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1 Introduction 

 

1.1 Role of deliverable 

 

The aim of this deliverable is to describe the public use case AUTOMOTIVE. The corresponding 

workpackage WP307 can be seen as a common platform for discussions within the automotive domain. The 

partners share challenges and experiences from the different automotive use cases and discuss 

commonalities and possible collaborations. This means that the public use case AUTOMOTIVE is actually 

not one single use case with a clearly defined scope. Instead, it will be a collection of experiences, solutions, 

and best practices from the automotive domain.  

Following prior experiences, it is not possible to come up with a common interoperability solution, which 

provides a generally valid solution for all kinds of interoperability challenges. Instead, different kinds of 

problems require different kinds of solutions. The public use case AUTOMOTIVE should reflect this fact and 

result in a set of best practices and state-of-the-art solutions, which are demonstrated using examples from 

the automotive domain. This will most likely not result in one coherent demonstrator, but a demonstrator 

which shows sample solutions for clearly defined interoperability challenges from the single automotive use 

cases.  

This deliverable provides a first overview of the public use case AUTOMOTIVE, the process steps covered 

by the different partners (the different partner use cases), and their main interoperability challenges.  

One first demonstrator focusing on traceability between requirements and model elements is currently in 

work and will be described in this first version of the deliverable.   

 

Basically this deliverable can be seen as a living document which evolves throughout the project and results 

in three deliverable versions:  

 v1 – Identified interoperability challenges: 

o The purpose of this first version is the introduction of the automotive domain, the scope of 

the use case, and a description of interoperability challenges identified so far. This 

deliverable will also describe a first design of the demonstrator.    

 v2 – Presentation of first results: 

o The second version of the deliverable will present the harmonization of interoperability 

challenges, first results, experiences, and further possible challenges identified in the course 

of the project.  

This includes a detailed description of the interoperability challenge incl. tools, artifacts, and 

processes and a detailed investigation of additional aspects which have to be considered for 

practical use (e.g. link consistency, version management, change management, variability, 

functional safety, access restrictions, restrictions due to process, etc.)  

Besides the detailed problem description it should also cover first implementation concepts, 

including considerations what can be implemented using existing means (e.g. OSLC), what 

can be implemented by extending existing means (e.g. extending or specifying an OSLC 

domain, and which challenge requires a new solution.  

 v3 – State-of-the-art solutions and best practice: 

o The final version of the deliverable will show a set of best practices and state-of-the-art 

solutions for the identified interoperability challenges.  
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The CRYSTAL public use case AUTOMOTIVE Work Package (WP307) has the following major purposes: 

 Describe typical automotive challenges with respect to interoperability, safety, and variability in order to: 

o Support SP3 Use Cases refinement 

o Identification and discussion of typical automotive challenges which can be provided as an input 

for the IOS Working Group and SP6 Technical Bricks. This means that the challenges of the 

different automotive partners will be consolidated in order to come up with more general 

challenges.  

 Perform a prototyping of IOS Concept  

o To refine and validate the feasibility and value of the CRYSTAL interoperability approach 

o Showing the main “idea” behind the CRYSTAL approach 

 Facilitate the presentation of CRYSTAL results in publications without facing IPR concerns (support 

dissemination activities).  

 Support knowledge and experience transfer between all automotive partners. The use of the public use 

case as a forum for discussion and transfer of experiences and know-how is an important aspect of this 

workpackage. We experienced so far that the discussion of problems is very useful to understand and 

probably solve these problems. Some partners have already participated in other projects, like CESAR
1
, 

MBAT
2
 and iFest

3
, and can therefore share their experiences.  

 

In the course of the project we have identified various similarities in the interoperability challenges. In the 

next iteration of the project, we will discuss these challenges in more detail in order to find out if we can 

consolidate the requirements. So far, we have seen that most partners struggle with the employment of 

traceability. Nevertheless, the specific problems seem to be quite different, depending on the development 

level, the applied processes, and the role of the partners.  

 

1.2 Relationship to other CRYSTAL Documents 

First of all, this document is mainly related to the use case description of the automotive domain:  

 D301.010 WP3_1 Use case definition 

 D301.021 WP3_1 Milestone Report - V1 

 D302.011 WP3_2 Milestone Report - V1 

 D303.011 WP3_3 Milestone Report - V1 

 D304.011 WP3_4 Milestone Report - V1 

 D305.011 WP3_5 Milestone Report - V1 

 D306.011 WP3_6 Milestone Report - V1 

 

The document also covers aspects from SP6 and is therefore also related to D601.010 (State of the art –

Interoperability), D603.011 (Specification, Development and Assessment for System Analysis and 

Exploration - V1), D605.011 (Specification, Development and Assessment for AUTOSAR Tools & 

Components - V1), D610.011 (Crystal Variability Management - V1), D610.031 (Brick System Family 

Engineering Framework - V1), D611.011 (Specification Development and Assessment for Software 

Development Lifecycle Management - V1), D612.011 (Specification, Development and Assessment for 

                                                      
1
 http://www.cesarproject.eu/ 

2
 https://www.mbat-artemis.eu/ 

3
 http://www.artemis-ifest.eu/ 

http://www.cesarproject.eu/
https://www.mbat-artemis.eu/
http://www.artemis-ifest.eu/
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Validation Models - V1), and D613.021 (Development of the simulation model data backbone as described in 

T6.13.1 - V1).  

 

1.3 Structure of this document  

 

This document is divided in 3 chapters, which focus on the introduction of the domain and the public use 

case AUTOMOTIVE, some interoperability challenges, and the introduction of the demonstrator. The 

descriptions in this version of the deliverable are very high-level and will be detailed throughout the project. 

 

CHAPTER 2 - Use Case Description has two main parts:  

The first part aims to give an abstract description of the public use case AUTOMOTIVE, its main purpose, 

structure, and scope. 

The remainder of this chapter will shortly introduce the individual partner use cases  – they cover various 

aspects of vehicle development.  

 

CHAPTER 3 - Identification of Interoperability challenges:   

This chapter introduces the interoperability challenges which have been identified in the partner use cases. 

The current description is just a first very high-level introduction, which will be detailed in the next version of 

the deliverable. The basic idea here is to collect a set of common interoperability challenges which should be 

covered by the Crystal project.  

 

CHAPTER 4 - Demonstrator prototype: 

This chapter shows the first ideas for our first automotive demonstrator. It mainly shows the ideas for the first 

iteration with an outlook on future activities. The scope of this demonstrator is the establishment of 

traceability links between requirements and model elements for systems as well as software development. 

This demonstrator will also evolve throughout the project.   

CHAPTER 5 - Next steps:  

This last chapter gives an outlook on the activities in the next phase of the project.  
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2 Use Case Description 

 

The goal of this use case is NOT the development of an integrated tool chain for the development of a 

vehicle.  Instead, we want to present the highlights of the six automotive use cases and as a result a set of 

best practices. The automotive use cases cover different stages in the development of a car – from 

powertrain design on vehicle level down to the development of microprocessors and software.  

This means that this workpackage focuses on challenges arising throughout the entire V-model and 

additionally some of the main aspects defined in the CRYSTAL project including system analysis (e.g. timing 

analysis, requirement analysis), variability or variant management, functional safety, and traceability. 

Figure 2-1 gives a high level overview on the scope of this use case. The 6 levels cover activities throughout 

the development process and are investigated here in more or less detail. The picture is taken from [Küpper, 

2011], but has been slightly adapted. Level 0 covers requirements and design decisions on a high level of 

abstraction – the vehicle level.  Level 1 targets the different vehicle modules (e.g. powertrain, chassis) and 

on Level 2 we focus here on the different powertrain elements (e.g. Transmission, Engine, Battery). On the 

next lower level the different elements are broken down in mechanical and E/E components. A control unit 

further consists of hardware and software, which are depicted in Level 4. Level 5 finally breaks the software 

system down to single software components.  

Orthogonal to this description there are important aspects such as Traceability, Variability, System analysis, 

and Functional Safety. All these aspects span across the various levels and will be considered in the use 

case at least at one level.    

The illustration additionally shows which use case covers aspects of the different levels. The concrete 

content of the single use cases is described in the remainder of this section. The corresponding 

interoperability challenges will then be shown in Section 3.  

 

Figure 2-1: Vehicle development phases (based on [Küpper, 2011]) including the use cases which cover 

aspects of this level 
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2.1 Vehicle and Powertrain System Level 

 

Vehicle level here covers everything from vehicle conceptualization down to powertrain engineering. Two 

use cases cover different aspects at vehicle level. Use Case 3.3 aims to increase quality and efficiency of 

powertrain systems & safety activities by applying model-based systems engineering (MBSE). Use Case 3.4 

focuses on testing aspects. Details of the two use cases are given below.  

 

2.1.1 Classical V-model aspects 

Since several decades, the prominent V-model (suggested by Barry Boehm in the year 1979) is present in 

the automotive industry and represents the typical stages of vehicle manufacturing and the validation of 

these processes. A V-model has typically a central development entity, whose creation, developing, and 

manufacturing it is all about. In case of the automotive industry and according to our use case, this 

development entity is a vehicle. Figure 2-2 illustrates a typical V- model as applied in the automotive 

industry. 

 

Figure 2-2: Classical V-model applied on the topic of building a vehicle 

Based on a set of vehicle requirements, an engineer creates an overall vehicle concept (maybe based on 

previous projects with similar requirements). Then, a team of engineers continues with the conceptualization 

of the subparts (such as engine, powertrain, and chassis) followed by the development of concepts for even 

more details and so on. After the implementation of the concepts, first the modules are tested against their 

particular concept specification. Then they are integrated step-wise, which goes along with corresponding 

integration tests. Finally, the original requirements of the resulting vehicle are verified. 

The additional aspect of virtualization of the vehicle and/or its components (i.e. by the use of simulation 

models) introduces more variants of this classical representation of a V-model for vehicle development. 

These simulation models enable the validation of certain design decisions already at an early stage – this is 

also called development frontloading. Development frontloading enables early comparison and validation of 

different designs. Independent of that, the goal of or the story behind these models is the same: Building a 

vehicle. A possible enhancement of the V-model illustrated above in form of a so-called W-model is 

illustrated in Figure 2-3:  
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Figure 2-3: Early verification through frontloading 

Figure 2-3 shows that requirement validation and verification becomes possible already at the vehicle or 

module conceptualization phase (2 and 3) by vehicle and module simulation (2a and 3a). For simplicity, we 

distinguish by now between three elementary vehicle modules: engine, powertrain, and chassis, because 

they are in the focus of the respective use cases 3.3 and 3.4. During module conceptualization, these 

modules are specified through design, parameterization, and calibration in an iterative simulation and test 

cycle. During these iterations, modules are specified at an ever more detailed level, e.g. by separating the 

engine model into two models, whereas the first one covers the physical aspects of the engine and the 

second one is a model of the engine control unit. 

Through this stepwise refinement, the implementation phase (4) finally results in real physical components 

(engine, powertrain, chassis, control units, etc.) and software that runs on the control units (and may be 

automatically generated out of the simulation models). 

These components and software units need to be tested in concrete module tests (5) according to the given 

requirements. In addition, intermediate integration tests may be added (5b), which combine for instance 

engine and powertrain testing, but still include a rest vehicle simulation of those parts that are not physically 

present in the particular testing scenario. In both scenarios additional equipment is needed to test the 

physical components, i.e., a so-called test bed. This test bed needs to be configured according to the vehicle 

requirements as well. 

Development phase (6) is a full integration test. This test is accomplished with the use of a test bed as well 

and the environment of the vehicle (driver, street, weather conditions, etc.) still needs to be simulated. In 

order to overcome this simulation, so-called in-vehicle tests are performed, where a real driver is steering the 

vehicle on a real road and the testing equipment is built directly into a car (6b). This final test phase leads 

then to the system validation and verification (7) according to the given requirements. 

 

Use case 3.3 focuses on the development of new powertrain solutions and the performance of system, 

safety, and requirements engineering activities based on existing solutions driven by specific vehicle goals 

and performance criteria. This means that this use case is mainly concerned with the left-hand side of the V-

model including Step 2a and 3a. Respective safety information (ISO26262) is additionally required for the 

item definition (e.g. hazard and risk assessment, elicitation of safety goals etc.) early in the requirements 

analysis phase. In the next phase, the requirements will be modelled and analysed in more detail resulting in 

a model-based user requirements specification including a preliminary architecture definition in SysML as a 

basis for all following requirements engineering activities.  

The verification of the architecture and operation / control strategy (2a and 3a) is supported by vehicle and 

powertrain simulation (i.e. AVL InMotion & Cruise). One important step focuses on the collaboration and 
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communication of requirements to discipline and development specific teams – locally distributed over 

several countries. PLM tools (e.g. PTC Windchill) support this activity including the investigation, further 

breakdown, and detailing of these specific requirements with a tight integration of a model-based system 

development approach (sub-system / component specifications) embedded within the PLM environment. 

ALM tools (e.g. PTC Integrity) support the software development process and therefore requires a tight 

integration to the PLM tool. Especially to support traceability and change management a mapping of 

functional requirements structure on a product structure is required. Since both structures are quite different, 

this introduces another interoperability challenge, which will be described in Chapter 3.  

 

2.1.2 V-model aspects for Systems & Requirements Engineering  

 

Figure 2-4 outlines the methodology of Requirements Engineering within system design as applied in UC3.3.  

Traditionally, requirements engineering focuses on the definition and development of requirements based on 

the customer’s “wants & needs” at the beginning of the development process, as well as at the beginning of 

each development generation. It describes the process of developing, cascading, and describing 

requirements of the system under development based on goals and targets (i.e. performance criteria, 

attributes, etc.) and the allocation of features/functions to elements/components and disciplines. RQ’s come 

from different sources such as e.g. OEM/customer, legal standards/regulations, and the requirements 

engineering process itself (generation of requirements). Requirements management is the process of 

tracking and handling requirements throughout their lifecycle and focuses on the communication of 

requirements among all stakeholders (customer, supplier & internally) including the tracking of changes and 

impacts along the entire development process. 

The initial point in this development process is the customer input, mainly in terms of use cases describing 

the system under development. Additionally  vehicle goals, performance criteria, and/or technical boundary 

conditions serve as a base information for the derivation of technical requirements. These are further split 

down into functions/features, as well as the vehicle sub-systems, elements/components, legal requirements, 

state of the art requirements, environment requirements, and quality/process requirements. Furthermore, 

according requirements are specified for each level, which serve as an input for all subsequent development 

activities. This basic methodology follows the V-Model development approach (see Figure 2-4) that is 

applied within the development process for every development generation with increasing maturity of the 

system under development. 
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Figure 2-4: System & Requirements Engineering Method Overview 

Requirement document vs. Specification 

Requirements engineering is one of the main activities in system and software design. As mentioned before, 

requirements on one level are the basis to derive according solutions (in terms of architecture, i.e. 

components & functionality) for the following downstream level. This means that the developed solution 

satisfying the defined requirements is also the basis for the derivation of additional requirements on a more 

detailed level. This is an iterative step starting at vehicle / use case level down to hardware and software 

component level. The methodical approach is always the same, however different development teams with 

individual software tools and specific engineering methodologies are involved. Therefore two types of 

documentation are required as illustrated in Figure 2-5: 

 

Description of requirements across the different levels in Requirements Documents: 

 Requirement Document for  “Product” – e.g. Technical Specifiaction of Product (TSP) “Vehicle” 

 Requirement Document for  “System of Product” – e.g. Technical Specifiaction of System (TSS) 

“Powertrain System” 

 Requirement Document for  “Element” – e.g. Technical Specifiaction of Element (TSE) “ICE” 

 Requirement Document for  “System of Element” – e.g. Technical Specifiaction of System  (TSS) 

“ICE Oil Circuit” 

 Requirement Document for  “Components in Element” – e.g. Technical Specifiaction of Element 

(TSC) “ICE Crankcase” 

 

The responsibility for the creation of these specifications differs depending on project type and scope. In 

general, system development teams are responsible for “product” and “system of product”, as well as partly 

for the specification of the “element” (for elements there may be an overlap with other engineering 

disciplines). The creation of “systems of elements” and “components of elements” are in general within the 

responsibility of element teams. 
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Figure 2-5: Requirements document vs. Specification 

Requirement documents and specifications include information in order to understand the dependency 

between: 

 Requirement & Solution by knowing/understanding which architectural element is allocated to the 

specified requirement (and respectively will satisfy the requirement). This is depicted in the 

requirements document.  

 Requirements among each other by knowing / understanding potential effects of changing an 

individual requirements --> Impact/Traceability Analysis. This dependency is specified in the 

Requirements Management Tool by defining which downstream requirements are decomposed from 

an individual requirement (and vice versa which requirements decompose to from an upstream 

requirement). This is described in the specification.  

 

The described requirement engineering approach also supports related activities in terms of functional 

safety. Each E/E-System that is able to cause failures which can harm people in the top level system is 

called safety relevant system. This classification is usually done by the customer. The customer provides the 

already identified safety-critical architectural elements, or at least the already analyzed safety goals. A safety 

goal is a top level functional safety requirement (e.g. avoid unintended torque). Based on the specified safety 

goals quantitative safety analysis shall be started by the system safety developer/functional safety manager 

to identify failures caused by the item under development that are able to lead to a violation of the specified 

safety goals. This analysis shall be done on each level of development (Level 0 – Level 5) that is within the 

scope of the project. The next step is to specify safety measures/safety mechanisms to avoid, mitigate, or 

handle the identified safety-critical failures. These safety measures/safety mechanisms shall be specified by 

functional safety requirements, technical safety requirements, and process. Each safety-relevant 

requirement inherits a safety integrity level that depends on the use case of the system.  
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Figure 2-6: Requirements Engineering & Management Activities 

Figure 2-6 outlines the main Requirements Engineering and Management activities. The following table 

(Table 2-1) outlines the individual activities incl. required general input and generated output information. 

 

Activity Name Input Task Output 

Requirements 

Elicitation / 

Discovery 

Customer “wants & 

needs”, such as e.g. 

system goals, 

development targets, 

technical and 

organizational 

boundaries (e.g. 

project plan), 

contract, 

benchmark… 

Identification and 

collection of relevant 

input that is required 

to start the 

Requirements 

Engineering process 

at project start 

Collection of relevant 

content to serve as input 

to develop requirements 

incl. open questions to 

be clarified with 

customer – basic 

customer RQ’s are 

known 

 

Requirements 

Analysis & 

Negotiation 

Collection of relevant 

content 

Analyzing input in 

order to understand 

the meaning and 

purpose of the 

content. This 

includes e.g. 

questions, 

discussion, 

negotiations, 

Structured collection of 

customer input incl. 

sources, stakeholders 

and answers to open 

questions clarified with 

all stakeholders 
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detailing etc. in 

order to translate 

the information into 

a company-specific 

language 

Requirements 

Specification & 

Documentation 

Structured and 

understood customer 

input 

Documentation of 

customer input and 

deviation of further 

requirements (as 

the main technical 

activity of the 

Requirements 

Engineering 

process). 

Documentation of 

RQ’s is to done in 

Requirements 

Management Tool 

(PTC Integrity) 

All requirements are 

documented and 

described in 

Requirements 

Management Tool (PTC 

Integrity) according to 

RQ Meta model incl. 

rational, acceptance 

criteria, and traces. 

Requirements 

Validation 

Intended “Solution” 

(e.g. specification, 

simulation model, 

etc.) 

Validation in terms 

of checking that the 

system under 

development will 

result in a solution 

that meets customer 

wants, needs & 

requirements 

Statement that 

proposed solution will 

meet requirements 

verified by e.g. review, 

simulation, etc. 

Requirements 

Verification 

Developed “Solution” Verification in terms 

that the “solution” 

fulfills the specified 

requirements 

verified through 

testing / V&V 

Documented test results 

to proof that solution 

fulfills requirements 

Table 2-1: Overview of Requirements Engineering Activities 

Note: This is NOT a strictly sequential description of activities with respect to the development process. It is 

an overview of required activities that may take place in parallel, by one or more roles/persons and be 

repeated/detailed as required by the project scope.  

 

2.1.3 Testing V-model aspects 

 

The overall goal of the public use case is to build a vehicle. Testing is an important aspect for all 

development stages – including the vehicle level. Applying appropriate test methods, devices, and tools 

throughout the development processes is essential. Adequate testing procedures, techniques, and 

environments finally should verify the given vehicle requirements. UC 3.4 especially focuses on these testing 

aspects.  
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In addition to the given vehicle requirements, specific testing requirements enhance the list of requirements. 

These requirements are based for instance on a certain testing specification such as the WLTP
4
. Such 

specifications define concrete test-runs, the accuracy of measurement devices, formulas that have to be 

applied for measurement result analysis, and so on. The needed test environment (test bed including 

measurement devices, test-run input vectors, calibration variables, etc.) is then derived from these testing 

requirements as well. 

The concrete configuration of this test environment depends then on the concrete position within the V- or 

W- model for building a vehicle (see Figure 2-3). For instance, for early simulation phases, simulation models 

(e.g. for control software and virtualized physical vehicle components such as engines, etc.) are fully 

sufficient, whereas after the implementation phase, various test bed settings are required for a stepwise 

substitution of simulation models by their physical counterparts. Furthermore, the selection of development 

and testing tools may differ as well, because tools are often more specialized for a certain development 

phase. In other words: Every testing phase may come up with its own tool set. It is one key challenge to 

share data across these development and testing phases.  

Setting up test environments is a complex task and needs to be easily adaptable to the requirements of the 

current position in the development process (i.e. the V/W-model) including additional boundaries (or testing 

requirements) coming from specifications such as the WLTP.  

This means that besides the vehicle and model conceptualization and implementation on the one hand (left 

side of the V-model) and the actual test case execution, system validation and verification on the other hand 

(right side of the V-model), a lot of knowledge and efforts have to be spend on test case conceptualization 

and implementation as well. One may say that this test case conceptualization and implementation is a 

further sub-development step of the overall assignment of building a vehicle. Depending on the concrete 

position in the V-/W- model, however, a particular test case conceptualization and implementation has its 

own selection of testing processes and techniques in form of testing tools and methods as stated above. 

Therefore, testing a vehicle is a development task by its own and can therefore be represented by a 

separate V-model. In contrast to a classical automotive V- or W- model focusing on building a vehicle, an 

alternative V-model that focuses on testing a vehicle would look as illustrated in Figure 2-7. 

 

 

Figure 2-7: V-model for the testing process 

                                                      
4
 WLTP stands for World-wide harmonized Light duty Test Procedure and is currently available as a draft 

that will lead to a standard specification for emission legislation in the automotive domain in the near future. 



D 307.011 
Public Use Case 
AUTOMOTIVE 

 

 

Version Nature Date Page 

V3.00 R 2014-01-29 18 of 56 

 

Besides the already mentioned requirement specification and test case conceptualization phase, the latter 

one has to be separated in further sub-modules, similar as done for the vehicle conceptualization phase. 

However, instead of the vehicle itself, the test environment is now in the focus of the V model and thus these 

sub-modules differ significantly.  

A general pattern in this test case conceptualization is the unit under test (UUT) calibration as shown in 

Figure 2-8. 

 

Figure 2-8: Test and calibration iteration pattern 

The test case conceptualization is divided into two set-ups (test modules): the calibration and the test bed 

set-up. The test bed set-up configures the testing environment (including sub-modules such as required 

measurement devices, UUT configurations, etc.), while the calibration set-up is specialized on tuning 

selected parameters of the UUT in order to fulfil the given set of requirements.  

 

The specification of these set-ups with all their sub-modules finally leads to the implementation and 

integration of the overall test set-up, which can be executed with a set of given test-runs. 

In many cases, the test modules test case execution and calibration are clearly separated: During a test-run 

execution, measurement results are linked to given test run input vectors. These pairs of date are used in 

corresponding calibration tools to create a calibration model that interpolates even not tested constellations 

and therefore supports speeding up the calibration process as a whole. 

 

2.1.4 Mapping the W-model “building a vehicle” to test phases 

Figure 2-9 illustrates a mapping of the W-model about “building a vehicle” to test phases. This mapping and 

the resulting test phases are then described in more detail. 

 



D 307.011 
Public Use Case 
AUTOMOTIVE 

 

 

Version Nature Date Page 

V3.00 R 2014-01-29 19 of 56 

 

 

Figure 2-9: Mapping the W-model to vehicle test phases 

Let’s first describe the W-model “building a vehicle” once more under the aspect of testing.  

1. Vehicle conceptualization (2): This phase can be accomplished by virtually modelling the vehicle 

according to its requirement specification (1). These requirements can then be validated on vehicle 

level by simulating the vehicle model for certain test cases (2a). 

2. Engine, powertrain, and chassis conceptualization (3): Once again, simulation models are an 

essential aspect in the conceptualization of these three vehicle components. Associated simulation 

models are designed with a high level of detail for each of these parts. The execution of these 

simulation models according to appropriate test cases (3a) validates the results of the overall vehicle 

conceptualization. 

3. After the implementation phase (4), the concrete sub parts of the vehicle need to be tested against 

its conceptual specification. In our use case, this is done for the engine (5a) and the powertrain (5b) 

with appropriate test beds. The powertrain already includes the engine, which was tested in the 

previous testing phase (5a). In the integration phase (6) the subparts are assembled and verified 

using an integration test (6) that has to validate the overall vehicle conceptualization (2). This is 

usually done by a chassis test bed, where the concrete environment is still simulated (usually even 

the vehicle driver). 

4. Finally, the virtual driver and environment are replaced by real ones and tests are performed by so-

called in-vehicle tests (7), which finally validate the requirements of (1). 

Based on this description, testing phases can be assigned to specific development steps of the presented 

W-model, whereas each testing phase is described by its own testing V-model as illustrated in the picture 

above. In our use case, five different testing phases can be divided from the description above: 

1. Phase I: Performing vehicle simulation (associated with development phases 2a + 3a) 

2. Phase II: Applying an engine test bed (associated with development phase 5a) 

3. Phase III: Applying a powertrain test bed (that includes engine testing; associated with development 

phase 5b) 

4. Phase IV: Applying a chassis test bed (associated with development phase 6) 
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5. Phase V: Performing an in-vehicle test (associated with development phases 6b) 

 

These development phases are by no means complete (further phases such as HIL/SIL testing could be 

interlaced). However, additional phases do not abandon the principle concept of separate testing V-models 

linked to a specific vehicle development phase. In addition, however, this does not exclude a possible 

overlap of methods and tools across the five testing phases (for instance, the simulation of the environment 

takes place in any test scenario except the in-vehicle test). The interoperability challenge is now the transfer 

of the created data set from one development phase to the subsequent, in order to foster reuse and 

therefore improve the efficiency of test conceptualization. Some possible concepts are described in Section 

3.1. 

 

2.2 E/E System Level 

 

EE development on system level at Daimler (UC 3.2) includes the disciplines Requirements elicitation, -

engineering, and –management, as well as system level testing and the creation of system architectures as 

shown in Figure 2-10 at the end of this chapter. This means having two engineering directions in our 

development V-cycle from a starting point “system requirements” (1) to result in: 

1) Verification relation from system level testing (3) 

2) Realization relation from E/E system model (2) 

 

A very important task which is done on E/E system level and influences the whole development process is 

the decomposition of system level requirements into component/software or sub-system level requirements 

to the allocation of resources to implement the systems features. Mainly this is what we call the system 

architecture. On system level, we already know vehicle level requirements – imaginable as “Customers view” 

on a black box system. The customer’s view is what we’re going to address at E/E system level and 

decompose this to consumable portions of hardware/software requirements as illustrated in Figure 2-10. This 

will result in single technical requirements (technical view) which are well addressed by specific parts 

(HW&SW) with specific responsibilities. 
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Figure 2-10: Mapping customers view to technical view 

Supporting decomposition relationships (traceability links) between system level requirements and the 

component level, enables us to document the system architecture from a functional point of view. This will 

help re-using the system in different variants and enables impact analyses in case of changes to the system. 

Furthermore, it’s possible to have a 1:1 match between system level requirements, system level test cases, 

and validation criteria. 

The E/E system level is going to be the point of entry for  

a) Variant management processes 

b) Change management processes 

as depicted in Figure 2-11.  

 

Figure 2-11: E/E system level phases and relations 

For variant management, system level features, characteristics, and properties are being documented in a 

feature tree. This feature tree can also contain relations & constraints (i.e. feature X conflicts feature Y), so 

that engineering know-how becomes explicit. All variable system level requirements have to be connected to 

the corresponding part in the feature tree (which causes the difference).  
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Then selections of features will result in selection of engineering artifacts connected to these features (see 

Figure 2-12: Variant management at E/E system level). 

In the example mentioned below, the kind of roof causes differences in requirements, implementation and 

test for an ECU. The opening function is related to the feature “sunroof” which is available in sedan and 

station wagon but not in coupé and cabriolet. 

 

Figure 2-12: Variant management at E/E system level 

For the often required process of change management, it’s also a proven way to trace changes from a 

system level point of entry, because impact analysis has to identify all connected requirements and HW/SW 

level components which are affected. Possibly several different lower scaled change processes have to be 

initiated after having identified what’s impacted.  

In terms of ISO26262 the system level is often being addressed by the “item definition” and so becomes the 

root element for safety relevant systems, regarding change management, but also traceability and 

verification management in functional safety. 

 

2.2.1 Functional safety according to ISO26262 

 

In the automotive domain, different aspects have to be considered at various levels within the design 

workflow. One of them is functional safety, which is the main focus of UC 3.5 conducted by CRF as shown in 

Figure 2-13. Functional safety describes all activities in which the functional characteristics of a system (a 

vehicle) are analyzed and assessed in relation to their potential risks during the normal usage of the vehicle 

by the customer. This process is described in the ISO 26262 standard [ISO, 2011], which is divided into ten 

specific parts and contains all the prescriptions necessary to attempt this kind of assessment. 

The standard provides a complete and rigorous workflow for attempting this aim, starting from the item 

(system or ensemble of systems to implement a function at vehicle level) definition and the Hazard Analysis 

and Risk Assessment (HARA) and down to the definition of specific levels of safety requirements including 

technical ones, considering both hardware and software components. 
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Figure 2-13: Functional safety in the public use case for SEooC at concept level 

The standard itself, actually, encompasses all the subsequent processes and activities involved in the item 

design and production, providing prescriptions for item testing and integration into the vehicle and its final 

validation, covering also the aspects related to the processes and activities after production as operation, 

service, and decommissioning.   

In this interaction some general issues arise considering the relationships between the requirements as 

shown in Figure 2-14 and described below:   

 The domain design workflow (red arrow) starts from the initial specifications (Functions/assumptions, 

Scenarios/Situations), e.g. from Customers/Marketing analyses, and generates a preliminary 

architecture this workflow uses tools for modeling and simulation at mathematical/physical level. 

 A tool/framework (e.g. Enterprise Architect) represents a special domain context (e.g. Road Vehicles 

Functional Safety  ISO 26262 standard workflow: green arrow), which covers special requirements 

(e.g. Functional Safety Requirements). 

 

 

 

 

 

Figure 2-14: Functional safety and Design flows in parallel 
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The two parallel processes must exchange information at requirements level, for fulfilling the general 

functional targets and the special requirements (e.g. Functional Safety Requirements) of the developed 

product. 

When a change occurs, this must be reciprocally reflected into all the related steps of the two processes: for 

example a change can occur during the special requirements assessment (e.g. a functional safety 

requirement is not validated and requires a modification) and the corresponding functional requirement from 

the targets must be revised, then it is necessary to trace both requirements and the propagations of 

modifications along the two parallel processes. 

One possible solution could be the application of “system off the shelf” development in the context of 

functional safety. A SEooC (Safety Element out of Context) according to ISO 26262 as illustrated in Figure 

2-15 can be applied with a tailored process in order to have: specifications, assumptions, hazard analysis, 

functional and technical safety concept with related verification according to ISO 26262, involving the inputs 

from the design and the traceability of the results. The SEooC is typically a system or component that is 

designed and developed without a specific vehicle reference (out of context). Safety considerations are 

based on assumptions for which the safe behavior can be guaranteed. The aim of such type of development 

is to reduce the cost and the time for production of the vehicles, assuring a set of available components 

suitable for integration, once fulfilled the assumptions related to their generation. This is also one aspect 

which should be covered by this use case.  

 

 

Figure 2-15: SEooC (Safety Element out of Context) example from ISO 26262 

The objective of UC 3.5 is the conceptual design of an automotive climate system in terms of models. The 

target system is potentially safety-critical, and therefore functional safety constraints as well as functional 

needs have to be considered. 

The starting point is a current in-vehicle system that must be upgraded. The envisaged improvement is 

something quite new, at least in the automotive domain. It introduces some potential risks in relation to the 

safety of the vehicle, due to the presence of a potentially flammable and toxic refrigerant fluid, employed with 

the aim of reducing the greenhouse emissions, according to the new international normative. 
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The application of the functional safety analysis impacts the existing design information (modeling level). 

This means that there has to be a new structure of requirements which takes into account the new safety 

relevant characteristics. 

According to the previous descriptions of the workflows the interaction between the two kinds of modeling 

(functional and safety functional) must find a common path of integration in order to produce results 

reciprocally traceable. 

Figure 2-16 resumes the V cycle involved in the application for the use case, but the structure of the 

workflow is general. 

 

Figure 2-16: General methodological approach (F.S.: Functional Safety) 

2.2.2 Timing Analysis 

 

The Volvo use case (UC 3.1) covers the EE development process from vehicle level (end-to-end 

functionality) down to implementation level (software). It contains several sub-use cases dealing with specific 

development activities such as system behavioral modeling, architectural design, test case generation, 

AUTOSAR application development, AUTOSAR ECU integration & generation and timing analysis. The 

timing analysis sub-use case is further described in this section. 

 

The main steps of the timing analysis are depicted in Figure 2-17. The first two steps represent the timing 

modeling, first on the system model (step 1) and then on functional components in the timing analysis tool 

(step 2). After that, the actual timing analysis can be performed (step3) and the results are made available 

/linked to the system model. The steps are elaborated below. 
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Figure 2-17: The main steps of the timing analysis in the public use case. 

 

Step 1: Already when the system model has been created, some fundamental timing requirements can be 

defined. This can typically be end-to-end latency requirements involving a sequence of system/design 

components and signals, and the maximum allowed latency for the sequence. Required or desired execution 

periods for the system/design components could also be defined. 

 

Step 2: Functional components in the timing analysis tool are annotated with timing properties. Either the 

model is manually created and then model elements are linked to corresponding elements in the system 

modeling tool, or the model is partially automatically created based on data exchange; see also Section 3.2. 

The timing analysis tool typically at least requires the system/design components, signals from the 

communication infrastructure, system topology, and the already defined timing requirements, but could also 

need additional network parameters and additional timing information such as priorities and Worst Case 

Execution Time (WCET). The network parameters may require information from the software development, 

which means that such timing analysis must be performed on later phases of the development than what is 

commonly defined at the system level. Priorities and WCETs may be assumed based on rules of thumbs.  

 

Step 3: The system is analyzed for compliance with the end-to-end latency requirements and the results are 

linked with the e2e timing requirements. 

 

2.3 Software Level 
 

UC 3.4b is mainly concerned with the software development process as depicted in Figure 2-18.  

The development process starts with the activity analysis of software system requirements. These software 

system requirements are delivered by the customer and have to be analyzed and put into a form to be used 

as basis for the software development. Based on the software system requirements, the software system 

test cases and the software system architecture are being defined. The software system requirements are 

assigned to the software components and handed over the function algorithm developers and software 

algorithm developers for further analysis. 

Software component development starts with algorithm development and specification of the detailed 

software component requirements. This step already involves the set-up of a model (e.g. Simulink model) 

and its documentation. Based on the software component requirements, the software component is 

developed. After this development step, the software components implement the functionality specified in the 

software requirements. 

On the right side of the V-Model, the implemented software components have to be tested according to the 

defined test cases. The test report is delivered as well as the SW component including the documentation.  
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If all software components have been tested, they are integrated and validated with the final software system 

tests. Finally, the software system including the test results is delivered to the customer. 

 

 

Figure 2-18: Software development process at AVL-R 

2.4 Hardware Level 
 

Infineon is a semi-conductor company and it is within the scope of implementing the system-on-chip system 

hardware. 

 SOC system  

◦ Core processor + system on chip from pre-silicon to post-silicon, firmware testing and software 

◦ Automotive powertrain/ADAS/Body etc 

◦ Multi-product family across 65 and 40nm (currently 6 products in implementation 5+ incoming) 

◦ Multiple customers for the same products 

◦ Safety Accreditation with ISO26262 and other standards 

 

Infineon will be addressing the V-model shown in Figure 2-19.  
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Figure 2-19: IFX-UK development process 

 

 Requirements Elicitation: Link requirements to sources (customers/change management systems).   

• Formalize requirements for quality 

       Requirements Specification 

• Link to source 

• Link  to ‘intent to implement’ (Target Spec) 

      Test planning 

• Link to Requirements 

• Link to results 

      Test Case Execution 

• Link xCU Parameters, Testbed Configurations to Development Stage 2 

      System Validation and Verification 

•  Link Requirements, Test Results and Validation Results 

• Details on how to replicate in CCM (Change and Configuration Management) 

 

The interoperability issues we will be addressing are the following: 

1) Ensure traceability between external and internal requirements – we shall be investigating the 

Claims language and look at a semantics checking solution which will check by the claims 

language rule set for adherence to ensure good quality semi-formal requirements.  This may 

involve interoperability between the change management system, a semantics checking systems 

and a Requirements Management tool.  We shall also investigate integration within ReQif to 

external customers who are primarily DOORS driven.  

1 

2 

3 

6 

7 
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2) Requirements Specification, here we shall ensure that the ‘intention to Implement’ the 

requirement is linked within the flow – Infineon have since simplified the flow so that the intent to 

implement is an inset table of requirements from the decomposed internal requirements within 

the Requirement management database.  The Requirements will also be translated via the 

ARQE.xml (internal Infineon xml schema which we have proposed as one IOS solution), into the 

test planning and proving tool called ‘asuresign’. 

3,6 & 7 ) The test-planning, results and translation back via the ARQE.xml format (our IOS solution) 

into the requirements engineering flow will be implemented by the current external tool on trial 

‘asuresign’, this will continue development within the scope of this project to extend to all requested 

domains.  

 

2.5 HW/SW Integration 
 

Use Case 3.6 aims to port an existing application running on a single-core microcontroller to a multi-core 

microcontroller. Two main aspects have to be taken care of: First, the application shall run on top of an OS 

and Basic Software (BSW), which is compliant to AUTOSAR 4.0
5
. Elektrobit will be in charge of the BSW 

and the OS and will furthermore provide a tool called Tresos Studio, which is used for the development of 

AUTOSAR software. The second aspect is that the ECM (Engine Controller Management) SW shall be 

certified according to ISO26262 up to ASIL D. This requires a dedicated safety concept, which considers all 

aspects of multi-cores. 

 

One main challenge is to keep the performance. Multi-core controllers use different memory mapping models 

(cache, shared and unshared memory) and software running on different cores needs dedicated services in 

order to communicate – thus, introducing a communication overhead.. Furthermore, the software has been 

designed for single-core architectures, which means that parallelism has not been in mind. Simply using 

sequential code on a multi-core processor has no performance gains, because calculations are still done in a 

sequential order on one core.  

 

Figure 2-20 illustrates the applied software development workflow.  

                                                      
5
 http://www.autosar.org/  

http://www.autosar.org/
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Figure 2-20: Software development workflow 

Many steps have to be followed to achieve these goals:  

1) Elaboration of current state of the art 

2) Microcontroller selection using roadmap and selection criteria which can be shared with the 

community 

3)  Detailed specification of the use case 

4) Creation of SW architecture which considers parallelism 

5) Implementation 

6) V&V (Verification and Validation). We intend to check that real time performances are still met and 

ensure ISO26262 compliance. The target is to have 100% coverage of requirement testing 

measured thanks to the traceability. Of course basic functionalities as well as global performances 

will be verified. This V&V will be performed on target using dedicated test benches. 

 

The integration on target will be done step by step and is a joint effort between both companies, Elektrobit as 

well as Valeo. One basic aspect here is the support for traceability.  

 

 

2.6 Summary 
 

This Section has introduced the use cases from the automotive domain. All these use cases are part of the 

public use case AUTOMOTIVE, since this public use case will be used as a medium to demonstrate the 

achievements of the automotive domain to the public. We have identify some potential interoperability 

challenges, which are shown in the next Section. These challenges will be elaborated in more detail in the 

next versions of the deliverable.  
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3 Identification of Interoperability challenges 
 

Integration and interconnection of tools is a required prerequisite in order to support the collaboration within 

a development process as well as with customers and suppliers. Interoperability is therefore getting more 

and more crucial for successful and efficient product engineering. The main technical challenge in 

addressing this problem is the lack of open and common interoperability technologies. Nevertheless, some 

interoperability solutions have been proposed in the past:  

Open Services Lifecycle Collaboration (OSLC)
6
 is an approach based on standardised and well-known 

internet technologies. It respects the needs for information sharing rather than exchange and the integrated 

information as well as integrated access to those information principles. It is therefore a promising approach 

especially for interoperability challenges which can be solved by linking certain development artifacts.   

Another approach is the ReqIF
7
 data exchange format. This standard specifies an open, non-proprietary 

exchange format for requirements. This format supports the import of requirements from various authoring 

tools. This means that customers can have other requirements authoring tools.  

XMI is another widely used interchange format for sharing models using XML. One important example is the 

Autosar XMI standard. AUTOSAR has intentionally been defined to improve the interoperability and 

exchange of software components in the automotive domain. There is also a strict definition of 

interoperability in AUTOSAR
8
 that describes interoperability aspects for AUTOSAR. Nevertheless, although 

models are usually based on the same specification, there is often the issue of a multitude of dialects [Broy, 

2010]. This means that the implementation of the same specification can vary between tools – thus hindering 

interoperability.  

In a model-based development environment the use of Model-to-model transformations (e.g. ATL
9
 or Query 

View Transformation (QVT)
10

 ) can be valuable in order to transfer knowledge between different modeling 

tools. Last but not least interoperability can also be realized by using Interfaces APIs. Usually this approach 

is used for point-to-point solutions, which contradict the open Crystal interoperability approach.  

So far, these solutions have mainly focused on static data exchange. Especially for simulations in 

heterogeneous environments, data has to be exchanged dynamically during runtime. Therefore, the 

Functional mock-up interface
11

 standardizes how different simulation programs can communicate with each 

other during run-time.  

Especially OSLC is a very important aspect in CRYSTAL and therefore also for the public use case 

AUTOMOTIVE. This chapter summarizes some of the main interoperability challenges in the automotive 

domain. Some already show challenges which arise through the use of OSLC to solve previous challenges. 

The public use case will therefore also identify potential improvements for existing interoperability standards. 

Furthermore, it should be investigated whether or not OSLC is applicable for all challenges and what are 

potential alternatives. The selection of one of these techniques is dependent on the concrete application 

scenario. Various issues have to be considered, e.g. how much data has to be moved, how do ensure the 

integrity of data, how can the approach be integrated with the current process. This means that the 

challenges have to be identified and analyzed in-depth in order to come up with a useful solution. Often tools 

drive the process, but with a flexible and open interoperability specification the process drives the tool 

environment.  

In the following sections, some important challenges of the automotive domain are described.   

                                                      
6
 http://open-services.net/specifications/  

7
 www.omg.org/spec/ReqIF/  

8
 http://www.autosar.org/download/R4.0/AUTOSAR_TR_InteroperabilityOfAutosarTools.pdf 

9
 http://projects.eclipse.org/projects/modeling.mmt.atl  

10
 http://www.omg.org/spec/QVT/1.0/  

11
 https://www.fmi-standard.org/  

http://open-services.net/specifications/
http://www.omg.org/spec/ReqIF/
http://www.autosar.org/download/R4.0/AUTOSAR_TR_InteroperabilityOfAutosarTools.pdf
http://projects.eclipse.org/projects/modeling.mmt.atl
http://www.omg.org/spec/QVT/1.0/
https://www.fmi-standard.org/
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3.1 Integration of OSLC to other interoperability concepts and 

standards  

 

In this section, some approaches about the integration of interoperability standards and concepts are 

presented. In particular, a high level linked-data concept such as the upcoming OSLC standard is set in 

context to central data repositories (data backbone) and well established automotive standards of the ASAM 

consortium. 

3.1.1 Integration of OSLC and the Data Backbone concept 

 

Section 2.1 already introduced the vehicle development process with a special focus on vehicle testing 

processes. Various tools are used to create different kinds of artefacts throughout the testing process. Most 

of them are currently stored locally or in a non-transparent manner (and thus are hardly to access), which 

makes data-reuse and traceability complicated or even impossible. 

A so-called data backbone for various testing phases is a generic concept to overcome these limitations. 

Figure 3-1 below illustrates the basic idea of this concept. 

 

Figure 3-1: The Data Backbone concept for testing phases 

The data backbone acts as a single-source-of-truth for all tools and related data categories applied in all 

testing phases represented by different testing V-models (and thus different tools applied in these testing V-

models). With this concept, consistency among the development processes should be achieved and 

effective frontloading of development tasks becomes possible. 

It is important to understand what consistency means in this context. For some situations it might be 

sufficient that a central data repository ensures the single-source-of-truth concept, i.e. a unique and 

transparent way of data access. In practise however, a single-source-of-truth concept does not necessarily 

ensure consistency of data content (e.g. re-using the same set of calibration data throughout two testing 

phases). It may happen that for various reasons (e.g. if different naming conventions are common in different 
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development phases) two variants of calibration data sets are created at two testing phases. A stronger 

meaning of consistency may force the data content of the several data categories to be aligned with the 

different testing phases. For instance, with a fully consistent data set, the parameters, calibration data, and 

measurement results of two test-runs in different test phases would become directly re-useable and 

comparable. It is part of the project to evaluate, which interpretation of consistency is sufficient to overcome 

the most important limitations of today’s systems. 

Figure 3-2 illustrates a possible data backbone concept based on the OSLC concepts. The various data 

categories are stored in one or even more (3
rd

 party) data providers. The data consists of all the details 

created by the related authoring tool and only these authoring tools are able to fully interpret and modify this 

kind of data. OSLC adapters, however, abstract from these details and provide only a reduced data model 

per data category (also called OSLC domains). These (potentially standardized) OSLC domains are 

designed in a minimal manner in order to just fulfil the needs for defining data interrelations and navigation. 

On top of this minimal OSLC data structure a uniform workbench could navigate over this data structure, 

without the need of understanding all the details the authoring tools have to deal with. If a deeper data 

analysis or modification is needed, the workbench just delegates this task by invoking the corresponding tool 

with the appropriate OSLC link or requests an appropriate data artefact representation. 

In addition, a customer has the freedom of choice which kind of data backbone he wants to use. For 

instance, a classical ALM tool such as PTC Integrity may provide important features such as variant and 

version management. However, this feature may not be needed by every customer. Consequently another 

data provider (e.g. an in-house database) is sufficient. With the use of OSLC both the authoring tools as well 

as the uniform workbench does not depend on which data provider is in use. 

 

 

Figure 3-2:  Integration of OSLC and the AVL Data Backbone concept 

 

APPLYING THE USE CASE SCENARIO  

In terms of OSLC, it is mandatory to develop a corresponding OSLC model that interlinks the data categories 

appropriately. One purpose of the CRYSTAL project is to develop and standardise such appropriate OSLC 

resource models by analysing the interoperability challenges of the provided use cases. 
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3.1.2 Towards a concept for the Integration of OSLC and Other Standards 

 

OSLC does not cover everything what can be subsumed under the term interoperability. In addition, it is not 

the purpose of the CRYSTAL project to invent a new standard that is capable of such universality. Instead, 

existing standards will most likely have to combine with the upcoming concept of OSLC. 

In Figure 3-3, such a combined approach is sketched for calibration data management: A calibration tool 

(e.g. AVL Cameo
12

) is storing its data in a proprietary format, but is also capable of exporting some aspects 

of this data to different standardized formats (such as ASAM MCD-2 MC
13

 for calibration data and ASAM 

ODS
14

 for measurement results). The exported data may be stored in a central data base such as the data 

backbone concept (e.g. using AVL Santorin
15

, which is an ASAM ODS compliant data base). OSLC adaptors 

on top of all involved tools and data providers, however, allow direct access to top level elements of the data 

artefacts applied in the engineering method about test and calibration iteration. These top level elements are 

elements of a high level OSLC resource model that complies with artefacts presented by this engineering 

method. A uniform workbench can then be used to navigate on a concrete instance of this OSLC model. 

Consequently, if the related activities of a particular use case scenario are embedded in this workbench 

properly, the usage of this tool would ensure that links are set properly and enables corresponding data 

navigation and reuse in related projects. 

 

 

Figure 3-3: Combining the OSLC linked-data approach with calibration data management 

Another example of combining OSLC with other standards is illustrated in Figure 3-4. Co-simulation is the 

ability to couple two or more simulation models executed in different tools at run-time. The FMI standard 

currently evolves itself to be the standard for co-simulation (so far there has been none). This kind of 

interoperability has by nature nothing to do with the linked-data concept of OSLC. Nevertheless, a useful 

combination of these interoperability types is possible: Independent of the run-time aspects and details such 

as how data ports of the models have to exchange data, the given fact that two models are related to each 

other can be defined by OSLC links as well. Corresponding OSLC adapters abstract from the particular 

                                                      
12

 https://www.avl.com/cameo 
13

 http://www.asam.net/nc/home/standards/standard-detail.html?tx_rbwbmasamstandards_pi1[showUid]=531 
14

 http://www.asam.net/nc/home/standards/standard-
detail.html?tx_rbwbmasamstandards_pi1[showUid]=2027&start= 
15

 https://www.avl.com/avl-santorin-asam-ods-server-standardized-data-storage 

https://www.avl.com/cameo
http://www.asam.net/nc/home/standards/standard-detail.html?tx_rbwbmasamstandards_pi1%5bshowUid%5d=531
http://www.asam.net/nc/home/standards/standard-detail.html?tx_rbwbmasamstandards_pi1%5bshowUid%5d=2027&start
http://www.asam.net/nc/home/standards/standard-detail.html?tx_rbwbmasamstandards_pi1%5bshowUid%5d=2027&start
https://www.avl.com/avl-santorin-asam-ods-server-standardized-data-storage
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modelling tools and map the corresponding model to a OSLC resource model, which consists just of basic 

standard modelling elements representing a hierarchically structure and which model elements of a model A 

are related to what model elements of model B. Further details about the interfaces of the models such as 

the applied data types of concrete connected ports, parameters of the models and the programming 

interface to access the model at run-time via a simulation engine remain at the responsibility of the FMI co-

simulation standard. 

 

Figure 3-4: Combining the OSLC linked-data approach with co-simulation aspects 

 

 

3.2 Model transformation  

 

Interoperability between different tools can in many circumstances be accomplished via linking, where an 

element in one tool is linked to an element in another tool, for instance an architectural or design element 

linked to the requirement it satisfies. This is the basic idea of the OSLC approach to handle interoperability. 

Nonetheless, in some tool interactions as for example in UC 3.1 (Volvo), a more comprehensive data 

exchange is desired. For instance in the timing analysis described in Section 2.2.2, the timing analysis tool 

requires an internal model with the functional components, topology, signals etc. This model can of course 

be created manually and then linked to the previously existing models, but a more efficient approach is to 

automatically create this model, at least partly, from relevant information in the previously existing models. 

For this reason, data exchange is needed.  
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Figure 3-5: Conceivable use of EAST-ADL in model exchange 

One way to accomplish the desired data exchange is to use a common meta-model and to transform the 

tool-internal models according to this meta-model. For the automotive domain, AUTOSAR [1] represent a de-

facto standard at the software level, and EAST-ADL [2] is a corresponding standard for the upper abstraction 

levels. Both AUTOSAR and EAST-ADL have well-defined meta-models that can be used for this purpose.  

An illustration of model transformation is shown in Figure 3-5 in the context of timing analysis. The idea is 

that a system model with some timing information is available in a system modeling tool (SystemWeaver). In 

order to make a timing analysis this data needs to be transferred to the timing analysis tool.  The timing tool 

and the system tool may however have different internal representation of the data. Both tools may however 

be able to import and export data in EAXML which is an XML representation of EAST-ADL. This is for 

example true in UC3.1 where SystemWeaver is capable of exporting EAXML and the timing analysis tool 

Rubus is capable of importing it. Thus, EAST-ADL can be used as a pivot model between tools. Once the 

model has been transferred, additional more detailed timing information needed for the analysis can be 

added in the timing tool. In order not to waste these annotation efforts it is likely that the information is 

maintained also in the timing tool. This means that the import/export functionality also needs to create the 

necessary OSLC links such that the information in the two tools can be held consistent and that the 

annotated timing information can be visible also in the system modeling tool.  

 

3.3 Linking between hierarchies and artifacts 

 

The Requirements Engineering process implemented within the Microcontroller Business unit at Infineon UK 

identified various problem areas: 

1. The quality of the requirements and how to transform from the change management system into the 

Requirements flow without losing data integrity. 

2. The linking of all of the various artifacts (bricks), how the data is transformed/linked/moved between 

them. 
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3. The “proof of implementation”: how we prove that the requirement has been implemented and argue 

that it is working correctly. 

 

Within the public use case Infineon plans to look at the second part of this, the linking of the various artifacts.  

Within their separate use case Infineon will look at the tooling issues related to this and their common 

interface protocol options as well as the other two problem areas (quality of requirements and proof of 

implementation).   

Within the public use case Infineon will look at how to control the hierarchical issues when tracing down the 

data tree.  The problem arises with multiple domains, tools and people so a strict control of the different 

hierarchies needs to be adhered to.  If the hierarchy changes relating to the data, then the context or 

meaning of the data may also be affected.   

For Example:  

 An IP
16

 implementation table may be necessary within the documentation to explain the numbers of 

reset/errors/IP’s etc required within the microprocessor.   

 However when tagging within documentation the contextual meaning of the text within the table is 

lost, for example:  

o The Requirement : “there shall be two reset options within the X module”  

o Within the table naming the modules on the rows and the reset names on the column 

names.   

 Module X Module Y Module Z 

Reset y 1 1 1 

Reset z 1 0 0 

 

o The requirement for the modules having a “reset y” or “reset z” are then identified with 0’s 

and 1’s as in the table above, which quite clearly does satisfy the requirement of Module X 

having both resets   

o The tagging
17

 however cannot extract the context of the 0 or 1 so the tooling just states that 

“1” needs to be satisfied with no context.  Within the text that is extracted by the tooling we 

are unable to replicate the column and row headers here so what is needed to be tested has 

no context – rather than asking the test developers to implement “Module X shall have 1x 

ResetX” we end up with the text  “1”, at this point the test developer would need to go back 

to the intial document or to the initial requirements to clarify what is meant by the number “1” 

to ensure they test the correct functionality (see Figure 3-6). 

 

 

                                                      
16

 An IP within the microprocessor domain is an Intellectual Property and is essentially a module.  Each 
microprocessor is made up of a set of modules which all have a particular function, these functional pieces of 
IP are then linked together into subsystems and finally into a System on chip which is the complete 
microprocessor. 
17

 Tagging is the term used to identify words or pictures that implement a requirement when using the Reqtify 
(http://www.3ds.com/products-services/catia/capabilities/catia-systems-engineering/requirements-
engineering/reqtify/) tool   

http://www.3ds.com/products-services/catia/capabilities/catia-systems-engineering/requirements-engineering/reqtify/
http://www.3ds.com/products-services/catia/capabilities/catia-systems-engineering/requirements-engineering/reqtify/
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uc Use Case View

Sales

System Architect

Concept Engineer

Verification Engineer 

 

Figure 3-6: Diagramatic view of contectual loss of data through table usage 

The meaning of a requirement is, as with all language, affected by its surrounding contextual setting.  If the 

surrounding words or section change then the meaning of the requirement itself may be affected. When 

translating requirements through a variety of documents any manual transformation, for example from 

natural language into models or into a test plan or a target specification, has the ability to 'corrupt' the 

meaning of the requirement from its initial intention. 

To clarify the meaning it may be necessary to go back to the original requirement in order to assure that the 

original intention is still being adhered to when it comes to being tested. 

If you can ensure that either the intention is not corrupted or indeed ensure that the original intention and 

requirement is viewed directly at all levels then the testing and implementation of the requirement can safely 

be assured. 

Infineon’s Automotive Microcontrollers are all required to achieve the ISO26262
18

 safety standard; the 

hierarchal structure for the safety requirements is a mandatory part of this standard (see extract below):  

“6.4.3 Management of safety requirements 

6.4.3.1 The set of safety requirements shall have the following properties: 

a) Hierarchical structure, 

NOTE Hierarchical structure means that safety requirements are structured in several successive levels as  

 presented in Figure 2. These levels are always aligned to comply with the corresponding design phases. 

                                                      
18

 (http://www.iso.org/iso/catalogue_detail?csnumber=43464)   

Requirement: 
“The Microcontroller shall 
support reset y” 

Refined Requirement 
“Module X shall support 
reset y” 

Target Specification 

 Module X 

Reset y 1 

 

Test Plan 
“1”  

Sales person understands the 
customer requirement  

System Architect breaks 
down the requirement into 
the system Hierarchy to 
clarify it   

Concept Engineer 
translates it into the 
specification   

Reqtify cannot match table 
cells up with column and row 
names so only extracts cell 
information   

http://www.iso.org/iso/catalogue_detail?csnumber=43464
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” 

Infineon therefore are setting up a new relational database within the Crystal project and will have this as a 

single data source where all of the bricks may access to ensure they have the correct data info to produce 

their expected results. This database is the Knowledge and Interface Database – shown within Figure 3.3 as 

KID. This will become heavily involved within either an ARQE.xml (Infineon IOS) or an OSLC IOS solution to 

share information for variant and tool management within the flow, however it is still under investigation to 

analyze the what and how of the information required to be stored and protected.  The amount of data 

currently requiring manual updates due to changes etc mean that holding the information within an excel or 

other format renders the Excel obsolete within a couple of days, a database holding the information, with 

restricted access to all via a change management system will allow us to manage this centralized data.  

Currently we are supporting over 6000 semi-variable link paths and a variety of other semi-variable data 

information for aligning our tools.  

Infineon shall analyze what information they found of use, the relations required and feedback on the 

positives and negative of implementing this as a solution.  Infineon will also be building two new tools – one 

within the project and one at another site so outside the scope of the project called DaD and MoM (so you 

could say we have a family of tools – DaD [data analyser dashboard] MoM [Measure of Metrics] and the 

database is called KiD [Knowledge and information Database])   

Figure 3-7 below shows the area circled in red where these tools will fit within the Data flow for the Infineon 

product family.  The areas in pink all have an independent hierarchical structure; the database works 

essentially as a look up table so that we can align these hierarchies. 



D 307.011 
Public Use Case 
AUTOMOTIVE 

 

 

Version Nature Date Page 

V3.00 R 2014-01-29 40 of 56 

 

 

Figure 3-7: IFX Data flow diagram 

The purpose and plan for the tools within the flow is as follows: 

 

asuresign is a new external tool from TVS 

This tool contains the blackbox testplan as a requirements list. Within the tool the requirements are internally 

linked to a set of goals required to prove the requirement and then to simulation results etc.  These results 

are translated into a format to be fed into the requirements traceability tree.  The tool has been driven by 

Infineon to extend into the requirements tracing to ease the cross domain issue that Infineon faces (pre-

silicon/post-silcon/software domains). Currently it is being rolled out across the pre-silicon teams.  The next 

step will be the roll out into validation and then firmware/software teams, etc.  

 

MoM is the Measurement Over Metrics  

This will be used to debug across multiple domains, pre/post silicon, software etc.  This is not part of the 

deliverable but a user of the KiD database, asuresign, simulator logs, fault analysis and other software tools. 

DaD is the Data Analysis Dashboard  

This links the asuresign xmls (translated results of the log files) together to allow for visibility across the 

project domains. It will therefore allow a high level overview that all of the requirements were implemented 

and passed and in which domain this occurred, it also assists for managing person resources. 

KiD is the Knowledge and Information database 
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This will contain info on paths for moving documents into configuration management (via the release 

manager), paths for the Reqtify tool to ensure the correct linkage, roles and responsibilities for IP’s across 

the domains and the variants’, the hierarchical pairing within the current mismatched flow, in future it will 

define the hierarchy and not just reflect it.  The database will be protected via the change management tool 

which will be Jira in the future. 

 

3.4 Mapping functional structure and product structure (BoM) 

 

Systems engineering has become multi-disciplinary, with a growing importance of software and electronics.  

In the past, mechanics have been the primary aspect.  

Product lifecycle management (PLM) is the process of managing the entire lifecycle of a product from its 

conception, through design and manufacture, to service and disposal
19

.This terminology has emerged in 

mechanical engineering. The development in software engineering has been slightly different. Here we talk 

of Application Lifecycle Management (ALM), as a continuous process of managing the life of a software 

application from inception through development and maintenance to end of life.  

For a long time, software has been treated as one item in a BoM (Bill of material), but Software development 

can no longer be seen as a black box process. ALM must become a natural extension of PLM with 

seamless, process based integration. 

Depending on the position in the product lifecycle, engineers might have different understandings and views 

of the product leading to several parallel structures. The functional structure heavily depends on the 

requirements, whereas the product structure often is a hierarchical relationship of parent and child nodes. 

Therefore, a mapping between requirements and product structure offers a special view on demands for 

products functionality and allows the engineer to verify the correctness of the functionality of a product.  

As mentioned above, UC 3.3 is concerned with systems engineering on powertrain level. This means that 

mechanical aspects are at least as important as E/E aspects and respective ALM and PLM environments 

have to be connected accordingly.  

Figure 3-5 depicts the main interoperability challenge. It shows the application of two different tools: one 

(PTC Integrity) for requirements and another one (PTC Windchill) which reflects the product structure in 

terms of the Bill of materials (BOM).  In [Eigner 2005] the BoM was defined as representation of the product 

structure, or a specific domain dependent view of the product (e.g. design or manufacturing BoM).  

This requires not only a simple interaction of tools, but a mapping of the structural aspects as well. One 

important aspect which requires a tight integration is change management. If hardware and product changes 

are managed in a PLM tool and software and system changes are managed in an ALM tool, there needs to 

be some kind of synchronization. The same applies for configuration management.  

                                                      
19

 http://en.wikipedia.org/wiki/Product_lifecycle_management 
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Figure 3-8: Conceptual mapping of requirements to the BoM  

3.5 Interoperation between role specific authoring tools 

 

A large company such as Daimler with many departments and persons involved in the development of high-

quality E/E systems requires a number of tools to fulfill the various tasks throughout the entire development 

process. 

This means to use tools as optimal partners of each development engineer to fulfill his or her very specific 

task in the most efficient and beneficial way. Considering that most E/E systems are complex and require the 

collaboration of many different organizational units within a company, it becomes clear that local processes 

arise to reach the goal of optimizing efficiency in each of these organizational units. Even though all these 

processes are derived from a common master process, tools vary between those units, even though they are 

based upon the same commercial product. 

This raises the necessity of interoperability between the tools. 

Since different persons are working in different environments, data has to be synchronized, exchanged, 

checked for consistency, and linked to each other in order to ensure an overall controllable system-scope 

development. In the Daimler case, variation of tools is related to the following dimensions as shown in Figure 

3-9: 

- Development process step 

- Abstraction level 

- Engineering domain 

- Actors role 
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Figure 3-9: Overview of development dimensions 

 

Each of these dimensions is widening the range of best-fit tools for local purposes. To enable collaboration 

among locally optimized conditions (regarding ergonomics, efficiency, interfaces), there are two major 

possibilities to align with: 

A) Include all development data in one big tool which reflects each local optimum (centralized data 

management)  

B) Connect all existing tools (properly identified as best pick) with each other (decentralized data 

handling with traceability) 

In our environment, option B) becomes much more attractive than option A) because the impact is way less 

than changing every tool in the company. 

Authoring tools being specific for each role, process step, domain, and abstraction level are facing the 

following challenges to offer a feasible interoperation in larger scale automotive E/E system development 

projects: 

- Atomic objects, identifiable and traceable between different tools 

- Document any kind of change on objects and containers of objects, including changes in trace 

information 

- Exchange data with other tools, able to consider being master or slave for specific parts of this data 

- Ability to navigate from and to objects in neighboring tools, keeping the level of user attention for 

using different tools low 

 

Former approaches were aiming to point-to-point integrations which were hard to buy in, maintain and 

operate. Modern approaches favor “loose coupling” by standardized and open protocols which can be 

implemented by any tool vendor. The more these solutions are spreading amongst automotive companies 

the better is the connection effect. This is the challenge that Crystal IOS can target within and related to this 

project. 



D 307.011 
Public Use Case 
AUTOMOTIVE 

 

 

Version Nature Date Page 

V3.00 R 2014-01-29 44 of 56 

 

3.6 Requirement traceability in the software development flow 

 

Traceability is one of the main interoperability challenges in Valeo’s software development flow. In terms of 

IOS the main need is a tool that would help trace requirements from their definition to their measurement or 

verification. This traceability is also required by the ISO26262.  

 

Valeo defines the traceability graph below (see Figure 3-10) that we intend to use for the UC.  

 

Figure 3-10: SW traceability workflow 

 

Currently the SW traceability stops at application level and neither the BSW nor the OS are included. The 

challenge there will be to include them for a complete coverage. 

 

3.7 Traceability between different workflows 

 

The interaction between design process (red arrow) and functional safety process (green arrow) in UC 3.5 

(CRF) can be again shown putting in evidence the IOS (possible/necessary) relationships, with reference to 

Figure 3-11: the black and gray lines distinguish the relation with respect to the current Use Case: black 

means covered, while gray stays for not covered but envisaged/desired for a future (out of scope for the 

moment) implementation; dotted pattern simply indicates the absence of a direct, but 

envisaged/suitable/necessary link, manually operated for the moment, but also still manually operated 

(probably) in the future (gray color). The presence of a line, anyway (gray, dotted or not), represents the 

need for a link. 

The Mirroring of work items for traceability and the Transformation/Application between models for 

interactions are general IOS issues for the use case, where the main challenges are to identify which links 

are necessary and which artifacts need to be linked and at which level of detail; this last problem is a matter 
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of “granularity”, depending at which level we need to descend for having a complete description of all the 

necessary elements of the process analyzed. 

 

Figure 3-11: Interactions between workflows at data level from and to Functional safety-Design 

In orange (block and text) use case real data are indicated in orange (block and text): functional safety 

project model, design inputs and traceable work items, these last “mirrored” from the project model and 

design inputs. 

“Mirroring” is something more complex than duplication: more exactly it should be the "reflection" for 

traceability purposes of the "work items developed by the other frameworks (design and functional safety, 

this last described as in the ISO 26262 workflow). There is the possibility to provide traceability means also 

within the frameworks themselves, without an additional tool, according to the development stage of the 

related work items. This is still work in progress. The way of OSLC could help, but It is necessary to 

analyze/verify the possible impact versus the actual available frameworks. Some of the problems could be: 

to “rework” all the current work items and/or to redefine the design of the processes (but in the case of the 

ISO 26262 the process is firmly stated and cannot be "redesigned": it should be represented by the 

tool/tools). “Rework” could be to introduce links if it is possible, but if it not possible it means to restart quite 

from zero. 

“Redesign” is something that can happen if the framework/tool does not match with the process: in this case 

the winner should be the process (e.g. ISO 26262: redesign not possible) and the framework unable to do 

this should be rejected. In general a framework/tool that supplies a sufficient flexibility in the work items 

definition could be suitable, but for several types of requirements a tool only could be not sufficient: e.g. one 

need could be the traceability, while other needs could be related to the modeling of the process itself (e.g. 

ISO 26262 framework); from this last case, for instance, we could have the need of a structure suitable for 

representing the requirements (but according to the standard anyway) and their relationships in a “safety 
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case” and the traceability capability alone is not sufficient for this aim. A superior stage could be the way of 

integrating together modeling and traceability and to introduce a certain degree of automation where 

possible. 

In this context of work, the specific use case of a SEooC development is concentrated in the analysis and 

development of the functional safety concept and technical safety concept (high level) for a system not 

immediately targeted to a single vehicle reference, but generally conceived for a class of vehicles 

encompassing a large range of versions. 

Within this range of application the assumptions are related to the existence of an electronic and mechanical 

interfacing environment on vehicle, suitable for the installation of a climate system electronically controlled 

with safety relevant characteristics. 

SEooC is also described by ISO 26262 and the core issue about this are to define the "assumptions" and to 

manage them for establishing their "validity" during the integration into the major items (e.g. system or 

vehicle). 

 

3.8 Integrated Tool Environment for embedded controls development 
 

UC3.4b has defined three different user scenarios in order to improve the development process within AVL-

R. 

1) Common AVL Simulation Model Data Backbone to enable simulation and plant models exchange 

with integration and configuration of versatile System-of-systems (SoS) platform 

2) Integrated Tool Environment for embedded controls development 

3) Improvement of the Development via „Efficient Variant Handling within V-Cycle”. 

Due to these different user scenarios, also different interoperability challenges exist. 

 

@ 1) In order to improve the quality of the Control system models, AVL-R is using BOOST RT
20

 from another 

department, AVL AST (Advanced Simulation Technologies). 

BOOST RT is a real-time capable, system-level, engine simulation tool dedicated for the investigation of 

transient operating conditions offline in desktop applications and online in HiL environments. It is the 

consequent next step to further integrate the well-established BOOST 1D Cycle Simulation tool and 

CRUISE, the vehicle dynamics, fuel consumption, and emission simulation package. BOOST RT focuses on 

three main application areas used in the different engine development phases: 

a) Concept Development Phase: BOOST RT supports a fast setup and simulation of engine 

design variants without considering all details of pipe gas dynamics to get guidelines on engine 

performance.  

b) Powertrain Design Phase: BOOST RT engine runs drive cycles fully coupled with a detailed 

vehicle model (built in CRUISE) resolving both engine and vehicle dynamics with adequate level 

of modeling depth within reasonable computational times. 

c) Component, Powertrain, Vehicle Test Phase: BOOST RT engine runs as plant model to 

support the development, calibration and testing of engine control functions.  

 

The exchange of the configured engine model is done via personal request to the responsible persons. 

One interoperability challenge is the exchange of data from the Data Backbone (see Section 3.1.1) into 

PTC’s INTEGRITY
21

 used from AVL-R via providing / selecting the needed information (e.g. INTEGRITY 

                                                      
20

 Based on AVL PRODUCT DESCRIPTION BOOST RT 
21

 http://www.mks.com/platform/our-product 

https://www.google.de/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&ved=0CC8QFjAA&url=https%3A%2F%2Fwww.avl.com%2Fc%2Fdocument_library%2Fget_file%3Fuuid%3D71957383-1be2-4a53-89e4-40b37ad489ff%26groupId%3D297166&ei=fKPBUsDoAof_ygPjnYCgAg&usg=AFQjCNGl92p_92JMfZirmD2v9RUbCtKKjQ&bvm=bv.58187178,d.bGQ
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needs variant and version information, etc.) and describe these for the exchange mechanisms  

(see Figure 3-2 and chapter before). 

Additionally to data exchange, these data should be used for the design and development of a flexible and 

configurable System-of-Systems (SoS) platform including the necessary tools for configuration of hardware, 

software, application, and communication aspects. The motivation for this step is that many upcoming 

applications in the automotive domain require versatile and adaptable systems (or system platforms) that 

can be tailored to specific application area requirements and constraints. To reach this ambitious goal 

(interoperability challenge), research and development not only on a platform level but also in the area of 

engineering processes and tooling needs to be undertaken. In particular, ways to integrate different 

subsystems and applications to a common platform and to provide tailored configuration tool-chains that 

support this process are the main work items of this use case scenario, illustrated in Figure 3-12. 

 

Figure 3-12: Integration of a configurable SoS Platform with Use Case requirements 

 

@ 2) Various tools are used for the different development steps throughout the software development V-

Cycle as illustrated in Figure 3-13.  

AVL-R is currently using the Integrated Tool Environment (AVLab) as a common user interface which is a 
single point of contact for all related tools, i.e. AVLab bundles several tools supporting each development 
activity steps from modeling over testing to code generation => seamless tool chain 

• ADD (Visu-IT!)  Simulink: Data synchronization via SyncTool 

• Integrity (PTC)  Matlab: Support and Integration of PTC Integrity Source in AVLab  

• Simulink (The Mathworks) AVL Concerto: allowed Concerto Plots for data visualization via AVLab 

• MXAM (MES) with AVL modeling rules is started from AVLab 

• MIL / SIL / back2back tests supported by AVLab 

• Code Generation 
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Figure 3-13: Development process including tool landscape 

It also provides some kind of guidance for the developer through the development process (requirement 

management, architecture, model development, tests, and code generation). 

Further background is the harmonization of the process & tool environment for PTE Controls. 

Key points for this harmonization are: 

• Component-based development approach is enforced.  

• Scheduling of components in function groups (and domain) is enforced by model template in 
AVLab. 

• SW Architecture is enforced by ADD as architecture tooling. 

• Code generation for SW components is supported by tool environment in Embedded Coder and 
Target Link. Code generator configuration is unified. 

• Build environment (= generation of flashable hex file) is based on generated and archived C-Code. 

• Integrated test framework enforces common way of testing. 

 

AVLab also shall support function development from model development over model testing to code 
generation in a Matlab/Simulink environment, with Embedded Coder or TargetLink as code generator. In 
addition, AVLab shall support the methods in engineering area: 

• A 3 Level Architecture is the basis of component-based development 

• Naming is ensured by the usage of the Name Checker inside ADD 

• Modeling Guidelines are checked by the usage of MXAM (model style checker) 

• Product Documentation is ensured by the usage of FunDoc (Visu-IT) 

• Verification/Validation is supported via MiL, SiL, and Back-to-back testing in AVLab 

• Coding Guidelines are supported via Code Generation Helpers (Embedded Coder Toolbar or TL 
Code Generator) 

• Build is directly supporting component-based approach 

 

The current implementation of AVLab increases the efficiency / quality of function development. 

http://rgb-wiki.avl.com/rgbwiki/index.php/MXAM
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• Provide a template for modeling, with operating system to allow a simulation closer to the reality than 
a pure Simulink simulation. 

• Simulink toolbar, with shortcuts for faster action in Simulink 

• Traceability between Model, ADD Container, Integrity 

 

The interconnection between several tools and AVLab is currently realized in a non standardized way and 

has to be improved. Furthermore, the “Integrated Tool Environment” provides a single point of control during 

all development steps including MiL/SiL Tests and should be extended to support HiL / Engine Bench tests 

which are currently done manually. 

 

AVLab needs to improve its interoperability capabilities with the tool chain. 

The aim (interoperability challenge) is to provide a standardized interface for the “Integrated Tool 

Environment” in order to harmonize interfaces, facilitate the substitution of tools, and to be more independent 

from concrete tool versions. Furthermore, seamless traceability between all artifacts should be supported. 

One concrete interoperability challenge description from this use case is tackled in Chapter 4 and there 

especially in Figure 4-1. 

 

@ 3) AVL-R provides software solutions for various domains (e.g. automotive, shipping, trucks). Solutions for 

single domains can be very different, but within one domain there is often a huge potential for reuse. 

Currently, there is no explicit and systematic variant handling at AVL-R. SW variants are stored in PTC 

Integrity, without mechanisms to search for or select a specific variant.  

Furthermore, there is no detailed definition of variant handling and usage throughout the development 

process. 

Variant handling cannot be considered as an interoperability challenge on its own, but has to be considered 

for the IOS specification. 
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4 Demonstrator prototype 

 

As mentioned before, there will not be one coherent demonstrator for the entire automotive domain. By the 

end of the project we will provide several demonstrators showing best practices and solutions from the 

domain. 

So far, there exists a first demonstrator prototype, which will evolve incrementally following the Crystal 

project structure. The selected application scenario is a very common interoperability challenge, which will 

most likely be implemented in various use cases using different tools and artifacts in different processes. 

This interoperability scenario describes the linkage of requirements, models, and test cases. Sometimes it is 

sufficient to link requirements and complete models. This means that there is no need to know or understand 

the inside of the model – the model can be treated as a black-box. Often this coarse-grained view is not 

sufficient. In this case, a corresponding authoring tool has to provide the internal structure as well or the 

structure has to be understood by the requirements management tool  

This first prototype implements an interface between PTC Integrity, Simulink, and Artisan Studio
22

, 

respectively. Currently, the interface is based on point-to-point solutions, but they should be using an 

standardized and open specification (e.g. by using OSLC) in the near future.   

 

Figure 4-1: Traceability between requirements, simulation models, and test cases 

OSLC is intended to be one of these open, standardized specifications for the representation, access, and 

linking of resources. It consists of various domains, one of which is “Architecture management”. The goal of 

the Architecture management working group is “to define a common set of resources, formats and RESTful 

services for use in modelling and ALM tools. This effort is not an attempt to define new modelling languages 

or storage formats, but rather enable the easy integration of existing ones through the use of simple services 

to link to and access them”
 23

. 

This basic linking has been described in the OSLC – AM specification
8
 as one of the essential use case 

scenarios as follows:    

 

Create link from AM resource to requirement 

                                                      
22

 http://www.atego.com/products/artisan-studio/ 
23

 http://open-services.net/wiki/architecture-management/ 
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Goal: A designer wants to indicate that an AM resource implements a specific requirement 

1. The designer navigates to an AM resource (UML diagram). 

2. The designer invokes the action to create a new link from this resource to a requirement type 

resource. 

3. If the system is configured with more than one requirements service provider (i.e. project) associated 

with the context that the AM resource is in, then the user is prompted to select which requirements 

provider to find the requirement in. 

4. The system delegates resource selection to the requirements service. The requirements service 

provides a resource picker to the designer. 

5. The designer uses the resource picker to select a requirement to link to. 

6. The designer selects the link type ‘implements’ from the list of available types, and confirms the link 

creation. The list contains the labels for each link type (not the raw URI). Systems may optionally 

display hover help or a short description for each. 

7. The system may allow the user to add additional information about the link itself (i.e. description, 

priority). 

8. The system creates a new link resource that has the AM resource as the subject, the requirement 

resource URI as the object, and the link type as the predicate. Any additional information allowed by 

the system is stored with the link. This link will appear in the links view for AM resources, and can be 

queried for. 

4.1 Engineering methods in more detail 

 

The application scenario for the demonstrator will be a model-based systems engineering approach.  

Systems engineering is characterised by the tight connection of a system and a software view. Both views 

have a slightly different focus:  Systems engineering focuses on the description of the “what”, whereas 

software engineering focuses on the “how” [Le Sergent, 2012].  Nevertheless, any change, either in the 

system or software view has to be reflected in the respective counterpart. Traceability links on system and 

software level (requirement – model – test) as well as between these levels is therefore a required 

prerequisite.  

Figure 4-2 illustrates this scenario and gives an overview on the engineering methods which have been 

identified for this basic systems engineering interoperability challenge.  

Engineering method 1 “Requirement allocation” corresponds pretty much to what has been described above.  

This means that this scenario has already been included in the OSLC specification.  

Engineering method 2 “Test specification” links test cases to the corresponding model elements.  

Engineering method 3 “Requirement decomposition“ describes the refinement of system requirements to 

software level requirements.  

Engineering method 4 “Requirments traceability” links software requirements to the respective simulation 

models and “Test traceability” links test (simulation) results to the concrete simulation runs.  

Engineering method 5 “Test Coverage and Progress” states that information should be available to evaluate 

whether or not all requirements have been implemented and tested.   
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Figure 4-2: Engineering methods for the demonstrator 

4.1.1 Simulation Scenario for Software 

The public use case intends to use a tool interface between PTC Integrity and ArtisanStudio on system-level 
and an interface between PTC Integrity and Matlab Simulink on software-level. Both interfaces are currently 
based on proprietary APIs and should be re-based on an open interoperability specification during the 
CRYSTAL project. 

Figure 4-3 shows a sample use case scenario  for the integration of PTC Integrity and Simulink. It shows on 
the one hand the linkage of requirements, models, simulations, and simulation results and on the other hand 
the influence of a change request. This is basically a first implementation of engineering method 4 and can 
be understood as follows:  

First, the engineer will start with the requirements document and then build the model in Simulink or update 
an existing Simulink model based on the specified requirements. These models (or model elements) can 
then be linked with the corresponding requirements. In the same way, test cases can be linked with the 
requirements that are validated by the test case and the corresponding model elements. This information 
can also be used for coverage analysis to ensure that all requirements are covered in the model and that 
each model element is linked to a requirement, and also to ensure full test coverage of the requirements.  

Simulations and their results can be tracked in a separate item (Simulation Run), which has a reference to 
the underlying test cases. In case of a failed test case, a change request can be created based from the 
context of the simulation run.   

In case of changes, the links can also be used to investigate the impact of this change by showing all related 

model elements and test cases. If for example a requirement will be changed, a “suspect flag” is set on the 

relationship and the engineers responsible for the model will be notified that the requirement and model 

element are not synchronized any more. The impacted model elements can be automatically highlighted in 

Simulink and the engineer can reflect the requirements changes in the model or – if no changes are needed 
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– clear the “suspect flag”. Furthermore, the change order, which tracks the updates, will also be linked to the 

respective artifacts.  

 

 

Figure 4-3: Simulation scenario for software  
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5 Next steps 
 

This chapter gives a short outlook on the activities in the next phase of the project. The results of these 
activities will be described in the next version of this deliverable.  

One of the main activities in this next phase will be the detailing of the interoperability challenges. This 
means that the next version of the document should include a very detailed problem description.  

These descriptions will be formulated in the same way as the use case scenarios in OSLC. This is a valuable 
way to specify concrete application scenarios and can be used to compare the problem description with 
currently existing specifications.  

This comparision shows if the specific interoperability challenge can simply be implemented using existing 
means or if it requires an extension of the current specification. For some cases it could also be possible to 
identify the need for a completely different interoperability specification.  

The challenges should not be restricted to the linking and exchange of data. They should also include 
aspects such as version management, consistency, authentication, and so on.  

Another result of the next project phase will also be an overview what is realizable in the course of the 
CRYSTAL project and what might serves as an input for follow-up projects.  
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6 Terms, Abbreviations and Definitions 

 

The following terms and abbreviations are used throughout this document.  

 

ISO International Organization for Standardization 

IEC International Electrotechnical Commission 

SEooC Safety Element out of Context 

OSLC Open Services for Lifecycle Collaboration 

BOM Bill of materials 

ALM Application lifecycle management 

PLM Product lifecycle management 

MBSE Model-based systems engineering 

ASAM  Association for Standardization of Automation and Measuring Systems 

ASIL Automotive Safety Integrity Level 

Table 6-1: Terms, Abbreviations, and Definitions 
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