
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE CRYSTAL CONSORTIUM. NEITHER THIS
DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED BY ANY
MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE CESAR
CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT. THE
RESEARCH LEADING TO THESE RESULTS HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S SEVENTH
FRAMEWORK PROGRAM (FP7/2007-2013) FOR CRYSTAL – CRITICAL SYSTEM ENGINEERING ACCELERATION JOINT
UNDERTAKING UNDER GRANT AGREEMENT N° 332830 AND FROM SPECIFIC NATIONAL PROGRAMS AND / OR FUNDING
AUTHORITIES.

CRitical SYSTem Engineering AcceLeration

Architecture of the Tool Chain for the Multi-Mode
Navigation System

D206.021

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 2 of 30

DOCUMENT INFORMATION

Project CRYSTAL

Grant Agreement No. ARTEMIS-2012-1-332830

Deliverable Title Architecture of the Tool Chain for the Multi-Mode Navigation System

Deliverable No. D206.021

Dissemination Level RE

Nature R

Document Version V3.0

Date 2014-04-30

Contact Tomáš Kratochvíla

Organization HON

Phone +420 532 115 530

E-Mail Tomas.Kratochvila@honeywell.com

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 3 of 30

AUTHORS TABLE

Name Company E-Mail

Nikola Beneš Honeywell Nikola.Benes@honeywell.com

Jan Beran Honeywell Jan.Beran@honeywell.com

Vít Koksa Honeywell Vit.Koksa@honeywell.com

Tomáš Kratochvíla Honeywell Tomas.Kratochvila@honeywell.com

REVIEW TABLE

Version Date Reviewer

1.0 11.4.2014 Jan Beran (internal review)

2.0 29.4.2014 Anne Monceaux (external reviewer)

3.0 30.4.2014 Jiří Barnat (external reviewer)

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 4 of 30

CONTENT

ARCHITECTURE OF THE TOOL CHAIN FOR THE MULTI-MODE NAVIGATION
SYSTEM ... I

D206.021 ... I

ARCHITECTURE OF THE TOOL CHAIN FOR THE MULTI-MODE NAVIGATION
SYSTEM ... 2

1 INTRODUCTION .. 6

1.1 ROLE OF DELIVERABLE ... 6

1.2 STRUCTURE OF THIS DOCUMENT .. 6

2 ARCHITECTURE OF THE ONTOLOGY ENGINEERING TOOL CHAIN 7

2.1 LEXIANA .. 8
2.2 ENTERPRISE ARCHITECT SCRIPTS ... 10

2.2.1 SQL scripts ... 11

2.2.2 Automation scripts ... 13
2.2.3 Traceability view .. 14

2.2.4 Example .. 15
2.3 KNOWLEDGEMANAGER ... 18

3 ARCHITECTURE OF THE DEVELOPMENT TOOL CHAIN .. 21

4 ARCHITECTURE OF VERIFICATION TOOL CHAIN ... 23

4.1 AUTOMATED VERIFICATION .. 24

4.1.1 Automation Plan, Request and Result ... 24

4.1.2 Automation Server Performance Monitoring and Selection 25

5 CONCLUSION .. 27

6 TERMS, ABBREVIATIONS AND DEFINITIONS ... 28

7 REFERENCES.. 30

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 5 of 30

Content of Figures

Figure 1 – Ontology Engineering Tool Chain ... 7

Figure 2 – Activity diagram of requirement formalization. .. 8

Figure 3 – The GUI of Lexiana tool. ... 9

Figure 4 – Creation of the thesaurus in the Enterprise Architect.. 10

Figure 5 – output of copyDependenciesWithSentences script. .. 12

Figure 6 – Work with automation scripts in Enterprise Architect. 13

Figure 7 – Traceability view on the left and the corresponding elements in the diagram. .. 15

Figure 8 – A diagram generated by Lexiana as shown in the Enterprise Architect. 16

Figure 9 – Resulting UML ontology after manual modifications, part 1. 17

Figure 10 – Resulting UML ontology after manual modifications, part 2. 18

Figure 11 – Thesaurus semantics of the relationships between terms. 19

Figure 12 – Development and verification tool chains together. .. 21

Figure 13 – Verification tool chain architecture with the verification methods. 23

Figure 14 – Integration of ForReq tool and automation servers based on OSLC. 24

Figure 15 – Relationships among of the OSLC automation specification resources. 25

Content of Tables

Table 4-1: Terms, Abbreviations and Definitions ... 29

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 6 of 30

1 Introduction

1.1 Role of deliverable

The purpose of this document is to define the architecture of the tool chain that will be
used to develop multi-mode navigation system. The engineering methods are described in
Crystal Deliverable D206.010.

1.2 Structure of this document

We have divided the tool chain architecture into 3 parts. Each part is described in its own
chapter:

2 Architecture of the Ontology Engineering Tool Chain – creates and manages the
domain ontology. This tool chain is used by domain ontology experts only and is not
supposed to be done for every project, since many projects will share the same
domain ontology.

3 Architecture of the Development Tool Chain – model-based development process
tool chain is supposed to be used for every project. It uses the domain ontology for
a given domain for initial requirement authoring. We use Honeywell model-based
development called 3 View System Engineering process.

4 Architecture of Verification Tool Chain – verification and validation of the artefacts
developed by the development tool chain. We are focused on automated formal
verification.

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 7 of 30

2 Architecture of the Ontology Engineering Tool Chain

This tool chain is used by domain ontology experts only. The idea is that the domain
ontology is created once for each domain and only limited work is needed to manage the
domain ontology to be up to date with the current state of the domain. This process is not
supposed to be performed for each project, since many projects will share the same
domain ontology.

Figure 1 – Ontology Engineering Tool Chain

The tool chain will create ontologies for different domain granularities – from general
ontology and aerospace ontology to specific domain ontologies (for example AHRS
domain only). Since there are multiple approaches how to semi-automatically merge
domain ontologies [Kotis, 2006], hence it will be possible to create exactly the ontology for
any specific domain. For example, when the system under development integrates two
subsystems into one, the ontologies for the two domains of the subsystems will be
merged. Every domain ontology should have completely defined its domain using
metadata showing which sources were used to create it. The general ontology might be
used to show differences between more specific ontologies only.

Honeywell has a special tool suite consisting of Lexiana and Enterprise Architect scripts to
semi-automatically derive requirements model from domain descriptions: standards,
legislation, customer requirements, etc. Lexiana generates a list of suggested concepts
and relations between the concepts from the domain descriptions. Then the domain
ontology expert imports the requirement model into Enterprise Architect and makes the
requirement model compact and consistent using several specialized Honeywell scripts.
These compact requirement models will be then translated to the thesaurus.

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 8 of 30

 act formalize requirements

ActivityInitial

ActivityFinal

establish logical symbols

in the requirements

extract special symbols

from requirements

«tool»

ForReq

«tool»

Lexiana

«tool»

Enterprise

Architect

requirements

UML / SysML

model

LTL formulae

rewrite original

requirements

reqs with unified

terminology

...

rewrite reqs in formal

language

formal

specification

improv e consistency of

the model

Simulink model

Figure 2 – Activity diagram of requirement formalization.

2.1 Lexiana

The extraction of interesting concepts from the text is supported by the tool Lexiana. This
tool calls the Stanford Parser, which for English sentences generates their grammatical
parsing trees. The grammatical parsing trees are processed by Lexiana. The output of
Lexiana is an XMI file with the UML model of the extracted information, i.e.

 classes (their colours indicate the abundance of the term in the text – from green,
which corresponds to 1 occurrence, to magenta, which corresponds to the most
occurrences)

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 9 of 30

 packages of classes (package sizes suitable for further manual processing,
packaging based simply on the initial letters of the class names)

 tentative relations between the classes,

 original sentences,

 realization relations from classes to sentences (this kind of traces is useful
throughout the evolution of the model, but can also help to easily make the original
text more consistent by using a unified terminology, see the SQL script
copyDependenciesWithSentences below),

 diagrams with the most frequent concepts,

 diagrams with concepts whose names contain common substrings.

Figure 3 – The GUI of Lexiana tool.

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 10 of 30

The classes are generated from certain noun phrases. For each sentence, the anonymous
undirected relationships are generated between each two classes contained within the
sentence. Most of these tentative relationships are usually removed later during the
manual processing of the model.

2.2 Enterprise Architect Scripts

The Enterprise Architect (EA) is a robust tool for UML or SysML modelling. The
requirements model generated by Lexiana is imported into EA. The generated UML model
(the imported elements and diagrams) is a good starting point and spares time of the
analyst, but this model still usually needs substantial improvements. The creation of a
mature ontology from the original model is facilitated by several utilities, which were
incorporated as either SQL scripts or automation scripts within the Enterprise Architect.
Some of these scripts provide useful information on the model, while other scripts are
called to update the model. The scripts can speed up some activities by orders of
magnitude, remove tedious work and help to avoid omissions.

 act improv e consistency of the model

ActivityInitial

ActivityFinal

mov e classes from Raw

to On and Off

create hierarchy of

sentences

create packages in On

package
populate the packages in

On with classes

create diagram for each

package with classes of

the package

«tool»

Enterprise

Architect

UML / SysML

model

subpackages of

On

hierarchy of

sentences

membership of

classes in

packages

generalization

relationships

class diagrams

requirements

classes

Figure 4 – Creation of the thesaurus in the Enterprise Architect

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 11 of 30

In the figure above the following activities are depicted:

 Create hierarchy of sentences – the requirements are packaged according to the
original document structure.

 Move classes from Raw to On and Off – originally, all classes are under the
package Raw; move them to either On (important classes) or Off (thrown out
classes). The most useful automation scripts (see below) are Lxn-copyLinks for
merging or splitting classes, and Lxn-listReqsOfClass for listing the related
requirements. The generated “stem” diagrams are indispensable for this activity, as
they display together the classes with common substrings.

 Create packages in On package – usually there is too much classes in the On
package. Subpackages can be e.g. generated by the Lxn-
mirrorReqPackageToObjPackage automation script (see below), or created around
classes which have numerous subclasses.

 Populate the packages in On with classes – when the structure of packaging
was mirrored from the packaging of the requirements, the Lxn-addInhabitants
automation script can help to move the relevant classes to the appropriate package.

 create diagram for each package with classes of the package – place the
classes of the package into the diagram of the package. Use the scripts Lxn-
addTentativeNeighbours, Lxn-addNeighboursOfClass, Lxn-
addSuperclassesOfClass to populate the diagram.

2.2.1 SQL scripts

Most of the SQL scripts are generally usable. The SQL scripts query the database with the
model. No modifications of the database content are allowed via this mechanism.

Example of what the copyDependenciesWithSentences script produces is in shown in
the following figure.

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 12 of 30

Figure 5 – output of copyDependenciesWithSentences script.

These scripts were written to support the work with the ontology:

 Attributes – lists all attributes in the model containing a given string (passed to the
script as the Search Term).

 ClassesExceptOff – for a given string lists all matching names of classes in the
model with the exception of the classes contained in the "Off" package.

 Connectors – lists all associations in the model whose name matches the given
string.

 findPackageByName – lists package_ID for all packages with the given name (the
model can contain packages with the same name and sometime it is necessary to
point to a specific one via the package_ID)

 classesInSubpackages – lists all the classes contained in the package given by its
package_ID or in any of its subpackages.

 qualifiedClassesInSubpackages – dtto, + qualified class name (e.g.
Model.Domain Model.PackageLevel1.PackageLevel2.ClassName).

 mandatoryRequirements – lists all requirements whose Status is "Mandatory".

 copyDependenciesWithSentences – (Lexiana related) for classes in the given
package (package_ID) the script lists the superceded "synonyms" of the classes
and the sentences, where these superceded terms were present.

Note:

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 13 of 30

As the SQL implementation does not support transitive closure of the relationships, some
scripts are limited in the depth of nesting (classesInSubpackages,
qualifiedClassesInSubpackages, copyDependenciesWithSentences).

2.2.2 Automation scripts

The automation (javascript) scripts are primarily intended to automate the work with
ontologies that are generated by Lexiana. Some of them might be useful outside of this
context, e.g. Lxn-addSuperclassesOfClass, Lxn-hideForeignRelations, Lxn-
addNeighboursOfClass, Lxn-underspecifiedRelations. These scripts usually retrieve or
modify information about the model.

Example: what the Lxn-1_listCommonReqs script writes in the Output pane is shown in
the following figure. In fact, some things contained in the figure are the result of applying
several other scripts listed below.

Figure 6 – Work with automation scripts in Enterprise Architect.

 Lxn-1_listCommonReqs – (used in diagram) for the selected association writes all
requirements which contain both classes related by the association.

 Lxn-2_listCommonReqsDepth – (diagram) as above, but considers also all
combinations of subclasses of the two associated classes (explosion prevented by
the limitation to just the children and grandchildren).

 Lxn-addInhabitants – (diagram) for the selected requirement(s) adds all classes to
the diagram which Realize the requirement.

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 14 of 30

 Lxn-addNeighbours – (diagram) for the current package adds classes to the
diagram, which are related to the classes in the package.

 Lxn-addNeighboursOfClass – (diagram) for the selected class(es) adds all
classes to the diagram which are related by some kind of association to the
selected class.

 Lxn-addPrefix – (used in Project Browser) .. changes names of requirements
contained in the selected package, e.g. "Sentence 00001" -> "bSentence 00001"

 Lxn-addSuperclassesOfClass – (diagram) for the selected class(es) it adds all
their superclasses (recursively to the topmost classes) to the diagram.

 Lxn-addTentativeNeighbours – (diagram) special case of what Lxn-
addNeighbours does.

 Lxn-copyLinks – (Project Browser) package selected, for each class in the
package, if there is a <<copy>> dependency from the class, the relationships of the
class are all copied to the target of the <<copy>> link, then the stereotype
<<toBeRemoved>> is added to the source class.

 Lxn-cutOff – (Project Browser) for the selected package, for each class in the
package each link is removed if it leads to a class contained in an "Off" (trashbin)
package.

 Lxn-hideForeignRelations – (diagram) hides all relations between classes where
neither of the two related classes belongs to the current package.

 Lxn-listReqsOfClass – (diagram) for the selected class related requirements are
reported in the Output pane.

 Lxn-mirrorReqPackageToObjPackage – (Project Browser) creates new packages
and distributes the classes into the packages depending on the packaging of
requirements within a selected package.

 Lxn-underspecifiedRelations – (Project Browser) list unspecified (anonymous)
relationships of classes within the selected package and its subpackages.

2.2.3 Traceability view

The Enterprise Architect can provide a lot of different views on the model data. The
Traceability view proved to be especially useful while working with the UML ontology. This
view provides a similar presentation of the data and relationships between them as can be
seen in ontology tools (e.g. Protege). The elements contained in the view can be opened
or added to the current diagram.

The diagram in Figure 7 was easily created from the Rotorcraft class by using the Lxn-
addSuperclassesOfClass automation script.

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 15 of 30

Figure 7 – Traceability view on the left and the corresponding elements in the diagram.

2.2.4 Example

An ontology in the Distributed Ontology Language (DOL) consists of modules formalised in
basic ontology languages, such as OWL (based on description logic) or Common Logic
(based on first-order logic with some second-order features). These modules are
serialised in the existing syntaxes of these languages in order to facilitate reuse of existing
ontologies. DOL adds a meta-level on top, which allows for expressing heterogeneous
ontologies and links between ontologies. Such links include (heterogeneous) imports and
alignments, conservative extensions (important for the study of ontology modules), and
theory interpretations (important for reusing proofs). Thus, DOL gives ontology
interoperability a formal grounding and makes heterogeneous ontologies and services
based on them amenable to automated verification. [Lange, 2012].

Lexiana extracted classes from the text of the paragraph in italics above and generated
UML diagrams automatically. This is the diagram with all the extracted classes:

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 16 of 30

class all classes

A-T::Top

A-T::First-orderLogic A-T::CommonLogic A-T::DescriptionLogic

A-T::Owl A-T::

BasicOntologyLanguage

A-T::Module A-T::Dol

A-T::

DistributedOntologyLanguage

A-T::Ontology A-T::ExistingOntology A-T::Reuse

A-T::Language

A-T::

Second-orderFeature

A-T::

HeterogeneousOntologyAndLink

A-T::

OntologyInteroperability

A-T::Meta-lev el A-T::ReusingProof A-T::Important A-T::

TheoryInterpretation

A-T::OntologyModule A-T::Study A-T::

Conserv ativ eExtension

A-T::

ImportAndAlignment

A-T::Heterogeneous A-T::SuchLink A-T::

AutomatedVerification

A-T::

HeterogeneousOntologyAndServ ice

A-T::

FormalGrounding

A-T::ExistingSyntax

Figure 8 – A diagram generated by Lexiana as shown in the Enterprise Architect.

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 17 of 30

After manual changes (which took less than 2.5 man-hours) supported by the other
generated diagrams and available scripts the UML ontology depicted on the following two
figures was obtained:

class Ontology

Ontology

- isHeterogeneous :boolean

Module

DistributedOntologyLanguage

Artifact

AutomatedVerificationServ ice

Link

MetaLev el

Reuse

Proof

TheoryInterpretation

Syntax

Process

Import

- isHeterogeneous :booealn

Conserv ativ eExtension

Alignment

- isHeterogeneous :boolean

Language

OntologyLanguage

- isBasic :boolean

CommonLogic

OntologyInteroperability

facil itates

adds

allowsExpressing

of enables

isImportantFor

writtenIn /basedOn

isSerializedIn

of

allowsExpressing

of

isBasedOn

connects

of

addsMetaLevelTo

formalizedIn

/writtenIn

formalizes

Figure 9 – Resulting UML ontology after manual modifications, part 1.

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 18 of 30

class Logic

Study

Owl SecondOrderFeature

FirstOrderLogicLogic

DescriptionLogic

Process Language

OntologyLanguage

- isBasic :boolean

Module

Link

Conserv ativ eExtension

of

isImportantFor

formalizedIn /writtenIn

isBasedOn

Figure 10 – Resulting UML ontology after manual modifications, part 2.

2.3 knowledgeMANAGER

Thesaurus generated from Enterprise architect using Honeywell scripts will be imported to
knowledgeManager. Thesaurus should conform to ISO 25964 and ANSI/NISO Z 39.19:

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53657

http://www.niso.org/apps/group_public/download.php/12591/z39-19-2005r2010.pdf

However, there are some differences. For example ANSI/NISO Z 39.19 defines that the
following abbreviations BTP (broader term partitive) and NTP (narrower term partitive)
may denote hierarchical whole-part relationship while knowledgeManager uses WH
(whole) and PA (part) abbreviations instead.

Thesaurus file (.the) contains terms and its relationships. For example:

Airplane

PA: Engine

PA: Wings

PA: Navigation System

Navigation System

NT: Inertial Navigation System

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=53657
http://www.niso.org/apps/group_public/download.php/12591/z39-19-2005r2010.pdf

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 19 of 30

List of the thesaurus (.the) file terms and its abbreviations we plan to use:

BT Broader term (used for generalization)

NT Narrower term (used for generalization)

PA Part (used for aggregation)

WH Whole (used for aggregation)

other User defined terms

Other terms could be listed in knowledgeManager: Domain Management -> Light Ontology
-> Semantics:

Figure 11 – Thesaurus semantics of the relationships between terms.

Since this process is supposed to be performed only once per domain and by ontology
experts only, hence there is no need for tight integration like in development or verification
process.

There are several technical issues, which we will have to solve together with REUSE
Company in order to get integrated tool chain. Some of the issues were already solved
and the affected tools were fixed during our cooperation within Crystal project. The main
issues are:

1. The knowledgeManager supports repetitive rules for defining requirement patterns

only and grammatical recursion rules cannot be used. Therefore we cannot capture

requirement pattern in the form for example: P :== not P | P and P | P or P | term.

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 20 of 30

This is needed for example to define any logical/arithmetical propositions or any

general requirement pattern.

2. While Honeywell Lexiana tool and the UML ontology support multiple relations

between two terms, the knowledgeManager supports just one relation. There are

many terms even in AHRS domain, which have multiple relations. For example:

a. Algorithm consumes Data vs. Algorithm produces Data

b. System is under Condition vs. System detects Condition

c. System derives Output vs. System invalidates Output

d. System transitions to Mode vs. System implements Mode vs. System

operates in Mode

e. Equipment requires Performance vs. Equipment provides Performance

f. Equipment Manufacturer reads Equipment Design vs. Equipment

Manufacturer modifies Equipment Design

g. Manufacturer specifies Data vs. Manufacturer invalidates Data

h. Time Period starts at Time vs. Time Period ends at Time.

The knowledgeManager will be used to create requirement patterns (boilerplates) suited

for each domain. The requirement patterns will be used in the development tool chain

described in the next chapter.

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 21 of 30

3 Architecture of the Development Tool Chain

This Chapter describes the envisioned architecture of the development tool chain. The
engineering methods and tools are depicted in Figure 12 in green boxes. Input and output
artefacts are denoted in blue boxes.

Figure 12 – Development and verification tool chains together.

There will be only small change in development process we propose: requirement
authoring will be done using domain ontology and formal requirements will be created in
order to enable automatic formal verification and to remove requirement ambiguity.

From the ontology engineering tool chain we expect to get domain ontology and
requirement patterns. Afterwards, Requirement Authoring Tool (RAT) can be used to write
requirements based on the requirement patterns. ForReq tool (described in Crystal
Deliverable D206.010) will formalize the requirements and run automatic verification as
described in chapter 4.

Since we provide formal verification of behavioural requirement (functional requirements
which define input-output behaviour of the system), hence we need to know which
requirement pattern was used to write these requirements. The reason why we need to
know which requirement pattern was used is that the behavioural requirement needs to be

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 22 of 30

mapped to some temporal logic (for example Linear Temporal Logic) so that the
requirement can be automatically formally verified.

There are a few options how to achieve the mapping:

1. Improve RAT tool with the functionality that it can export both requirement and its

requirement pattern (for at least certain types of requirement patterns).

2. Extend ForReq tool to enable context-aware auto-completion of requirements

based on requirements patterns so that it can substitute RAT functionality

completely.

3. Improve ForReq tool with the requirement pattern recognition system. Since some

requirements might be written based on multiple different requirement patterns,

hence this might not be possible at all.

Moreover, in the system design phase we need to map the formal requirement to the
design artefacts (variables, states, etc.) so that it can be automatically verified. There are
two options how to achieve this mapping:

1. Export design artefacts (variables, states, etc.) from ForReq to extend current

domain ontology so that RAT can guide the user to use actual system entities while

writing requirements. The problem with this approach is that knowledgeManager

does not currently support recursive definition in requirement patterns.

2. Extend ForReq tool to enable context-aware auto-completion of requirements

based on requirements patterns so that it can substitute RAT functionality

completely.

When the formal requirements are derived the development process continues with
Honeywell Three View System Engineering process which is model based system
engineering which created 3 views of the system: operational, functional and architectural
model.

At the end, the system design is created in the form of Simulink model and executable
code is automatically generated using Honeywell Autocode Manager and Simulink Real-
Time Workshop.

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 23 of 30

4 Architecture of Verification Tool Chain

Verification tool chain will verify the formal requirements provided in Requirements
Interchange Format (ReqIF) and system design in Simulink model format.

Since Open Services for Lifecycle Collaboration (OSLC) was selected as a cornerstone
technology for tool integration, we are proposing integration architecture in our limited
scope and will cooperate with SP6 on Crystal-wide common integration approach.

The proposed OSLC integration technology will enable easy interoperability and
exchangeability of the tools if necessary.

Figure 13 – Verification tool chain architecture with the verification methods.

Static Analysis will be performed by Requirement Quality Analyzer tool from Reuse in
order to measure the requirement quality and make sure that the requirements conform to
requirement standards. Since RQA is tightly integrated with RAT there will be no need for
additional integration effort.

DiVinE Sanity Checking will for all formalized requirements check its sanity, which is
composed of two formal verification techniques:

 Consistency checking determines if each requirements subset could be satisfied by
some abstract system.

 Redundancy checking determines for each pair of requirements if one requirement
does not imply the other. In that case the other requirement is redundant.

Complete description of the sanity checking approach is in [Barnat, 2013].

Requirement Traceability shall be provided by ForReq tool. The formal requirements
have direct traces to the system design (in order to enable automatic verification) and also
to legacy requirements if any. Also, formal requirements have traces to its formal
specification for example in the form of Linear Temporal Logic. Moreover, each verification
result will have traces to the requirements and system design.

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 24 of 30

Safety Analysis will consider the system design extended with an error model and fault
injections specification. This extended model will be used to perform minimal cut-set
analysis, fault trees creation, and probabilistic analysis. The probabilistic analysis will be
done by Probabilistic DiViNE. Verification of the extended model will be used to assess
correctness of Fault Detection, Fault Isolation and Recovery (FDIR) subsystems.

Verify Design against Requirements will for each fully formalized and selected
requirement call available verification tools (explicit-state model checker DiVinE, symbolic
model checker NuSMV, data-symbolic model checker DiVinE, test case generation tool) to
automatically verify it on the provided system design. Complete description of the
verification method is in [Barnat, 2012].

4.1 Automated Verification

The automated verification tasks will be executed on automation servers in parallel which
will be integrated using OSLC with the ForReq tool. Therefore, multiple verification tasks
will be executed in parallel on multiple automation servers. This will greatly speed up the
verification process. The only verification task that cannot be automated is static analysis
using RQA. The architecture should support also multiple ForReq client tools to perform
independently and compete for the resources of available automation servers.

Figure 14 – Integration of ForReq tool and automation servers based on OSLC.

4.1.1 Automation Plan, Request and Result

The ForReq tool will for each verification task that can be automated create an OSLC
automation plan and request and send it to best available automation server. Than the
verification tools executes the automation plan and sends back the automation results
which are reported to the user.

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 25 of 30

Figure 15 – Relationships among of the OSLC automation specification resources.

Complete specification of the OSLC automation can be found at:

http://open-services.net/wiki/automation/OSLC-Automation-Specification-Version-2.0/

4.1.2 Automation Server Performance Monitoring and Selection

The ForReq tool will have a database of automation servers and will for each verification
task select the best automation server. It will choose the server with the most unused CPU
and real Memory based on the estimation needs for given verification task, from servers
which have the verification tool ready.

To enable this functionality, ForReq will monitor the automation servers using OSLC
Performance Monitoring Specification:

http://open-services.net/wiki/performance-monitoring/OSLC-Performance-Monitoring-Specification-
Version-2.0

For example this OSLC Resource: Performance Monitoring Record will notifies ForReq
that the verification server has 3152 MB of available memory and more than 7 available
CPUs:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:dcterms="http://purl.org/dc/terms/"

 xmlns:rddl="http://www.rddl.org/"

 xmlns:qudt="http://qudt.org/1.1/schema/qudt"

http://open-services.net/wiki/automation/OSLC-Automation-Specification-Version-2.0/
http://open-services.net/wiki/performance-monitoring/OSLC-Performance-Monitoring-Specification-Version-2.0
http://open-services.net/wiki/performance-monitoring/OSLC-Performance-Monitoring-Specification-Version-2.0

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 26 of 30

 xmlns:pm="http://open-services.net/ns/perfmon#"

 xmlns:ems="http://open-services.net/ns/ems#">

 <rdf:Description rdf:about="http://server.address/perf#mem">

 <rdf:type rdf:resource="http://open-services.net/ns/ems#Measure" />

 <dcterms:title>Real Free Memory</dcterms:title>

 <ems:metric rdf:resource="pm:RealMemoryUsed" />

 <ems:unitOfMeasure rdf:resource="dbp:MegaByte" />

 <ems:numericValue rdf:datatype="http://www.w3.org/2001/XMLSchema#integer">

 3152</ems:numericValue>

 </rdf:Description>

 <rdf:Description rdf:about="http://server.address/perf#cpuu">

 <ems:numericValue

rdf:datatype="http://www.w3.org/2001/XMLSchema#double">157.34</ems:numericValue>

 <ems:unitOfMeasure rdf:resource="dbp:Percentage"/>

 <ems:metric rdf:resource="http://open-services.net/ns/perfmon#CpuUsed"/>

 <dcterms:title>CPU Utilization</dcterms:title>

 <rdf:type rdf:resource="http://open-services.net/ns/ems#Measure"/>

 </rdf:Description>

 <rdf:Description rdf:about="http://server.address/perf#cpus">

 <ems:numericValue

rdf:datatype="http://www.w3.org/2001/XMLSchema#double">8</ems:numericValue>

 <ems:unitOfMeasure rdf:resource="dbp:quantity"

 <ems:metric rdf:resource="http://open-services.net/ns/perfmon#Cpus"/>

 <dcterms:title>Number of CPU</dcterms:title>

 <rdf:type rdf:resource="http://open-services.net/ns/ems#Measure"/>

 </rdf:Description>

</rdf:RDF>

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 27 of 30

5 Conclusion

We have described the architecture of the tool chain divided into 3 logical parts. We have
shortly described functions of individual technology bricks which we plan to integrate into
the tool chain. We have concentrated on inputs and outputs of each technology brick in
order to ensure robust tool integration.

We have proposed a few possible options for the requirement authoring architecture. The
final approach will depend on the results of our cooperation with REUSE Company. We
are very demanding on the functionality of their requirements technology bricks in order to
be sure that we can use the full potential of domain ontology engineering.

We have proposed tool integration based on Open Services for Lifecycle Collaboration
(OSLC) as a selected cornerstone technology for tool integration. A tight cooperation with
the technology bricks providers is a must order to achieve the fully functional tool chain.

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 28 of 30

6 Terms, Abbreviations and Definitions

3VSE Three View System Engineering – Honeywell model-based development

process

AHRS Attitude and Heading Reference System

BTP Broader Term (Partitive)

CTL Computational Tree Logic

DiVinE Distribute Verification Environment – model checker from Masaryk

University

DODT Tool that semi-automatically transforms natural language requirements into

semi-formal boilerplate requirements using domain ontology.

EA Enterprise Architect – a tool from SPARX Company

FDIR Fault Detection, Fault Isolation and Recovery Techniques

ForReq Formalization of Requirements – internal Honeywell tool

FTA Fault Tree Analysis

GNSS Global Navigation Satellite Systems

GUI Graphical User Interface

IRS Inertial Reference Systems

kM knowledgeManager – a tool from REUSE Company

LTL Linear Temporal Logic

NRP Narrower Term (Partitive)

OSLC Open Services for Lifecycle Collaboration

PA Part

ReqIF Requirement Interchange Format (adopted as formal specification by OMG)

RAT Requirement Authoring Tool – a tool from REUSE Company

RQA Requirement Quality Analyzer – a tool from REUSE Company

San Sanity checking of requirements (consistency, vacuity and completeness)

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 29 of 30

SQL Structured Query Language

SysML Systems Modelling Language

UML Unified Modelling Language

WH Whole

XMI XML Metadata Interchange

Table 6-1: Terms, Abbreviations and Definitions

 D206.021

Version Nature Date Page

V03.00 R 2014-04-30 30 of 30

7 References

[Barnat, 2012] Tool Chain to Support Automated Formal Verification of Avionics Simulink
Designs. J. Barnat and J. Beran and L. Brim and T. Kratochvila and P.
Rockai:
Formal Methods for Industrial Critical Systems (FMICS 2012), Springer, 2012,
volume 7437 of LNCS, 78-92.

[Barnat, 2013] Checking Sanity of Software Requirements. Barnat, Jiří, Bauch, Petr and
Brim, Luboš. Brno: 2013.

[Kotis, 2006] Towards Automatic Merging of Domain Ontologies: The Hcone-Merge
Approach. Konstantinos Kotis, George A. Vouros, Konstantinos Stergiou.

Web Semant. 4, 1 (January 2006), 60-79.

[Lange, 2012] LoLa: A Modular Ontology of Logics, Languages, and Translations. Christoph
Lange, Till Mossakowski, and Oliver Kutz: 2012, http://www.informatik.uni-
bremen.de/~till/papers/womo2012.pdf

http://www.informatik.uni-bremen.de/~till/papers/womo2012.pdf
http://www.informatik.uni-bremen.de/~till/papers/womo2012.pdf

