
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE CRYSTAL CONSORTIUM. NEITHER THIS
DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED BY ANY
MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE CESAR
CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT. THE
RESEARCH LEADING TO THESE RESULTS HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S SEVENTH
FRAMEWORK PROGRAM (FP7/2007-2013) FOR CRYSTAL – CRITICAL SYSTEM ENGINEERING ACCELERATION JOINT
UNDERTAKING UNDER GRANT AGREEMENT N° 332830 AND FRO M SPECIFIC NATIONAL PROGRAMS AND / OR FUNDING
AUTHORITIES.

CRitical SYSTem Enginieering AcceLeration

Space Use Case Requirements

D205.010

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 2 of 29

DOCUMENT INFORMATION

Project CRYSTAL

Grant Agreement No. ARTEMIS-2012-1-332830

Deliverable Title Space Use Case Requirements�

Deliverable No. D205.010

Dissemination Level CO

Nature R

Document Version V5.0

Date 2014-03-10

Contact Ricardo Moreno Ruano

Organization TAS-E

Phone +34 918 07 79 00

E-Mail Ricardo.MorenoRuano@external.thalesaleniaspace.com

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 3 of 29

AUTHORS TABLE

Name Company E-Mail

Ricardo Moreno Ruano TAS-E
Ricardo.MorenoRuano@externa

l.thalesaleniaspace.com

Rubén de Juan ITI rjuan@iti.es

Ismael Ripoll ITI iripoll@iti.es

Elena Alaña GMV ealana@gmv.es

Mª Carmen Lomba GMV mclomba@gmv.es

Carlos Zubieta Orbital Aerospace
carlos.zubieta@orbital-

aerospace.com

Susana Pérez Tecnalia
susana.perezsanchez@tecnalia.

com

CHANGE HISTORY

Version Date Reason for Change Pages
Affected

0.01 2014/01/14 Creation of document All

2.0 2014/01/28 Interoperability Challenges and Use Case sections added 7-11; 13-15

3.0 2014/02/05 Engineering Methods and general format All

4.0 2014/02/14 Internal review changes and detailed engineering method
spreadsheet

24-27

5.0 2014/03/10 Included external reviewers recommendations
7, 9, 10, 21-23, 26-

27

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 4 of 29

CONTENT

D205.010 .. I

1 INTRODUCTION .. 6

1.1 ROLE OF DELIVERABLE AND RELATIONSHIP TO OTHER CRYSTAL DOCUMENTS ... 6

1.2 STRUCTURE OF THIS DOCUMENT ... 6

2 HIGH-LEVEL DESCRIPTION OF USE CASE AND CONTEXT .. 7

2.1 USE CASE DESCRIPTION CONTEXT ... 7

2.1.1 Technical description ... 7

2.1.2 HW platform .. 9

2.1.3 Low Level Software .. 9

2.2 ECSS-SERIES .. 11

2.2.1 High level process .. 12

3 ENGINEERING METHODS ... 13

3.1 PROCESS ACTIVITIES IN ECSS SW DEVELOPMENT .. 13

3.2 SW LIFE V-CYCLE .. 14

3.2.1 Requirements baseline specification phase (RB).. 15

3.2.2 Technical specification definition phase (TS) ... 16

3.2.3 Architectural Design phase (AD) .. 16

3.2.4 Detailed Design phase (DD) ... 17

3.2.5 Coding & unit test phase (CO) ... 17

3.2.6 Integration test phase (IT) ... 18

3.2.7 Validation of TS phase (VT) ... 18

3.2.8 Acceptance phase (AT) ... 19

3.2.9 Dependability and Safety process ... 19

3.3 ENGINEERING METHODS IDENTIFICATION ... 20

4 USE CASE REQUIREMENTS ... 22

4.1 ENGINEERING METHODS REQUIRED ... 22

4.2 INTEROPERABILITY CHALLENGES ... 23

4.2.1 Interaction between design, implementation and testing ... 23

4.2.2 Single/unified naming space domain .. 23

4.2.3 Version and modification tracking .. 24

4.2.4 Decoupled working teams ... 24

4.2.5 Parallel development of several solutions .. 24

4.2.6 Summarising ... 24

5 TERMS, ABBREVIATIONS AND DEFINITIONS ... 26

6 REFERENCES ... 28

7 ANNEX I: DETAILED DESCRIPTION OF ENGINEERING METHODS ... 29

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 5 of 29

Content of Figures

Figure 2-1: Flight Model of an Avionics Unit ... 8

Figure 2-2: Block diagram of an Avionics Unit.. 8

Figure 2-3: Dual-FPGA board potential lay-out .. 9

Figure 2-4: LLSW boot sequence ... 10

Figure 2-5: ECSS Architecture (from ECSS website) .. 12

Figure 3-1: Software RAMS activities (ECSS-Q-HB-80) .. 13

Figure 3-2: Structure of ECSS-E-ST-40C ... 14

Figure 3-3: Software V cycle... 15

Content of Tables

Table 3-1: Engineering methods and associated description... 21

Table 4-1: Engineering methods and tools implemented in the use case .. 22

Table 5-1: Terms, Abbreviations and Definitions ... 27

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 6 of 29

1 Introduction

1.1 Role of deliverable and relationship to other CRYSTAL documents

This document has the following major purposes:

• Definition of the overall use case, including a detailed description of the underlying
development processes and the set of involved process activities and engineering
methods.

• Provide input to WP601 (IOS Development) required to derive specific IOS-related
requirements.

• Provide input to WP602 (Platform Builder) required to derive adequate meta-models.

• Establish the technology baseline with respect to the use-case, and the expected progress
beyond (existing functionalities vs. functionalities that are expected to be developed in
CRYSTAL).

1.2 Structure of this document

The document is structured as follows:

• Section 2 presents the use case SW application, including its context into space domain,
the HW platform where it will run and the standards that need to be compliant with.

• Section 3 makes a detailed presentation of the SW development phases required in space
domain to be space qualified, identifying the engineering methods.

• In Section 4 is summarized the requirements for the CRYSTAL Space Toolset applied to
Avionics Control Unit Software in form of selected engineering methods to be applied in it.

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 7 of 29

2 High-level description of use case and context

2.1 Use case description context

In the aerospace domain, the hardware manufacturer remains responsible in front of the customer
(typically ESA) of the quality and performances of the software embedded in the units, even when
the SW is procured from an external SW supplier. To assure the quality of this SW, ESA has
developed standards for software engineering and software quality assurance. Through the
application of these standards the safety and reliability of the code is assumed to be a
consequence of the quality of the process used during the code development; this process is
based on a series of customer-client meetings where abundant and exhaustive documentation
relative to design, analysis and test of the SW product are reviewed. In addition to this, the SW
has to undergo an Independent Software Verification and Validation process (ISVV) by a
third party company, thus increasing certification efforts.

Apart from an intensive certification process, the limited resources and harsh operating
environments (high radiation doses) mean that processor boards for space instruments are quite
limited in scope compared to those in modern PCs. However, in space as well as in the consumer
market, as the shrinking of the electronic components enables it, the trend is towards more dense,
integrated and reconfigurable systems. Potential reconfiguration of the system (either by upload of
SW components or new VHDL design) entails a new scenario where requirements may change
during any moment of the project lifetime, covering from design phase to even on-flight operation
and maintenance.

This use case will serve to assess CRYSTAL bricks and technologies (RTPs and IOS) as per the
ECSS standards applicability in order to accelerate the development and certification processes of
reconfigurable space-qualified systems, thus reducing time and costs efforts. The application to be
implemented for the Space domain is the Low Level Software for an Avionics Control Unit which
application software could include autonomous navigation features based on GPS, inertial and/or
image acquisition inputs. This unit will be based in a LEON microprocessor architecture running in
multicore configuration inside an FPGA exploiting state-of-the-art fault tolerant techniques.

2.1.1 Technical description

The word avionics being a contraction of 'aviation electronics', carries out activities related to the
command and data handling (C&DH) sub-system, guidance navigation and control devices and
associated software flown aboard a satellite. These items cannot be bought as off the shelf
equipment based on conventional components because they must be able to carry on operating for
years at a time while surviving the harsh space environment. Satellite avionics must be specifically
designed and built instead.

Comprising computers, data bus, sensors and actuators and on-board software and algorithms,
the avionics subsystem contributes a huge amount to a given mission's functionality but is complex

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 8 of 29

and expensive - corresponding to around 60% of overall development and verification costs of a
typical satellite platform only.

Figure 2-1: Flight Model of an Avionics Unit

Figure 2-2: Block diagram of an Avionics Unit

The On Board Software implements satellite’s vital functions such as: attitude and orbit control in
both nominal and non-nominal cases, telecommands execution or dispatching, housekeeping
telemetry gathering and formatting, on board time synchronisation and distribution, failure
detection, isolation and recovery, etc.

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 9 of 29

Based on the above, the very essence of an Avionics Control Unit is the microprocessor board,
consisting of microprocessor, non-volatile memories, volatile memories and the companion chip
that connects the microprocessor to different peripherals.

A modern Avionics Control Unit includes functions such as:

• DC/DC Power conversion and regulation
• Ground Telecommand Decoding
• Packet Telemetry Formatting
• On Board time management
• Autonomous Reconfiguration
• Local Mass Memory function
• Housekeeping telemetry
• Interfacing with other Avionics subsystems

2.1.2 HW platform

TAS-E is currently working in the design and development of a dual-FPGA board, which block
diagram can be observed in Figure 2-3.

This dual-FPGA architecture allows evaluating multiprocessor systems where a main
(multi)processor embedded within one of the FPGAs distributes the processing load to a second
device; it is the Low Level SW of this multiprocessor whose development is the main driver of the
Aerospace Demonstrator.

In this case, the second FPGA can embed another processor, a DSP or just implement some
hardware (VHDL) algorithms.

Figure 2-3: Dual-FPGA board potential lay-out

2.1.3 Low Level Software

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 10 of 29

On every Avionics Control Unit there are two different SW products:

• Low Level SW (LLSW): highly critical as stored in PROM/EEPROM and not modifiable in
flight, supporting HW platform initialisation and minimum core of data handling function in
order to enable diagnostic and load of ASW.

• Application SW (ASW): traditionally SW running in RAM (possibly stored in EEPROM) and
completely reloadable in flight, supporting full data handling and processing functions.

The Low Level Software, in turn, implements Boot, Drivers and Test SW.

1. Boot SW: It is responsibility of the Boot SW to initialize the board, perform built-in tests,
provide health status and launch Application Software from EEPROM memory area to RAM
(see Figure 2-4).

2. Drivers: The drivers’ library provides an abstraction layer between HW and other SW
components. They are linked as a library to Low Level and Application SW.

3. Test SW: a Test SW will be implemented as dummy Application SW; the purpose of this
Test SW is to validate the HDSW, check correct boot process, check correct
communication with the RTOS and characterize the final Applicative SW behaviour and
CPU load. Test Software is not included traditionally as flight SW.

Figure 2-4: LLSW boot sequence

As example of potential components of Test SW, standard and specific benchmark applications
are useful to characterize the architecture, identify bottlenecks and perform trade-off studies:

Mimicking benchmarks:

o I/O Bandwidth

o Digital filters (FIR, various numbers of taps)

o FFT (1024pt, 2048pt, 4096pt, 1920pt)

o CCSDS compliant data compression

Micro-benchmarks:

o CoreMark:

o EEMBC AutoBench

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 11 of 29

Apart from these benchmark applications, Test SW may also include mission specific
functionalities:

o Specific thermal control

o FDIR surveillance of specific events

o Specific TM/TC protocol communication

The final set of functionalities to be implemented in the LLSW will be detailed in further
deliverables.

Like any other space domain technology, SW is also regulated and must be compliant with its
associated standards within ECSS series.

2.2 ECSS-Series

The European Cooperation for Space Standardization (ECSS) is a cooperative effort of the
European Space Agency, national space agencies and European industry associations for the
development of a coherent, single set of user-friendly standards for use in all European space
activities. The result of this effort is the ECSS series of standards (ST), handbooks (HB) and
Technical Memoranda (TM) which are organized in four branches:

• M: Space project management;

• Q: Space product assurance;

• E: Space engineering;

• U: Space sustainability

The main software standard is ECSS-E-ST-40, part of the ECSS engineering branch (E). It covers
all aspects of space software engineering, from requirements definition to retirement. It defines the
scope of the space software engineering processes, including details of the verification and
validation processes, and their interfaces with management and product assurance, which are
addressed in the management (M) and product assurance (Q) branches of the ECSS system.

ECSS-E-ST-40 refers the ECSS-Q-ST-80 for the Software Product Assurance requirements
related to the development and maintenance of software for Space Systems. Both two apply to any
software project. The ECSS-E-ST-40 provides a process model for the SW development activities,
without prescribing a particular software life cycle.

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 12 of 29

Figure 2-5: ECSS Architecture (from ECSS website)

2.2.1 High level process

One of the fundamental principles of the ECSS standard series, and distinctive difference
compared to the standards from the other domains, is the explicit customer-supplier relationship,
assumed for all system and software developments, where the supplier demonstrates compliance
with the customer requirements and provides the specified evidence of compliance. How and
which parts of the ECSS must be applied is specified through contract, in a way that depends on
the given mission.

In the ECSS the development of the software is always related to a complete space project and its
different phases, with a strong focus on the integration with system level activities.

ECSS is both a process-based and product- based framework, in fact, ECSS is based on
“processes”, and lets at user’s choice an own life-cycle and approach, with appropriate methods
and tools.

ECSS has the peculiarity of allowing the tailoring, on project-basis. Tailoring means that on a
project-basis, and hierarchically in the chain, each Customer may determine the applicable ECSS
standards and requirements therein, for his own Suppliers. This tailoring must be justified,
coherent, and consistent throughout the Customer-Supplier chain, and always be visible to the
higher level Customer.

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 13 of 29

3 Engineering Methods

3.1 Process activities in ECSS SW development
As stated in previous section the ECSS-E-ST-40 provides a process model for the SW
development activities, without prescribing a particular software life cycle. It also assets the need of
specifying SW RAMS (Reliability, Availability, Maintainability and Safety) requirements based on
the System RAMS analysis result. At the same time the software is developed, a criticality analysis
is carried out to assure the dependability and safety issues.

The ECSS-E-ST-40 standard defines a set of requirements for developing software in the scope of
a space system project. But because these requirements cover a wide range of applications, some
of them may not be applicable and the requirements must be tailored for each project. ECSS-E-
ST-40 standard, states that there are several drivers for tailoring, such as dependability and safety
aspects, software development constraints, product quality objectives and business objectives. For
every software development a software development plan must be defined in order to instantiate
the particular implementation of this standard in the project.

Software dependability and safety are part of the system dependability and safety programmes,
including regular control meeting, technical reviews and documentation that forma part of the
Product Assurance File. The different software safety and dependability assessment activities are
represented in the figure below, in relation to the software development, verification and validation
activities defined in ECSS-E-ST-40.

Figure 3-1: Software RAMS activities (ECSS-Q-HB-80)

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 14 of 29

ECSS-E-ST-40 describes the software processes and activities breakdown as described in Figure
3-2. Each process includes activities which are themselves decomposed into a list of one single or
several tasks in the shape of process requirements (clauses), producing expected outputs.

5.2 Software related system requirement
process

5.4 Software requirements and architecture
 engineering process

5.5 Software design & implementation
 engineering process

5.6 Software validation process

5.3 Software management process

5.7 Software delivery and
 acceptance process

5.7.2 Software delivery
and installation

5.7.3 Software acceptance

5.8 Software verification
process

5.8.2 Verification process
implementation

5.8.3 Verification activities

5.5.2 Design of software items

5.5.3 Coding and testing

5.4.2 Software requirements analysis

5.4.3 Software architectural design

5.6.2 Validation process
implementation

5.5.4 Integration

5.6.3 Validation w.r.t. the technical
specification

5.6.4 Validation w.r.t. the requirements
baseline

5.2.2 Software related system
requirements analysis

5.2.3 Software related system
verification

5.2.4 Software related system
integration and control

5.2.5 System requirement review

5.10 Software maintenance
 process

5.9 Software operation process

5.9.2 Process implementation

5.9.3 Operational testing

5.9.4 Software operation support

5.9.5 User support

5.10.2 Process implementation

5.10.3 Problem and
modification analysis

5.10.4 Modification implementation

5.10.5 Conducting maintenance
reviews

5.10.6 Software migration

5.10.7 Software retirement

5.3.2 Software life cycle
management

5.3.3 Joint review process 5.3.7 Interface management

5.3.8 Technical budget and
margin management

5.3.4 Software project
review description

5.3.5 Software technical
reviews description

5.3.6 Review phasing

5.4.4 PDR

Figure 3-2: Structure of ECSS-E-ST-40C

Please note that, the software management process, software operational process, software
maintenance process and software delivery and acceptance processes are out of the scope of the
case study.

3.2 SW Life V-Cycle
The Use case life cycle will be based on a typical V-Cycle (Design and Verification) life cycle. The
following figure describes this life cycle:

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 15 of 29

Figure 3-3: Software V cycle

The following sections describe the phases performed during the SW project life development
cycle. This is divided in a combination of several phases with different objectives. Steps from one
phase to the next one are interfaced by a project formal review. For each project phase, the
following information is described:

• Phase start.

• Phase activities.

• Phase end.

Stakeholders/actors:

• Final customer (typically ESA, provides User Requirements Documentation).

• HW manufacturer (i.e TAS-E: derives Requirements Baseline from User Requirements and
pass it to SW supplier).

• SW supplier: external company to HW manufacturer (or different product line within the
same organization in case of big companies).

3.2.1 Requirements baseline specification phase (RB)
� RB phase start

The phase formally starts at Kick Off project meeting.

� RB phase activities

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 16 of 29

The main activities in this phase are:

• To analyse the User Requirements (UR) in order to provide a detailed version of the
URs.

• To establish the Requirements Baseline (RB) that will form the basis for all activities
carried out in the project.

• To analyse the critical functions identified in the Requirements Baseline.

� RB phase end
The RB phase concludes with a System Requirement Review (SRR) with the aim of verifying the
contents of the Requirements Baseline.

3.2.2 Technical specification definition phase (TS)
� TS phase start

This phase formally starts on approval of the Requirements Baseline (RB) in the System
Requirements Review (SRR).

� TS phase activities
The software engineering activities in this phase include:

• Establishing a functional breakdown & data flow schema (logical model) of the software
product; finalising all requirements to obtain an approved baseline for the development.
The logical model is an abstract description of what the system should and should not
do, and should not contain specific implementation terms.

• Establish the Technical Specification (i.e., Software Requirements Specification and
Interface Control Document).

• Define the software verification and validation planning. The validation test plan (VVP)
aims to conduct all validation testing and it will be based on the Software Requirements
Specification (SRS). All intended functionality must be tested and checked if all desired
behaviour is met according to the expectation. The Software Test Plan is defined in the
following manner:

• Items subject to validation.
• Validation tasks to be performed.
• Resources, responsibilities, and schedule for validation.
• Procedures for forwarding validation reports to the customer and other parties.

• Software Critically Analysis Report (SCAR) related activities.

� TS phase end
The Technical Specification phase concludes with a SWRR (Software Requirements Review). The
objective of the SWRR is to baseline requirements.

3.2.3 Architectural Design phase (AD)
� Architectural Design phase start

This phase formally starts on approval of the RB in the SWRR (Software Requirements Review).
� Architectural Design phase activities

The software engineering activities in this phase include:

• Create the software top-level architecture in compliance with the SRS. The process
followed to create the architectural design is top down. A root class representing the

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 17 of 29

overall system according to the SRS requirements is created that it is further
decomposed into smaller pieces and SRS requirements are distributed.

• Prepare the Performance and Schedulability Analysis Report, including budget
information. This document provides estimations for the SW memory and CPU budgets
based on available technical specifications.

• Software Critically Analysis Report (SCAR) related activities.

� Architectural Design phase activities end
The Architectural Design phase concludes with a PDR Preliminary Design Review (PDR) The
objective of the PDR is to baseline high level architecture and to give formal approval to start the
Detailed Design project phase.

3.2.4 Detailed Design phase (DD)
� Detailed Design phase start

The phase starts after the Preliminary Design Review (PDR). The Detailed Design for each
component of the SW shall be delivered at DDR, when the Detailed Design phase is finished.

� Detailed Design phase activities
In DD phase, lower-level components of the architectural design are decomposed until they can be
expressed as modules in the selected programming language. Starting from the bottom-level
components in the ADD, the design proceeds to lower levels via stepwise refinement of each
module specification.

Although design should normally proceed downwards, some of the lowest level components may
need to be designed (and coded) first (e.g., utility libraries).

Software Critically Analysis Report (SCAR) related activities must be performed.

� Detailed Design phase end
The DD phase culminates with the Detailed Design Review (DDR). When the design of each
module is completed, reviewed and approved, it can be coded.

3.2.5 Coding & unit test phase (CO)
� Coding & unit test phase start

This phase starts when the detailed design is approved at Detailed Design Review (DDR).
� Coding & unit test phase activities

This phase consists of the coding and unit level testing of all units in the software. Both static
analysis and dynamic analysis would be performed.

Static source code analysis is performed by measuring several software metrics parameters and
comparing the obtained values with acceptable limits.

Results of source code static and dynamic analyses will be included in the software metrics report.
The coverage objectives for unit test will be 100% statement coverage for modules classified as
criticality category C (major consequences) and 100% decision coverage for category B (critical).

Software Critically Analysis Report (SCAR) related activities must be performed.

� Coding & unit test phase end

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 18 of 29

The coding phase culminates with a review, ITRR (Integration Test Readiness Review). The
meeting verifies that the source code meets the design goals approved in the Detailed Design, to
ensure that the software is ready to be integrated.

3.2.6 Integration test phase (IT)
� IT phase start

This phase starts when the code has been tested at unit level. This phase will be overlapped with
the previous one. The integration strategy will be to ensure that all SW components of Use case
SW are integrated and ready to be validated in the Use Case SW Validation environment.

� IT phase activities
Activities during the IT phase include:

• Integrating the software modules into the software product and testing them.

• Preparing the test cases and procedures against TS/RB.

� IT phase end
The IT Phase culminates with a TRR (Test Readiness Review). The objective of this meeting is to
determine whether the integration of the SW product and the software test cases against TS are
sufficient for the SW validation to begin. In particular, the status of each of the following will be
assessed:

• Software test cases against TS.

• SW to be tested.

• Test software: Testing environment to support the System Software validation testing.

3.2.7 Validation of TS phase (VT)
� Validation of TS phase start

This phase formally starts when the code is successfully integrated, and with the approval from
TRR (Test Readiness Review). TRR assess whether the integration of the SW product and the
software test cases against TS/RB are sufficient for Use Case SW validation tests to begin.

� Validation of TS phase activities
Activities during the VT phase include:

• Performing the Validation Tests against the TS/RB.

• Documenting the results in the Test Report.

• Software Critically Analysis Report (SCAR) related activities.

� Validation of TS phase end
This phase will conclude with a CDR (Critical Design Review). The major purpose of the CDR is to
ensure that system tests have been completed to a level at which the software can be integrated in
the target platform, and that the delivery data pack is acceptable and accords with project
requirements. The CDR will assess the completeness of the system tests and of all delivery
documentation.

The scope of CDR will include the review of the current status and results of the validation against
the TS/RB.

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 19 of 29

3.2.8 Acceptance phase (AT)
In this phase the SW is delivered, installed and accepted by the customer after acceptance tests
performance, i.e: RB tests in final HW flight model and including equipment environmental tests
(vacuum, thermal and electromagnetic tests).

� AT phase start
This phase shall start on approval of the Preliminary V0 version CDR to proceed with formal
validation of the user requirements established in the SSS.

� AT phase activities
During this phase SW validation continues. During this phase a QR (Qualification Review) is
planned on the SW V0 version to verify that the software product meets all of its specified
requirements in the requirements baseline.

� AT phase end
This phase shall conclude with an Acceptance Review (AR). The major purpose of the AR is to
ensure that the acceptance testing has been completed and that the delivery data pack is in an
acceptable form and complies with project requirements. The acceptance of the software at this
review is preliminary.

The review shall assess the completeness of acceptance testing and of all delivered documents.

3.2.9 Dependability and Safety process
Dependability and Safety Activities are performed during the entire SW life cycle. The following
activities are performed and reported in the Software Criticality Analysis Report (SCAR):

• Functional analysis
The functional analysis is a common basic task necessary to perform subsequent
Dependability and Safety activities. Its purpose is to identify software critical functions. This
task is primary based on the Use Case functional description. Later, it will be refined
according to the Software Requirements Specification. Finally, when the software
architecture is available, functions previously identified are mapped to software
components.

• Analysis of failure modes
The potential failure modes associated to each software function are identified.

• Criticality assessment
A criticality category is assigned to each software component based on the effects of the
associated failure modes. The criticality of the software component corresponds to the
highest severity of the potential failure modes of that component.
Compensation and recovery actions are extracted from FMEA (Failure Modes and Effects
Analysis) analysis. They are evaluated to decide their implementation or, if the final
decision is for no actuation, a documented rationale has to be added.
The set of critical software components is listed but it shall be verified and reviewed at each
software cycle review.

• Verification of the implementation of compensation provisions
Recommendations/compensation provisions to the overall software life cycle are provided
in order to fulfill the required measures and assure the required reliability.
The implementation of approved compensation provisions must be checked. A document
containing the traceability matrix that traces compensation provisions to those requirements
and software components that implement them has to be produced.

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 20 of 29

3.3 Engineering methods identification
An engineering method describes how an activity can be conducted using guidelines, tools and
languages that interoperate with each other.
The following table identifies the engineering methods extracted for the activities contained within
the previous defined ECSS processes.

Engineering
Method

Description

RB Requirements
Analysis

The customer must specify the Requirements Baseline (RB) in a complete, correct,
consistent, precise and unambiguous mode.
Every requirement contained in the Requirements Baseline must be traced to a TS
requirement (and viceversa) to assure the completion of the SSS specification.
A verification method has to be assigned to every requirement (e.g., analysis,
inspection, test).

TS Requirements
Analysis

TS requirements must be specified by the provider in a complete, correct, consistent,
precise and unambiguous mode.

A logical model is used to produce a structured set of software requirements that is
consistent, coherent and complete. These software requirements specify the
functionality, performance, quality, interfaces reliability, etc., of the system to be
developed.
TS requirements must be traced to RB requirements and a verification method must
be assigned.

Architectural &
Detailed Design

To create the architectural and detailed design of the SW.
Design components must be traced to TS requirements (and vice versa).

Performance
analysis

To perform the performance report results.

Schedulability
analysis

To perform the schedulability report results (e.g., WCET).

Coding To perform the SW coding.
Static code
analysis

To perform Source code files static analysis by measuring several software metrics
parameters and comparing the obtained values with acceptable limits.

Dynamic code
analysis

Test Coverage Analysis is the evaluation of the adequacy of testing by collecting
information about how much of the software was executed during the test.

Unit testing Unit testing aim is to check the conformance of each software operation with its
detailed design.

Integration testing Integration Testing aims to demonstrate that the implementation matches the
architectural design.

Validation testing
wrt TS

This validation Testing aims to demonstrate that the implementation matches the TS
requirements.

Validation testing
wrt RB

This validation Testing aims to demonstrate that the implementation matches the RB
requirements.

Design Verification
Matrix

The Design Verification Matrix (DVM) will show the manner (i.e. analysis, inspection,
test, etc.) and on which model(s) each individual specification parameter is to be
verified.
A DVM will be elaborated and maintained:

• To trace the evidence of verification of each requirement.
• Each terminal object documented in the ADD shall be traceable from

(forwards traceability) and to (backwards traceability) the requirements of

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 21 of 29

Engineering
Method

Description

the SRS.
• Each software module identified and described in the DDD shall be

traceable from (forwards traceability) and to (backwards traceability) the
object defined in the architectural design.

RAMS analysis. To conduct the Dependability and Safety analysis according to the software criticality
(e.g., FMEA method).

Table 3-1: Engineering methods and associated description

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 22 of 29

4 Use case requirements
The previous section described a full SW development process as per [ESA-E-40, 2009] and
[ESA-Q-80, 2009], including details about all phases, reviews and documentation to be provided.
For the CRYSTAL Space Toolset applied to Avionics Control Unit Software a reduced set of these
methods has been selected and its implementation will be required at a lower level of exigency
with respect to an official “ESA project”.

4.1 Engineering methods required

Engineering
method

Description CRYSTAL Associated
Brick

Rationale

TS
Requirements
Analysis

Technical requirements must be
specified in a complete, correct,
consistent, precise and
unambiguous mode.

AUGE - B2.51 Traditionally performed
with Word/Excel

Architectural
& Detailed
Design

To create the architectural and
detailed design of the SW.

AFTS-DM – B2.54
Scheduling
Requirement Analysis –
B2.55

No experience with SoC
<-> FPGA reconfigurable
systems

Schedulability
analysis

To perform the schedulability
report results (e.g., WCET).

Scheduling
Requirement Analysis –
B2.55

Traditionally performed
with Excel

Coding To perform the SW coding. Not required In-house solution available
Unit testing Unit testing aim is to check the

conformance of each software
operation with its detailed design.

Not required In-house solution available

Integration
testing

Integration Testing aims to
demonstrate that the
implementation matches the
architectural design.

Not required In-house solution available

Validation
testing wrt TS

This validation Testing aims to
demonstrate that the
implementation matches the TS
requirements.

AUGE – B2.51 Currently no automatic
relationship between
Requirements
Documentation and Test
Description

RAMS
analysis.

To assess conformity with
respect to a Dependability and
Safety analysis.

Safety Analysis for
Aerospace – B2.53

No experience in SW
RAMS analysis by TAS-E

Table 4-1: Engineering methods and tools implemented in the use case

A first pass alignment with respect to the Engineering Methods included in the Public Aero Use Case defined
in D6.11.51 allows identifying the following potential matches and requirements:

• Verify requirements / verify design against requirements:

o A test procedure shall exist covering each requirement susceptible to be verified by test.

o Percentage coverage of a full set or partial list of requirements shall be provided.

• Provide specification document

o Documentation in standard format (i.e: .doc / .pdf) shall be produced.

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 23 of 29

• Traceability

o Architectural design / Schedulability analysis artefacts shall be traced against Technical
Specification Requirements bidirectionally (through traceability matrix).

This list will be better explained and detailed in future deliverables, when both Public Aero and UC2.5 use
cases are better consolidated.

4.2 Interoperability challenges
Besides the classic interactions between the different phases of the product life cycle, some
specific requirements for space domain not present in other sectors are: the complexity of the
system, the scarce computational resources available in the spacecraft and the radiation doses
that on-board electronics receive during each mission lifetime. These facts push the requirements
and the selection of the engineering tools, which relationships and artefacts should be perfectly
traceable at each point of the development life cycle in order to be compliant with the highly
demanding ECSS standards for Product Quality Assurance.

4.2.1 Interaction between design, implementation and testing
For example, in order to perform the mandatory real-time schedulability analysis, an accurate
measurement of the capabilities and performance of the platform is required. Among others, the
temporal parameters of the platform (context switch, MIPS, memory contention, interrupt service,
etc.) shall be measured at different phases of the project: during the architectural design phase, an
estimation of these parameters will be used to select the main building elements (processors,
amount of memory, buses, configuration, etc.); during the implementation, a more accurate values
using more realistic workload would help to correct and reconfigure the design in case of
deviations; and at the end of the project, the evidences required for the certification have to contain
precise and up to date timing values of all the real-time components.

Another scenario where the tests shall be linked with the design tools is when the result of some
benchmarks/tests are used to make a design decision. In order to motivate some design choices,
the associated tests and benchmarks shall be bound with the corresponding elements of the
design model.

The design tools may need to interact with verification tools. This interaction may be done directly
or through the requirements phase by adding new requirements generated from the design.

4.2.2 Single/unified naming space domain
Considering the following claim “independently of the complexity of the project, the whole project
must be understood by a small group of engineers” in order to have a fluid communication among
the main designers, a single namespace shall the used. This way, both the tools and the people
will be able to name and refer clearly and unequivocally each given object. Object naming is an
important issue when several groups of engineers have to work together. It is not only necessary to
agree on a common ontology, but also on the name of every major element of the system. Those
names must be different, but also must be easy to remember in order to be easily used by the
people. Once a name is assigned to an important element it shall be preserved along the whole
live of the system, as long as the system is not deeply redesigned.

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 24 of 29

4.2.3 Version and modification tracking
Any object of the software live cycle (element of a model, a requisite, a test, a function, a library
etc.) may change (i.e. modified, extended, fixed, etc.) long the live of the product. It shall be able to
track the modification history of each element.

It is important to track those changes, and be able to determine to which extend each modification
affects other elements. For example, a bug fix in a code function may have no impact on the
system or may change the value of the WCET, and so it may invalidate the results of some tests or
some scheduling analysis.

The simple solution is to maintain a single global project state. Each change is carried out in the
project central database. In order to avoid inconsistencies, the database may be locked when
multiple changes have to be committed. This is development model is robust, but not efficient.

4.2.4 Decoupled working teams
The development of a complex project involves the "concurrent" work of several teams of
engineers (partners) located at different physical locations, may be at different time zones. Each
group contributes to the project by creating new elements, changing existing ones or creating new
relations between them.

The tools shall provide the mechanisms to work concurrently on the same project and be able to
merge, combine or exchange the results in a consistent manner. The more complex is a project the
more teams are involved in its development, and the more concurrency is expected to occur.

4.2.5 Parallel development of several solutions
Implicit in the V model is the idea that the output of phase is used as input to the next one. This is a
convenient simplification for small projects, but may be limiting for large ones. For example, it may
be possible to think or sketch two different high level designs given a single set of requirements.
During the initial phases of a project, there may be a large number of choices and options that may
yield in two or more alternative solutions/designs. Those solutions are then refined and analysed
until one of them is finally selected. It may be necessary to develop some prototypes and perform
several tests on them to gather the information necessary to select the best alternative.

Also, due to the strong deadlines of some missions (for example, interplanetary missions have
typically a narrow launch time window) it may be necessary to work in parallel in several solutions
in order to avoid delays due to major re-designs.

The tools shall provide the mechanism for developing several concurrent products and transfer or
reuse information from one branch to another.

The tools shall provide the ability to create "branches" or "alternatives" models, and work with them
in parallel.

4.2.6 Summarising
From the engineering methods and the V model of the use case are detected the following IOS
interactions:

• There is an interaction between the requirement management tools and the
design/modelling tools for linking requirements with the object models satisfying those
requirements.

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 25 of 29

• There is a direct interaction between the requirement management tools and testing tools in
order to link requirements with test validation results.

• There is necessary a link between the tools used for the architectural design and
schedulability analysis.

• There shall be a common namespace along the whole project, at least for the most
relevant/visible objects.

• There shall be a uniform and consistent management of the versions, milestones, and
alternative designs.

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 26 of 29

5 Terms, Abbreviations and Definitions

Please add additional terms, abbreviations and definitions for your deliverable.

CRYSTAL CRitical SYSTem Enginieering AcceLeration
ADD Architectural Design
AR Acceptance Review
CCSDS Consultative Committee for Space Data Systems

CO Confidential, only for members of the consortium (including the JU).
CDR Critical Design Review
D Demonstrator
DD Detailed Design
DDR Detailed Design Review
DSP Digital Signal Processor
DVM Design Verification Matrix
ECSS European Committee for Space Standardization
EEMBC Embedded Microprocessor Benchmark Consortium
ESA European Space Agency
FIR Finite Impulse Response
FFT Fast Fourier Transform
FMEA Failure Modes and Effects Analysis
FPGA Field Programmable Gate Array
HDSW Hardware Dependent SoftWare
IT Integration Tests
ITRR Integration Test Readiness Review
O Other
P Prototype
PDR Preliminary Design Review
PP Restricted to other program participants (including the JU).
PU Public
QR Qualification Review
R Report
RAMS Reliability, Availability, Maintainability and Safety
RB Requirements Baseline

RE Restricted to a group specified by the consortium (including the JU).
SCAR Software Criticality Analysis Report

SP Subproject
SRR System Requirement Review

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 27 of 29

SRS Software Requirements Specification
SWRR Software Requirements Review
TM/TC Telemetry / Telecommand
TRR Test Readiness Review
TS Technical specification

VHDL VHSIC Hardware Description Language

WP Work Package

Table 5-1: Terms, Abbreviations and Definitions

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 28 of 29

6 References

[ESA-E-40, 2009] ESA; Space Engineering - Software; ECSS-E-ST-40C(6March2009)

[ESA-Q-80, 2009] ESA; Space Product Assurance - Software Product Assurance; ECSS-Q-ST-
80C(6March2009)

[DOW Crystal,
2013]

Crystal JU; Annex I – Description of Work; DOW CRYSTAL (332830) Part_A_B 2013-
02-28

D205.010
Space Use Case
Requirements�

Version Nature Date Page

V5.00 R 2014-03-10 29 of 29

7 Annex I: Detailed Description of Engineering Methods

Detailed_Engineering
_Methods_WP2.5.xls

