.g. team training).

In the prototype setup we have injected a requirement with multiple language defects:

LS3D-SRD-60: An “X” is visualized when an obstacle is close to the landing position.

Version Nature

V1.00 R

Date
2014-02-10

Page
34 of 74

D203.020 First MSE SEE (Prototype) ChYS':I.'.AL

This requirement has been detected by RQA and is rated as “low quality” requirement that “must be revised”
(see global statistics in Figure 4-12 and selected requirement in Figure 4-13).

E] Requirements Quality Analyzer for DOORS [3667 7@P000183 - 02_System { Administrator)]

Requirements Quality Analyzer for DOORS
By The REUUSE Comparny

Objects I ﬂ REQ_LandingSyrbalagy3D_System Requirements j

E —Globalz statistics
Dbjects High guality: E [50.00 %) Mozt frequent errar: Acranyms
Mediunm quality: 5 [41.67 %)
T2 Low quality 1 18.33%)
. . = Leazt frequent emar: Dependencies, Implict sentences, [ncomplete sentences,
Metrics N/A; 0 [0.00%) MNegative sentences, Rationale sentences, Readability,
Speculative sentences, Subjective sentences, Yolatility
ﬁ‘ Mumnber of elements: 12 [Werzioning). Walatilty [Changes from last baseling], Falze F
u‘l Metiic | High quality | High(%]| Medium qualiy | Medium %) | Low quality | Low ()| -
s il dcrongms EEEE 0 000% EGE
s Ambiguous sentences 9 700 0 0.00% 3 25.00%
E) s Connectars 9 To.00% 2 1667 % 1 833%
Giraphics ,_IJ Dependencies 12 10000 % 0 0.00 % 1] 0.00%
JJ Diesign sentences 10 8333 % 2 1667 % 1] 0.00%
s False Friends 12 100.00% 1] 0.00% 0 0.00%
ills Flaw sentences 1 833% " NEFE 1] 000
il Imperative made 1 NE7E 0 0.00% 1 833%
JJ Implicit zentences 12 10000 % 0 0.00 % 1] 0.00%
JJ Incomplete sentences 12 10000 % 0 0.00 % 1] 0.00% =
JJ Megative sentences 12 10000 % 0 0.00% 1] 0.00%
il Mesting levels 8 BBET X 3 25.00% 0 0.007%
[l Mumber of chars between pun. . 10 8333 % 2 1667 % 1] 0.00%
Modules il Passive vaice T BR3IE 0 000] 4167 % =
Conturaion ||| 7 i ammnne R n e _'I_I
sty Create report |
Exit

Figure 4-12 Analyze requirements quality of requirements set

In the “Objects view” the quality summary of each requirement is given qualitatively (OK, should be revised,
must be revised) and quantitatively. The injected bad quality requirement LS3D-SRD-60 can easily be
identified since it is rated “must be revised” and is associated with a very low quality value of 0.003 as shown
in Figure 4-13.

Version Nature Date Page
V1.00 R 2014-02-10 350f 74

D203.020

First MSE SEE (Prototype)

CRYSTAL

E Requirements Quality Analyzer for DOORS [3667 7@P000183 - 0Z2_System { Administrator }]
Requirements Quality Analyzer for DOORS i
By The REUUSE Company
Objects I w REQ_LandingSymbology3D_Spstern Requiements j
E — Module requirements:
Objects Quality Aszesement by |< All matrics > ﬂ
Abzolute number | Object heading I Object description | F'l Qualiby | N.l Quality value I il
= F LS3D-5R0-21 The L5300 function shall Dset the marked la.. B... Should berevised 0 1E.875
M’etrics L53D-SRD-42 BadCaze R..
L53D0-5RD-38 The L53D function shalllvisualize "MO GR... R.. Should berevized 0 17.350
\’_{}l . Should be revized
Users Wisualize Fin 5ymbol Ambiguous sentences must be avoided:close to R..
LS3D-SRD-28 AF least one imperative werb must be invalved Fapinsy.. R. OK 1] 18325
@ L53D-5R0-29 Flow sentences must be avoided:when aslopei.. F.. OK i] 18,325
LS3D-5RD-26 Wizualize Approach Line R..
Graphics L53D-5RD-34 The L5 3D furction shalllvisualize an appr... R... 0K i 18,325
LS3D-5RD-25 Visualize Doghouse R..
LS3D-SRD-33 The L53D function shalllvisuslize a landin.. R.. OK 1] 18325
L53D-5RD-35 The L53D function shalllvisuslize a takeof... R.. Should berevised 0 13100
LS3D-5RD-27 Vizualize Reference Objects R..
LS3D-5RD-36 The L53D function shalllvisualize referenc.. R.. OK 1} 18.075
LS3D-SRD-37 The L53D function shalllvisualize referenc.. B.. Should berevised 0 12,850
LS30D-5RD-13 Peformance Requirements R..
LS3D-SRD-14 Interface Requirements R..
L53D0-5RD-13 The L53D function thallvisualize the Landi.. R.. OK 1} 18575 —
etz LS30-SRD-15 Safety and Reliabiity Requirements R.. -
Configuration 0 RO e 0 0 0 o o= o 0 0
J r of
Help
Esit Total: 47 Active objects: 12 Create repart | Recalculate | Wiews quality |

Figure 4-13 Identify requirements that need to be improved

4.45 Step 3.5 - Provide findings

In this step a more in-depth quality assessment is performed for each requirement that is rated as “must be
revised” or “should be revised”. As shown in Figure 4-14, each metric is evaluated for the selected
requirement. For the injected bad quality requirement the most relevant findings are:

* It contains ambiguous phrases

* ltlacks an imperative verb (shall)

As illustrated in Figure 4-15, each metric can be further investigated. In this case, the ambiguous phrase is
localized and marked with red colour.

Version
V1.00

Nature

Date

Page

2014-02-10 36 of 74

D203.020 First MSE SEE (Prototype)

CRYSTAL

E Object quality assessment =]

Requirements Quality Analyzer for DOORS \ 71
By The REUSE Company -
Fiequirements Quality Analyzer for DOORS assessment | Manual Assesment |
Original quality assessment; |Must be revised Mew quality assessment; |Must be revised
Original quality date: ISD.-"D‘I £201410:28:39 Mew quality date: ISD.-"D‘I £20014 10:30:24
Original quality surmmary: Ambiguous sentences must be ;I Mews quality surmmary: Ambiguous sentences must be avoided:close to ;I

avoided:close to
At leazt one imperative verb must be
irrvolved

Flows sentences must be avoided:when j

At least one imperative verb must be involved
Flow sentences must be avoided:when

Object original data | Object data

Testual metrics I Guality forums I

| Metric

Acronyms

£

Walue | Guality

| Recomendation

Affects overall |~
quiality

|
| Ambiguous sentences 1.00 Must be revized Ambiguous sentences must be avoided I
{ Carnectars 0.00 0Ok v
' Dependencies 0.00 0K v
Design sentences 000 0K I
| False Friends 000 OK ~
1 Flow sentences 1.00 Should be revized Flow sentences must be avoided v
A Imperative mode 0.00 Mustbe revized Al least one imperative verb must be involved v
Implicit sentences 000 0K I
Incomplete sentences 000 0K I
Megative sentences 0.00 0K I~ j
Help Create report | < Previous | Mest » | Reload | Calculate quality | Open in DOORS I Save in DOORS | LCloze |

4

Figure 4-14 Provide the quality summary for a requirement

E Object quality assessment H=] E3
Requirements Quality Analyzer for DOORS 4
By The REUSE Company e

Fequirements Quality Analyzer for DOORS assezzment | Manual Assesment |

Original quality aszessment:
Original quality date:

Original quality summary:

IMust be revised

|3D£D1 F201410:28:39

Ambiguous sentences must be
avoided:close to
At leazt one imperative verb must be

C|

Mew quality assessment:
Mew quality date:

Mew quality summary:

IMust be revised

ISD.-’D‘I f2M410:30:24

Ambiguous zentences must be avoided:close to
AL least one imperative verb must be involved
Flow sentences must be avoided:when

irrvolved
Flow sentences must be avoided:when LI LI

Obijgct original datal Object datal Metrics Testual metics | Quali forumsl

< More »

Ambiguous sentences
ERCLOSE TO
Flow sentences
@] wWHEN

Unclazzified concepts

An "3 s wisualized when an obstacle is close to the marked landing position.

Help Create report | < Previous | Mest > | Fieload | Calculate guality | Open in DOORS I Savein DOORS Lloze |
4
Figure 4-15 Analyze the findings for a requirement
Version Nature Date Page

V1.00 R 2014-02-10 37 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

4.4.6 Step 3.6 — Create requirements quality report

Different reports can be created, which summarize the results of the quality analysis. This is useful for project
managers and quality assurance. An example is provided in Figure 4-16.

E Object quality assessment report [_ O]
Requirements Quality Analyzer for DOORS
By The REUSE Compary
|:| 1 of 2 b B - NEDEL: o Find | Mext
Name: ;I
Description: An ¥ isvisualized when an obstacle is cloze to the marked landing position.
Quality: Must be revised
Quality date: 3000172014 10:28:39
Recomendation: Ambiguous sentences must be avoided:close to
At least one imperative verh must be involved
Flowe sentences must be avoided:when
Metrics
Metric + Value + Quality + Recomendation = Senter
Acronyms 0 QK
Ambiguous sentences 1 Mustbe revised Ambiguous sentences must be avoided closet
Connectors 0 QK -
«| | 3| A

Figure 4-16 Create a quality report

Depending on the quality analysis configuration, the results can be stored in the DOORS module. This is
particular useful for requirements authors working in the DOORS environment (see Figure 4-17).

E ‘REQ_LandingSymbology3D_System Requirements’ current 0.1 in /Sferion/03_Domain Engineering/Landing Symbology 3D,/02_System (Formal module) - Doors =] E3
File Edit Wiew Insert Link Analysis Table Tools Discussions Acthoring DESIRe epf matelo OFFISTools ProductAdministration pwsync rZa user Ubils4e WEXP Rhapsody &.0
RG&0 Rhapsody7.5.3 RG7.53 Help
|BGE ||z || @ F FEn || g
J Wigw |4_\u"a\idate Requirements j ‘ IAII levels j H dh |J ,Tﬂ = E T ?ﬂ / 2]
= HED‘I—SLa”di”DSymeIO! 1] | Object T}lpel Requirements Staterment E | Status | RS Quality | RS Quality Summary Checks | d
2 Dzoe?\:ew LS3D- Primary An K" is visualized when an obstacle iIs Proposed Mustbe Ambiguous sentences E1: 'str_Assurnption'
- 3 Requirements SRO-60 Data close to the marked landing position. revised must be avoided:close to is missing.
-1 General At least one imperative E2: 'atir_allocation' is
2.2 Furctional verb must be invalved mizzing.
E| e Flow sentences mustbe E3: 'attr_allocation-
__321 1 avoided:when Agreement’ is missing.
53 212 E4: 'atr_IsDerived' is
Th misging.
- Th E5: 'Source' should be
B filled or 'Rationale’
2 24isue should be filled for this
5 Vs Requirement.
5 4 Visue E6: Mo Yerification
5 B Visue case is attached to this
- 3.3 Performanc - - - - reguirement,
34 Interface R | LS3D- Heading 3.2.2 Visualize Pin Symbol W2 E1: Only requirements
15 Safety and SRD-24 should have 'allocation
- 3.6 Installation Agreament’,
- 37 Mainteran: LS3D- Primary The LS3D function shall Proposed OK Flow sentences mustbe E1: 'atr_Assumption’
SRD-28 Data visualize a pin symbol at the avoided:if is missing.
marked landing position as fvoid using acronyms E2: 'afttr_pllocation'is
KN 4 | _>l_|
|Usemame: Bogusch |Exclus|ve edit mode | 4
Figure 4-17 Store the quality evaluation results in DOORS
Version Nature Date Page

V1.00 R 2014-02-10 38 of 74

D203.020 First MSE SEE (Prototype) CﬁYS':I.'AL

4.4.7 Step 3.7 —Improve requirements

During requirements quality assessment, requirements that must or should be improved are identified. These
requirements have to be updated in accordance with the findings. The update can be performed in RQA, but
in this case the RAT tool is used. RAT is integrated with the DOORS environment. One can select a
requirement for editing in DOORS and open the RAT dialog as shown in Figure 4-18. For example, one
finding was that the imperative “shall” is missing. After adding the “shall” RAT still complains that the
requirement statement is in passive voice. In this way a requirement can be improved until all language
defects have been removed. Finally, the improved requirement is stored in the DOORS requirements
management repository.

| RAT - Requirements Authoring Tool =] E3
Select vour boilerplate to help vou writing your requirement:
I < Select a pattern group > j I < Select a pattern = j
Boilerplate example: < none =
Original requirement: ID: LS30-SRO-60 - An "X" is visualized when an obstacle is close to the marked landing positi.. Quality Assessment Summary
An "X" shall be visualized when an obstacle is closs to the marked landing position. | Metric | value I;I
Mumber of chars between punctuation ... 86
»" Unclassified concepts 6
» Passive voice 1
> Ambiguous sentences 1
-
= =
Save and close > Cancel I

Figure 4-18 Improve requirement using RAT

4.5 Scenario SC4 — Create Product System Requirements

Related user story: US203 — Variability Management
Related engineering methods: EM203_02_01 — Create Product System Requirements
Related tool chain: DOORS, FeaturelDE

The scenario “Create Product System Requirements” covers the activities involved in the product realization.
The main goal is to reuse assets previously be developed during domain engineering. In this SEE prototype
only system requirements are considered for reuse.

The following steps are performed in this scenario:

e Step 4.1 — Configure product
e Step 4.2 — Create product system requirements

45.1 Step 4.1 — Configure product

In this step two potential products are configured — SferiAssist300 (low-cost variant) and SferiAssist500
(high-end variant). Figure 4-19 and Figure 4-20 illustrate how the configuration process is performed.
Mandatory features like “Check_No_Ground” are automatically selected. A degrees of freedom analysis
indicates the number of possible configuration. Text colouring (see green colour in Figure 4-20) guide the
user through pending decisions.

Version Nature Date Page
V1.00 R 2014-02-10 39 of 74

D203.020

First MSE SEE (Prototype)

xi¥ia
CRYSTAL
7“? A, Y-Y

A

& FeatureIDE - LS_FeatureIDE/configs,

File Edit Mavigate Search Project Run Window Help
I'cs- &~ s @] i - s 7 | WA Featurepe &3
[% packag I2 = O |[4 L5_FeaturelDE Madel (,g, Sferifissist300.equation &2 . €] SFerifssistS00,equation W =0
=] 0:9 | e = A Root (valid, 43 possible configurations) =
El £ L5 _FeatureDE '”‘Deg:t‘:e:
Bz configs anase
le Sferifssist300
“) Sferiassistson
= features
= sre
-8 model, sml
L OHeLLes
O eLor
Functions
Landing_Poirt
Mark_Landing_Position
[Bcth_Picts
Handlling_Pilot_Cnly
Check_Landing_Paint
[check_obstacles
Check_No_Ground
Wisualization
Fin
=[] Slope_Incication
[51_Sensor_Based _—
+[O sl_batabase_Based
Approach_Line
Doghouse ;l
Configuration] Advanced Configuration | Source |
Collaboration Diagram (Feature Madel Edits f[g_, Problems £2 =l Cnnsnle] & &~ d
0 items
Description ~ | Resource I Path I Location | Type |
4 | m
i | [aT0o=® <]

Figure 4-19 SferiAssist300 configuration

& FeatureIDE - LS_FeatureIDE/configs,

500.equation - Eclipse

File Edit Mavigate Search Project Run Window Help
[o8- & &~ s @] i - s 1 | PE Festureoe &3
[% packag I2 = O |[4 L5_FeaturelDE Madel (,g, SFerifissist300, equation f,g, #SFerifissistS00,equation &2 =0
=] 0:9 | e = A oot (invalid, 2 possible configurations) =
= &5 LS_FeatureIDE i
(= configs anase
i SFar\Ass!st3DD 7] HMS_D_Thles
‘ Sferifssist500 HMS_D Bkt
B2 features HOCAS
E? £l HOCAS_BE_Aviation_Systems
4% modsl sl 7 HOCAS_Homeywel
E
[HELLAS
OeLop
Functions
Landing_Poirt
Mark_Landing_Position
Bioth_Pilats
[Handling_Pilat_Onily
Check_Landing_Paint
heck_Obstacles
heck_No_Ground
Wisualization
lope_Indication
Z|_Sensor_Bazed .
O sl_Database_Based
Approach_Line
i Doghouse ;l
Configuration] Advanced Configuration | Source |
Collabaration Diagram (Feature Model Edits f[g_, Problems 3 = Cnnsnle] e =g
0 items
Description ~ | Resource I Path I Location | Type |
il |
I] Roee

|

Figure 4-20 SferiAssist500 configuration

Version Na
V1.00 R

Date
2014-02-10

ture

Page
40 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

4.5.2 Step 4.2 — Create product system requirements

In this step the system requirements that need to be considered for a given product variant are automatically
created. A DOORS add-on has been developed that provides support for product family management
[Stocker 2011]. The add-on comprises the following functions for this step:

e Read a configuration model (see Step 4.1) and identify all selected features
o Create a new DOORS module containing all requirements relevant for the configured product
o Establish traceability between product requirements and product family requirements

e Synchronize with changes in the feature model, configuration and product family requirements on
request

Figure 4-21 and Figure 4-22 show the generated requirements modules corresponding to the
SferiAssist300 and SferiAssist500 configurations. For example, for SferiAssist300 the requirement
corresponding to the optional feature “Check_Obstacles” is not present.

E 'REQ_LS_SferiAssist300° current 0.2 in /Sferion/03_Domain Engineering/Landing Symbology 3D,/02_System (Formal module) - DDORS

File Edit Wiew Insert Link Analysis Table Tools Discussions Authoring DESIRe
Rhapsody 7.5.3 RG7.5.3 Help

| H&E |osm || 558 PFEn || s

epf matelo OFFISTools ProductAdministration pysync r2a user Utils#e WExP Rhapsody 5.0 RGE.0

=5 =% g
| view [7_FFM View et = || i £ & ||[727 <@ 7 $ A7 4
a8 H_EQ‘I—IS-S—Sfe'iASSiSBUD Requirements Statement FeatLre Fieq. Type ;I
cope 3. 1. I.Z baa .dse
&2 Dve'\f‘ew The L53D function shall ¥ Check_Mo_Ground Wariable Platform
=- 3_Hequllemants

|] wisualize "NO GROUND"
Functional Requirements

Mark Landi

. ar
POt'n reception of the frigger mark_landing_symbal,
bol "

3.1.3Visualize Approach Line
3.1.4 Visualize Doghouse
3.1.5Visualize Reference Objects
[#- 3.2 Interface Requirements

the landing symbaology has been activated
and

there is o intersection between LoS of the tracker of the HMS,/D and
the ground surface for the marked landing position.
3.1.2 Visualize Pin Symbol
The LS3D function shall Fen

visualize a pin syrmbol at the marked landing position as
specified in [REF-5]

Yarisble Platform

if
the marked landing position is valid
and
0.08 M <= distance H/C 10 landing position < 1.8 MM,

3.1.3 Visualize Approach Line

The LS3D function shall dl approach_Line Yariable Platform J
visualize an approach line at the marked landing position as
specified in [REF-5]
if
the marked landing position is valid
Elgle]
distance H/C 1o landing position < 0.2 NM.

3.1.4 Visualize Doghouse

. [- . T—— - -

Username: Administrator Exclusive edit mode | 4
Figure 4-21 SferiAssist300 requirements

Version Nature Date Page

V1.00 R 2014-02-10 41 of 74

D203.020 First MSE SEE (Prototype) ChYS':I.'.AL

E *SferiAssist500" current 0.2 in /Sferion/03_Domain Engineering;/Landing Symbology 3D/02_System {Formal module} - DDORS

File Edit “iew Insert Link Analysis Table Tools Discussions Authoring DESIRe epf matelo OFFISTools ProductAdministrabion pwsync £23 user Utbils4s6 WEXP Rhapsody 8.0 RGS.0
Rhapsody 7.5.3 RG7.5.3 Help

| H@E |=am || §FF@Fin e

J V\EWI?_PFM Wiew j“ﬁlllevels j J 4 ,;E:' ,f, “ "J_j = |:_§—| T ,‘,’ﬂ 0 H.
g S:feriASS\Sl5DU Requirements Statement Feature Feq. Type ﬂ
[#-1 Scope =
+]- 2 Dverview The LS3D function shall Check_Mo_Ground Warisble Platform
- 3 Requirements visualize "MO GROUND"
[3.1 Functional Requirements an
31.1 Mark Landing Pogition reception of the Tigger mark_landing_symbol,
3.1.2 Visualize Pin Symbol if
1.3 Visualize Approach Line the landing symbology has been activated
31,4 Visualize Doghousze and
3.1.5 Visualize Reference Objects there is no intersection between LoS of the tracker of the HMS/D and
- 3.2 Interface Requirements the ground surface for the marked landing position.
The LS2D function shall ¥ Check_Obstacles Yarizble Platform
visalize "x"

an
reception of the trigger mark_landing_syrmbal,

if
the landing symbology has been activated
and
there is a sensor classified obstacle within the doghouse square with
edge length of 40 m for the marked landing position as
specified in [REF-5], J
3.1.2 Visualize Pin Symbol
The LS3D function shall F Fin Yarishle Platform
visualize a pin symbal at the marked landing position as
specified in [REF-5]
i
the marked landing position is valid
and
0.08 MM <= distance H/C 10 landing position < 1.8 Mk,
The LS30 function shall ¥ SI_Sensor_Pased Wariable Platform

4 |

Usemame: Administrator Exclusive edit mode |

kl_[‘_

Figure 4-22 SferiAssist500 requirements

4.6 Scenario SC5 — Perform System Functional Analysis

Related user story: US206 — Project Compliance Monitoring based on Advanced Traceability

Related engineering methods: EM206_01_01 — Retrieve Valid Traces, EM206_01_02 — Analyse Trace,
EM206_02_01 — Perform Coverage Analysis, EM206_03 01 — Create Verification Objective, EM206_03_02
— Create Verification Case, EM206_03 03 — Create Verification Procedure

Related tool chain: Rhapsody, Rhapsody Gateway, Rhapsody TestConductor, DOORS

The aim of functional analysis is to describe in detail from a technical perspective the functions and
behaviour the intended system shall provide, the interaction via identified interfaces with external systems,
users and operators, and the interaction and dependencies between the different functions. The main
concerns of the functional analysis are:

o What is the functional scope of the system of interest?
e How is the system interacting with the identified operators and external systems?

¢ Which information is exchanged between the system and the identified operators and external
systems?

o What are the sub-functions implementing associated requirements?
o How is the system reacting in normal cases and in abnormal cases?

e What are the critical, top-level performance requirements?

Version Nature Date Page
V1.00 R 2014-02-10 42 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

The modelling language is SysML:

Requirements diagrams to capture the input requirements

Functional context diagram (top-level use case diagram), showing the system of interest embedded
in its environment as well as identifying external systems and operators

Activity diagrams, depicting detailed activity flows showing how the system (black box) is satisfying
the user requirements

Sequence diagrams, depicting functional interactions between the system of interest and operators
or external systems

Sequence diagrams depicting the performance requirements
State charts depicting the system modes and their transitions

Internal block diagrams to identify the interfaces of each function and to depict the decomposition of
the function into sub-functions.

The goal of the functional analysis is to identify all functions required by the system in order to perform the
use cases and to ensure the coherence to the input requirements. As a result a functional architecture is
created for each individual use case. The functional analysis consists of two parts: the use case analysis and
the functional analysis for each identified use case.

The use case analysis is performed with the following steps:

Step 5.1 — Create initial model setup

Step 5.2 — Import input requirements to the model

Step 5.3 — Define system context and system-level use cases
Step 5.4 — Allocate requirements to use cases

The functional analysis is performed for each identified system-level use case with the following steps:

4.6.1

Step 5.5 — Analyze the use case uninterrupted flow (activity diagram)

Step 5.6 — Define black box scenarios (sequence diagrams)

Step 5.7 — Create system external ports and interfaces (internal block diagram)
Step 5.8 — Define state-based behaviour (state chart)

Step 5.9 — Verify model by model execution (simulation)

Step 5.1 — Create initial model setup

First, a Rhapsody model is setup in a standardized way. Therefore a common package structure is
established to ensure readability and the possibility for report generation. Additionally a CASSIDIAN specific
profile based on SysML is applied. Figure 4-23 shows the resulting model structure in Rhapsody.

Version Nature Date Page

V1.00

R 2014-02-10 43 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

=17 Packages

El&l ActorPkg

Hl,_;‘ﬁ- Actars

-2 HMSD_PilotFlying

- iy HMSD_PilotNonFlying

f@ INS
1) LADAR
-y LandingGear
- iy Radalt
B2 Everts
[#-F71 AnimationCaptures
=-£71 FunctionalAnalysisPkg
=7 Packages
E|E:| ucCs_DisplayLandingSymbologyPkg
=& blocks
=8 Uc_UC5_DisplayLandingSymbology
(= Attributes
E Generalizations
@ Cperations
&-(= Forts
-
[+ Inkernal Block Diagrams
IED_ICS_DisplayLandingSymbology
-3 Packages
L—"_I&l UCS_DisplayLandingSymbologyBBScenariosPkg
E|._. Sequence Diagrams
; U:J_l Display Approach Line
U:J_l Display Landing Doghouse
UZJJ Display Fin Svmbol
Uf_l Display Reference Objects
Uf_l Landing Performed
U0 Mo Yalid Landing Position
EEI---E] UCS_DisplayLandingSymbologyExecutionScopePkg
[+ [Seguence Diagrams
E-= Use Cases
=13 UCS_DisplayLandingSymbology
=) Activity Views
. =) uCs_pisplayLandingSymbologyBlackBoxYiew
1-(E2) Activity
: -0 Sequences
&L Assoriation Ends

Stakechart

- - [[

Figure 4-23 Model setup in Rhapsody

4.6.2 Step 5.2 — Import input requirements to the model

In this step system requirements are imported from DOORS into Rhapsody. The goal is to prove the
complete consideration of all relevant input requirements during the functional analysis process. The relevant
input requirements have been classified as functional requirements in DOORS by using a respective
attribute that denotes the requirements type. This allows automatic synchronisation of requirements between
DOORS and Rhapsody. The Rhapsody Gateway is used to establish the traceability between the system
requirements in DOORS and the model elements describing the functional behaviour in Rhapsody.

With the Rhapsody Gateway coverage and impact analysis can be performed. Figure 4-24 shows that the
functional analysis model covers 83.3% of the input requirements. Two requirements which are not covered

Version Nature Date Page
V1.00 R 2014-02-10 44 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

by the model are highlighted in red colour. In addition, when a requirement is selected, the model elements
which trace to this requirement are listed in the pane “Downstream Coverage Information”.

Ry 1BM Rational Rhapsody Gateway - LandingSymbology3D_v8.02*

File Edit Wew Tools Reports Help

Q5T d %O =) R % [D fro e Elhali@m |
T Management iew i Caverage Analysis Yiew |'£"_4, Impact Analysis View I 37 Graphical View I] Requirement Details I 3 Uik Details I
Upstream Coverage Information: Selection: Downztream Coverage Information:
E}_] 3 2 Functional Aeguramants ’;I Functional Analysizs Model Rhapsody 83.3%
EHE) 327 Mark Landing Postion 7 20 L andingSpmbologe_ 18 07
5] 3277 Nomal Case 00 Packages
L9 Jisa0-sRD-21 B FuncrionalnaieiePhg
5] 327.28ad Case ? =00 Packages
J,Jl.s:n-sm:-:fa EI—F‘_—| LACE Diplapd andingSpmbofoga kg
% Jizan-sr0-m B iagres
%) Lsa0-5R0-60 7 ﬁ e UCF Displad andingSembolagy
EFHE] 322 Visualize Pir Spmbof Oparafioms
% Jusin-sRo-2a & catcutatel andingPosiiontistance
%) L590-5R0-29 o ehecki andingPosiion\ alidity
FHE] 32 3 Vsualre Anoroach Line = dispizi andinalloghouse
=] 32 4 Viualize Doghouse [ifze Cases
EHO UGE Digplav andingSymboloay
% JL530-5R0-35 EHE Lize Cases
BHE] 328 Viualre Aafarance Obiacls EHO U0 Displapl andingS smbologrf ok Boxtiew
1 3 Parfprmance Seguiameants E“@A chivay
3 4 intartace Sequiaments ? E—%ﬁ Stafes
Lo)i san-sm0-18 7 j =laction 72
Texts and Reference Attributes |F\ttributes |Messages |
— Upstream — Selection — Downstream
Text: Text: Text:
The LS3D function shall
wisualize a landing doghouse atthe marked landing position as
specified in [REF-5]
Reference Attributes: f the marked landing position is valid Reference Attributes:
and
distance H/Cto landing position < 0.22 NM.
|System Requirements Standard DOORS Setupf3 Requirements)'3, 2 Functional Requirements)3.2.4 Visualize Doghouse/LS30-5RD-33 /A

Figure 4-24 Import input requirements from DOORS to Rhapsody using Rhapsody Gateway

4.6.3 Step 5.3 — Define system context and system-level use cases

The purpose of this step is to define the system context with interfacing actors, identify system-level use
cases and associate use cases with actors. This modelling step is performed by creating a use case diagram
as shown in Figure 4-25. Other use case diagrams have been created to identify additional system-level use
cases and group the functional scope accordingly. Actors representing external users or systems have been
identified.

Each use case comprises additional information including:
e Purpose: a short statement what the primary actor wants to accomplish by performing the use case

e Pre-condition: the system and environment conditions, states and modes present before the use
case has been started

e Post-condition: the system and environment conditions, states and modes present after the use case
has been completed

o Constraints: any constraints like timing or quality of service identified for the use case
o Description: a detailed description of the activities and interactions for the use case

o Trigger: the event that leads to the activation of the use case

Version Nature Date Page
V1.00 R 2014-02-10 45 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

LandingSymbology3D
INS

UCS_DisplayLandingSymbology

HM3D_PilotFlying

LandingGear

UCE_DisplayTakeoffSymbology

LADAR.
HMSD_FilathlonFlying \

Radalt

Figure 4-25 Define system context and system level use cases (use case diagram)

4.6.4 Step 5.4 — Allocate requirements to use cases

The functional system requirements are linked to the use case with a <<trace>> dependency. This is the
basis to perform coverage and impact analysis. Figure 4-26 depicts an excerpt of a use case diagram

showing the use case and some of its allocated requirements.

afrornDoors MBAT »
LS30-SRD-28

The LS3D function shall
visualize a pin symbol at the marked landing position
e > ;S specified in [REF-5]
«races the marked landing position is valid
e 0,08 MM == distance HAC to landing position < 1.8 MM,

afrumDoors MBAT »
U5 _DisplayLanding wlraces LS30-SRD-=9
Syrbology eooeoeeeeneeeeoe The LS20 function shall
visualize a slope indication within the pin symbal as
specified in [REF-3]
if
the pin symbol is visualized
and
distance H/C to landing position < O.4hM,
wfromDoors MBAT»
LS30-5R0-33
The LS3D function shall
""""""""""""""""""" visualize a landing doghouse at the marked landing position
«iraces as
specified in [REF-5]
if
the rmarked landing position is valid
and

distance H/C to landing position < 0.22 MM,

Figure 4-26 Allocate system requirements to system-level use cases (use case diagram)

Version Nature Date

V1.00 R 2014-02-10 46 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

The steps described in the subsequent sections are performed for each use case.

4.6.5 Step 5.5 - Analyze the use case uninterrupted flow

Within this modelling step all functions required to execute a specific use case as well as the interaction with
the associated actors (external interfaces) are identified. Therefore, the uninterrupted flow is captured with
an activity diagram. The focus of activity diagrams is to capture the different functional flows from start to
end, capturing the involved functions without considering function loops and timeouts, which will be captured
later.

Before completing this step, a first set of <<satisfy>> dependencies from actions to requirements is
established. In this way it can easily be checked whether one of the <<traced>> requirements has been
forgotten in the use case. Figure 4-27 shows an example.

HMSD_PFilotFlving [l
affessegedction:

evLanding Position

|

checkLandingPositionalidity [validity == FALSE]

—

g

[Walidity == TRUE]

NS @ \|/

| whlessaged ction: |

evHelicopterPosition |

L

calculateLandingPositionDistance

|

[Distarce in [0L.08MM, 1.8MM]] [Distanice = 0.53MM] [iifowy == TRUE]
HMSD_PilatFlying [HMSD_PFilotFlving [HMSD_PilotFlying Ll
displayPinSyrmbol displayApproachLine hideLandingDoghouse
[Distamce = 0.22MM]

.= akishys r,' T .
™ [Distance < 0.4M4M] S <@at|L

HMSD_PilotFlying [i N

IR, (ISR [The LS2D function

displaySlopelndication - _ uricti
displayLandingDoghouse wisualize
a5
I specifec
if

e demd

Figure 4-27 Analyze the use case uninterrupted flow (activity diagram)

4.6.6 Step 5.6 — Define black box scenarios

The purpose of this step is to derive a set of sequence diagrams consistent with the activity diagram.
Operations are derived from actions allocated to the block representing the use case. Further, events and
related event receptions are defined in relation with external actors. The identified events are linked to data
items that are transported across physical interfaces.

Version Nature Date Page
V1.00 R 2014-02-10 47 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

Initial sequence diagrams are created automatically from the activity diagram representing the functional
flows using a toolkit which is based on HarmonySE toolkit.

Within the sequence diagram neither model elements (operations and events) shall be created, nor shall the
order of model elements be changed, inconsistently with the activity diagram. Interaction operators may be
used to indicate loops, optional or alternative sequences.

Each scenario describes the behaviour of the system in a particular situation. Therefore, a scenario
describes the behaviour for a specific use case with defined assumptions and pre-conditions. The following
information is provided for each scenario:

e Purpose: a short statement that describes the purpose of the scenario.

o Pre-condition: the system and environment conditions, states and modes present before the
sequence starts

e Post-condition: the system and environment conditions, states and modes present after the
sequence is finished

e Scenario type: sunny day / rainy day.

Figure 4-28 depicts an example of a black box scenario.

‘HMSD_PilotFlving (IMS e _IUCS_Displayl
andingSymbology

evLandingPosition{pasition)

checkLandingPositiony alidity(validity)

walidity == TRUE

evHelicopterPosition position)

calculatel andingPositionDistance()

Distance = 0.8MM

displavapproachLined)

evApproachLinelstatus)

Figure 4-28 Define black box scenarios (sequence diagram)

4.6.7 Step 5.7 — Create system external ports and interfaces

The goal of this modelling step is the definition of ports and interfaces, including all in- and outgoing events.
The result is shown in an internal block diagram.

Version Nature Date Page
V1.00 R 2014-02-10 48 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

With all identified sequence diagrams the system ports and interfaces can be defined. In Rhapsody this is
done automatically using a toolkit which is based on HarmonySE toolkit. An example is shown in Figure 4-
29.

1 itsHMSD_PilotFlying:HMSD_Piloti =%
1 itsUc_UIZ5_DispIayLandingSrmhuIngy:Uc_UES_DisplayLED&,

BHMSD)_PilotFlying = checkLandingPositiontalidityvalidity s booly;woid

pUc_UCS_DisplavLandingSyvmbology = calculatel andingPositionDistance]) woid

= displavPingyrbal) woid

= displavslopeIndication):void

= displavapproachline):void

1 itsING:INS D&, = displavLandingDoghouse); woid
= displavReference0bjects)) void
= hideLandingDoghaouse:vaid
pINS | EPevHelicopterPositionposition: float)

plc_UCS_DisplavL andingSyribalogy EP evLandingPaosition(position: loat=0,0)

B eviiowstatusbool=FALSE)

pLandingGear

1 itsLandingGear:LandingGear

plc_UCS_CisplayLandingSymbology

Figure 4-29 Create system external ports and interfaces (internal block diagram)

4.6.8 Step 5.8 — Define state-based behaviour

To complete the functional analysis, the use case is described by its state-based behaviour. In the Service
Request Driven Model workflow the state machine diagram is considered as the most important behaviour
diagram, as it aggregates the information from both, the activity diagram (functional flow) and the sequence
diagrams (interactions with the environment), and adds to it the event driven block behaviour (loops, failure
states, timeouts,...). As the semantic of state charts is formally defined, the correctness and completeness of
the resulting behaviour can be verified through model execution. State chart diagrams are finite state
machines that are extended by the notation of

e Hierarchy
e Concurrency

Basically, a state chart diagram is composed of a set of states joined by transitions and various connectors.
An event may trigger a transition from one state to another. Actions can be performed on transitions and on
state entry/exit. A part of the state chart defined for the Landing Symbology function is shown in Figure 4-30.

Version Nature Date Page
V1.00 R 2014-02-10 49 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

WisualizationHatActive (;c'»_j

Mol andingPositionDefned

evLandingPaosition,
LandingPaosition = params-=position;

CheckinglandingPosition' alidity

[V slidity==F &LSE]

[slidity==TRLE]
evlandingPosition
LandingPosition = params-=position; LandingPositionCrefined
ewlandingPosition, evHelicopterPosition
LandingPosition = params-=position; HelicopterPosition = params-=position;

WisualizationActive

}

Calculatingl andingPositionDistance @

evHelicopterPasition
HelicopterPosition = patarms-=position;

DisplayingLandingSymbalogy
I SdisplayPinSyrbol(); I JdisplayApproachLine();

Figure 4-30 Define state-based behaviour (state chart diagram)

4.6.9 Step 5.9 — Verify model by model execution

Model execution is a powerful method to check the semantic correctness as well as the completeness of the
functional analysis and is based on the visual inspection of the model behaviour (animated state machines
and sequence diagrams or equivalent methods). Verification of the state-based behaviour for the use cases
provides evidence that the behaviour is as expected and consistent with the previously defined activity and
sequence diagrams and that no deadlocks occur.

TestConductor, the test execution and verification engine of the Rhapsody environment, is employed in order
to verify that the simulation is compliant with the expected behaviour as defined by the input requirements. It
executes test cases defined by sequence diagrams, flow charts, state charts or source code. During test
execution TestConductor verifies the results against defined requirements.

TestConductor implements the UML Testing Profile (UTP) and provides wizards that support creating test
architectures for a selected system under test. Figure 4-31 exemplifies the structure of the Rhapsody model
which is enhanced by the test architecture. The test architecture comprises all artefacts needed for test

Version Nature Date Page
V1.00 R 2014-02-10 50 of 74

D203.020 First MSE SEE (Prototype) C-'\’YSTAL

automation. For example, test components are created for stubbing of external interfaces. They allow
generating test stimuli and observing the behaviour of the system under test.

=-C3 TestPackages

EIEI'I TPkg_Uc_UC5_DisplayLandingSymbology

-0 Components
: E|§:f TPkg_Uc_UC5_DisplaylandingSymbology_Comp
B0 Configurations

i @ «TestingConfiguration: DefaultConfig
lgw Events
|£ Parts
=-Cf TestPackages
E||I_.:' TCon_Uc_UC5_DisplaylLandingSymbology _Architecture
fl- 4 Dependencies
TestCamponents
: TC_at_pHMSD_PilotFlying_of_Uc_UC5_DisplayLandingSymhbology
: TC_at_pINS_of_Uc_UC5_DisplayLandingSymbology
=49 TestContexts
Efﬁi TCon_Uc_UC5_DisplayLandingSymbology

(2 attributes
H- 24 Dependencies
(L Links
&) ModelCoverageResults
g Cperations
#-{2) Statechart
g SUTs
Ei‘ﬂ Test Conkext Diagrams

I_—i_l---*-‘_- TestiZases

2%, 50k 00

4 Dependencies

-9 ModelCoverageResuls
ey SDInstances

= El T_estOI:ujeu:ti\-'es

bl Ls3D-sRD-28

= TestResuls

Eé TestScenarios

o] S0TestScenario_0
SDTestScenario_0_show

% SD_kc_1()

[-# sD_kc_20)

[3---‘ TestCompaonentInstances

[3---“«,-, TeskConfigurations

[S TestResults

[El---ll_:',g, TCon_Uc_UC5_DisplayLandingSymbology _TestControl

Figure 4-31 Enhanced model setup using UML testing profile

A test context provides a definition of the test environment, see Figure 4-32. Moreover, it contains all
created test cases. Each test case consists of

o Test objectives: requirements that are covered by the test case

Test scenarios: definition of the test steps including test stimuli and expected results
e Test results: test verdict

Version Nature Date Page

V1.00 R 2014-02-10 51 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

«TestCantert» Dé'
TCon_Uc_UC5_DisplayLandingSymbology

1 #SUIT black:= "-El
itsUc_UCS5_DisplayLandingSymbology:Uc_UC5_DisplayLandingSymbology

pLandingGear

pHMSD_PilotFlying pINS

pINS

aTestCornpanentInstance, TestCornponent »
|I:sTC _at_pINS_of_Uc_ULC5_DisplayLandingSymbology:

pHMSD_PilotFlving

wTestCornponentInstance, TestCormponent D&l
|tsTl: _at_pH™MSD_PilotFlying_of_Uc_UC5_DisplayLandingSymbology:

Figure 4-32 Generate test context for the system under test (internal block diagram)

Based on the test context various test scenarios can be defined. Figure 4-33 depicts a sequence diagram
test case. In this test case events sent from external actors are defined as test stimuli. In addition the
expected system reaction of the system under test (marked with red colour) is defined. During test execution
the state chart is animated to indicate the current state of the system. The events of the test scenario are
coloured in green (test step is passed) or red (test step is failed), respectively. This is shown in Figure 4-34.

The test verdict (test case is passed / failed) is indicated after termination of the test case. Due to the test
automation test suites can be defined for regression testing. When the model has been changed, regression
testing allows confirming that the model still satisfies its requirements after the change.

Version Nature Date Page
V1.00 R 2014-02-10 52 of 74

D203.020 First MSE SEE (Prototype)

CRYSTAL

=10
TCon_Uc_UCS Di TCon_Uc_UcS Di
splayLandingSym splavLandingSym
bology.itsUc_IC bology.iksTC _at_
S DisplavLanding pHMSD PilatFlyin

evLandingPosition{position = 11,1)

TCon_Uc_UCS Di
splayLandingSym
bology.itsTC_at_
pINS of Uc UZS

evHelicopterPosition{position = 21.4)

evPinSymbal(status = 0)

»3sec

| evHelicopterPosition{ position = 14,17

evPingymbaol{status = 0)

|
|
| evHelicopterFosition{position = 10.75)
|

evPinSymbol{status = 2)

* 3 sec

Figure 4-33 Define test scenarios for the system under test (sequence diagram)

Version
V1.00

Nature

Date
2014-02-10

Page
53 of 74

D203.020

First MSE SEE (Prototype)

A\ v, 4
CRYSTAL

v TA Y

) 16M Rational Rhapsody CassidianHarmonySE - LandingSymbology3D_v8.02.rpy

Fle Edit Yiew Code Layout Tools

Gegltansei ¢ sm

window Help

&) (7 s]IE|J§°$ﬁm%&. T 2R E 4 T

”ﬁ u e I EDITF'kg_Uc UCE DlsplayLamd\ngSymeIDelauItEomflg

| [af=lal ===

AL YEY Y

|[ERER RN S A

1
ks
5

HME H Hlaoma -||2]z B =

cazel

b0 e wemn

H @eee‘?"’":e“

olol: éﬁl S Statechart of s Ue UCS DisplayLandingSymbology itst.. =] B3| | 2" 1estScenario: SDTestScenario ——
DR s =
Entire Model View = L | 2| ucucs.. | TG atp.| of R st =
= Mame Status & stamp
o
ependencies 2 ¥, sD_tcn EXECUTING o
estComponents =y
it T UG 6 o I U5 G s 2 tan
{9 TCon_uc_ucs_pispla e raiemrat L |
[+ (= adtributes I it Gyster
- IT:’ Dependencies | sramasessopaen 11 Nu Messs
-2 Instances “y Ewent
- (% Links S S _—_—
[+]-si%y ModelCoverageResu |
[+~ Operations ~+ Create
&l @ Statechart R | 4% Destra
-4 SUTs | 1 Timea
[+ ii Test Context Diagral B cancel
1%, TestCases | munelioopier foaionipoaion « 3 | 4=
=% S0 te 00 | i@ Timelr
B-(2s Dependencie et - 01 - Datafl
2t .
=y SDInstances I‘—‘———_‘_J + Partitic
-kl Testobjectiv | | — Condit
E-E TestScenar\c Ij
: Execut
} SDTestS | evuellooﬂe(PLducﬂ(DodHOﬂ <0,
By 5DTests] Interac
=% 5D_te_1{y 73] Interac
-4 Dependencie e mmee s 21 | El Opera —
[ModelCovers |
-y SDInstances B+ lostM
TestObjectiv | | =] Found
- TestResulks ¥ — 3 Destru
4 il | i 2 [| 5
[itsT Con_Uc_UC5_DisplayLandingS ymbolagy->finish T estCasel] | | Zft=T Con_ic_UC5_DisplayL andingSymbology->its T C_at_pHMSD_Pio = | | I
litsTCon_Uc_UCS_DisplayLandingS pmbology->itsCSC_SD_te O-sto_r A itsT Con_Uc_UICE_DisplaylandingSymbology-3itsTC_at_pHMSD_Fila 2l
itsTCon_Ue_UCE DisplaylandingSymbalogy-»itsTC_at pHMSD Fila
itsTCon_Uc_IUCE_DisplaylandingSymbalogy-»itsTC_at_pHMSD_Filo
- -
| | » < | »
call stack [Event Queue A MY Log A Check Model A Build Configuration Managemer

Fat Help, press F1

Thu, 30, Jan 2014 [4:33 PM 2

Figure 4-34 Execute tests in Rhapsody using simulation of state-based behaviour

Requirements coverage as well as model coverage (model elements covered / not covered during test
execution) can be shown for all test cases of the text context. See Figure 4-35 for an example.

Version
V1.00

Nature

Date

2014-02-10

Page
54 of 74

D203.020 First MSE SEE (Prototype)

{Z Coverage Result of TestCase - Windows Internet Explorer =] B3
——
C ey I'_rsE:'I,lD_Demonstrator'l,S_lD_Integration_Scenarios'l,SU_Intet_j || % ILive Search 2~
File Edit Yiew Favorites Tools Help
- re »
W ke (& Coverage Result of TestCase | | @ @ -) - |k Page v (CF Tools v
2l

TestCase Coverage Result
TestCase: SD_tc_0

Thursday, January 30,2014 16:33:07

Environnent Information

Test executed on machine: POOO1SE

Test executad by uzer: A114EE0

Used operating systemn wersion: Wiindowes 2000 fuiindows XP
Uzed Rhapzody version: 8.0, build 506637

Used TestConductar wersion: 280, build 2088

Project: LamdingSyrnbalagy30_wioz

Active Code Generation Component: TRkg_Uc_UCS_Displayl andingSymbalogy_Comp
Active Code Generation

R DafaultZanfig
Configuration:

Coverage Sumnary

TestPackage: TCan_Uec_C5_DisplayLandingSymbology_Architecture
TestContext: TCon_Ue_UCE_DisplayLandingSymbology
TestCase: SO ke 0

checklandingPositionalidity

dizplayApproachline
displayl andingCoghouse
displayPinSymbel

displayReferanceObjects
displaySlopelndication

hidel andingDoghouse

evlandingPasition

evHelicopterPosition

=

|D0ne """ l_ l_ l_ l_ l_ l_ | ' My Computer | HE0% v g

Figure 4-35 Analyze model-based coverage of test cases

4.7 Scenario SC6 — Perform Report Generation

Related user story: US206 — Project Compliance Monitoring based on Advanced Traceability

Related engineering methods: N/A
Related tool chain: RPE

The aim of this scenario is the generation of specification documents capturing the information gathered
during the functional analysis (see section 4.6) in a structured way. The documents can be used to perform

formal reviews, fulfil contractual obligations or show regulatory compliance.

Version Nature Date
V1.00 R 2014-02-10

Page
55 of 74

i

D203.020 First MSE SEE (Prototype) CRYSTAL

\

The following steps are performed in this scenario:
e Step 5.1 — Define template for document generation

e Step 5.2 — Create document

4.7.1 Step 6.1 — Define template for document generation

RPE provides a graphical template editing environment for custom report design. An example of the RPE
Document Studio is shown in Figure 4-36.

%5 Rational Publishing Engine - Document Studio (CRYSTAL _Export_Template. dta)

File Edit Insert Template Data Master Pages Style Document Specification Publish tWindow Help
(CO- B EL £ X _FEH: ELE
12 -@ RPE Launcher |@RPE Studio
[Z] *Document Specification. £3 =0 -é_—_— CRYSTAL_Expart_Template.dta 23 =
= = Runtime It} i
E Metadata Paragranh
=[5 Output Tot *
R oot SECHE
=[] Templates
=[] Template: C_CRYSTAL\Reports) CRYSTAL-Report| CRYSTAL_Fxport_Template.dta —
oot Patagraph
[Metadata
=[5 Data sources Contaner - General
[Data source: Rhapsody_Scheme - REST Comtainer - OpenPoints
= variabl
B Yariabkes Paragraph * AA
Text
Open Paints
Paragraph
— Conkainer - Set¥ar Rhapsody_Scheme $396 Projects/Project/PredefinedQueries/alCommentsfComment (>
= Properties 22 el i Eim -
— Containgt Ve
Property alue o T
type ‘word ersslep
driver Telelogic, Word. Driver Text
path Cil_CRYSTAL|Reparts)CRYSTAL-ReportiCrystal-. . Mot applicable.
shylesheet | _CRYSTAL\Reports)CRYSTAL-Reporti CRYSTA. ..
g:’:::;r:: Container - TableOperFoints Rhapsody_Scheme $397 Projects/Project/Predefinedtueries)#IComments/Cor
macro RPE Table *
bidi false Row *
el
Texk
ProjectsProject fPredefinedueries/AlComments/Comment/name
v
< | >
Template Content | Zoom Editor
: Publishing Document (s

Figure 4-36 Define the RPE template for document export in RPE Document Studio

4.7.2 Step 6.2 — Create document

During report generation data is extracted from a single source or combined from multiple sources. Different
output formats such as Microsoft Word, Adobe PDF or HTML are supported.

4.8 Scenario SC7 — Provide Process Guidance

Related user story: US205 — Process Automation, Guidance and Monitoring
Related engineering methods: N/A
Related tool chain: EPF Composer

Version Nature Date Page
V1.00 R 2014-02-10 56 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

In this section the systems engineering process and guidance framework is described. The conceptual
framework used for the definition of the systems engineering process and the associated guidance is based
on SPEM 2.0, EPF, Practices, UMF and MAM. The basic principles are summarized below:

SPEM — Software & Systems Process Engineering Meta-Model

The SPEM 2.0 specification was released by the Object Management Group (OMG) in 2008. It constitutes a
process engineering meta-model as well as conceptual framework, which can provide the necessary
concepts for modelling, documenting, presenting, managing, interchanging, and enacting development
methods and processes. An implementation of this meta-model is targeted at process engineers, project
leads, project and program managers who are responsible for maintaining and implementing processes for
their development organizations or individual projects.

The usage of a SPEM 2.0 implementation is:

e Manage libraries of reusable method content: Developers need to understand the methods and key
practices of development. They need to be familiar with the basic development tasks, such as how to
elicit and manage requirements. They further need to understand the work products from such
development tasks as well as which skills are required to perform those tasks. SPEM 2.0 enables
development practitioners to manage and deploy their knowledge using a standardized format.

o Develop and manage processes for performing specific development lifecycles: Development teams
need to define how to apply their development methods and best practices throughout a project
lifecycle. For example, requirements management methods have to be applied in one fashion during
the early phases of a project, where the focus is more on elicitation of stakeholder needs and
requirements and scoping a vision. The same methods have to be performed in a different fashion
during later phases, where the focus is on managing requirements updates and changes and
performing impact analysis of these requirements changes. The same requirements methods might
also be applied differently if the project develops a new system or maintains an existing system as
well as depending on the teams and distribution of the teams. A development process model needs
to support expressing these differences. SPEM 2.0 supports the systematic creation of processes
based on reusable method content. Lifecycle independent method content can be placed into a
process for a specific development lifecycle. Such processes can be represented as workflows
and/or breakdown structures.

e Configure and deploy a process framework customized for the project needs: No development
project is exactly like another. Organizations can provide libraries of reusable method content and
processes. Team leads can then select and tailor the method content and processes they require.
They can then describe these selections and customizations with a SPEM 2.0 method configuration,
which they can deploy to their teams, only providing the content they really need.

e Create project plan templates for enactment of the process in the context of the project: Processes
as well as guiding method content need to be available in the context of daily work of project
managers, technical leads, and developers. They therefore need to be deployed in formats that are
ready for enactment. Typical enactment systems are project and resource planning systems, work
backlog tracking systems, and workflow engines. SPEM 2.0 provides process definition structures
that allow process engineers to express how a process shall be enacted within these systems. For
example, SPEM 2.0 process definition can include information that indicates that modelled work
definitions shall be repeated several times in a project or that there could be multiple occurrences of
work definitions that can be performed in parallel.

Version Nature Date Page
V1.00 R 2014-02-10 57 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

EPF — Eclipse Process Framework

The EPF project (www.eclipse.org/epf) is an Eclipse Technology open source project that aims to provide an
extensible framework and exemplary tools based on SPEM 2.0 concepts for defining and managing
development processes. Within this framework, the project develops extensible process content for a range
of software development and management processes supporting iterative, agile, and incremental
development, and applicable to a broad set of development platforms and applications.

Practices

Practices enable a compositional approach to building methods. They are intended as process chunks for
adoption, configuration and enactment. The practice approach offers the following benefits:

e Adaptability and Scalability: Practices can be adapted to support a range of solutions. In particular,
practices can be adapted to suit your organization and supplemented by your own practices.

e Incremental Adoption: Each practice is described as a standalone capability that can be adopted by
an organization or project. Each practice may include enablement materials that explain how to get
started.

e Easy to Configure and Use: Creating a method is as simple as selecting the practices that you wish
to adopt, and then publishing the results. Each practice adds itself into the framework so that content
can be viewed by practice or across practices by work product, role, task and so on.

e Community Development: Since a practice can be easily authored on its own, practices are ideal for
community development.

UMF — Unified Method Framework

The UMF is a practice framework in which different practices from many different contexts and developed by
many different organizations can co-exist, sharing a common infrastructure for the interoperation of
practices. This ultimately supports the objective to develop re-usable method content which can be
integrated in a knowledge base sharing process knowledge. The benefits of the UMF are the same as for
any practice framework:

o Defines a consistent approach for how plug-ins are structured that allows plug-and-play between
content authored by different groups and ensures that remotely authored content integrates
seamlessly into the overall library.

e Reduces complexity and increases understandability of the methods as all methods are
constructed/structured in a similar way.

e Maximizes reuse as common elements are shared across practices and practices are shared across
processes. Practices also provide a coarser-grained unit of reuse and customization than just work
products.

e Increases configurability as practices can be easily configured to produce many different types of
method assets to match specific needs. Practices are loosely coupled and interchangeable.
Practices are easily “swapped out” and can be "mixed and matched" to create the best solution.
Specifically, processes can be assembled to best suit the end user's needs.

e Supports incremental method authoring. Practices are written independently from each other.
Practices are dependent on a shared core and not on each other.

e Supports incremental adoption of a process. The process is divided into practices that can be
adopted individually and incrementally. You can start small with a few practices and then grow/scale,
adopting one practice at a time.

Version Nature Date Page
V1.00 R 2014-02-10 58 of 74

i

D203.020 First MSE SEE (Prototype) CRYSTAL

\

MAM — Method Authoring Method

The MAM is a practice-based approach to method authoring. It provides guidelines for authoring methods
compliant with the UMF and is directly supported by the EPF Method Composer. The scope of the MAM
includes all content from taking set of method requirements to producing a method that is ready for
deployment.

The following steps are performed in this scenario:
e Step 7.1 — Create method contents and practice library
o Step 7.2 — Define delivery process
e Step 7.3 — Publish delivery process

4.8.1 Step 7.1 — Create method contents and practice library

In this step the basic building blocks of the process model are defined according to the SPEM meta model.
Such building blocks are tasks, work products, roles or tools. Tasks can be aggregated to capability patterns,
which constitute reusable process chunks. For each building block detailed information is provided.

An EPF model has been created that defines the process activities according to company-specific systems
engineering guidelines. Figure 4-37 illustrates the definition of method contents using the EPF Composer.

& Eclipse Process Framework Composer - C:\Sandbox\Method Libraries\SE Guide

File Edit Search Configuration ‘window Help
3 i 7 Hloublish.eads_de_se_guide A @ <'===€> Ey Browsing |5ﬂ A
=i Library &3 g. ﬁ: <§‘L" ¥ =0 ':;3\0‘ functional_and_behavioural_analysis &3 =0
~ T . . . -~
B Method Cantent Capability Pattern: functional_and_behavioural_analysis
| Content Packages
L§ Standard Categoties + General Information
L2 Custom Categories Provide general information about this Capabilicy Pattern.
-[gh Processes .
g {_a Capabillty Patterns Mame: Functional_and_behavioural_analysis
[=-lgh Requirements Elicitation Process (P1) Presentation name: Functional and behavioural analysis
.? crealfe_conops _ Brief description: Analyse the Functional input requirerents and its behaviour and develop a Functional
“g+ requirements_analysis architecture,
lFE" Safety
2l Syskem Design Process (P2} T Purpose:
s agree_requirements_with_level_abowve
‘e agree_requirements_with_next_level
.?. arch?tectural_design . * Detail Information
o architecture_trade_off_analysis_wom Pravide detaled information about this Capabiity Pattern.
‘g capture_additional_requirements ~ . R
& functional_and_behavioural_analysis s Main description: The objective of Functional Analysis Process is to create a functional e
S gain_approval_from_level_above architecture based on the input requirernents. The functional architecture
(S system I_ntegratiur_lPrUc;ss (P_S) provides the foundation for defining the system architectura thraugh the
(5 System verfFication Process (P4) allocation of functions and subfunctions to system elements,
5 G5, Delivery Pracesses hardwarefsoftware items, databases, facilities and operations (i.e
s, A personnel) v
4% General System Engineering Process -
Configurations sB] Scope:
v
Configuration 3 $ ¥ =08 T Usage Notes:
publish.eads_de_se_guide
w
!_|§| Disciplings L’ Description | Work Breakdown Structure | Team Allacation | Work Praduct Usage | Consalidated Yiew
(8 Domains - =
(53 work Product Kinds [prablems | = Properties 52 4y Search | T Mavigator =Y m]
5 Role Sets
IF_% Taols
l::'\ Processes Properties are nat available,
l_é'. Custom Categories v
Figure 4-37 Define method contents using EPF Composer
Version Nature Date Page

V1.00 R 2014-02-10 59 of 74

A
D203.020 First MSE SEE (Prototype) CRYSTAL

\

4.8.2 Step 7.2 — Define delivery process

In this step existing capability patterns are combined in order to build an overall process. The resulting work
breakdown structure is depicted in Figure 4-38.

& Eclipse Process Framework Composer - C:\Sandbox\Method Libraries\SE Guide
Fil= Edit Search Configuration “Window Help

i : |publish.eads_de_se_guide vl @ & T ooE aE & Browsing »
=) Library E2 g. ﬁ: ¢§‘L" ¥ =0 F& General System Engineering Process &4 ?00 Delivery Process: General System Engineering Process, General Syst =08
£ core Presentation Mame In... Predec... Model Info Type Flanned Rep
H meth_mgmt = T8 General System Engineering Process il Delivery Pro... Il
2 practice = E5 Requirement Elicikation 1 Phase 1
2 process # ‘g Create Concept of Operation 2 extends 'create_con... Capability P... [
£ publish ;\' Analyse User Requirements g extends 'requiremen... Capability P... [
== eads_de_se_guide = £ System Design 15 Phase [
Bl Method Content ':;:"' Agree requirements with level above 16 extends 'agree_requ... Capability P... i
= [-3 Processes ;)' Capture additional requirements 15 extends 'capture_ad... Capability P... Il
EB. Capabilty Patterns Functional and behavioural analysis 26 extends functional_... , --[
=-figl Delivery Processes o+ Architectural Design 31 26 extends ‘architectur... Capability P... Il
Fél* General System Engineering Process # "% Agree requirements with next level 45 extends 'agree_requ... Capability P... Il
Configurations ‘e Gain approval from level above 47 45 extends 'gain_appro... Capability P... Il
B_I}a Hw Development, 49 Ackivity Il
B3 sw Development 50 Activity Il
(5% Mechanical Development 51 Activity Il
= E5 System Inteqgration 52 50,51,49 Phase Il
g Plan Integration Activities 53 extends 'plan_inkeqr.., Capability P, .. Il
‘& Perform Integration Step 55 extends 'perform_int... Capability P... 1
"o+ Finalize Inteqration 60 55 extends Tinalize_int... Capability P... [
':3 Robustness Testing 62 extends 'robustness... Capability P... [
=] B System Yerification and Qualification 64 52 Phase i
':;:"' Syskem Yerification 65 extends 'system_ver... Capability P... Il
=] 5 Supporting Pracesses (Safety, QA, CM...) 80 Phase Il
5 Safety 81 Phase Il
] . . - = ES Quality Assurance 150 Phase Il
ST O Qéh = 5 Configuration Management 151 Phase Il
publish.eads_de_se_guide
< ¥
1] pisciplines || || Description |Work Breakdown Structure | Team Allocation | Work Product Usage | Consolidated View
[_é% Domains
['L;s Wark Product Kinds [34 Froblems | = Properties 52 Q'-' Search | &5 Mavigator = ¥ =08
L5 role Sets S Capability Pattern : functional_and_behavioural_analysis
4, Tools ~
=-lgh Processes General ~ General Information =
Ea Capability Patterns v — ¢ = _— = - = IS

Figure 4-38 Define delivery process using EPF Composer

4.8.3 Step 7.3 — Publish delivery process

In this step the defined delivery process (see Step 7.2) is published into a collection of HTML pages. These
HTML pages provide the documentation of the process for the development team, see Figure 4-39. The
published delivery process may also contain practises which provide guidance on specific topics (e.g.
methods like Functional Hazard Assessment) as shown in Figure 4-40. Practices can be accompanied by
other guidance items, e.g. examples, guidelines, and checklists.

Version Nature Date Page
V1.00 R 2014-02-10 60 of 74

D203.020

AJ:LL
CRYSTAL

v A Y

First MSE SEE (Prototype)

) Mozilla Firefox

Datei Bearbeiten Ansicht Chronik

Lesezeichen Extras Hilfe

{7 Files s S andbos P SE%e200Guide findes, htm | ar |

€

>

L | 0 File: 12 Sandbox PublishfPublish_SE Guide/indes. htm

ki

I8 Print
General System Engineering Process = System Design > Functional and behavioural analysis &
SR RSN IEILEN Capability Pattern: Functional and behavioural analysis
<> Process: EADS DE SE-Guide
= General System Engineering e Analyse the functional input requirernents and its behaviour and develop a functional architecture.
" o i l--.:{.
'\é_g ReadirementEliaton e Extends: Functional and behavioural analysis
El g5 gystem Design
“ Aares requiremerts i | Deseription
‘g Capture additional requi
Fu i SET DUI — . ¥ Expand All Sections 5] Collapse All Sections
g architectural Design = Relationships
'3’ Agree requirements with| -0 oy * publish eads_de_se_guide
“gv Gain approval from level |3
£ 1w Development Parent Activities ® Systern Design
(5% awi Development
(5 Mechanical Development Back to top
5 System Integration ;
5 System Verification and Qug |
5 Supporting Processes (Saf PR) ’ : . : ; 3 :
; The objective of Functional Analysis Process is to create a functional architecture based on the input requirernents. The functional
& Practices ; : : : : -] ;
& Rajes architecture provides the foundation for defining the system architecture through the allocation of functions and subfunctions to
system elements, hardware/software items, databases, facilities and operations {j.e. personnel).
(=) Wark products
E & Guidance In a first iteration this activity generates a black box view of the system or subsystem which does not consider the internal physical
O Architecture Trade Off Analy| | architecture of the systern.
Q-'-_z) Fun.ctm.nal Hazard ASSESSN | | finher iterations the functional architecture is enriched by functions implied by the selected physical architecture. The realities of
. Preliminary System Safety A | a practical physical architecture may reveal need for additional functional and peformance requirements, corresponding to
47 Systern Safety Assessment| | architecture features necessary for completeness of the design, but not invoked by the ariginal set of functions.
¥ Checklist during Requirernd
f Checklist duri 2 o qt R The Functional and Behavioural Analysis Process shall produce the Functional Architecture and associated requirements data
E? LR StOUNNg, oysIeEm B8 according to following table:
[/ Requirements Example
Functional Architecture Input - Document / Product Output - Document / Product
Systafn Testhﬁmtlon Functional Architecture and associated/allocated
Az Interface Definition Functional Input Requirements |requirements v
£ 1l | E .i
Figure 4-39 View published method contents
Version Nature Date Page

V1.00

2014-02-10 61 of 74

A J\; pre
D203.020 First MSE SEE (Prototype) CRYSTAL
77:“'

) Mozilla Firefox

Datei Bearbeiten Ansicht Chronik Lesezeichen Extras Hilfe

{7 Files s S andbos P SE%e200Guide findes, htm | ‘i|

€& - W |6}File:,l’,l’,l’C:,l’Sandbox,l’Puinsh,l’Puinsh_SEGuide,l’index.htm 'C"|

_Ea. ipse Proce ss_Frd m;;v; rk Com ;;c;s;t-ar

I8 Print
Guidance > Functional Hazard Assessment &
CLCS RSO RGN Practice: Functional Hazard Assessment
<> Process: EADS DE SE-Guide
o General System Engineering e Functional Hazard Assessment is a systematic, comprehensive examination of functions to identify and classi
B 6 | Systermn E A ; The Functional Hazard A: t ystemat preh tion of functions to identify and classify
£5 Reguirement Elicitation & Failure Conditions of those functions according to their severity.
El g gystern Design =
{8‘ Agres requirernents with ¥ Expand &ll Sections =) Collapse All Sections
& Capture additional requirl = 2]
« Functional and hehaviou 5
‘% Architectural Design Content References * | Functional Hazard Assessment
& Agree requirements with . _:_—'FRMEA report L3
= . .
‘v Gain approval from level il . X
R i Development o - ldentify Functions
= « "“|dentify and Describe Failure Conditions
(5% awi Development : :
= o = Determine effects
@2 Mechanical Development ol i Effect
. =
5 System Integration i el YS fec SR .
@ System Verification and Qug - _ldSS;gfn Sa etyn.equhlt:ei"ngnfs
L . B
5 Supporting Processes (Saft Idenl?fy Cuppol. g \fg:a R
. =
B Practiias - . entify Compliance Werification Methao
= Roles e “SFunctional Hazard Assessment
(=) Wark products i Back to top
El & Guidance . :
0 Architeciure Trade O Analy
F“"“:”':”"‘a' Hazard Il ' The purpose of this practice is to describe how to perfarm a Functional Hazard Assessment.
41 Preliminary System Safety 4
47 Systern Safety Assessment & Back to top
g Checkl?st dur?ng Requirerms = 'Huﬁl D "pl::l_un_
& Checklist during System Re
[7 Requirements Example : : - ; ; ; ; g : e {
Functional Architecture The objective of the FHA is to consider functions at the most appropriate level and to identify failure conditions and the associated
Systern Tast Definii clagsifications while considering both logs of functions and malfunctions. The FHA should identify the failure conditions for each
5 S 9_'”' ol situation when the failure effiects and classifications vary from one situation to another. The FHA also establishes derived safety
% Interface Definition requirements neaded to limit the function failure effects which affect the failure condition classification. These requirements may e
£ 1l | | :
Figure 4-40 View published practice including additional guidance
Version Nature Date Page

V1.00 R 2014-02-10 62 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

5 Conclusions and Way Ahead

5.1 Preliminary Evaluation and Planned Future Work

In the following sections a brief evaluation of the SEE prototype and the work planned for the next SEE
demonstrator is presented for each user story defined in [CRYSTAL D203.011].

5.1.1 US202 — Safety Analysis

The user story “Safety Analysis” is not supported in the first SEE prototype. For the next version of the SEE
demonstrator a scenario will be setup that supports functional safety analysis. The safety analysis will be
based on the Rhapsody system model, which will be annotated accordingly. Two safety tools, namely
FautlTree+ and QuantUM, will be integrated with Rhapsody. They provide the following functions:

e FaultTree+ (Isograph): define fault trees and identify common cause failures, perform quantitative
analysis
e QuantUM (University of Konstanz): perform probabilistic model checking in order to prove safety
properties
For both tools, artefacts need to be exchanged between Rhapsody and the safety tool. The CRYSTAL IOS is
expected to be a major enabler.

5.1.2 US203 — Variability Management

The following usage scenarios contribute to this user story:
e SC1 — Define Product Family Scope and Variability Model
e SC2 — Develop Domain System Requirements
e SC4 — Create Product System Requirements

Feature-based variability management has been established for system requirements in this SEE prototype.
However, the approach is quite limited: only individual requirement objects can be reused. One possible
extension is to introduce parameterized requirements, which provide variation points for elements of
requirement statements.

Feature models and the related configuration well support external variability (stakeholder view). But it is very
difficult to link features with variation points in system models. For this reason OVM has been evaluated as
an alternative approach. It seems to be much better suited to support internal variability (development view).
However, it is required to define links between variation points and development artefacts inside the OVM
modelling tool. Again, the CRYSTAL IOS is seen as a major enabler to allow linking variation points with
development artefacts across tool boundaries.

In the next version of the SEE demonstrator we plan to add the reference architecture and system design to
the lifecycle data created for the Landing Symbology function. We will investigate the potential of the
Common Variability Language (CVL) and the Domain-specific Language (DSL) brick proposed by Task
6.10.8 to improve variability management for system models.

Moreover, pure::variants will be integrated in the tool chain of the SEE demonstrator.

5.1.3 US204 - Ontology-based Requirements Engineering
The following usage scenario contributes to this user story:

Version Nature Date Page
V1.00 R 2014-02-10 63 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

e SC3 - Analyze and Improve Requirements Quality

Up to now, requirements are analysed manually using checklists and peer reviews. Some proprietary add-on
tools have been developed which allow calculating basic quality metrics. With RQA it is now possible to
automate requirements quality assessment to a large extent by providing a comprehensive set of quality
metrics and findings, which guide the improvement of requirements. However, it is difficult to customize the
quality assessment to project or team needs. A lot parameters can be customized, e.g.

o Which metric shall be used?
e What is the weight (priority) of each metric?
o What are acceptable ranges for each metric (quality function)?
Hence, a method is needed that supports the quality metric configuration in a more structured way.

In the next version of the demonstrator, ontologies will be created for the Landing Symbology function. This
includes the used domain terms (controlled vocabulary), the relations between terms (thesaurus) as well as
boilerplates (templates). Based on the ontology and boilerplate approach the potential of additional quality
metrics will be evaluated.

Moreover, it is expected that initial IOS adapters will be available for RQA, RAT and kM.

5.1.4 US205 — Process Automation, Guidance and Monitoring
The following usage scenarios contribute to this user story:
e SC7 — Provide Process Guidance

In this SEE prototype an EPF model has been created that describes the engineering activities to be
performed in systems engineering. This process model has been published to HTML documentation, which
provides guidance to the users. Up to now, no specific method content has been integrated that describes in
detail the new methods and tools being developed in CRYSTAL. This needs to be considered when mature
CRYSTAL results are available.

Additionally, for the next version of the SEE demonstrator the following topics, which are not covered yet, will
be investigated:

e User and access management
o Configuration management

e Process automation

e Change control

The planned functionality mainly relies on the integrated services of the envisaged SEE (e.g. VVC, RTC,
SSO, RELM) as depicted in the bottom part of Figure 5-1. Therefore, it will be a major activity to explore the
IBM Rational solution for Systems and Software Engineering (SSE) in the next SEE demonstrator.

5.1.5 US206 — Project compliance monitoring based on advanced traceability
The following usage scenarios contribute to this user story:

e SC5 — Perform System Functional Analysis

e SC6 — Perform Report Generation

In this SEE prototype traceability of artefacts is only available within an engineering tool. Linking artefacts
across tool chains is not yet possible. For example, Rhapsody and DOORS are able to import a copy of the
artefacts to be linked. The imported artefacts can then be linked and are traceable within the respective tool.

Version Nature Date Page
V1.00 R 2014-02-10 64 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

In the usage scenario “Perform System Functional Analysis” system requirements have been imported from
DOORS into Rhapsody with the Rhapsody add-on Gateway. Within the model, the imported requirements
have been linked and are traceable. Using the Rhapsody Gateway coverage analysis (do the model
elements cover all input requirements?) or change impact analysis (what model elements are affected by a
requirements change?) is supported. In this SEE prototype only traceability between requirements and
model elements is achieved. This needs to be extended to other artefacts, e.g. requirements quality reports,
fault trees, variation points, etc. In addition, |IOS adapters are a pre-requisite in order to enable cross-tool
traceability.

A first version of a traceability meta model has been defined in [Binder 2014]. This will be implemented in the
envisaged SEE, see Figure 5-1. IOS adapters will be provided by DOORS Next Generation and Design
Manager for Rhapsody. Adapters for other tools such as FaultTree+, pure::variants and RQA will be added
as soon as they are available to enhance the cross-tool traceability capabilities.

In the usage scenario “Perform Report Generation” a RPE template has been defined that allows generating
the contents of a Rhapsody model into a Microsoft Word document. The mapping of the RPE template with
the employed Rhapsody MBSE profile is described in [Binder 2013].

In the next version of the SEE demonstrator the report generation needs to be extended to DOORS and
potentially other tools such that reports can be composed by artefacts created in different tools.

5.2 Envisaged SEE

Figure 5-1 illustrates the Systems Engineering Environment (SEE) for the MSE use case as it is currently
envisaged. Please note that the list of tools and types of tools is not yet complete and may be updated in the
future.

Taking into account the perimeter of the MSE use case, the envisaged SEE will have to include tools and
databases at least for Requirements Management, Functional Models, Safety Models, Product Life Cycle
Management, and Application Lifecycle Management. These tools and databases can be deployed at
different company sites.

In order to realise interoperability, each tool and database has to provide a connector that is based on open
standards. The connector approach as well as the open standard for interoperability will be defined in
WP6.1. The communication between the tools (e.g. sending of requests to other tools, receiving data from
tools) can be realised by any kind of network that is using web protocols.

Version Nature Date Page
V1.00 R 2014-02-10 65 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL
77irr

DQORS Q. ,_\ ? N pure::vaﬁaqts V TRS
Requirements T~ 1 | 0-? Product Family [] osLc
Management Mot Management
1 v RESTAPI
. " Lifecycle Data,
5 | (osLe) /
‘ W ¥ |p1IC -
T (& [PTC Windchil
isograph @ / S Uiseice Database
- Management
RQS -
- Requirements Quality
(aReuse Analysis & Reuse
L

| |

O r
RELM
Organization & * Versions & Inclexing
Analysis . Configurations Retnevar

Traceability, Configurations, Indexing and Collaboration

SSO/Admin

Security &
Admin

RTC

Change
Management

Figure 5-1 Envisaged SEE

Version Nature Date Page
V1.00 R 2014-02-10 66 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL
6 Terms, Abbreviations and Definitions
6.1 Abbreviations
API Application Programming Interface
cccC Correctness, Consistency, Completeness
Cl Configuration Item
CM Configuration Management
CcoO [Dissemination Level]
CVL Common Variability Language
EM Engineering Method
EMF Eclipse Modeling Framework
FHA Functional Hazard Analysis
FT Fault Tree
FTA Fault Tree Analysis
GMF Graphical Modeling Framework
10S Interoperability Specification
Iw Innovation Works
kM knowledgeMANAGER
KPI Key Performance Indicator
LQE Lifecycle Query Engine
MAM Method Authoring Method
MBD Model-based Development
MBSE Model-based Systems Engineering
MSE Mission Support Equipment
N/A Not applicable
NL Natural Language
Version Nature Date Page
V1.00 R 2014-02-10 67 of 74

D203.020 First MSE SEE (Prototype) CﬁYSTAL
NLP Natural Language Processing
OSLC Open Services for Lifecycle Collaboration
OVM Orthogonal Variability Model
PA Process Activity
PLM Product Lifecycle Management
RAT Requirements Authoring Tool
RELM Rational Engineering Lifecycle Manager
REST Representational State Transfer
RM Requirements Management
RPE Rational Publishing Engine
RQA Requirements Quality Analyzer
RQS Requirements Quality Suite
RTC Rational Team Concert
SC State Chart
SD Sequence Diagram
SE Systems Engineering
SEE Systems Engineering Environment
SPARQL SPARQL Protocol and RDF Query Language
SPEM Software & Systems Process Engineering Meta-Model
SSO Single Sign-On
SW Software
SysML Systems Modelling Language
TRS Tracked Resource Set
ucb Use Case Diagram
UMA Unified Method Architecture
UMF Unified Method Framework
Version Nature Date Page
V1.00 R 2014-02-10 68 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

us User Story
VP Variation Point
VVC Versions, Variants, and Configurations
WP Work Package
Table 6-1 Abbreviations
6.2 Glossary
Artefact An artefact is any type of object within the engineering development environment

that can be referenced to or is a configuration item of its own. Examples are
requirements, models, model elements and files.

Baseline A Baseline is an approved and released set of artefacts having an association
with the system or a dedicated configuration item. A baseline is managed by the
configuration management and represents a reliable and consistent basis for
subsequent design and development activities to which changes are addressed.

Boilerplates Requirements boilerplates can be thought of as semi-complete requirements
which are parameterized to suit a particular context. The parameters in a
boilerplate generally refer to different attributes with respect to a given system
(e.g. the system itself, stakeholders involved, and functions of the system, the
objects and events involved in the system, performance characteristics, or units of
measurement).

Configuration The configuration is the configuration status of a single item, which status may
change independently from other items.

On the lowest levels we have:

e source code files having a dedicated version
e HW modules having a modification state
e documents having an issue

Higher integrated configuration items and finally the system itself are an
arrangement of configuration items on a lower level, each having its own
configuration state. The configuration of such an integrated item consists of a
listing of all these lower level items and their configuration state. This
configuration identifies also the selected options, i.e. the variant.

Configuration ltem A Configuration Item (Cl) is any work product within the SEE designated for
separate configuration management. A Configuration Item could be the complete

Version Nature Date Page
V1.00 R 2014-02-10 69 of 74

D203.020

First MSE SEE (Prototype) CRYSTAL

system model or sub parts of it (packages), a requirements module, an analysis
model, a simulation or mathematical model or a document. Single requirements
and model elements are not treated as a configuration item as the granularity
would be too fine and the consistency of a set of such elements is too complicated
to ensure.

Configuration
Management

Configuration Management (CM) is a process for establishing and maintaining
consistency of a product's performance, functional and physical attributes with its
requirements, design and operational information throughout its life. CM
comprises following disciplines:

¢ Configuration Identification

e Configuration Control

e Configuration Status Accounting

e Configuration Verification and Audit

Configuration
Status

Configuration Status is a report on the configuration baselines associated with
each configuration item and all departures from the baseline, limitations and
problems during design and production.

Controlled
Vocabulary

Controlled vocabularies to organize knowledge for subsequent retrieval. They are
used in indexing schemes, thesauri, taxonomies and other forms of knowledge
organization schemes (source: Wikipedia). In CRYSTAL we use controlled
vocabularies to build the ontology supporting requirements formalization.

Feature

Features are end-user visible characteristics of a system. Typically, a feature is
coarser than a requirement. Features are a convenient way to characterize a
function in terms that are understandable to various stakeholders.

Ingoing Link

An ingoing link is, from the view of a link target, the link from a link source.

Language Defects

Language defects are syntactical issues in the formulation of natural language
requirements. Examples are

e Omitting imperative shall (modal)

e Using passive voice instead of active voice

Link A link is defined as the relation between a link source artefact (the origination of
the link) and the link target artefact (the destination of the link)
Link type The type of a link defines the characteristic of the relation. Links are grouped

regarding their syntax and semantic, for example «refine», «verify» and «satisfy»
are common link types. The SEE is capable to discriminate links according to their
types, i.e. to filter links for one or more dedicated types.

Model Element

A model element is any object in a model that can be referenced. For example in
a SysML model we have blocks, operations, transitions, states, events, data
items, diagrams, views, packages.

Option An Option defines exactly one possible resolution of a variation point.
Version Nature Date Page
V1.00 R 2014-02-10 70 of 74

D203.020

First MSE SEE (Prototype) CRYSTAL

Product Family

A product family (also called product line) is a set of systems and products
sharing a common, managed set of functions with several features, that satisfy
the specific needs of a particular market segment or mission and that are
developed from a common set of building blocks in a prescribed way.

Reference
Technology
Platform

A cross-domain standardised platform that provides meta-models, methods, and
tools for safety-relevant hard real-time system development.

Requirement

A formalised statement identifying a capability, functionality, a physical
characteristic or a quality that must be met or possessed by a system or system
component to satisfy a contract, standard, a specification or other formally
imposed documents. A requirement may be developed at any point in the product
lifecycle by any number of stakeholders.

Requirement
quality

Requirements shall fulfil quality characteristics such as CCC (complete, correct,
and consistent) and SMART (specific, measurable, achievable, relevant, and
traceable).

Requirements
group

A set of requirements that serve the same role in the engineering process. Good
examples are the requirements allocated to a particular System Element, the
system requirements, or the assurance requirements featuring means of
compliance and test objectives.

Stakeholder

An individual or organization having a right, share, claim, or interest in a system or
its characteristics that meet their needs and expectations.

NOTE: Stakeholders include, but are not limited to end users, end user
organizations, supporters, developers, producers, trainers, maintainers,
disposers, acquirers, customers, operators, supplier organizations, creditors, and
regulatory bodies.

Stakeholder
Needs

Expectations stakeholders have about the characteristics of the system that may
not necessarily be clear, consistent or even achievable.

Suspect Link

Linked objects are marked as having suspect links if the object that they link to
has changed.

System
Engineering
Environment

The System Engineering Environment (SEE) is the tool environment for the
system engineer including tools for different purposes and concepts. The tools are
collaborating to automate tasks within the environment and to establish common
tool independent methods. A focus is on Model Based System Engineering with a
system design model as the common link between all the different tasks and
models.

Systems An interdisciplinary approach and means to enable the realization of successful
Engineering systems. This approach starts with the definition of stakeholder needs, the
identification of product functionality and the intended validation very early in the
lifecycle. Systems engineering considers both the business and the technical
needs of all stakeholders with the goal of providing a quality product that meets
Version Nature Date Page
V1.00 R 2014-02-10 71 0f 74

D203.020 First MSE SEE (Prototype) CRYSTAL
the user needs.

Traceability The ability to identify the relationship between various artefacts of the
development process, i.e. the lineage of requirements, the relationship between a
design decision and the affected requirements and design features, the
assignments of requirements to design features, the relationship of test results to
the original source of requirement. Bi-directional traceability is required to permit
top-down impact analysis and down-top traceability analysis.

Transformation A transformation protocol documents the variability resolution during the creation

Protocol of a product variant:

e Common and selected features

e System requirements variation points and selected options

e |dentified system requirements

e System model variation points and selected options

e Identified system model elements

For each creation of a product variant a transformation protocol shall be created.

User Story A User Story describes a typical action pattern or work flow within an industrial
domain. The user stories are used to describe general processes that are too high
level to derive development requirements directly out of it.

Validation Confirmation, through the provision of objective evidence, that the requirements
for a specific intended use or application have been fulfilled.

NOTE Validation in a system life cycle context is the set of activities ensuring and
gaining confidence that a system is able to accomplish its intended use, goals,
and objectives. The right system has been built.

Variant A variant selects options of a variation point (e.g. a red car, a green car) or a

product with several options selected for its variation points making it different to
other products based on the same specifications.

Variation Point

A variation point is a representation of a subject or attribute that can vary (e.g.
colour of a car). Options are linked to the variation point and show the range of
the variability (e.g. colour red, green blue; for some reasons other colours are not
available). A Variant identifies a single option of a variation point (e.g. a red car, a
green car).

The specification of Variation Point definitions shall include:

e Description WHAT shall vary

¢ Identification of the possible options in order to define range of variation

e Definition of the binding time when the options are implemented into the
product (compile/link time, integration time, installation time, operation time)

¢ Rationale why this variation is required or how it will pay off

e Stakeholder requesting for the variation

o Visibility of the variation point (internal or external) shall be defined.

Verification Confirmation, through the provision of objective evidence, that specified
requirements have been fulfilled.

Version Nature Date Page

V1.00 R 2014-02-10 72 of 74

First MSE SEE (Prototype) CRYSTAL

D203.020
NOTE: Verification in a system life cycle context is a set of activities that
compares a product of the system life cycle against the required characteristics
for that product. This may include, but is not limited to, specified requirements,
design description and the system itself. The system has been built right.
Table 6-2 Terms
Version Nature Date Page
V1.00 R 2014-02-10 73 of 74

D203.020 First MSE SEE (Prototype) CRYSTAL

7 References

If no other remarks are given the last valid issue of the mentioned document applies.

[Binder 2013] Binder, I.: Automatisierte Dokumentengenerierung in der modellbasierten
Systementwicklung bei Cassidian, Student Thesis, Technische Akademie
Konstanz, 2013

[Binder 2014] Binder, I.: Advanced Traceability in a Model-based Systems Engineering
Environment, Project Thesis, Technische Akademie Konstanz, 2014

[CESAR CCC] Allain, G. et al.: Completeness/Consistency/Correctness, CESAR deliverable
D_SP2_R3.3_M3 Vol4, 2011

[CESAR RSL] Mitschke, A. et al.: Definition and exemplification of RSL and RMM, CESAR

deliverable D_SP2_R2.1_M3, 2011

[CRYSTAL DOW] Critical System Engineering Acceleration (CRYSTAL) Joint Undertaking (JU)
under grant agreement Ne 332830, Annex | - "Description of Work", 2013

[CRYSTAL D203.011] Bogusch, R. et al.: MSE Report — V1, CRYSTAL deliverable D203.011, 2014

[CRYSTAL D607.021] Fuentes, J.: Requirements Quality Analyzer, CRYSTAL deliverable
D607.021, 2013

[CRYSTAL D607.031] Fuentes, J.: Requirements Authoring Tool, CRYSTAL deliverable D607.031,
2013

[CRYSTAL D607.041] Fuentes, J.: knowledgeMANAGER, CRYSTAL deliverable D607.041, 2013

[Hanser 2013] Hanser, M.: Integrate QuantUM into a Lifecycle Collaboration Environment,
Master Project, University of Konstanz, 2013

[INCOSE RWG] Guide for Writing Requirements, Requirements Working Group, International
Council on Systems Engineering, 2009

[ISO/IEC 29148:2011] Systems and Software Engineering - Life Cycle Processes - Requirements
Engineering

[OVM] Lauenroth, K.; Pohl, K.:Principles of Variability. In: Pohl, K.; Béckle, G.; van
der Linden, F.: Software Product Line Engineering — Foundations, Principles,
and Techniques. Springer, 2005

[Stocker 2011] Stocker, Th.: An Approach to Support Product Families in Requirements
Management, Bachelor Thesis, DHBW Ravensburg, 2011

Table 7-1 References

Version Nature Date Page
V1.00 R 2014-02-10 74 of 74

