
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE CRYSTAL CONSORTIUM. NEITHER THIS
DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED BY ANY
MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE CESAR
CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT. THE
RESEARCH LEADING TO THESE RESULTS HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S SEVENTH
FRAMEWORK PROGRAM (FP7/2007-2013) FOR CRYSTAL – CRITICAL SYSTEM ENGINEERING ACCELERATION JOINT
UNDERTAKING UNDER GRANT AGREEMENT N° 332830 AND FROM SPECIFIC NATIONAL PROGRAMS AND / OR FUNDING
AUTHORITIES.

CRitical SYSTem Engineering AcceLeration

Use – Case Definition
D301.010

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 2 of 24

DOCUMENT INFORMATION

Project CRYSTAL

Grant Agreement No. ARTEMIS-2012-1-332830

Deliverable Title Use – Case Definition

Deliverable No. D301.010

Dissemination Level CO

Nature R

Document Version V1.0

Date 2013-10-29

Contact Oscar Ljungkrantz

Organization VOLVO

Phone

E-Mail oscar.ljungkrantz@volvo.com

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 3 of 24

AUTHORS TABLE

Name Company E-Mail

Oscar Ljungkrantz VOLVO oscar.ljungkrantz@volvo.com

Cecilia Ekelin VOLVO cecilia.ekelin@volvo.com

REVIEW TABLE

Version Date Reviewer

Internal
Review

2013-10-10 Mats Larsson

External
Review

2013-10-18 Joerg Settelmeier

External
Review

2013-10-21 Gerald Stieglbauer

CHANGE HISTORY

Version Date Reason for Change
Pages

Affected

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 4 of 24

CONTENT

D301.010 .. I

1 INTRODUCTION .. 5

1.1 ROLE OF DELIVERABLE... 5

2 USE CASE PROCESS DESCRIPTION ... 6

2.1 USE CASE ... 6
2.2 PROCESS .. 7

3 DETAILED DESCRIPTION OF THE USE CASE PROCESS .. 8

3.1 ACTIVITIES .. 8
3.1.1 System Behavioural Modelling ... 8
3.1.2 Architectural Design ... 9
3.1.3 AUTOSAR Application Development .. 11
3.1.4 AUTOSAR ECU Integration & Generation ... 12
3.1.5 Timing Analysis .. 13
3.1.6 Test Case Generation ... 14

3.2 INTEROPERABILITY CHALLENGES ... 15
3.3 STAKEHOLDERS & ROLES .. 16

4 IDENTIFICATION OF ENGINEERING METHODS .. 17

5 TERMS, ABBREVIATIONS AND DEFINITIONS ... 18

6 REFERENCES ... 20

7 ANNEX I: DETAILED DESCRIPTIONS OF THE ENGINEERING METHODS ... 21

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 5 of 24

1 Introduction

1.1 Role of Deliverable

This document has the following major purposes:

 Define the overall use case, including a detailed description of the underlying development

processes and the set of involved process activities and engineering methods

 Provide input to WP601 (IOS Development) required to derive specific IOS-related

requirements

 Provide input to WP602 (Platform Builder) required to derive adequate meta models

 Provide input to the other work packages in WP6 that contain the bricks associated with the

use case

 Establish the technology baseline with respect to the use case, and the expected progress

beyond (existing functionalities vs. functionalities that are expected to be developed in

CRYSTAL)

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 6 of 24

2 Use Case Process Description

2.1 Use Case
This use case addresses the development process at Volvo Trucks used when developing a new electronic
architecture including vehicle functions. In the current process at Volvo, tools for systems engineering and
for software development according to AUTOSAR [1] are important parts. The AUTOSAR architecture
addresses software standardization and enables a common market for automotive software components.

ArcCore, which is involved in this use case, provides a set of tools for AUTOSAR compliant software
development. Systemite provides a systems engineering tool called SystemWeaver that is currently used at
Volvo for requirements handling, functional design and early architectural and software design, like topology
and decomposition of functional components into software components, respectively. Volvo also investigates
the use of behavioural modelling, both at early stages to validate requirements, and at later stages for
software components verification and generation of code. ASD:Suite by VERUM might be used for the latter
case. Simulink is a tool that might be used for both mentioned types of modelling, although the developer
MathWorks is not part of the use case. Chalmers investigates the possibility to use sequence/scenario
modelling as a complement. Tools for timing analysis and test case generation are also investigated.
DTFSim by AIT, Rubus by Arcticus, and Orca by OFFIS might be used for this timing analysis; actually
Rubus is currently used at some parts of Volvo. MoMuT by AIT might be used for the test case generation.

The use case presented here is thus a mix of current process at Volvo together with methods and tools that
are interesting to investigate and may represent future possibilities. The purpose of the use case is to
describe a comprehensive integrated development process although not all parts of it necessarily will be
covered in depth within CRYSTAL. The main use case is divided into six sub-use cases, which details
different parts of the development process; see Figure 2-1 for an illustration. Although not explicitly depicted
in Figure 2-1, the sub-use cases can be performed in an iterative manner as required. Each sub-use case is
described in more detail in Section 3.

System

Behavioural

Modelling

Timing

Analysis Test Case

Generation

Architectural

Design

AUTOSAR

Application

Development

AUTOSAR

ECU Integration

& Generation

Figure 2-1: Use case overview.

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 7 of 24

To make the use case tangible it will be applied on a selected functionality called Adjustable Speed Limiter

(ASL) which is part of the Vehicle Speed Control and Limitation function. The ASL is used to let the driver

activate and adjust a set speed of the vehicle whereupon the engine torque is limited not to exceed the set

speed. The main principles of the ASL are simple, but it has a number of conditions for activation and

deactivation/overriding making it challenging enough so that the methodology can be fully validated. The

main reason for choosing this example, instead of the air suspension system mentioned in the CRYSTAL

description of work, is that ASL has a more complete set of requirements and that behavioural models (also

known as executable specifications) in Simulink exist for this example.

2.2 Process
The process is based on the V-model (specification of the system on the left-hand side of the V, including

requirements, design and implementation, and test and integration on the right-hand side) but uses a model-

based approach which enables early verification of system properties, before reaching the bottom of the V-

model. The activities contained in the sub-use cases are illustrated as mapped to the V-model in Figure 2-2.

Although not explicitly depicted in Figure 2-2, all activities and sequences of activities can be repeated an

arbitrary number of times as required, thus creating an iterative process.

Test Case Generation

Timing Analysis

AUTOSAR ECU integration & configuration

Architectural Design

System Behavioural Modelling

Activities

Vehicle
Level

Analysis
Level

Design
Level

Implementation
Level

Feature
Description

E2E Function
Modelling

E2E
Requirements

Modelling

Function
Modelling

Requirements
Modelling

Behavioural
Modeling

Behavioural
Modelling

Topology
Design

Function
Allocation

Network
Design

Software
Architecture

Design

Software
Architecture
Verification

Software
Implementation

Software
Management

Software
Allocation

RTE
Generation

BSW
Configuration

Timing
Requirements

Modelling
Timing

Modelling
Timing

Analysis

Test Criteria
Modelling

Test Case
Generation

Software
Requirements

Modelling

Left leg Right leg

Implementation
Integration and

Validation

Collaboration
Modelling

AUTOSAR Application Development

Figure 2-2: The activities of the use case, mapped to the V-model and to the six sub-use cases. The four
abstraction levels of EAST-ADL [2] are also shown, but only three of them are currently used: vehicle level,
design level and implementation level. The activities to the left are activities about specification
(requirements, design, implementation, etc.) of the system, while the connected activities to the right are
model based verification of the system. The unconnected activity to the right represents a conventional right-
hand-side V-model activity, in which the results from the implementation level is integrated and verified at the
design level. Finally, the dashed part represents a possibility that is not yet defined in the use case.

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 8 of 24

3 Detailed Description of the Use Case Process
Section 3.1 describes the six sub-use cases in detail, Section 3.2 outlines the interoperability challenges,
and Section 3.3 summarises the involved stakeholders.

3.1 Activities
The activities are shown in Figure 2-2 and are further explained here using illustrations of the work flow
together with a textual explanation. All used abbreviations and the involved tools developed by CRYSTAL
brick providers are summarized in Section 5. In the figures of this section, blue rounded boxes denote the
tools used and red arrows indicate the work flow. The work flow arrows may also imply a tool supported data
flow. Exactly which data flows that will be implemented remains to be investigated as part of CRYSTAL. Blue
lines are used to denote links between data. Entities within the blue rounded boxes represent different
assets. Note that although the red arrows indicate a certain work flow, the activities and involved steps can
be performed in an iterative manner as required.

3.1.1 System Behavioural Modelling

System behavioural modelling involves determining the vehicle functions, their decomposition into design
functions and modelling of their behaviour. An illustration can be seen in Figure 3-1; the numbered steps are
explained as follows. The first three steps are on the vehicle level of EAST-ADL and the remaining are on
design level.

Serena

e2e functionfeature e2e requirement
e2e requirement

e2e requirement

DC DC
DC

DC

responsibility requirement

functional requirement
functional requirement

responsibility requirement

2

4

3

SystemWeaver

Simulink

SEWS

8

System Behavioural Modelling

5

1

parameter

9

parameter

Architectural Design
Timing Analysis
Test Case Generation

non-functional requirement
non-functional requirement

6
A

7
A

Papyrus/
ScenarioTools 7

B

6
B

Figure 3-1: The system behavioural modelling sub-use case.

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 9 of 24

Steps involved:

1. The product planning department wants to introduce a new function. They provide a high-level

description of its features.

2. The function owner defines end-to-end (e2e) functions to describe features (to establish a “contract”

with product planning). The e2e functions can be broken down to use cases; the ASL example is

described by a use case.

3. The function owner defines high-level textual e2e requirements and links them to e2e functions. At

this level, there could be non-functional requirements as well, such as configurability and HMI

requirements.

4. The function owner defines functional components, denoted design components (DCs), to realise the

e2e functions. Today at Volvo, the DCs are not defined by the function owner though, but rather

taken from a predefined set of Logical Design Components (LDCs). The LDCs are design

components that are defined centrally by a group of system architects and that are grouped as, or

broken down from, Logical Design Architectures (LDAs).

5. The function owner defines high-level textual requirements denoted responsibility requirements on

functional components and links them to DCs. In addition, interfaces and variability on functional

components are also specified here.

6. Functional and non-functional requirements

 A. The algorithms and functionality fulfilling the responsibility requirements can be described as textual

algorithmic requirements called functional requirements. Textual definition of non-functional

requirements that cannot be included in behavioural models is also done and linked to the DCs.

 B. The algorithms and functionality fulfilling the responsibility requirements can also be refined into

behavioural models describing the intended behaviour on the interfaces of the functional

components. These models could either be used to validate the textual functional requirements, or

replacing them and thus to be treated as requirements. Links to the textual requirements and DCs

are made.

7. Collaborations and scenarios

 A. Collaborations are defined to describe a certain functionality described by an e2e function or a use

case in an e2e function. Hence, a collaboration may span several DCs. A collaboration is used for

“desktop simulation” (allows manual simulation by the user, no conventional tool supported

simulation is performed) to verify function chains; the ASL example is a collaboration. The behaviour

of a collaboration is described using Message Sequence Charts (MSCs) and scenarios where each

MSC has at least one scenario. A Scenario is a requirement and an MSC acts as a prototype of a

test case.

 B. Modal Sequence Diagrams (MSDs) may also be defined, directly from the textual requirements or as

a refinement from the Message Sequence Charts.

8. Parameters related to the behavioural models are extracted.

9. Behavioural models, functional components, MSCs, MSDs and requirements are available for other

sub-use cases.

3.1.2 Architectural Design

The architectural design involves the topology specification, which consists of Electronic Control Units
(ECUs) and the network (e.g. busses like CAN) that connects the ECUs, as well as the deployment of
functional components to the ECUs. Furthermore the communication infrastructure is created, to detail the
signals and frames on the network. Since it is important that the topology, function allocation and
communication infrastructure respect the functional timing requirements, these requirements are also
formulated as part of this activity. An illustration can be seen in Figure 3-2. In the following, the involved
design steps are presented; all steps are on the design level of EAST-ADL.

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 10 of 24

Architectural Design

1

DC DC
DC

DC

SystemWeaver

2

4

5

e2e timing
requirement

e2e timing
requirement

3

6

Timing Analysis
AUTOSAR Application Development

period

Figure 3-2: The architectural design sub-use case.

Steps involved:

1. The system topology is defined by the system architect. This physical structure is developed in
parallel with, and independent of, the logical model represented by the DCs.

Optionally, the system architect can model architecture alternatives and costs for ECUs. This could
be useful:

 When initially the system is developed and more than one design alternative is possible;

 When the system is developed in an iterative manner;

 When a “legacy system” should be extended with new functionalities (with less costs).

2. End-to-end latency requirements are formulated by the function developer using Logical Component
Sequences. A logical component sequence consists of a sequence of DCs and signals that
represent a functional timing dependency together with a maximum allowed latency for the
sequence. The DCs are also annotated with execution periods.

3. Functional components (=DCs) are allocated onto the ECUs. Links are introduced to indicate the
mapping.

4. The communication infrastructure is created. This involves the following parts:

a. The system signals (signals that should be transported on the bus) are calculated from the
allocated system model.

b. System signals are packaged into frames.

c. The frames are scheduled.

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 11 of 24

5. The output from the allocation and communication work is a complete AUTOSAR system model
describing the allocated system architecture. From this it is also possible to generate system models
per ECU as input to “AUTOSAR application development”; see Section 3.1.3.

6. Timing requirements, topology, functional allocation and communication infrastructure are available
for other sub-use cases.

3.1.3 AUTOSAR Application Development

The AUTOSAR application development involves the specification and implementation of AUTOSAR
software components (SWCs) based on the DCs in an AUTOSAR environment. This is typically done per
ECU, and often by a supplier. An illustration is shown in Figure 3-3. In the following, the involved steps are
presented; all steps are on the implementation level of EAST-ADL.

Simulink DC DC
DC

DC

SW requirement
SW requirement

SystemWeaver

3

SWC
SWC

SWC

SWC

SWC

SWC Builder

SWC
SWC

SWC

SWC

SWC

Simulink, ASD:Suite, C-code

5

AUTOSAR
ECU Integration & Configuration

6

SWC
SWC

SWC

SWC

SWC

Clearcase

1

ASD:Suite

4
B

4
A

SystemWeaver

compositions

BIN 7

SW comp.
SW comp.

SW comp.

SW comp.

SW comp.

2

AUTOSAR
Application Development

5

Figure 3-3: The AUTOSAR application development sub-use case.

Steps involved:

1. A system architecture model (DCs + topology and signal interfaces), requirements and behavioural

models of the functional components exist.

2. The architecture and behavioural models are made available to the application developer. For in-

house development this may mean direct access to the models and tools used by system engineers.

For external suppliers, the same approach is assumed here, but in practice specifications in form of

documents or standard data formats may be used instead (this also means that the system architect

must in practice later integrate and validate the AUTOSAR models from different suppliers from a

system perspective; this is covered by the activity “implementation integration and validation” and the

related engineering method “validate implementation towards design”, see Figure 2-2 and Section 4

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 12 of 24

respectively, but is not depicted here). Software (SW) requirements are formulated and a

decomposition of DCs into SW components is done. SW requirements are linked to the SW

components, and SW components are linked to the DCs.

3. The SW components are modelled as AUTOSAR software components (SWCs). SWCs are linked to

the DCs and SWCs are linked to the SW requirements.

4. SWC behaviour and implementation

 A. For selected components, component behaviour is modelled and is used to verify for completeness
and correctness. The models are based on the SWC structure and are linked to the related SW
requirements.

 B. The behaviour of the SWCs is implemented (i.e. code generation or manual coding).

5. The application developer makes the implemented and interconnected SWCs available in a

composition (per functional component) for “AUTOSAR ECU integration & generation”; see Section

3.1.4. This may be achieved through direct tool interaction or using AUTOSAR XML-files together

with binary files or object code.

6. SWC compositions are linked to functional components.

7. Binaries, configuration files and source code are published, that is, checked in for version

management.

3.1.4 AUTOSAR ECU Integration & Generation

AUTOSAR ECU integration and generation involves the integration of software components in an AUTOSAR
platform. This includes generation and configuration of platform services. An illustration is shown in Figure
3-4. In the following, the involved steps are presented; all steps are on the implementation level of EAST-
ADL.

SWC
SWC

SWC

SWC

SWC

ClearCase

SWC
SWC

SWC

SWC

SWC

Extract Builder

2

3

BSW Builder

4

RTE Builder

SWC
SWC

SWC

SWC

SWC

BSW BSW

SWC
SWC

SWC

SWC

SWC

AUTOSAR ECU
Integration & Generation Timing Analysis

Test Case Generation

6
5

ECU extract

composition

7BIN

SystemWeaver

1

Figure 3-4: The AUTOSAR ECU integration and generation sub-use case.

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 13 of 24

Steps involved:

1. DCs have been implemented as compositions of interconnected SWCs. Source code and/or object

code are available. The communication infrastructure including signal packaging and allocation

information is available from the sub-use case “architectural design”; see Section 3.1.2. Additional

diagnostic specification and scheduling requirements may be available as well, for instance from the

SEWS tool; see Figure 3-1.

2. The compositions are integrated into one ECU Extract per ECU by the ECU integrator. The ECU

extract in Extract Builder is linked to corresponding ECU element in SystemWeaver.

3. All needed Basic SW (BSW) modules are configured.

4. The Run-Time Environment (RTE) is configured and so called runnables are mapped to operating

system tasks.

5. Configuration parameters and relevant data are made available to the sub-use cases “timing

analysis” and “test case generation”; see Section 3.1.5 and 3.1.6, respectively.

6. Source code for RTE, BSW and other AUTOSAR-related platform artefacts are generated.

7. The AUTOSAR architecture, generated code and binaries are published, that is, checked in for

version management.

3.1.5 Timing Analysis

Timing analysis particularly involves verification of the timing requirements but could also include analysis of
the timing behaviour. An illustration is shown in Figure 3-5; the numbered steps are explained as follows.
The steps are done on design level or implementation level of EAST-ADL, depending on the characteristics
and capabilities of the tools, and on the information available.

Timing Analysis

DC DC
DC

DC

SystemWeaver1

e2e timing
requirement

e2e timing
requirement

DC DC
DC

DC

Rubus, DTFSim, Orca

WCET3

AUTOSAR ECU
Integration & Generation

BSW BSW

4

2

period

Figure 3-5: The timing analysis sub-use case.

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 14 of 24

Steps involved:

1. Functional components, timing requirements, system topology, and communication infrastructure
have been defined in the sub-use cases “system behavioural modelling” and “architectural design”;
see Section 3.1.1 and 3.1.2, respectively.

2. System model, topology and timing requirements are made available for the timing analysis tools.

(Optional) For the Orca tool, alternative architectures and costs/safety requirements should also be
available in order to optimize the task deployment with respect to costs as well as timing and safety
analysis.

3. Functional components are annotated with important timing properties - possibly based also on data
from the sub-use case “AUTOSAR ECU integration & generation”; see Section 3.1.4. Corresponding
model elements in the timing tool are linked to the elements in the system modelling tool (e.g. DCs,
periods).

DTFSim needs besides the topology, network parameters (communication infrastructure plus details
from the AUTOSAR ECU Integration & Generation), and the end-to-end latency requirements, also
component parameters. Some of the components parameters are available but other parts such as
Worst Case Execution Time (WCET) need to be assumed based on rules of thumb.

Rubus needs similar information as for DTFSim. Timing information from each ECU like periods,
priorities and WCETs are needed, where the two latter need to be assumed based on rules of
thumb. As part of this use case it will also be investigated whether or not Rubus can be adjusted and
utilized to perform timing analysis with less precision on higher abstraction levels, that is, earlier on
in the development process; in that case, the use case description will be complemented
accordingly.

For Orca to be able to perform optimisation regarding architecture and cost, different alternative
design architectures with different costs must be available. Optimized solutions regarding
architecture design and costs are then provided.

4. The system is analysed for compliance with the end-to-end latency requirements and the results are
linked with the e2e timing requirements.

The DTFSim tool is a discrete-event simulation environment which focuses on design and analysis
of the network architecture of electronic control systems. For this purpose, so-called event chains
from sensors to actuators, including buses (CAN, FlexRay or Ethernet), are modelled and simulated.

The Rubus tool is not based on simulations but performs pre-runtime analysis (different types of
response-time analysis as well as end-to-end latency analysis). It can analyse data based on EAST-
ADL and it supports CAN buses today; Ethernet support is under investigation.

The Orca tool can perform scheduling analysis and architectural optimisation. In the latter case, links
back to the architecture is made. For the timing analysis, exact results are provided. Automatic
deployment of tasks based on timing analysis results can be also envisaged.

3.1.6 Test Case Generation

Test case generation involves the generation of test cases based on requirements and behavioural models.
An illustration can be seen in Figure 3-6. In the following, the involved design steps are presented; all steps
are on the implementation level of EAST-ADL.

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 15 of 24

Test Case Generation

Simulink

1 DC DC
DC

DC
SW requirement

SW requirement

SystemWeaver

DC DC
DC

DC

contract

contract

3

MoMuT

test case
test case

test case
4

5

BSW BSW

AUTOSAR ECU
Integration & Generation

SystemWeaver

2

Papyrus/
ScenarioTools

5

test case

Figure 3-6: The test case generation sub-use case.

Steps involved:

1. Behavioural models, requirements, MSCs, MSDs, and functional components have been defined in

the sub-use case “system behavioural modelling”; see Section 3.1.1.

2. The models are made available to the test case tool.

3. The system models are augmented with information needed for test case generation – possibly

using data from the sub-use case “AUTOSAR ECU integration and generation”; see Section 3.1.4.

Corresponding model elements in the test case tool are linked to the elements in the system

modelling tool (e.g. DCs).

4. Test cases are generated on DC and possibly integration level. Existing test cases from prior

iterations are reused as far as possible.

5. Test cases are linked to requirements, MSCs, MSDs, and/or behavioural models. Furthermore, the

full test cases are made available to SystemWeaver. Note that performing the actual tests is not in

the scope of this use case.

3.2 Interoperability Challenges
The interoperability challenges in the Volvo use case come in two forms: i) establishing and maintaining data
links across tools, and ii) exchanging whole models or parts of models across tools. The first form is
necessary to enable traceability and consistency across tools. This means that it should be possible to
denote e.g. that two modelling entities in different tools in fact represent the same entity or that they are
related somehow. In a central information model these kinds of links are typically already present, e.g. the
SystemWeaver meta-model used in the Volvo use case contains many links already. The challenge is to
extend these links to also include other tools not using the SystemWeaver meta-model. However, this form

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 16 of 24

of interoperability assumes that the models in the different tools have been made independently from each
other. That is, before the links can be added, individual models must exist in the tools of interest. Typically
these models are manually constructed. In many cases it would be more efficient to be able to generate a
model skeleton from an already existing model. This would not only speed up the model construction, it
would also enforce consistency of the generated model with the existing. Moreover, the generated model
could be formed according to well-defined guidelines, which simplifies understanding of the model and
automated analysis. Therefore, the Volvo use case considers also the second form of interoperability: model
exchange. Due to that a large portion of the system data is already available in the SystemWeaver meta-
model and this meta-model is based on an early version of EAST-ADL, the intention is to use EAST-ADL as
the exchange format between tools. For lower abstraction levels, AUTOSAR formats will be used.

3.3 Stakeholders & Roles
The stakeholders explicitly mentioned in the described process, together with their roles, are shown in Table

3-1.

Table 3-1: Main stakeholders and their roles.

Stakeholders Role

Product planning Decides the vehicle features

Function owner Specifies the vehicle functionality

Application developer Implements the vehicle functionality in software

System architect Decides on topology and mapping of functionality to ECUs

ECU integrator Integrates the SW on one ECU

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 17 of 24

4 Identification of Engineering Methods
An Engineering Method describes how an activity can be conducted using guidelines, tools and languages

that interoperate with each other. It can be applied to one or more activities. All identified engineering

methods are shown in Table 4-1. These engineering methods denote possibilities of the involved bricks and

tools related to this use case, but note that all these engineering methods may not necessarily be fully

implemented.

Table 4-1: Overview of the identified engineering methods.

Name Purpose

Requirements Modelling Model the textual requirements (from SystemWeaver) in Simulink

Requirements Modelling with Modal
Sequence Diagrams

Model the textual requirements (from SystemWeaver) using
scenarios

Allocation of Design Functions
To allocate the design components to the target where they will
run

Network Design To create a communication matrix

Define End-to-End Function
Variability To define the variability of end-to-end functions

Create AUTOSAR Interface
Contract

To Export AUTOSAR Interface Definitions as the "interface
contract" towards suppliers

Validate Implementation towards
Design

To validate that the implemented Software complies with the
Design specification

Design AUTOSAR SW Application
Architecture

The application developer wants to create software components
from system design in SWC Builder

SW Component Modelling and
Verification

The application developer wants to model the external and
internal behaviour of the SW components and ensure
completeness and correctness.

Generate ASD SW Components

The application developer wants to generate correctly working
source code from ASD models and integrate this in the software
environment

AUTOSAR ECU Integration - Extract
The ECU integrator creates an ECU Extract from the software
components in Extract Builder

AUTOSAR ECU Integration - RTE
The ECU integrator configures an RTE for the ECU in RTE
Builder and BSW Builder

AUTOSAR ECU Integration - BSW
The ECU integrator configures the BSW for the ECU in BSW
Builder

Timing Analysis
The System Designer wants to check if the system design meets
its timing requirements

Test Case Generation
Provide test cases from requirements model for component or
system testing

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 18 of 24

5 Terms, Abbreviations and Definitions

Table 5-1 shows abbreviations and acronyms used throughout the report and Table 5-2 shows the involved

tools that are developed by CRYSTAL brick providers.

Table 5-1: Abbreviations and acronyms.

ASL Adjustable Speed Limiter

BSW Basic Software

e2e End-To-End

ECU Electronic Control Unit

DC Design Component

MSC Message Sequence Chart

MSD Modal Sequence Diagram

RTE Run-Time Environment

SW Software

SWC AUTOSAR Software Component

WCET Worst Case Execution Time

Table 5-2: Tools, used within the use case, which are developed by CRYSTAL brick providers.

Tool Short Description

Arctic Studio

(SWC Builder,

Extract Builder,

BSW Builder,

RTE Builder, etc.)

The Arctic Studio tool chain provides a complete embedded software development

environment for automotive embedded software based on the open industry-leading

standard AUTOSAR. The tool chain supports all stages in a development project and

provides tools for different types of tasks; application development, embedded platform

development and system integration.

ASD:Suite The ASD:Suite is used to define and (automatically) verify discrete event models, and

to (automatically) generate fully executable source code from these models. The

models specify both structure and behaviour of services and of components that

implement and use these services.

DTFSim The Data Time Flow Simulator DTFSim is a discrete-event simulation environment. Its

main application areas are design, simulation and performance analysis of distributed

electronic control systems.

MoMuT The MoMuT family of automated test case generation tools derives test cases from test

models. The test case generation approach uses mutations and provides a test suite

that achieves requested mutation coverage. Currently, UML and timed automata are

available as front end languages; support for formalized requirements and for SCADE is

under development.

Orca Orca is an integrated development environment for modelling and analysing real-time

applications. Orca supports the modelling of architecture and relevant requirements for

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 19 of 24

the timing use case, as well as triggering state based timing analysis and optimization

tools.

Rubus Rubus is a methodology and concept for designing, perform pre-runtime and post-

runtime analysis and synthesize a complete run-time system. The Rubus concept is to

support a software engineer to create highly efficient and robust real-time systems

using state of the art analysis algorithms, tools and methodologies.

SystemWeaver SystemWeaver conforms to the ideas of Model Based Development where the actual

system building blocks or components act as information carriers. The SystemWeaver

platform is an important part, being the infrastructure used for maintaining consistency

in design information, distribution of consistent design information, and integration of

design processes.

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 20 of 24

6 References

[1] “AUTOSAR”, [Online], Available: http://www.autosar.org

[2] “EAST-ADL”, [Online], Available: http://www.east-adl.info/

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 21 of 24

7 Annex I: Detailed Descriptions of the Engineering Methods

The engineering methods are captured by the Excel file, which is inserted below.

Name Implementation Model Name Name ECU Configuration Model

Generic Type:

(Tool or language independend

type)

Flat ECUExtract Generic Type:

(Tool or language independend

type)

Generic Type:

(Tool or language independend

type)

BSW Configuration

Required Properties:

(Information required in

interactions between steps)

Data following Autosar meta-

model 4.1.x

Required Properties:

(Information required in

interactions between steps)

Provided Properties:

(Information provided in

interactions between steps)

Data following the Autosar

meta-model

Name Diagnostic definition Name BSW Configuration Code

Generic Type:

(Tool or language independend

type)

PID, DTC, FF definitions Generic Type:

(Tool or language independend

type)

C-code

Required Properties:

(Information required in

interactions between steps)

Data following ODX format Provided Properties:

(Information provided in

interactions between steps)

Name Name

Generic Type:

(Tool or language independend

type)

Generic Type:

(Tool or language independend

type)

Required Properties:

(Information required in

interactions between steps)

Provided Properties:

(Information provided in

interactions between steps)

Description & Interoperability Additional Constraints: Description & Interoperability Additional Constraints:

 

Artefacts considered for Interoperability Artefacts considered for Interoperability

Description & Interoperability Additional Constraints:

Containing Commuincation matrix

Description & Interoperability Additional Constraints: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description & Interoperability Additional Constraints:

Notes: Notes: Notes:

Artefacts Required as inputs of the Activities
Artefacts used internally within the Activities

(optional)
Artefacts Provided as outputs of the Activities

Engineering Method: UC3.1_AUTOSARECUIntegration_BSW_1

Purpose: The ECU integrator configures the BSW for the ECU in BSWBuilder

Comments:

Pre-Condition
Engineering Activities

(made of steps)
Post-Condition

An ECU Extract with communication matrix

Definition of diagnostics parameters

Hardware definition and requirements

1. Import Communication Matrix from EcuExtract to get initial

communication stack configuration

2. Import ODX file to get initial diagnostics definition

3. Create BSW Template from EcuExtract data

4. Configure all needed BSW Modules based on the hardware

requirements and selected hardware

5. Validate configuration for consistency and needs from Extract

6. Generate configuration and service components

A configured BSW in the ECU Configuration model

Generated BSW configuration in C-code

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 22 of 24

Name Implementation Model Name Name Ecu Configuration Model

Generic Type:

(Tool or language independend

type)

Flat ECUExtract Generic Type:

(Tool or language independend

type)

Generic Type:

(Tool or language independend

type)

RTE Configuration

Required Properties:

(Information required in

interactions between steps)

Data following Autosar meta-

model 4.1.x

Required Properties:

(Information required in

interactions between steps)

Provided Properties:

(Information provided in

interactions between steps)

Data folowing the Autosar meta-

model 4.1.x

Name ECU Configuration Model Name RTE code

Generic Type:

(Tool or language independend

type)

BSW module configuration Generic Type:

(Tool or language independend

type)

C-code

Required Properties:

(Information required in

interactions between steps)

Data following Autosar meta-

model 4.1.x

Provided Properties:

(Information provided in

interactions between steps)

Name Service Configuration Model Name Binary

Generic Type:

(Tool or language independend

type)

BSW Service components Generic Type:

(Tool or language independend

type)

Elf-file

Required Properties:

(Information required in

interactions between steps)

Data following Autosar meta-

model 4.1.x

Provided Properties:

(Information provided in

interactions between steps)

Description & Interoperability Additional Constraints:

 

Artefacts considered for Interoperability Artefacts considered for Interoperability

Description & Interoperability Additional Constraints: Description & Interoperability Additional Constraints: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description & Interoperability Additional Constraints:

Notes: Notes: Notes:

Artefacts Required as inputs of the Activities
Artefacts used internally within the Activities

(optional)
Artefacts Provided as outputs of the Activities

Engineering Method: UC3.1_AUTOSARECUIntegration_RTE_1

Purpose: The ECU integrator configures an RTE for the ECU in RTEBuilder and BSWBuilder

Comments:

Pre-Condition
Engineering Activities

(made of steps)
Post-Condition

A complete flat ECU Extract

A BSW Configuration

1. Map the runnables in the EcuExtract to Tasks in the

OSConfiguration

2. Connect the service ports of the software components to the

BSW modules

3. Validate the configuration for consistency

4. Generate the source code of the RTE

5. Compile and link source code

A configured RTE in the ECU Configuration model

A generated RTE in source code.

A binary of the ECU

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 23 of 24

Name System model Name Name Verification result

Generic Type:

(Tool or language independent

type)

Architecture model, Design

components, Optional:

alternative architectures

Type: Generic Type:

(Tool or language independent

type)

Analysis report, Simulation

results, Optional: cost-

optimized deployment of tasks

Required Properties:

(Information required in

interactions between steps)

Data following the EAST-ADL

meta-model

Properties: Provided Properties:

(Information provided in

interactions between steps)

Data following the EAST-ADL

meta-model

Name Timing requirement Name Name Timing information

Generic Type:

(Tool or language independent

type)

Formal timing requirement Type: Generic Type:

(Tool or language independent

type)

Formal timing requirement

Required Properties:

(Information required in

interactions between steps)

Data following the TADL2 meta-

model (included in EAST-ADL)

Properties: Provided Properties:

(Information provided in

interactions between steps)

Data following the TADL2 meta-

model (included in EAST-ADL)

Name Optional: Cost requirements Name Name

Optional: Architecture/costs

optimization

Generic Type:

(Tool or language independent

type)

Formal cost objectives Type: Generic Type:

(Tool or language independent

type)

Cost-optimized deployment

Required Properties:

(Information required in

interactions between steps)

Data following the EAST-ADL

meta-model

Properties: Provided Properties:

(Information provided in

interactions between steps)

Data following the EAST-ADL

meta-model

Name Optional: Safety requirements Name Name Optional: Safety information

Generic Type:

(Tool or language independent

type)

Formal safety requirements Type: Generic Type:

(Tool or language independent

type)

Deployment of tasks which

satisfies the safety constraints,

analysis report

Required Properties:

(Information required in

interactions between steps)

Data following the EAST-ADL

meta-model

Properties: Provided Properties:

(Information provided in

interactions between steps)

Data following the EAST-ADL

meta-model

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Artefacts Required as inputs of the Activities
Artefacts used internally within the Activities

(optional)
Artefacts Provided as outputs of the Activities

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints:

 

Artefacts considered for Interoperability Artefacts considered for Interoperability

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Description: Description & Interoperability Additional Constraints:

System model is available in SystemWeaver (includes topology,

design components, signals and mapping of components to

ECUs)

Timing requirements have been formulated in SystemWeaver

(includes timing chains, end-to-end latency requirements, and

execution periods of design components)

Optional: Alternative Architectures and safety/costs

requirements/constraints (plus already existing preconditions).

1. The engineer presses "Timing Analysis" button in

SystemWeaver client.

2. The timing analysis tool is launched.

3. The data needed to perform the timing analysis (i.e. artefacts

in pre-condition) is transferred from SystemWeaver to the timing

tool.

4. The engineer adds additional timing information in the timing

tool e.g. execution times, simulation parameters.

5. The engineer uses the timing analysis tool to check if the

timing requirements are met.

6. The added information and verification results are transferred

back to SystemWeaver and stored in the system model.

Verification results and additional timing information available

in SystemWeaver.

Optional: Give optimized results regarding architecture

design/costs.

Notes: Notes: The timing analysis tool could be RubusDesigner or

DTFSim e.g. to be chosen in menu. An alternative approach is to

keep the information also in the timing tool rather than only in

SystemWeaver.

Optional (OFFIS' tool): Can be employed in the optimization of

the design architecture/costs as well as for timing analysis (exact

timing analysis).

Notes:

Engineering Method: UC3.1_TimingAnalysis_1

Purpose: The System Designer wants to check if the system design meets its timing requirements

Comments: This is preferably done at design level, before software is available.

Pre-Condition
Engineering Activities

(made of steps)
Post-Condition

D301.010 Use – Case Definition

Version Nature Date Page

V1.0 R 2013-10-29 24 of 24

Name SW behavioral model Name Name Test cases

Generic Type:

(Tool or language independend

type)

Test model Type: Generic Type:

(Tool or language independend

type)

Test cases

Required Properties:

(Information required in

interactions between steps)

- ID

- language

- related DC(s)

- relations from requirements to

 model elements

Properties: Provided Properties:

(Information provided in

interactions between steps)

- ID

- generation date and time

- mapping from test cases to

 related requirements

Name Name Name

Generic Type:

(Tool or language independend

type)

Type: Generic Type:

(Tool or language independend

type)

Required Properties:

(Information required in

interactions between steps)

Properties: Provided Properties:

(Information provided in

interactions between steps)

Name Name Name

Generic Type:

(Tool or language independend

type)

Type: Generic Type:

(Tool or language independend

type)

Required Properties:

(Information required in

interactions between steps)

Properties: Provided Properties:

(Information provided in

interactions between steps)

 

Artefacts considered for Interoperability Artefacts considered for Interoperability

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Artefacts Required as inputs of the Activities
Artefacts used internally within the Activities

(optional)
Artefacts Provided as outputs of the Activities

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Test cases are abstract and need to be mapped to the test

environment before execution

1. Test model available

2. Prior test cases available (if they shall be taken into account on

generation)

1. The engineer presses "Test Case Generation" button in

SystemWeaver client.

2. Test case generation - Job interface is opened in MoMuT.

3. Reference to test model is prefilled

4. Selection of functionality to cover (by DC, test model subset,

requirements ID list)

5. Decision if pre-existing test cases shall be taken into account

(+ entry of reference to test cases)

6. Start of test case generation job

7. Test cases are generated and uploaded automatically

1. Test cases available in SystemWeaver.

2. Traceability to requirements established

3. Test coverage computed (model coverage) and reported

Notes:

Test model captures the specified behavior

Notes: Notes:

Engineering Method: UC3.1_TestCaseGeneration_1

Purpose: Provide test cases from requirements model for component or system testing

Comments: Focuses on functional testing

Pre-Condition
Engineering Activities

(made of steps)
Post-Condition

