
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE CRYSTAL CONSORTIUM. NEITHER THIS
DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED BY ANY
MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE CESAR
CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT. THE
RESEARCH LEADING TO THESE RESULTS HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S SEVENTH
FRAMEWORK PROGRAM (FP7/2007-2013) FOR CRYSTAL – CRITICAL SYSTEM ENGINEERING ACCELERATION JOINT
UNDERTAKING UNDER GRANT AGREEMENT N° 332830 AND FRO M SPECIFIC NATIONAL PROGRAMS AND / OR FUNDING
AUTHORITIES.

CRitical SYSTem Engineering AcceLeration

CRYSTAL Space Toolset Specification

D205.020

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 2 of 29

DOCUMENT INFORMATION

Project CRYSTAL

Grant Agreement No. ARTEMIS-2012-1-332830

Deliverable Title CRYSTAL Space Toolset Specification�

Deliverable No. D205.020

Dissemination Level CO

Nature R

Document Version V1.0

Date 2014-04-30

Contact Ricardo Moreno Ruano

Organization TAS-E

Phone +34 918 07 79 00

E-Mail Ricardo.MorenoRuano@external.thalesaleniaspace.com

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 3 of 29

AUTHORS TABLE

Name Company E-Mail

Ricardo Moreno Ruano TAS-E
Ricardo.MorenoRuano@externa

l.thalesaleniaspace.com

Rubén de Juan ITI rjuan@iti.es

Ismael Ripoll ITI iripoll@iti.es

Elena Alaña GMV ealana@gmv.es

Carlos Zubieta Orbital Aerospace
carlos.zubieta@orbital-

aerospace.com

Susana Pérez Tecnalia
susana.perezsanchez@tecnalia.

com

Asier Alonso Tecnalia asier.alonso@tecnalia.com

CHANGE HISTORY

Version Date Reason for Change Pages
Affected

0.01 2014/03/25 Creation of document All

0.1 2014/04/09 Complete TAS-E content All

0.2 2014/04/16 Added other partners content 15-30

0.3 2014/04/21 Minor changes and format All

0.4 2014/04/24 Volvo external review comments included All

1.0 2014/04/28 Final version including AIT external review All

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 4 of 29

CONTENT

D205.020 .. I

1 INTRODUCTION .. 6

1.1 ROLE OF DELIVERABLE ... 6

1.2 RELATIONSHIP TO OTHER CRYSTAL DOCUMENTS .. 6

1.3 STRUCTURE OF THIS DOCUMENT ... 6

2 USE CASE SUMMARY .. 7

2.1 CONTEXT .. 7

2.2 AVIONICS CONTROL UNIT .. 7

2.2.1 HW platform .. 8

2.2.2 Low Level Software .. 8

2.3 ECSS SERIES ... 9

2.4 CHALLENGES .. 10

3 ENGINEERING METHODS ... 11

3.1 STAKEHOLDERS / ACTORS ... 11

3.2 ALIGNMENT WITH RESPECT TO THE PUBLIC AEROSPACE USE CASE .. 12

3.2.1 General process ... 12

3.2.2 Search Data .. 12

3.2.3 Verify Design and Test against Requirements / Verify Requirements ... 13

4 BRICKS ... 15

4.1 AUGE - B2.51 ... 15

4.1.1 Brick Rationale .. 15

4.1.2 Interfaces and Data flow ... 15

4.1.3 IOS Interfaces ... 17

4.1.4 Installation and Usage ... 17

4.2 SAFETY ANALYSIS FOR AEROSPACE - B2.53 .. 17

4.2.1 Dependability and safety process .. 18

4.2.2 Use case .. 20

4.3 AFTS DM - B2.54.. 21

4.3.1 Concept ... 21

4.3.2 Requirements.. 21

4.3.3 Impact on the architectural design ... 22

4.3.4 Impact on the detailed design .. 23

4.4 SCHEDULING REQUIREMENTS ANALYSIS - B2.55 ... 23

4.4.1 Brick Structure and Features .. 24

4.4.2 Brick Usage ... 25

4.5 BRICKS OUTSIDE WP205 ... 26

4.5.1 Requirements tool .. 26

4.5.2 Search and Visualization Engine ... 26

5 TERMS, ABBREVIATIONS AND DEFINITIONS ... 27

6 REFERENCES ... 29

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 5 of 29

Content of Tables

Figure 2-1: Dual-FPGA board ... 8

Figure 2-2: Software RAMS activities (ECSS-Q-HB-80) .. 10

Figure 3-1: Overall general process ... 12

Figure 3-2: Search data .. 13

Figure 3-3: Verify requirements step 1 ... 14

Figure 3-4: Verify requirements step 2 ... 14

Figure 4-1: RAMS concept ... 18

Figure 4-2: V-lifecycle model including the safety activities ... 19

Figure 4-3: Architecture of the SoPC .. 22

Figure 4-4: B2.55 decomposition .. 25

Content of Figures

Table 3-1: Selected Engineering methods ... 11

Table 5-1: Terms, Abbreviations and Definitions ... 28

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 6 of 29

1 Introduction

1.1 Role of deliverable

This document is a specification of the tools required to configure the CRYSTAL Space Toolset as
well as a first draft of the application procedure of the CRYSTAL tools to the Space Environment,
including design rules, guidelines for the usage of tools and Best Practices. This document is
produced after a formal review of the previous requirements and the inclusion of cross domain
recommendations and results through internal and external review processes.

1.2 Relationship to other CRYSTAL documents

This document has the following relationships to other CRYSTAL deliverables.

• Extend initial requirements and engineering methods described in D205.010 as well as a
more detailed use-case description, including actors and drawbacks of current
development process in space domain.

• Establish the technology baseline with respect to the use-case, and the expected progress
beyond (existing functionalities vs. functionalities that are expected to be developed in
CRYSTAL).

• Provide input to WP601 (IOS Development) required to derive specific IOS-related
requirements.

• Provide input to WP602 (Platform Builder) required to derive adequate meta-models.

1.3 Structure of this document

Chapter 2 makes a review of the use case presented in [D205.010], summarizing its rationale,
context as well as the applicable standards that need to be followed. It emphasizes those points
that needed clarification in the previous deliverable.

Chapter 3 presents the engineering methods that will be implemented during this use case and a
potential alignment with respect to those methods of the Public Aerospace Use Case.

Chapter 4 explains in details the bricks that will be used in the use case, including how they will be
operated by the associated actor and their interactions with IOS, if any.

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 7 of 29

2 Use case summary

2.1 Context

In space as well as in the consumer market, as the shrinking of the electronic components enables
it, the trend is towards more dense, integrated and reconfigurable systems. Potential
reconfiguration of the system (either by upload of SW components or new VHDL design) entails a
new scenario where requirements may change during any moment of the project lifetime, covering
from design phase to even on-flight operation and maintenance.

To assure the quality of the on-board SW, ESA has developed standards (ECSS series, further
explained in section 2.3) defining processes for software engineering (ECSS-E-ST-40C) and
software quality assurance (ECSS-Q-ST-80C); these processes are based on a series of
customer-client meetings where abundant and exhaustive documentation related to design,
analysis and test of the SW product are reviewed. In addition to this, critical SW has to undergo an
Independent Software Verification and Validation process (ISVV) by a third party company, thus
increasing certification efforts.

European Cooperation for Space Standardization (ECSS) is both a process-based and product-
based framework and it allow for a user to choose an own life-cycle and development approach,
with appropriate methods and tools. This use case will serve to assess CRYSTAL bricks and
technologies (RTPs and IOS) as per the ECSS standards applicability in order to accelerate the
development and certification processes of reconfigurable space-qualified systems under its
associated standards, thus reducing time and costs efforts. The application to be implemented for
the Space domain is the Low Level Software for an Avionics Control Unit, which application
software could include autonomous navigation features based on GPS, inertial and/or image
acquisition inputs as well as FPGA on-flight reconfiguration control.

2.2 Avionics control unit

Comprising computers, data bus, sensors and actuators and on-board software and algorithms,
the avionics subsystem contributes by a huge amount to a given mission's functionality. But it is
complex and expensive - corresponding to around 60% of the overall development and verification
costs of a typical satellite platform.

A modern Avionics Control Unit includes functions such as:

• DC/DC Power conversion and regulation
• Ground Telecommand Decoding
• Packet Telemetry Formatting
• On Board time management
• Autonomous Reconfiguration
• Local Mass Memory function
• Housekeeping telemetry

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 8 of 29

• Interfacing with other Avionics subsystems

2.2.1 HW platform

TAS-E has manufactured a dual-FPGA board, which image can be observed in Figure 2-1. This
dual-FPGA architecture allows evaluating processing boards for Control Units. The development of
the Low Level SW of the Control Unit processor is the main driver of the Aerospace Demonstrator.

The main processor embedded in one of the FPGAs off-loads processing requirements to a
second FPGA device that can embed another processor, a DSP or just implement some hardware
(VHDL) algorithms.

Figure 2-1: Dual-FPGA board

2.2.2 Low Level Software

The Low Level Software supports HW platform initialization and a minimum core of data handling
functionality in order to enable diagnostic and load of Application Software (ASW). Although not
mandatory, it is traditionally (and is recommended to be) provided together with the HW platform
and therefore developed by the HW manufacturer.

It is further divided in Boot, Drivers and Test SW.

1. Boot SW: It is the responsibility of the Boot SW to initialize the board, perform built-in tests,
provide health status and launch Application Software from EEPROM memory area to
RAM. It is highly critical SW, stored in PROM/EEPROM and not modifiable in flight.

2. Drivers: The drivers’ library provides an abstraction layer between HW and other SW
components. They are linked as a library to Low Level and Application SW.

3. Test SW: The purpose of this Test SW is to validate the Hardware Dependent Software
(HDSW), check correct boot process, check correct communication with the RTOS and

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 9 of 29

characterize the final Applicative SW behaviour and CPU load when this is not available.
Test Software is not included traditionally as flight SW.

Like any other space domain technology, SW is also regulated and must be compliant with its
associated standards within the ECSS series explained in the following sub-chapter.

2.3 ECSS series

The set of standards applicable to space domain in Europe are defined by the European
Cooperation for Space Standardization (ECSS): a cooperative effort of the European Space
Agency, national space agencies and European industry associations for the development of a
coherent, single set of user-friendly standards for use in all European space activities.

The main software standard is ECSS-E-ST-40, a part of the ECSS engineering branch (E). It
covers all aspects of space software engineering, from requirements definition to retirement. It
defines the scope of the space software engineering processes, including details of the verification
and validation processes, and their interfaces with management and product assurance, which are
addressed in the management (M) and product assurance (Q) branches of the ECSS system.

ECSS-E-ST-40 refers the ECSS-Q-ST-80 for the Software Product Assurance requirements
related to the development and maintenance of software for Space Systems. Both apply to any
software project procured under ESA contract. The ECSS-E-ST-40 provides a process model for
the SW development activities, without prescribing a particular software life cycle.

ECSS is both a process-based and product- based framework, in fact, ECSS is based on
“processes”, and allow the user to choose an own life-cycle and development approach, with
appropriate methods and tools. This use case will serve to assess CRYSTAL methods and tools as
per the ECSS standards applicability in order to accelerate the development and certification
processes of reconfigurable space-qualified systems, thus reducing time and costs efforts.

Software dependability and safety are an essential part of ESA programmes, including regular
control meeting, technical reviews and documentation that form part of the Product Assurance File.
The different software safety and dependability assessment activities are represented in the figure
below (Figure 2-2), in relation to the software development, verification and validation activities
defined in ECSS-E-ST-40.

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 10 of 29

Figure 2-2: Software RAMS activities (ECSS-Q-HB-80)

2.4 Challenges

Besides the classic interactions between the different phases of the product life cycle, some
specific requirements for space domain not present in other sectors are: the complexity of the
system, the scarce computational resources available in the spacecraft and the radiation doses
that on-board electronics receive during each mission lifetime. These facts push the requirements
and the selection of the engineering tools, which relationships and artefacts should be perfectly
traceable at each point of the development life cycle in order to be compliant with the highly
demanding ECSS standards for Product Quality Assurance. These constraints are especially
emphasized in the case that new technologies not yet proven in use come into play, as in the case
of on-flight FPGA reconfiguration. The following chapter will present the activities to be exercised
and improved within the frame of the CRYSTAL project with a set of selected bricks, powering the
Safety and Dependability related aspects of a Low Level SW for a HW platform with on-flight FPGA
reconfiguration capabilities.

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 11 of 29

3 Engineering methods

In the previous deliverable [D205.010] we performed a detailed description of the different
engineering activities that need to be performed in the frame of a project to be ECSS compliant.
Among them, some activities have been selected to be exercised and improved in the frame of the
CRYSTAL project with a set of Bricks.

Engineering
method

Description CRYSTAL Associated
Brick

Rationale

TS
Requirements
Analysis

Technical requirements must
be specified in a complete,
correct, consistent, precise
and unambiguous mode.

Partially by AUGE -
B2.51

Traditionally performed
manually on
Word/Excel

Architectural
& Detailed
Design

To create the architectural
and detailed design of the
SW.

AFTS-DM – B2.54
Scheduling
Requirement
Analysis – B2.55

No experience with
SoC <-> FPGA
reconfigurable systems

Schedulability
analysis

To perform the schedulability
report results (e.g., WCET).

Scheduling
Requirement
Analysis – B2.55

Traditionally performed
manually with Excel

Validation
testing wrt TS

This validation Testing aims
to demonstrate that the
implementation matches the
TS requirements.

AUGE – B2.51 Currently no automatic
relationship between
Requirements
Documentation and
Test Description

RAMS
analysis.

To assess conformity with
respect to a Dependability
and Safety analysis.

Safety Analysis for
Aerospace – B2.53

No experience in SW
RAMS analysis by
TAS-E

Table 3-1: Selected Engineering methods

3.1 Stakeholders / Actors

Client: the client role represents an external client defining the product requirements, interface
requirements and applicable standards in the form of URD/IRD, or it can also be a Technical
Responsible within the company which has already performed a derivation from URD/IRD into
different Technical Specification (TS) requirements.

Design Engineer: interpret technical requirements and represent them in a design solution, such as
choice of hardware platform, system architecture, application constraints, or into more detailed
components, depending on the stage of development.

Test Engineer: validates technical requirements through the definition of test cases and scripts.

RAMS Engineer: analyse requirements, design, tests and results with respect to the applicable
ECSS standards of Safety and Dependability all along the lifecycle.

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 12 of 29

ISVV Engineer: similar to RAMS Engineer but belonging to an external (and independent, thus
different to Client and Provider) company.

3.2 Alignment with respect to the Public Aerospace Use Case

An alignment with the Engineering Methods available in the Public Aerospace Use Case has
shown up the scenario options presented in the following sections, the final selection of bricks will
depend on the evolution of the bricks involved in each case.

3.2.1 General process

The whole process cover the introduction of the requirements by the Client (being internal or
external), the Design Engineer having access to these requirements and producing Architecture
Design and Schedulability Analysis files of the system. An automatic tool will produce test scripts
(substituting Test Engineer role) according to the requirements accessed through IOS. Finally the
RAMS Engineer will have access to all the artefacts produced in the several stages and perform an
assessment of them as per ECSS Safety related activities and standards.

Figure 3-1: Overall general process

3.2.2 Search Data

A subset of the previously general process can be focused in the gathering of data and specific
artefacts that the RAMS/ISVV Engineer requires.

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 13 of 29

Figure 3-2: Search data

3.2.3 Verify Design and Test against Requirements / Verify Requirements

In this subset the RAMS Engineer collects data and provides feedback on the artefacts he/she
considers necessary.

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 14 of 29

Figure 3-3: Verify requirements step 1

Figure 3-4: Verify requirements step 2

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 15 of 29

4 Bricks

4.1 AUGE - B2.51

4.1.1 Brick Rationale

Space critical software development normally requires an Independent Software Verification and
Validation process (ISVV). In this stage, high-level requirements modules must be traced to related
low-level modules, and from these, an additional module refined with convenient test data and
syntax is produced and exported to a third-party format (i.e. Microsoft Excel). This set of data is
somehow parsed and imported into an Automatic Testing Tool (i.e. TestStand) in order to proceed
with the Verification & Validation stage. Thus, the whole process involves heavy data processing
which provides no added-value and increases costs and time significantly.
AUGE is a standalone software application that will reduce such costs in Verification & Validation
campaigns by achieving automatic test generation from requirements. The tool shall be an
independent entity totally driven by IOS-compatible data interfaces and formats, enabling the
integration of any kind of Requirements Management Systems and Automatic Testing Tools
(provided that these bricks are IOS-enhanced, via plugins, adapters or internal modifications).

4.1.2 Interfaces and Data flow

The following block diagram shows a possible AUGE integration into a Software Development
ISVV stage:

Figure 4.1: AUGE brick data flow

A set of three independent Requirements Management Services, possibly managed by different
parties using diverse technologies (i.e. IBM DOORS, RequisitePro or even ad-hoc requirements
management software solutions) are deployed to define Requirements Baseline of some
(undetermined) Software modules or sub-modules. Provided that all of these Requirement

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 16 of 29

Management Services implement specific IOS interfaces (defined in future activities throughout the
CRYSTAL framework), AUGE brick shall be able to successfully perform a “Browse Requirement
Baseline” request and eventually “Retrieve Requirements metadata”. This way, AUGE shall enable
ISVV engineers to obtain Requirement Baselines from several remote parties, with independence
of the technology or product used to manage the source data.

After successfully retrieving a set of Requirements data (a full Baseline, a subset of Requirements
or maybe a Change Proposal), AUGE will proceed to parse the Requirements metadata in order to
assess the maturity and validity of each requirement so as to generate an automatic test. This step
is the most crucial and sensitive process in AUGE operation, due to the fact that specific
Requirement categorization and syntax must be agreed beforehand between parties, not to
mention the heavy dependence on specific requirements management standards and procedures
of the target engineering use case. Orbital Aerospace was able to provide related know-how in
Aeronautics Software development, using the DO-178B/C framework as a starting point for
requirements categorization and the specific syntax agreed for parsing. Future compliance with the
ESA standard family ECSS-E-40 shall be implemented throughout this Work Package activity.

Figure 4.2: AUGE test generator preview

Once a set of requirement data is parsed and validated, AUGE will be able to automatically
generate a set of tests which will provide sufficient coverage to verify and validate the
requirements. The format of the output test shall be defined in IOS framework as well, instead of
focusing on specific testing tools formatting. This way all kind of Testing Framework Tools
(TestStand, Simulink, SEAS, etc.) could be used (even remotely).

The whole data flow would achieve a significant reduction in ISVV costs, as complete technology
independence would eliminate the necessity of middleware and import/export activities which are
often very time-consuming. Additionally, the client-server remote nature of IOS framework (based
on WWW and HTTP technologies) would permit remote cooperation between parties with no
additional network artifacts required. The bandwidth increase required should be negligible, due to
the nature of the information exchanged (standard HTTP queries, plain text data). For Security
reasons, all communications shall be made using SSL/TLS protocol scheme.

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 17 of 29

4.1.3 IOS Interfaces

As previously stated, AUGE shall be designed to totally integrate with IOS: All brick inputs and
outputs are IOS-related entities so no linkage to specific commercial tools will be required. AUGE
shall contribute to IOS definition with any specific requirements necessary to fulfil the
aforementioned tasks.

The following IOS workgroups have been identified to cover AUGE integration requirements:

• Formal Requirements Management
• Change Management
• Documentation Generation

4.1.4 Installation and Usage

AUGE shall be a GNU/Linux native application, distributed as a standard Linux package such as
.rpm or .deb file. The package will include all software dependencies (if any) to ease installation
process to final user.

In order to use AUGE, a predefined configuration file shall be set by user with all relevant IOS
settings such as:

• Requirements Management Server(s) URI(s).
• User credentials (password, profile).

The user shall be able to select a predefined server and browse permitted Requirements modules
according to his profile. Once a requirement is selected, the user shall either:

• Preview the Requirement. A new dialog window shall display some requirement data, as
defined in OSLC “Linking Data via HTML User Interface” specification.

• Generate Test. The Requirement data shall be processed by the application. If the data
syntax is correct the requirement will be considered mature and an output text file shall be
generated containing an automatic test defined in IOS-defined syntax. Otherwise, the
requirement shall be considered not mature and an error message shall be displayed.

4.2 Safety Analysis for Aerospace - B2.53

Brick B2.53 evaluates the industrial applicability of the safety-analysis framework in the scope of
space systems.
The functionality of space systems is increasing more and more in size and complexity. This
creates the need for the adoption of appropriate techniques, methods and procedures for the
identification and assessment of RAMS (Reliability, Availability, Maintainability and Safety)
requirements:

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 18 of 29

RAMS

SAFETY
ECSS-Q-40

DEPENDABILITY
ECSS-Q-30

MAINTAINABILITYAVAILABILITYRELIABILITY

Figure 4-1: RAMS concept

• Reliability: Probability of a system to
perform without failures for a specific
period of time under given conditions.
It measures the continuity of service.

• Availability: Probability of a system to
be properly operating when requested
for used. It measures the readiness for
usage.

• Maintainability: Easiness of repairing
the system after a failure or upgrading.

• Safety: The ability of the system to
operate without catastrophic failures.

Whereas dependability deals with the avoidance of failures, safety focuses on the avoidance of a
specific class of failures (those with catastrophic consequences on the users and environment).
Dependability can be increased by removing faults that are not concerned with safety. Safety is
directly concerned with the consequences of failures, not merely with the existence of failures.
Although both activities may overlap in a number of aspects, they are different areas of
engineering oriented to different aspects of the software:

• Malfunction aspects for Dependability.

• Harm aspects for Safety.
They can use different or similar techniques. In general, safety has a broader scope than failures of
the software, and dependability analyses also those aspects leading to failures but not
compromising the safety. The overlapping makes the activities closely related since many of the
concepts, techniques, and tools are common.

4.2.1 Dependability and safety process

RAMS requirements need to be defined and subsequently assessed in the system design,
implementation and verification and validation process.
The dependability and safety process allows the RAMS Engineer to verify the implementation of
RAMS requirements and to mitigate the dependability and safety risks. It is an iterative and
continuous process that provides dependability and safety design guides. It has to be conducted
along the project lifecycle at every development phase.
RAMS analysis methodology can be applied during the entire software life cycle: from
requirements definition to design, implementation, operation and maintenance. It is important to
identify RAMS requirements and check that requirements are met to control and reduce risks
effects.
Safety is expected to be considered at system level. Software, as part of the system, becomes
safety critical when used to control potentially dangerous (parts of the) systems. Instead,
dependable software exists in itself when software is available or reliable as specified by the
system to which it belongs.
There are different methods and techniques to support this process, such as:

• Failure Modes Effects and Criticality Analysis (FMECA).

• Fault Tree Analysis (FTA).

• Hardware-Software Interaction Analysis (HSIA).

• Hazard Analysis (HA).

• Common Cause Failure Analysis (CCF).

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 19 of 29

Figure 4-2 illustrates an example of the safety assessment activities linked to each phase of the
software V-lifecycle. As it is shown, RAMS analysis runs in parallel with the whole lifecycle. In
general, RAMS analysis can run either in parallel or in conjunction with the system development
process.

Requirements
Analysis and
Specification

Architectural
Design

Detailed Design

Implementation

Integration

Testing, V&V

Delivery and
Commissioning

Hazard
Identification

Risk
Assessment

PSSA
(Predictive
analyses to

refine
requirements

and guide
design)

Common cause/common
mode and zonal analyses

SSA
(Analyses
confirming

achieved safety
properties)

Delivery of
safety case

Figure 4-2: V-lifecycle model including the safety activities

To carry out an efficient software dependability and safety analysis two different techniques can be
used:

• Inductive Bottom-Up approach: from identified failures, the hazards that could arise from
them are assessed (e.g., FMECA technique).

• Deductive Top-Down approach: starts analysing identified hazardous-events with the
purpose of finding out the potential causes (e.g., FTA technique).

A combination of both techniques provides a more complete view trying not to overlook possible
failures.
The coordination among dependability and safety activities is essential from the very beginning of
the project. Analyses are basically applicable to both fields and need to be performed in close
synchronization.
The dependability and safety process will be compliant with the following ECSS standards:

• ECSS-Q-ST-30C defines the requirements for a dependability assurance programme in
space projects. This standard calls for the use of dependability analysis techniques, tailored
to match the generic requirements in each project, to address the hardware, software and
human functions composing the system.

• ECSS-Q-ST-40C defines the safety programme and the technical safety requirements for
space projects.

• ECSS-E-ST-40C defines the principles and requirements applicable to space software
engineering. In its last version (version C), it assets the need of specifying software RAMS
requirements based on the System RAMS analysis result.

• ECSS-Q-ST-80C presents the software product assurance requirements to be met in a
particular space project to provide confidence to the customer and to the suppliers. Namely,
ECSS-Q-ST-80C presents:

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 20 of 29

o Requirements to ensure that the software is developed to perform as expected and
safely in the operational environment, meeting the quality objectives agreed for the
project.

o Requirements concerning “Software dependability and safety analysis” (subclause
6.2.2). These requirements (through the referred requirements of ECSS-Q-ST-30C
and ECSS-Q-ST-40C) refer to the supplier carrying out a software dependability
and safety analysis to assign criticality levels to software components, based on the
criticality levels of the functions and the identification of safety functions. In addition,
subclause 6.2.2 of ECSS-Q-ST-80C mentions that the software dependability and
safety analysis is performed at every development milestone. It also expects that
the list of software critical components is verified, reviewed and reduced and
designed to facilitate dependability and safety analysis and software testing.

o Requirements concerning “Handling of critical software” (subclause 6.2.3), regarding
measures and activities to ensure dependability and safety of critical software
components, the verification of the use of those measures, what to do regarding
dead code and about non-critical code potentially affecting the critical code.

4.2.2 Use case

This brick will identify the suitable methods and techniques to conduct the dependability and safety
analysis on the Aerospace Use Case. The process will be in line with the ESA standards (ECSS-
Q-ST-30C and ECSS-Q-ST-40C).
Firstly, the dependability and safety process will be tailored according to the criticality level of the
use case. Then, based on this criticality, the suitable engineering and product assurance measures
(i.e., techniques and methods) will be applied.
The main actor involved in the execution of this brick is the RAMS Engineer. A further analysis can
be performed to distinguish between the Safety and Dependability Team. For example, in case of
identifying the safety information required to perform the initial safety risk assessment of the
identified hazards:

• Safety Team provides the initial hazard analysis.

• Dependability Team provides the failure modes analysis.
All the input artefacts needed to generate the dependability and safety analyses shall be extracted
from the IOS. The RAMS Engineer shall access the IOS to extract the requirements, architecture
design, schedulability analysis, and test scripts and then perform the subsequent dependability and
safety analysis. This process will be done along the whole use case phases (e.g., requirements,
design, etc.).
This way, the brick will provide the following results to the use case:

• Dependability and safety analysis.

• Assessment of the artefacts obtained through the IOS (e.g., additional artefacts needed,
artefacts which shall provide additional information, etc.).

o It will provide feedback concerning the adequacy of the outputs of other bricks with
respect to the ECSS dependability and safety standards.

o Assessment of the artefacts along the several stages of the development life-cycle.

• Assessment of the adequacy of the process with the dependability and safety standards.

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 21 of 29

4.3 AFTS DM - B2.54

4.3.1 Concept
Fault tolerance is intended to preserve the delivery of correct service in the presence of active
faults. It is generally implemented by error detection and subsequent system recovery, and
possibly by error containment.

• Error detection: Originates an error signal or message within the system.

• Recovery: transforms a system state that contains one or more errors (and possibly faults)
into a state that can be activated again without detected errors and faults. Recovery
consists of error handling and fault handling.

o Error handling: eliminates errors from the system state.
o Fault handling: prevents a fault from being activated again in

A remark may be added about the service provided by the system. Here, we consider that a
correct service has a behaviour in accordance with the intended system function from a user point
of view. It is defined before execution and is embodied in the system specifications, which
determines the goals to be achieved in well-defined situations. A dependable system should thus
provide a correct service regarding nominal situations and explicitly-specified adverse situations.

However, an autonomous system is often required to function in an open environment, where all
operating conditions can not completely be determined in advance. When faced with unexpected
adverse situations a correct service cannot be guaranteed.

The final objective is to create tools and technologies to help systems adapt to their environment
without human intervention. Ideally, these systems are able to deal with problem specification
changes and respond to unexpected input signals variations, changes in conditions like energy
availability, bandwidth adaptation and many others. Among them, fault tolerance could greatly
benefit from the evolving hardware approach, which can be considered as an important technology
to provide systems with self-healing capabilities.

Reconfiguration is a key technique to provide systems with adaptability, bringing the adaptive
hardware challenge nearer.

Dynamic Partial Reconfiguration or Partial Run-Time Reconfiguration, hereafter referred to as
Partial Reconfiguration (PR), is a process consisting of swapping parts or modules of a
reconfigurable system while the rest of the systems remains running and therefore fully
operational. Some portions of the FPGA logic, referred to as Reconfigurable Region (RR), are
modified dynamically by downloading a partial bitstream file or Reconfiguration Modules (RM)
through the configuration port. During the PR process, the rest of the system or logic, referred to as
Static Region (SR), continues running without being affected. The reconfigurable logic is therefore
replaced by the content of the partial bitstream.

4.3.2 Requirements
The main requirement for the employment of the AFTS DM engineering method is that it is only
planned for Xilinx devices. As shown in Figure 2-1, there are two processing elements in the
hardware platform of the use case, an ACTEL RTAX4000 FPGA and a Xilinx Virtex 5. Therefore, in
the context of the use case only those applications implemented in the Virtex 5 device can be
reconfigured.

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 22 of 29

A preliminary analysis is needed to choose the application modules which will be assigned to each
of the configurable devices. Those which are chosen to be implemented in the Virtex 5 device are
affected by the described engineering method.

4.3.3 Impact on the architectural design
In order to allow partial reconfiguration in the Virtex 5 device, a SoPC (System on Chip Partially
Configurable) architecture will be employed in the SR. This architecture comprises a processor and
required peripherals to implement PR. When the processor detects a malfunction of any of the
implemented modules (RM), PR techniques are employed to ensure self-healing of the system;
additionally PR can be applied on an external stimulus from the other processor (ACTEL RTAX
device). Thus, the correct service of the system is guaranteed.

The following figure shows the graphical depiction of the SoPC architecture, the SR is depicted in
blue and the RR is depicted in orange:

Figure 4-3: Architecture of the SoPC

The SR consists of the following modules:

• Processing Unit: The Processing Unit is the Central Processing Unit (CPU) of the SoPC.
The software in charge of controlling the PR is executed by the Processing Unit.

• ICAP: Partial bitstreams are loaded from the storing device to this IP-Core in order to
accomplish the PR.

• Ethernet Port: or other alternative communications interface, is used to connect the FPGA
with an external processor for debug and command purposes. External stimulus to proceed
with the PR will be received through this port.

• Storing Device Controller: This IP-Core is a controller for an external storing device such
as a flash memory or an external card. The device stores both the partial and global
bitstreams required to configure the FPGA.

• EDM: Error Detection Module, one for each RR. They are in charge of detecting errors in
the different modules and notifying them to the processing unit.

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 23 of 29

The dynamic section consists of different RRs intended to host the RM. The architecture of this
part, including defining the different modules and the interfaces and interactions among them is to
be designed by the partners involved in the use case.

4.3.4 Impact on the detailed design
To design a PR system, first of all, the designer must define both the SR and at least one RR. With
reference to the latter, the designer defines an RR in terms of both physical size and type of
resources required. For each RR, a different set of RM is considered. It must be taken into account
that the quantity and type of resources provided by the RR must be sufficient to host each of the
selected RMs.

The SDK software ensures that the resources used to construct the RM are completely contained
within the selected RR and that no interference with the SR exists. Communication between static
logic and reconfigurable logic is accomplished via the so-called Proxy Logic. A Proxy Logic is a
single LUT element automatically inserted by the software for each port of an RM (referred to as
Partition Pin).

There are different PR styles depending on the way that RMs are implemented onto the RRs.

• Island style: This style allows swapping a set of RMs exclusively in their assigned RR on
the FPGA. Although more than one RR may exist, each island is bound to host its individual
set of RMs (one at a time), thus not being possible to swap RMs between RRs. This
configuration style is the only one supported by FPGA vendor tools such as Xilinx PR
Design Flow.

• One-Dimensional Slot style: In Island style, the largest RM to be hosted by an RR defines
the RR size. This results in a resource waste when a smaller RM is to be implemented in
that RR, because a large RM cannot be replaced by multiple smaller RMs. This effect is
referred to as internal fragmentation.. Aiming at improving resource utilization; the RR is
divided into a set of adjacent one-dimensional aligned resource slots. Hence, RMs can be
implemented using the required number of adjacent slots.

• Two-Dimensional Grid style: Even making resource slots as narrow as possible (1 CLB
column wide in case of Xilinx FPGAs), it can still result in a waste of resources. It occurs in
particular when dedicated primitives such as RAMs or multipliers are required. A step
further consists in dividing the resource slots so that they are organized in a two-
dimensional grid. Thus, the internal fragmentation is reduced but in contrast RM placement
becomes more complex.

PR system design support is provided via PlanAhead tool provided within the SDK software. All the
elements required to build a PR system (SR, RRs and RMs) are managed in Xilinx PlanAhead.
Floorplanning, required to define RRs, and Design Rule Checks (DRC), established to guide
designers on a successful path on design completion, are all accessed through the Xilinx
PlanAhead software environment.

4.4 Scheduling Requirements Analysis - B2.55

Brick B2.55 is a design and analysis tool, Art2kitekt, specially designed for a target sector, the
aerospace in this UC. The tool is designed to follow the same ontology used by the aerospace
sector; the expressiveness, abstractions and generality will be limited so that there is a direct

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 24 of 29

binding between the modelled elements and the finally implemented elements. The underlying
model is a subset (a restricted pattern) of the AADL standard.

This brick is used in the TAS-E use case for modelling and analysing the proposed system
hardware and software. The following sections detail the brick structure and its main features and
the envisaged use in the WP 205 use case.

4.4.1 Brick Structure and Features
The brick B2.55 can be seen as a tool suite for Scheduling Requirement Analysis that is composed
of the following elements:

• A system architecture model server, based on AADL. This server will provide features for
storing, querying and retrieving AADL models to the corresponding client tools. The
architecture model server (AMS) will be a server process (daemon) which provides the IOS
front end to the AADL specification. It can read the model from a textual or XML AADL file.
The first versions will only operate with the complete model. In the future versions it shall
allow CRUD operations over parts of the model. This fine grain access granularity will be
developed once a more elaborate version of the IOS specification for the architecture
model is available.

• The AADL modeller tool. This is the editor component, which will guide the user (engineer)
in the model creation by restricting the modelling capabilities, so that it matches the model
that can be analysed by the analyser tool. Usually the editor will provide more design
flexibility in the software side than in the hardware part. In this way, the modeller will
provide specific interfaces, used as a wizard, in order to guarantee a proper modelling of
the system. This tool will store and retrieve the models from the AMS. Moreover, this tool
will be able to interact through IOS with a Requirement Management Tool for collecting
requirements and map them to the model components supporting or contributing to them.

• The Schedule (model) analyser. This component will provide a custom analyser for the use
case defined by TAS-E. This tool may be integrated with the main editor if possible (using
delegated UIs). The output of the analyser will be:

o reported to the user
o written back to the architecture model server to annotate the model,
o generate the configuration files, if applicable.
o generate code or the basic execution framework, if applicable.

This tool may also interact –this feature of the tool is still under discussion- with a
Requirement Management Tool through IOS in order to mark which requirements are
satisfied by the design and which aren’t.

Next picture shows the main elements of B2.55.

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 25 of 29

Figure 4-4: B2.55 decomposition

4.4.2 Brick Usage
The B2.55 tool is used for the following purposes in the WP205 use case:

• System modelling and early testing

• Linking model elements to requirements

• Model analysis and product certification

The following sections details each one of those purposes. They are listed in this order because it
is the most natural one.

4.4.2.1 System Modelling
Usually once Requirements are defined the engineer will start the process of designing the system
to be obtained. In order to do so, the engineer will follow these steps:

1. Open the Modeller Tool.
2. Create a new model or open an existing one (importing it from the AMS).
3. Use the provided wizard for modelling the hardware characteristics of the platform.
4. Use the provided wizard for modelling the software to be run in the hardware defined.
5. Store the obtained model in the AMS.

4.4.2.2 Linking Model Elements to Requirements
Parallel to the modelling or once it is finished the engineer will be able to link the hardware and
software components to the requirements they are covering or satisfying.

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 26 of 29

1. Open the Modeller Tool.
2. Open a model (importing it from the AMS).
3. Retrieve the list of requirements from the Requirement Management Tool using IOS.
4. Select a requirement and map it to the component of the model.
5. Store the annotated model in the AMS.

4.4.2.3 Model Analysis
Once a model has been created (mapped to requirements or not) it can be analysed in the
Schedule Analyser tool. The steps to be performed are the following. This behaviour can vary if
finally the Schedule Analyser is integrated with the Modeller.

1. Open the Schedule Analyser Tool.
2. Open the model (importing it from the AMS). Or part of the model (for future versions).
3. Start the analysis. Adjust the model parameters and the analysis options to generate a

model that matches the requirements.
4. Store the annotated results in the AMS.
5. Check the results.

a. Depending on the results the design should be refined / improved. If this is not
possible maybe requirements should be changed (using delegated UIs from the
Requirement Management Tool).

b. If the result of the analysis is good enough the model can be used as it is for starting
the implementation phase.

At the end of all those sections the engineer has obtained a model that has been early validated in
regard to the fulfilment of real-time requirements.

4.5 Bricks outside WP205

The following bricks (or brick-elements) have been identified as recommended/required in order to
obtain the maximum benefits from CRYSTAL project.

4.5.1 Requirements tool

A requirements management tool, through which requirements are gathered and accessible by the
different actors, is necessary in order to set up a complete and representative use case. Contacts
have been initiated with IBM in order to assess the use of IBM Rational Doors to cover this gap. In
case such tool cannot be included in the demonstrator (i.e: due to licensing issues) a work-around
will be implemented.

4.5.2 Search and Visualization Engine

A tool for searching key elements and artefacts through different databases and file formats is
required in order to assist the activities of the RAMS Engineer role. Such a tool has not yet been
identified among the tools within the project.

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 27 of 29

5 Terms, Abbreviations and Definitions

AADL Avionics Architectural Design Language
AFTS-DM Autonomous Fault Tolerant System - Design Methodology
AMS Architecture Model Server
ARINC Aeronautical Radio, Incorporated
AUGE AUtomatic GEneration test tool
CCF Common Cause Failure Analysis

CO Confidential, only for members of the consortium (including the JU).
CLB Configurable Logic Block
CRYSTAL CRitical SYSTem Engineering AcceLeration
CRUD Create, Reade, Update and Delete
DRC Design Rule Checks
DSP Digital Signal Processor
ECSS European Committee for Space Standardization
EDM Error Detection Module
ESA European Space Agency
FMECA Failure Modes Effects and Criticality Analysis
FPGA Field Programmable Gate Array
FTA Fault Tree Analysis
HA Hazard Analysis
HDSW Hardware Dependent SoftWare
HSIA Hardware-Software Interaction Analysis
ICAP Internal Configuration Access Port
IOS Inter-Operability Specification
IP Intellectual Property
IRD Interface Requirement Document
ISVV Independent Software Verification & Validation
LUT Look-Up Table
OSLC Open Services for Lifecycle Collaboration
PR Partial Reconfiguration
R Report
RAMS Reliability, Availability, Maintainability and Safety
RM Reconfiguration Modules
RR Reconfigurable Region
RTOS Real Time Operating System

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 28 of 29

RTP Reference Technology Platform

SDK Software Development Kit

SoC System-on-Chip

SoPC System on Chip Partially Configurable
SR Static Region
TAS-E Thales Alenia Space - España
TS Technical Specification
UC User Case
URD User Requirements Document

URI Uniform Resource Identifier

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

WCET Worst Case Execution Time

WP Work Package

Table 5-1: Terms, Abbreviations and Definitions

D205.020
CRYSTAL Space Toolset

Specification�

Version Nature Date Page

V1.0 R 2014-04-30 29 of 29

6 References

[ESA-E-40,
2009]

ESA; Space Engineering - Software; ECSS-E-ST-40C(6March2009)

[ESA-Q-80,
2009]

ESA; Space Product Assurance - Software Product Assurance; ECSS-Q-ST-
80C(6March2009)

[DOW Crystal,
2013]

Crystal JU; Annex I – Description of Work; DOW CRYSTAL (332830) Part_A_B 2013-02-
28

[D205.010] Crystal WP205; Space Use Case Requirements D205.010

