
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE CRYSTAL CONSORTIUM. NEITHER THIS

DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED BY ANY

MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE CESAR

CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT. THE

RESEARCH LEADING TO THESE RESULTS HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S SEVENTH

FRAMEWORK PROGRAM (FP7/2007-2013) FOR CRYSTAL – CRITICAL SYSTEM ENGINEERING ACCELERATION JOINT

UNDERTAKING UNDER GRANT AGREEMENT N° 332830 AND FROM SPECIFIC NATIONAL PROGRAMS AND / OR FUNDING

AUTHORITIES.

CRitical SYSTem Engineering AcceLeration

Milestone Report – V1

D302.011

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 2 of 42

DOCUMENT INFORMATION

Project CRYSTAL

Grant Agreement No. ARTEMIS-2012-1-332830

Deliverable Title
Milestone Report – V1

D302.011

Deliverable No. Error! No text of specified style in document.

Dissemination Level CO

Nature R

Document Version V1.0

Date 2014-01-29

Contact Rüdiger Diefenbach

Organization DAIMLER

Phone +49 160 8689158

E-Mail ruediger.diefenbach@daimler.com

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 3 of 42

AUTHORS TABLE

Name Company E-Mail

Diefenbach, Hopp, Reuter Daimler
{ruediger.diefenbach,

daniel.hopp,christian.c.reuter}
@daimler.com

Lodwich, Sauter ITK Engineering
{aleksander.lodwich,

daniel.sauter}
@itk-engineering.de

Bräuchle, Kampffmeyer PTC Parametric Technology
{cbraeuchle,hkampffmeyer}

@ptc.com

Hartig, Karbe TU Berlin
{tu_berlin.hartig,tu_berlin.kar

be}@daimler.com

Bogomolov, Dietsch Uni Freiburg
{dietsch,bogom}

@informatik.uni-freiburg.de

REVIEW TABLE

Version Date Reviewer

Internal
Review

2014-01-14 Hopp (DAI)

External
Review

2014-01-22 Melzi (CRF)

External
Review

2014-01-22 Stieglbauer (AVL)

CHANGE HISTORY

Version Date Reason for Change
Pages

Affected

0.1 2014-01-09 Initial creation all

0.2 2014-01-16 Changes after internal review all

0.3 2014-01-24 Consolidation after external reviews all

1.0 2014-01-28 Final version after external review all

CONTENT

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 4 of 42

1 INTRODUCTION ... 7

1.1 ROLE OF DELIVERABLE .. 7

1.2 RELATIONSHIP TO OTHER CRYSTAL DOCUMENTS ... 7

1.3 STRUCTURE OF THIS DOCUMENT .. 7

2 USE CASE PROCESS DESCRIPTION .. 8

2.1 USE CASE ... 8

2.2 PROCESS .. 11

2.2.1 Analysis of Existing Process Activities ... 11

2.2.2 Definition of Target Process Activities ... 11

3 DETAILED DESCRIPTION OF THE USE CASE PROCESS .. 17

3.1 ACTIVITIES .. 17

3.1.1 Kick-off .. 17

3.1.2 Engineering Methods .. 17

3.1.3 Analysis of ISO 26262 Compliance .. 17

3.1.4 ADSE Development Process Definition ... 18

3.1.5 Tool Introduction into PTC Integrity .. 18

3.1.6 Setup of Project Management Tool “Backlog”, based on PTC Integrity 18

3.1.7 OSLC Workshop ... 18

3.1.8 Tool Alternatives .. 19

3.1.9 Contributions to Public Use Case ... 19

3.1.10 Deliverable Reviewing .. 19

3.1.11 Dissemination Activities ... 19

3.2 INTEROPERABILITY CHALLENGES – IOS CONTRIBUTIONS .. 20

3.2.1 Engineering Methods .. 20

3.2.2 IOS-Relevant Tool Interactions and Tool Interfaces.. 20

3.2.3 Possible Requirements towards IOS ... 23

3.2.4 Possible Requirements for OSLC... 25

3.2.5 Logical Architecture of IOS-based Projects .. 25

3.3 ROADMAP.. 28

4 CONCEPTUAL WORK .. 30

4.1 ENGINEERING METHODS ... 30

4.1.1 List of Engineering Methods Sorted by Topic ... 30

4.1.2 Engineering Methods in the V-Model ... 31

4.1.3 Detail View of an Engineering Method ... 32

4.2 CONCEPT FOR MAPPINGS.. 33

4.2.1 Approach .. 34

4.2.2 Example of Tracing Framework .. 36

5 TERMS, ABBREVIATIONS AND DEFINITIONS .. 37

6 ANNEX .. 39

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 5 of 42

6.1 ANNEX I: ENGINEERING METHODS .. 39

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 6 of 42

Content of Figures

Figure 1 - Testing Ground – Assistance System ... 8

Figure 2 - Testing Ground – Misuse .. 9

Figure 3 - Model of Testing Ground with Example of a Trajectory ... 9

Figure 4 - Equipment inside the Car .. 10

Figure 5 - Control Station (Tower) ... 10

Figure 6 - Target Process Activities: Tasks and their Work Products .. 15

Figure 7 - Activity Workflow of Target Process represented as UML Activity Diagram 16

Figure 8 - (Rough) Development Process based on the V-Model .. 21

Figure 9 - Interoperability Technologies simplify Interoperability between Users 25

Figure 10 - Project Roadmap .. 28

Figure 11 - Engineering Methods assigned to different Steps in the V-Model 32

Figure 12 - Detailed View for the Engineering Method “Create New Requirement Entry” 33

Content of Tables

Table 1 - Process Activities of the Target Process with their In- and Outputs 14

Table 2 - Mapping Process/Tool ... 22

Table 3 - Identification and Classification Templates ... 35

../../../Users/danihop/AppData/Local/Temp/LCFEM/%7b521A112B-2171-4F99-B706-7D71CA89F920%7d/CRYSTAL_D_302_011_Final_V1.doc#_Toc378669179
../../../Users/danihop/AppData/Local/Temp/LCFEM/%7b521A112B-2171-4F99-B706-7D71CA89F920%7d/CRYSTAL_D_302_011_Final_V1.doc#_Toc378669181
../../../Users/danihop/AppData/Local/Temp/LCFEM/%7b521A112B-2171-4F99-B706-7D71CA89F920%7d/CRYSTAL_D_302_011_Final_V1.doc#_Toc378669182
../../../Users/danihop/AppData/Local/Temp/LCFEM/%7b521A112B-2171-4F99-B706-7D71CA89F920%7d/CRYSTAL_D_302_011_Final_V1.doc#_Toc378669183

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 7 of 42

1 Introduction

1.1 Role of deliverable

This document concludes activities and results within WP 3.2. It is meant for transportation of WP

results back to SP 3 (automotive subproject) and the overall CRYSTAL project.

1.2 Relationship to other CRYSTAL Documents

This document is related to the corresponding deliverables D307.011 in WP 3.7 (automotive public

use case) and D308.011 in WP 3.8 (automotive ontology).

1.3 Structure of this document

This deliverable is structured as follows:

 General information about this use case (chapter 2)

 Development of the process structure and its integration into the tool environment

(chapter 3)

 Engineering methods and Concept for Mappings (chapter 4)

 Additional Information (Terms, Abbreviations, Annexes in chapter 5 & 6)

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 8 of 42

2 Use Case Process Description

2.1 Use Case

As part of the automotive domain (SP3) the Daimler AG provides the use case 3.2 as an

automotive OEM. The role of Daimler is “user of development tool environment”. Besides Daimler

other partners with a different background are involved in this use case like universities (TU Berlin,

University of Freiburg), an engineering consultant (ITK Engineering AG) and a tool vendor

(Parametric Technology GmbH).

The targets of this SP3 use case are to define SP6 requirements on user level derived of a

“Daimler development project” and the evaluation of the SP6 results implemented in a prototype

application in the project context.

This “Daimler development project” is about the development of a host computer (next generation)

for automated driving. The host computer is embedded in a big system called ADSE (Autonomous

Driving in Specific Environments) and controls the vehicle to support testing activities of driver

assistant systems with aspects of reproducible driving of trajectories, operation together with a

partner car and operation with or without a driver in the car. The host computer is not part of a

series vehicle.

Figure 1 - Testing Ground – Assistance System

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 9 of 42

Figure 2 - Testing Ground – Misuse

Figure 3 - Model of Testing Ground with Example of a Trajectory

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 10 of 42

Figure 4 - Equipment inside the Car

Figure 5 - Control Station (Tower)

Figures 1-5 illustrate a typical use case for ADSE, testing driver assistance functions on a proving

ground for autonomous driving.

This video gives a short impression of the latest ADSE generation.

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 11 of 42

Link: http://www.youtube.com/watch?v=PPVrqyy6nXk

The current applied procedures and their integration into the tool environment should be improved

during the project. Different tools and manual activities occur in this development process. Thus,

the target is to raise the interoperability for a continuous, traceable and efficient development. The

solutions have to be applicable so that the mentioned development project will be able to apply the

processes, methods and tools after finalisation of the CRYSTAL project, too. Furthermore, for other

Daimler projects, it should be possible to easily adapt the solutions for an efficient development

process.

2.2 Process

As the host computer does not have to be newly developed, but extended and refined, the existing

process had to be analysed and improved in a way such that later adjustments and modifications

can be made easily. According to the “Interoperability Needs Capturing Process” the examined

process can be described as a use case scenario as follows:

Given an existing system architecture and implementation of the host computer, a new

request from a customer, i.e. the ADSE operator, demands an extension or change of the

existing system. This means, that new functionality needs to be provided while using the

same technology. This process includes the application of several tools and the creation or

modification of several development artefacts along the way.

This use case scenario, namely “new customer request”, constitutes the process that represents

the foundation for the subsequent detailed analysis.

2.2.1 Analysis of Existing Process Activities

The current practice of the underlying process has been analysed to gain valuable insights with the

aim of achieving a sustainable enhancement. The development is based on the V-model with

additional project and product layers. The rough breakdown of the development process is

depicted in Figure 8 (chapter Engineering Methods). The current practice is conducted basically

according to this V- Model.

During the process analysis different tasks performed in the existing approach have been written

down and analysed in order to complete the overall process. These tasks are process activities

that can be assigned to the particular items/steps in the afterimage. The analysis of the overall

process showed potential for improvement in order to efficiently facilitate the advantages that

extensive tool interoperability can offer. In this document, we decided to focus on the enhanced

target process. Therefore, the obsolete development activities are not shown in this subsection.

2.2.2 Definition of Target Process Activities

As mentioned above, we defined a set of target process activities for the examined use case

scenario “new customer request”. Process activities can be seen as tasks with optional or

http://www.youtube.com/watch?v=PPVrqyy6nXk

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 12 of 42

mandatory input and output artefacts. A list of process activities with their in- and outputs are listed

in Table 1. Each of these activities can be assigned to the consecutively numbered steps in Figure

9. The list does not provide a sequential order yet. However, even though no timed sequence is

stipulated, it implies a suggested sequence due to dependencies between evolving artefacts, e.g.

Plan Release (11) can only be performed after the Effort and Dependencies have been estimated

in the corresponding activity (10).

Note that the subsequent list does not provide a complete catalogue of all process activities but a

subset with the most significant process activities, mostly related to the steps 1-5 and to the

additional layers Q0-Q4 in Figure 8

 Process Activities Input Output

1 Collect Requirement Delta Customer Request Informal Requirement

2 Formalise Requirement Informal Requirement

Glossary

Formal Requirement

Glossary

3 Assign Abstraction Level To

Requirement

Formal Requirement Formal Requirement

4 Derive Sub-Requirement Formal Requirement Requirements Tree/Net

5 Define Top-Level Concept of

Architecture

Frame Conditions (Customer

Needs, Technologies,

Standards, Budget, …)

Top Level Concept

(Architecture)

6 Check Consistency Requirements Tree/Net Requirements Tree/Net

7 Document Acceptance

Criteria

Informal Requirement

Formal Requirement

Acceptance Criteria

Document

8 Assign Variation Points To

Requirements

Formal Requirement

System Components

Feature List

Feature Tree

Formal Requirement

9 Extend Feature Tree Feature Tree

Formal Requirement

Feature Tree

10 Estimate Effort Requirements Tree/Net Effort and Dependencies

11 Plan Release Effort and Dependencies

Resources

Release Plan

12 Controlling Release Plan Reports on Issue and Change

Level

13 Define System Level

Concept

Requirements Tree/Net

System Level Concept

System Level Concept

14 Perform HARA Top Level Concept

(Architecture)

Top Level Safety

Specification

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 13 of 42

15 Perform FMEA System Level Concept FMEA Report

16 Perform FTA System Level Concept FTA Report

17 Compose Delta

Requirement Specification

System Level Concept

Requirements Tree/Net

Release Plan

Test Specification

Delta Requirement

Specification (on single

requirements)

18 Compose Requirement

Specification

Top Level Concept

(Architecture)

Delta Requirement

Specification (on single

requirements)

Test Specification

Requirement Specification

(Total)

19 Create Test Specification Requirement Specification

(Total)

Delta Requirement

Specification (on single

requirements)

Test Specification

20 Implement/Model and

Generate Code

System Level Concept Implementation Artefacts

(Code, Model)

21 Impact Analysis Requirements Tree/Net

Feature Tree

System Level Concept

Test Specification

Impact

22 Comment Implementation

Artefact

Implementation Artefacts

(Code, Model)

Implementation Artefacts

(Code, Model)

23 Write Documentation/User

Manual

Implementation Artefacts

(Code, Model)

System Level Concept

Documentation/User Manual

24 Create Project Configuration Feature Tree Configuration

25 Implement Test Test Specification Test Specification

Test Implementation

26 Execute Basic Test Implementation Artefacts

(Code, Model)

Test Specification

Test Execution Result

27 Execute Simulation Test

(Software in the Loop - SiL)

Implementation Artefacts

(Code, Model)

Test Specification

Test Implementation

Test Execution Result

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 14 of 42

28 Execute HiL (Hardware in

the Loop)

Implementation Artefacts

(Code, Model)

Test Specification

Test Implementation

Test Environment

Test Execution Result

Table 1 - Process Activities of the Target Process with their In- and Outputs

Figure 6 is a graphical representation of the process activities from Table 1 with their work

products (i.e. the in- and output necessary for each task).

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 15 of 42

Figure 6 - Target Process Activities: Tasks and their Work Products

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 16 of 42

Figure 7 depicts an UML activity diagram representing the target process activity workflow. It

illustrates the sequential order in which the different tasks have to be performed.

Figure 7 - Activity Workflow of Target Process represented as UML Activity Diagram

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 17 of 42

3 Detailed Description of the Use Case Process

3.1 Activities

This section briefly summarizes the activities performed in WP 3.2 during the first reporting period.

3.1.1 Kick-off

The work package has effectively started with a kick-off meeting on August 27th. The kick-off was

face to face – almost all follow-up meetings were using teleconferencing. During the kick-off

meeting the ADSE project was presented in great detail and the ADSE team was presented.

Each participating party has presented the type of its resources and possible contributions to the

use case. From this information a scrum-like procedure has been agreed upon in order to warrant

progress.

For the use case an internal milestones plan was proposed in order to monitor use case duties and

progress.

3.1.2 Engineering Methods

All WP-partners have contributed engineering method descriptions for WP 6.1. During this process

some problems with this approach revealed. Main point of critique was the weak grounding of

those descriptions. The reasons why the engineering methods have suffered from the shortcoming

were:

1. At this particular date the exact status-quo of ADSE processes was unknown

2. The engineering methods intended to describe improved CRYSTAL-like processes

WP 3.2 has communicated with WP 6.1 that more engineering method descriptions will follow in

2014. Therefore WP 3.2 has proposed to WP 6.1 to use a central requirements repository after WP

6.1 has demonstrated derived requirements from the supplied engineering method descriptions.

3.1.3 Analysis of ISO 26262 Compliance

A special meeting was held (which was in physical presence) in order to establish the

commonalities and differences between the development procedures used for ADSE and the

coordinated systems on the vehicle which definitively are under the government of ISO 26262. In

this meeting Enterprise Architect and Simulink were identified for initial integration in order to

support effortless monitoring and updating of technical safety concepts.

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 18 of 42

3.1.4 ADSE Development Process Definition

A number of meetings were held in order to establish the nature of the future ADSE development

process which should be supported by the devised tool chain. After a single large meeting between

all partners, DAI, ALU-FR and TUB elaborated on further features of the process.

3.1.5 Tool Introduction into PTC Integrity

An introduction into the ALM (Application Lifecycle Management) tool PTC Integrity was given to all

partners. The goal was to educate all partners working in the use case about the functionality that

the tool offers to enable future usage of the tool in the best way.

The following topics were covered in the demonstration:

 Integrity basics

 Overview of the single modules

 Requirements Management

 Change Management

 Software Configuration Management

 Test Management

 Integrity’s architecture

 Reporting functionality

3.1.6 Setup of Project Management Tool “Backlog”, based on PTC Integrity

It was decided that the work done in use case 3.2 will follow the agile paradigm – a process similar

to SCRUM. However, a full SCRUM concept was considered inadequate. A basic concept of user

stories and sprints was included. Each sprint was accompanied by a planning and review meeting.

During the reviews work results were discussed and new potential tasks discovered (“user

stories”). In the planning sessions each partner has committed himself to progress in a user story

of his choice. During the reporting period four such sprints were executed.

In order to promote synergies between the ADSE project and use case management it was

decided to use PTC Integrity to carry out SCRUM. Thereby, WP 3.2 expected to better learn about

the capabilities of Integrity. Integrity was set up on a VM and made accessible via a web interface

in order to enable the planning, authoring and review of user stories and the assignment of user

stories to individual sprints. Before Integrity an Excel-based planning was performed.

3.1.7 OSLC Workshop

OSLC was a comparatively new technology not everybody on the project was familiar with. In order

to improve the understanding of possible chances and restrictions of OSLC a small workshop has

been held by one project partner. From this workshop a better common understanding of the

architectural challenges was achieved. The following topics were covered during the workshop:

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 19 of 42

 What are the motives behind OSLC?

 Which technologies make up OSLC?

 What is the best classification of OSLC technology?

 What kind of interoperability is OSLC trying to achieve?

 What is the potential role of ontologies in this respect?

 What other interoperability technologies exist and how do they compare with OSLC?

 What kind of technological readiness can OSLC promote?

 What kind of problems must be expected when designing OSLC-based interoperability?

 What is the procedure for improving OSLC specifications?

3.1.8 Tool Alternatives

A list of relevant tools was compiled for the case that additional integrations could be accomplished

during the project.

3.1.9 Contributions to Public Use Case

There were two meetings for the public use case from the automotive domain (UC 3.7) where

example problems and possible demonstrators were compiled from private use cases.

3.1.10 Deliverable Reviewing

The use case has defined a production process for D302.011 in parallel to the sprints. Meetings on

a weekly basis were held between December 2013 and January 2014 in order to assign content to

partners and for discussion of the details.

3.1.11 Dissemination Activities

Dissemination activities comprise all project-related publications. On the one hand, they include

general disseminations such as presentations or posters about the CRYSTAL project itself. On the

other hand, they also include the dissemination of achievements such as conference or journal

papers, dissertations as well as workshops, seminars or similar activities performed in order to

distribute gained knowledge.

No dissemination activities were performed within this working package until the release of this

deliverable. However, future plans for dissemination activities exist. They mainly include the

publication of the results of different dissertation projects on related topics such as variability

management, functional safety, traceability and interoperability.

The estimated outcomes are doctoral theses on those topics.

Additionally, intermediate results are planned to be published in order to share gained knowledge

with the scientific world as well as receiving feedback in order to evaluate the outcome.

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 20 of 42

3.2 Interoperability Challenges – IOS Contributions

In the Daimler use case context of developing a host computer we examined several challenges

connected to tool interoperability that we want to specify in the following.

1. Transfer the huge amount of „implicit traces“ (knowledge?) of the engineering experts into

„explicit traces“ (methods) in a tool based development system

2. Support efficient impact analysis based on a given change request on requirement,

system or component level to another level or to the right side of the V-Model

3. Introduction of variant handling to manage the upcoming use cases of the host computer

and to optimise the verification and validation activities

4. Enable the consistency of different models on system, functional and component level

5. Almost automatic safety case documentation during the development phase:

3.2.1 Engineering Methods

The following engineering methods have been provided to WP6:

 EngineeringMethods-ExternalLinks

 EngineeringMethods-InsertLinkBetweenChangesetAndIssueTrackerEntry

 EngineeringMethods-VerifyModifiedSafetyFeatureInSimulation

 Create New Requirement Entry

 Manage Variability

This list has been extended during the first project phase, see chapter “Engineering Methods”

The filled-out templates can be found in Annex I.

3.2.2 IOS-Relevant Tool Interactions and Tool Interfaces

Figure 8 shows the activities of the V-Model relevant for this WP.

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 21 of 42

Figure 8 - (Rough) Development Process based on the V-Model

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 22 of 42

The following table lists the tools and potential interfaces relevant for IOS with references to the

respective V-Model activity. The loopback interface is a feature which will be implemented,so far

possible. The goal is to control activities within an integrated workflow. It helps to improve

interoperability to other tools, which might take over certain aspects of the product development.

Reference

to Process
Tool Interface to Tool

Q1 Integrity Loopback Interface

Q2 Integrity Loopback Interface

Q3 Integrity Loopback Interface

Q4 Integrity Loopback Interface

1a Integrity Loopback Interface

1b EA Interface to Integrity

2a Isograph Workbench,

ikv++ Medini Analyze

Interface to Integrity

2b EA, APIS

IQ FMEA

Interface to Integrity

3a EA Interface to Integrity

3b EA Interface to Integrity

4a EA Interface to Integrity

4b Simulink, C Interface to Integrity

4c TPT, Tessy Interface to Integrity

5a Simulink, C Interface to Integrity

5b TPT Interface to Integrity

6a Integrity Loopback Interface

6b ProveTech TA Interface to Integrity

7a

7b

Table 2 - Mapping Process/Tool

Interoperability of Integrity and Enterprise Architect

The following interoperability scenarios are to be expected for an interface connecting Integrity and

Enterprise Architect:

 It should be possible to manage versioned EA models in Integrity. This will require some

introspection which shall be provided through a mining feature.

 The interface should allow a hierarchical abstract representation of an EA model in Integrity

that contains just enough information to allow the creation of traces/bidirectional links

between EA model elements and other artefacts of the lifecycle (requirements, test cases,

etc.).

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 23 of 42

Interoperability of Integrity and Risk Management, Verification & Validation Tools

The following interoperability use cases are expected for an interface connecting Integrity and

various verification & validation tools:

Test cases, test results and risk analysis data should be exchanged between Integrity and the

following tools: APIS IQ FMEA, Isograph Fault Tree Plus, ikv++ MediniAnalyze. If a test case fails,

the interface should allow an automatically creation of defects in Integrity. It should be possible to

create traces/bidirectional links between verification & validation artefacts and other Integrity-

managed artefacts of the lifecycle (requirements, test cases, etc.).

3.2.3 Possible Requirements towards IOS

This section enumerates a collection of ideas, which could have an impact on the implementation

of a new interoperability technology. These ideas have been collected during the first project phase

and are going to be reviewed, detailed and concretised within the second phase:

1. Developer tools are installed on workstations and operate very often on localized data.

Central storage of files or the existence of file version systems does not imply centralism of

operations.

2. The fact that Integrity is used does not mean that the services, which are provided by it, can

be considered monolithically.

3. Despite network availability, work must be able to continue in cases of network outage.

Such cases can be observed during vehicle probations or with mobile computing devices.

4. There should be a state-of-the-art solution to distribute developer tools to workstations and

configure them for work with IOS. This includes possible updates of IOS.

5. It must be possible to manipulate large amount of properties and links in a transactional

way.

6. It must be possible to create variants of the project without recreating every bit of it. This

means that some copy-on-write strategies should be anticipated.

7. There are two kinds of variants of product origins. The first kind is intended and is the result

of new product portfolio decisions. The second is the inevitable deviation resulting from

speculative modification used for evaluation, exploration and analysis. The bricks provided

by SP6 shall support both variation types and clearly inform developer, what kind of

consequences his actions will have. Variants keep track of their heritage and support

merging.

8. On a given workstation it must be possible to consistently work with multiple developer tools

in parallel.

9. Different kinds of links should be supported which can be converted into each other:

a. Explicit – class of link and all properties were chosen by developer

b. Semi-explicit – the link has been introduced through a mechanism of pattern

matching

c. Implicit – the link is based on conventions but is explicitly depicted

10. Specialisation/Generalisation Links should be able to be automatically triggered

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 24 of 42

11. It must be assured that given modifications were authorized. Such authorizations should

make use of roles and cascades of authorization.

12. It should be possible to create and manage authorized teams of developers without having

to add them to the OEM’s LDAP. This would be useful, if extern developers join the team

which does not work at OEM’s facilities. This could foster quick projects which are of

smaller size. Small projects should run more efficiently.

13. Despite ALM support through Integrity, developers should be able to modify the current

workflow to match their needs without having to modify workflow deposited in Integrity.

Such customization may include simplification of process, but also an enrichment of

process.

14. SP6 provided bricks should support acceleration of repeating activities.

15. Project/product dependencies should be navigated despite designated tools being

unavailable.

16. It should be possible to decompose the project in order to create new subprojects which

can be shared between variants.

17. Configurable constraints should be available to projects which help to keep work results

consistent, even if the strict process has been left.

18. The system comprised from developer tools and IOS should be able to transport events

(e.g. of change) to all concerned components, irrespective their true location in the

distributed system.

19. It should be possible to define “final variants” in order to prevent branching of highly volatile

variants where merging would be difficult.

20. All resources including variants should be able to be found in the network.

21. It should be possible to define barriers (kind of baselines) for variants which limit the extent

of notification to a relevant family of variants.

22. The interoperability technology should be able to provide the developer with the correct

local data given his desired activity. This data selection should be extendable but

exaggerated amount of local copies should be prevented.

23. Introspection of models should be improved for process control.

24. Implementation of the bricks should be efficient as they will probably add to a permanent

tag on all resources like processors, memory and network bandwidth.

25. Rich attributed linking of items shall be supported.

26. Semi-automatic linking of items shall be supported based on various properties (class,

constellations, etc.)

27. Eventual conventions which indicate relationships shall be visualized.

28. Quick search of the project relationships shall be possible (e.g. via labels or meta-data

searches). It should be possible to attach an arbitrary amount of meta-data to project

objects irrespectively of their storage capacity to do so.

29. IOS-adapted developer tools should be able to get triggered to perform certain operations

on behalf of third parties (e.g. Simulink starts simulation after a test was started in EA).

Such operations may require the provision of a specific context made from data, constraints

etc.

30. Centralized database-based systems must be incorporated without difficulty.

31. Bricks have to run in a Windows environment.

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 25 of 42

3.2.4 Possible Requirements for OSLC

At the moment OSLC-specific requirements can only be vaguely indicated:

1. Provide additional classes of OSLC objects.

2. Provide additional ways of object annotation.

3.2.5 Logical Architecture of IOS-based Projects

Figure 9 - Interoperability Technologies simplify Interoperability between Users

Elements of Logical Architecture

In the following section, elements which could be reflected in a logical architecture are being

described:

 Project Cloud / Project Space. The developer typically works in project environments. The

projects contain a limited and known number of objects which can be expressed as a

complex graph in RDF. These objects could be of various kinds: Simulink-blocks, C-Files or

a project milestone etc. This complex graph is not necessarily fully visible to developers

when using developer tools but it is the actual field of work of the developer. On the

developer workstation a slice of the project cloud is maintained and is the ideal storage for

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 26 of 42

meta-attributes to objects which are stored in inflexible containers. Instead of trying to

interpret linking as some kind of additional interoperability the project cloud implies that

developer tools are merely helpers in the process of completing the overall graph. The

developer wants to switch his workstation between project clouds and wants to explore and

edit them with all tools available to him at the same time. Once a project cloud gets

modified by a developer it is different from others (distributed approach) and must be

merged with its family members in the project space (group of workstations processing the

same project) later. For this to work project clouds have to know their heritage. This

approach has been proven to be very efficient in other development areas. Logical

operations on the project cloud are:

o Create

o Merge

o Slice

o Refine

o Subvariant

o Assemble from Project Aerosols (Incomplete project clouds to be used as

templates)

 Donor Application. A donor application is any of the developer tools which can be

exposed to the project cloud via IOS. It accepts operator invocations in a donor context

which is maintained by the IOS.

o Expose and execute minimal building blocks of logic

 Instruments. Instruments are preconfigured operations from donor applications. They can

be invoked in order to perform certain operations on the project cloud. In a trivial case an

instrument is just the donor application. A purpose of an instrument can be of course e.g.

native visualization of data in an artefact or the process of mining it.

o Expose and execute customized logic for the project

 Workstation Sandbox. The workstation sandbox defines for the whole workstation a

definitive reference to a project cloud and provides temporal storage for it. This way

developer’s chances to manipulate the wrong project are low. The sandbox is a place to

store data and derived product variants are referencing always to a super sandbox. The

sandbox which has no further parents (e.g. department sandbox) is fairly called cosmos.

o Provide OSLC objects for file system-like artefact manipulation

o Provide OSLC objects for driving distributed version management

o Synchronization of data

o Provide relative reference storage for artefacts

o Provide caching logic for project cloud

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 27 of 42

 Central Artefacts. Central artefacts are typically files which can be assembled according to

the needs of the situation. Such artefacts can be located in version management systems,

on plain shared drives or internet pages. There is a large number of possibilities how

central artefacts can be provided, mostly passive. Active OSLC proxies can decorate them

in a uniform manner as version management system of file system.

o Read

o Write

o Lock

o Branch

o Merge

 Context. A context is a set of collected objects in the project cloud which are intended to

support developer’s activities. The selection can be analysed for structure and help identify

the extent to which detailed processes are applicable. The context is also useful for an

efficient search of other objects in the project cloud. New objects can be introduced through

the process of mining conventional artefacts.

o Select / Drop

o Mine

o Infer operations or missing objects

o Invoke instruments for selections

 Distributed Cascade Authorization. In any project it must be avoided that projects will be

accidentally or intentionally vandalized. It is an additional concept to access rights which

probably exist for central artefacts in parallel. This logical architecture element uses RSA-

based encryption cascades in order to certify the legitimacy of the manipulations when

trying to merge with a different variant of the project space. This way a manipulation of local

authorization enforcement is unattractive. A fine grained access control can be made

available as part of the project cloud which is then as project specific as desired.

o Network of roles and the associated instruments

o Legitimacy checks

 Package System. The developer in an IOS-based project will face a greater variety of

artefacts during his work. The key to an excellent experience when working with IOS would

be the IOS could provide native donors on local workstations. This is especially important if

provided instruments require multiple donors. On the one hand, this will of course not

always be possible. On the other hand even large commercial products are easy to install if

floating licenses are in use. The same package system can be used to provide the project

with data and model extensions for given purposes. For example, if a B2B test shall be

executed then the package system could install two files in different formats but with the

same logical meaning. The invoked instrument could ask the package system to provide all

necessities for it to run.

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 28 of 42

o functionality a la Maven or Apt

 Navigation and Exploration. The developer in an IOS-based project will benefit from

interoperability best, if he is allowed to understand relationships and structure of the project

beyond his immediate workflow activity. The IOS’ practical implementation has to support

the navigation through the project and have simple means to request access to information

which normally cannot be accessed.

o Graphical Navigation

o Tracking of requests for additional information and their processing

3.3 Roadmap

Providing of basic tool environment

In parallel to analysing existing and target process activities in the ADSE project of WP3.2, a

mapping to possible tool support has been made in the first phase of WP3.2. In order to integrate

solutions provided by CRYSTAL it’s necessary to implement a tool environment which can affiliate

current and future bricks.

In the case of WP3.2 this will mainly mean an Integrity Server setup to be accessed by pilot

projects users and initially store transferred data from current project status. Furthermore,

workflows need to be implemented to support process activities as mentioned in chapter 4.

Figure 10 - Project Roadmap

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 29 of 42

Application and refinement of target process activities

As soon as a basic tool environment is put in service, defined target process activities have to be

applied. In the pilot project this will mean introduction of new activities as well as adaption of

existing or migration between former and new tool environment.

Because of direct integration into a productive environment, only small changes at a time can be

applied. Furthermore WP3.2 is confident to receive valuable feedback from this application steps

from the very first moment.

Elicitation of need for improvement

Until next Milestone one main task of WP3.2 is to gather information about further improvement

after application of the first set of target activities. Since it’s a CRYSTAL strategy that the WP

results all over the project are being iteratively improved, WP3.2 is mainly interested in identifying

critical process-, interoperability- and tool-weaknesses to be concentrated on in the next step.

Collaboration with other Use Cases within SP3

Within SP3, collaboration is of high value because scenarios have similarities and solutions are

partially portable. Therefore and to give a summary of SP3s results, WP3.7 (public automotive use

case) has been created and WP3.2 is actively contributing to it. This participation will be continued

until the end of the project because it’s a key factor to projects success. Furthermore, contribution

to WP3.8 (automotive ontology) is being seen as an important need within CRYSTAL and WP3.2s

collaboration regarding ontologies will also be continued.

Interaction with SP6

Progress towards interoperability solutions within CRYSTAL will be achieved by applying SP6

solution bricks. Thus it’s mandatory for WP3.2 to collaborate actively with relevant SP6 WPs. Most

of our tool partners are directly involved in SP6 Brick development and via our use case details

and IOS requirements we will continue this tight interaction during the next project phase.

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 30 of 42

4 Conceptual Work

The use case described in chapter 2 comprises the development of a host computer in the context

of automated driving in specific environments. The first achievements are aligned with the steps of

the CRYSTAL “Interoperability Needs Capturing Process” for the different domains. According to

this approach in chapter “Engineering Methods” we provided a high-level description of the use

case and its context.

The process definition including the corresponding process activities will be presented in chapter

4.1.

We derived several engineering methods from the process activities. Some of them will be

described in chapter 4.2.

The analysis of the engineering process revealed specific challenges related to tool

interoperability. Those challenges will be discussed in chapter 4.3.

Another achievement is a first draft of a concept for mapping the content of development artefacts

to activities and tools. This concept will be introduced in chapter 4.4.

4.1 Engineering Methods

4.1.1 List of Engineering Methods Sorted by Topic

We have identified a number of possible engineering methods for the two major topics Functional

Safety and Verification/Validation. The following list is a second draft which is by no means

complete. We expect to come up with more topics and engineering methods as well as we expect

to change or remove some of them.

Functional Safety Engineering Methods

 Perform Hazard And Risk Analysis

 Perform Fault Tree Analysis

 Perform Failure Mode and Effects Analysis

 Define Functional Safety Concept

 Define Technical Safety Concept

 Conduct Safety Case

 Perform Failure Injection Test

Verification/Validation Engineering Methods

 Create Test Plan

 Create Test Specification

 Create Test Implementation for HiL (Automatic Testing)

 Detect Run Time Errors (Static Analysis)

 Analyse Worst Case Execution Time (Static Analysis)

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 31 of 42

 Perform Static Code Analysis

 Perform SiL-Test

 Perform HiL-Test

 Perform MiL-Test

Project / Product Management

 Collect, analyse and control Issues

 Abstraction and Reporting

 Analyse the Impact of Changes

 Control Changes

Variant Management

 Define Valid Configurations

SW Engineering

 Coding or Modelling

 Check Coding Guidelines

 Create new Requirement Entry

4.1.2 Engineering Methods in the V-Model

In Figure 11 we have assigned the different engineering methods to the different steps in the V-

Model.

All methods from section 4.1.1 as well as some additional methods from variant management,

project management, change management and issue tracking have been assigned.

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 32 of 42

4.1.3 Detail View of an Engineering Method

We analysed one engineering method in detail in order to come up with useful information for the

engineering method template that we had to fill out. Therefore, we chose the engineering method

“Create New Requirement Entry” that describes how a requirements engineer enters a new

requirement into his requirements management (RM) tool of choice. We deliberately chose to omit

specific tool names to make the example more general and independent from specific tools. Figure

11 depicts the detailed view for this engineering method.

While the engineer is entering the requirement details, the RM tool sends all existing requirements

and the newly entered content to an analyser tool. The analyser tool then compares the existing

requirements with the new requirement and detects similarities. Those similarities are then sent

back to the RM tool, which can display hints to the RM engineer. Thus, the tool could provide

information about possible duplicates of a requirement, or e.g., propose tags or different wordings

that have been used for similar requirement entries.

The filled-out templates provided to SP 6 can be found in Annex I: Engineering Methods.

Figure 11 - Engineering Methods assigned to different Steps in the V-Model

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 33 of 42

Figure 4-5: Detailed View for the Engineering Method “Create New Requirement Entry”

4.2 Concept for Mappings

The initial cost associated with the introduction of traceability links between different software

development artefacts in already existing projects grows with the age of the project. As the projects

considered in the Daimler use case are already very mature, we need to search for methods and

techniques to reduce this initial cost to allow for a more efficient introduction of traceability links (or

mappings) between different artefacts or artefact elements. We distinguish between two different

kinds of methods:

1. Methods that allow the initial creation of mappings between artefacts or elements of

artefacts.

2. Methods that support the validation and verification of existing mappings.

We call the combination of a mapping together with a description of the mapped artefacts, a

method for the initial creation of the mapping, and a method for validation and verification of an

existing mapping a tracing framework.

Figure 12 - Detailed View for the Engineering Method “Create New Requirement Entry”

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 34 of 42

4.2.1 Approach

Our approach consists of the following phases.

1. Analysis of existing artefacts and their interconnections.

2. Identification and classification of possible mappings using templates.

3. Design of methods for the initial import of artefacts in the tracing framework.

4. Design of methods for validation and verification of existing mappings during the software

development process.

5. Evaluation of the methods from phase 3 and 4.

6. Implementation of the most suitable method for the initial import of artefacts.

7. Implementation of the most suitable method for the validation and verification of existing

mappings.

8. Evaluation of the implemented method on the basis of a real-world example.

We are currently executing phase 1 and 2 in parallel with phases 3 and 4 per artefact using the

templates from Table 3.

 Template

Mappings 1. Name/ID

2. Description

3. Type of mapping (Semantics)

a. Signature -- M x N relation between artefacts

b. Affected artefacts

c. Meaning of relation in natural language

d. Relation to other mappings

4. Version

5. Applicable initial creation methods

6. Applicable validation & verification methods

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 35 of 42

Methods 1. Name/ID

2. Description

3. Preconditions

4. Type (Initial creation or validation & verification)

5. Version

6. Evaluation with respect to:

a. Automation potential

b. Fault tolerance

c. Completeness

d. Initial costs

e. Running costs

Artefacts 1. Name/ID

2. Description

3. Version

4. Level of formalization

a. Formal, i.e. formal syntax and semantics

b. Semi-formal, i.e. partly formal syntax or semantics

c. Unstructured, i.e. without formal syntax or semantics

5. Potential target elements

Table 3 - Identification and Classification Templates

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 36 of 42

4.2.2 Example of Tracing Framework

Version control systems (VCS) and issue tracking systems (ITS) are ubiquitous tools in

professional software development processes. Those tools create – among others – the artefact

types change set and issue tracking item (item).

A change set contains the changes between two revisions of a VCS. Changes are typically

grouped by files and can therefore be analysed on a file-by-file basis. If files contain source code

implemented in the same programming language, change sets can also be grouped by symbols,

i.e. functions and variables of a represented program. We call the set of all symbols of a change

set the changed symbol set. A changed symbol set can be extracted automatically from a change

set by employing well-known techniques, e.g. from the area of compiler construction.

Most ITS can already keep track between items and revisions of a VCS. This is normally done

manually by developers, which insert special instructions in their commit log messages to inform

the ITS of the affected items. Together with the automatic extraction of changed symbol sets one

can map symbol sets to single items in the ITS (e.g. by simply creating the union over all changed

symbol sets connected to a change set). The resulting mapping between symbols and items can

now be used for further analysis.

Assumed that the complete version history is available, the method is applicable for both, initial

creation and verification and validation of mappings between source code and ITS items.

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 37 of 42

5 Terms, Abbreviations and Definitions

Please add additional terms, abbreviations and definitions for your deliverable.

ADSE Autonomous Driving in Specific Environments

ALM Application Lifecycle Management

ALU-FR Albert-Ludwigs-Universität FReiburg

API Application Programming Interface

AUTOSAR AUTomotive Open System ARchitecture

BAPI Business Application Programming Interface

cf. confer

CO COnfidential, only for members of the consortium (including the JU).

COM Component Object Model

CORBA Common Object Request Broker Archtecture

CRYSTAL CRitical SYSTem Engineering AcceLeration

D Demonstrator/Deliverable

DAI DAIMLER

EA Enterprise Architect (SparxSystems)

e.g. exempli gratia

ENV ENVironment

etc. et cetera

FIT Failure Injection Test

FMEA Failure Mode and Effect Analysis

FSC Functional Safety Concept

FTA Fault Tree Analysis

HARA Hazard And Risk Analysis

HiL Hardware in the Loop

ID IDentification

i.e. id est

ISO International Organization for Standardization

IOS InterOperability Specification

IT Information Technology

ITS Issue Tracking System

LDAP Lightweight Directory Access Protocol

MiL Model in the Loop

No Numero

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 38 of 42

O Other

OEM Original Equipment Manufacturer

OOP Object Oriented Programing

OSLC Open Services for Lifecycle Collaboration

P Prototype

PLM Product Lifecycle Management

PP Restricted to other Program Participants (including the JU).

PTC Parametric Technology Corporation

PU PUblic

R Report

RE REstricted to a group specified by the consortium (including the JU).

ReqDB Requirements Data Base

RDBMS Relational Data Base Management System

RDF Resource Description Framework

REST REpresentational State Transfer

RM Requirements Management

RSA Rivest, Shamir and Adleman

RTP Reference Technology Platform

R&D Research & Development

SE Software Engineering/Systems Engineering

SiL Software in the Loop

SP SubProject

SQL Structured Query Language

SW SoftWare

TSC Technical Safety Concept

TUB Technische Universität Berlin

UC Use Case

URI Uniform Resource Identifier

WP Work Package

UML Unified Modeling Language

V Version

VCS Version Control System

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 39 of 42

6 Annex

6.1 Annex I: Engineering Methods

Name Name Name

Generic Type:

(Tool or language independend

type)

Requirements Type: Generic Type:

(Tool or language independend

type)

External Link

Required Properties:

(Information required in

interactions between steps)

ID, Title, External Link

Reference

Properties: Provided Properties:

(Information provided in

interactions between steps)

URL, Label, Type, Name,

isBedirectional

Name Name Name

Generic Type:

(Tool or language independend

type)

ModelElement Type: Generic Type:

(Tool or language independend

type)

Required Properties:

(Information required in

interactions between steps)

ID, Name, External Link

Reference

Properties: Provided Properties:

(Information provided in

interactions between steps)

Name Name Name

Generic Type:

(Tool or language independend

type)

Type: Generic Type:

(Tool or language independend

type)

Required Properties:

(Information required in

interactions between steps)

Properties: Provided Properties:

(Information provided in

interactions between steps)

 Requirements are complete, analyzed, without contradictions.

Initial system model has been created in Modeling Tool

EngineeringMethod: "Determine Modeling Context" has been

executed.

1. In RequirementManagementTool, open service

"ModelElementSelector" to navigate to context (modeling

element) to which an external link should be created.

2. ModelingTool responds with List of ModelElements (could be a

subtree, a top level element or a list of elements).

3. User selects one or more ModelElements to which an external

link should be created.

3. User can optionally fill in meta-information for links (Type,

name, bi-directional=true|false)

4. SelectorService presents to the user a preview, which links will

be created based on the user selection.

5. User accepts.

6. In both tools (RequirementsMangementTool and

ModelingTool) , external links are added to respective

requirements and model elements. Links are navigable by the

user such that when the user clicks on an external link, the

respective tool is opened. Alternatively at least a preview is

shown when hovering over the link.

Links are created between the selected Requirements and

ModelElements

Engineering Method: UC2302_LinkFromRequirementToModelElement
Purpose:

Comments:

Pre-Condition Engineering Activities Post-Condition

Notes:

Artefacts Required as inputs of the Activities Artefacts used internally within the Activities Artefacts Provided as outputs of the Activities

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 40 of 42

Name ITS entry Name Name ITS entry

Generic Type:

(Tool or language independend

type)

ITS entry Type: Generic Type:

(Tool or language independend

type)

ITS entry

Required Properties:

(Information required in

interactions between steps)

ITS entry has a unique id and it

has a field to store link to VCS

changeset

Properties: Provided Properties:

(Information provided in

interactions between steps)

ITS entry has a unique id and it

has a field to store link to VCS

changeset

Name VCS changeset Name Name VCS changeset

Generic Type:

(Tool or language independend

type)

VCS changeset Type: Generic Type:

(Tool or language independend

type)

VCS changeset

Required Properties:

(Information required in

interactions between steps)

needs unique id, needs way of

storing link to id of issue tracker

entry

Properties: Provided Properties:

(Information provided in

interactions between steps)

needs unique id, needs way of

storing link to id of issue tracker

entry

Name Name Name

Generic Type:

(Tool or language independend

type)

Type: Generic Type:

(Tool or language independend

type)

Required Properties:

(Information required in

interactions between steps)

Properties: Provided Properties:

(Information provided in

interactions between steps)

Engineering Method: 3.2_InsertLinkBetweenChangesetAndIssueTrackerEntry_1
Purpose: Given an entry of the issue tracking system (ITS), the project team member has done some work related to the entry and wants to commit an update to the version control system (VCS). The

Comments:

Pre-Condition Engineering Activities Post-Condition
An entry in the ITS exists (and has an id).

An update to the VCS is ready.

The project team member commits the update to the VCS. In

detail:

1. In the VCS, prepare the entering of a commit log message.

2. Enter commit log message with a keyword and the id of the

given ITS entry (e.g., "[entry #27]").

3. VCS receives commit.

4. VCS parses commit log message (e.g. with a post commit

hook).

5. VCS identifies the reference to the ITS entry.

6. VCS invokes a request to ITS to add a comment regarding the

entry with the given id. The comment contains the revision

number of the VCS changeset, possibly a url to the changeset

(depending on the VCS system), and the commit log message.

7. The ITS receives the request and adds the comment to the log

message

The ITS entry has a link to the changeset of the update in the ITS.

Notes: Notes: This entry describes a 1-to-1 relation between commits Notes:

Artefacts Required as inputs of the Activities Artefacts used internally within the Activities Artefacts Provided as outputs of the Activities

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 41 of 42

Name safety requirement Name safety requirement Name safety-run

Generic Type:

(Tool or language independend

type)

abstract object in a graph

dependency with other nodes

Type: -||- Generic Type:

(Tool or language independend

type)

node linked to snapshotted

objects

Required Properties:

(Information required in

interactions between steps)

linkable, invalidation flag,

navigable to parent and sibling

requirements, snapshotable

Properties: -||- Provided Properties:

(Information provided in

interactions between steps)

date, user-id, ability to

contribute to overall project's

safety case

Name test case Name test case Name workflow object

Generic Type:

(Tool or language independend

type)

program to run a model simulation Type: -||- Generic Type:

(Tool or language independend

type)

instance of current workflow

process

Required Properties:

(Information required in

interactions between steps)

executable, returns results,

snapshotable

Properties: -||- Provided Properties:

(Information provided in

interactions between steps)

petri-net like automaton

instance with objects linked to

states

Name model Name model Name knowledge base

Generic Type:

(Tool or language independend

type)

mechanism formulation Type: -||- Generic Type:

(Tool or language independend

type)

tracker like software with strong

mining capabilities

Required Properties:

(Information required in

interactions between steps)

snapshotable, specific language

implementation, distributed

among different tools

Properties: -||- Provided Properties:

(Information provided in

interactions between steps)

human typed information

(text,pictures,audio,movies) for

humans, rating in various ways

Name safety explorer Name safety explorer Name

Generic Type:

(Tool or language independend

type)

browser for safety related issues,

objects and information

Type: -||- Generic Type:

(Tool or language independend

type)

Required Properties:

(Information required in

interactions between steps)

per active engineer, current

project representation, graphical

user interface

Properties: -||- Provided Properties:

(Information provided in

interactions between steps)

Name safety log Name safety log Name

Generic Type:

(Tool or language independend

type)

historical database of safety

related events (like test runs of

safety test cases)

Type: -||- Generic Type:

(Tool or language independend

type)

Required Properties:

(Information required in

interactions between steps)

collection of safety-run objects Properties: -||- Provided Properties:

(Information provided in

interactions between steps)

Engineering Method: UC3.2_VerifyModifiedSafetyFeatureInSimulation_0

Purpose: Verify efficacy of safety requirement implementation after changes during an early stage of system development

Comments: This method uses advantages of MiL testing for safety requirements. It appears sensible to maintain confidence into first class requirements (which are safety reqs.) right from the start.

Pre-Condition
Engineering Activities

(made of steps)
Post-Condition

- a requirement with some SIL-like attribute (e.g. ASIL=A..D) has

been marked as modified

- relevant source-code/-model was updated to reflect the changes

in the requirements -

consistency between safety requirement and safety goal was

reassured

- a test-set exists that covers the safety requirement

- model is enriched with failure rate information

- model is executable in relevant simulated environement -

derived test-set was updated to reflect the changes of safety

requirements -

context descriptor exists for current workflow

1. engineer figures out in the safety explorer which safety

requirements have not yet been validated

2. engineer selects all test-cases necessary for safety requirement

verification, links help to do so

3. engineer triggers static & dynamic safety-tests in simulated

environments. Static tests estimate failure probabilities under

different conditions. Dynamic test test efficacy of solution. This

action causes the creation of a safety-run object, which is

something like a snapshot of relevant objects

4. the results of tests are attached to the safety-run object which

are logged in project's automatic safety-log

5. status of all safety requirements up to safety goals is updated

6. if test fail then the engineer will provide an explanation, an

estimation of difficulty for a fix and a proposition how to fix 7.

new situation is reflected in safety explorer

- testing activity logged as entity to project's safety log

- results of all test cases logged (static and dynamic)

- test appears in worflow history and at least in safety explorer -

status of requirements and goals updated -

proposition added to knowledge base

Notes: context descriptor is a container with a collection of

highlighted requirements, models and simulation objects, user data

(safety engineer), and guidance information

Notes: requirements are classifed as "fulfilled", "compromised",

"incomplete", "manually verified", "inconclusive" and safety goals

are marked as "attained", "endangered" or "violated"

Notes:

Artefacts Required as inputs of the Activities
Artefacts used internally within the Activities

(optional)
Artefacts Provided as outputs of the Activities

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Milestone Report – V1

D302.011

Version Nature Date Page

V1.0 R 2014-01-29 42 of 42

Name Requirement Name

Requirement Tracker internal

requirement Name Requirement

Generic Type:

(Tool or language independend

type)

Natural Language Requirement Type: Requirement as stored in

Requirement Tracker

Generic Type:

(Tool or language independend

type)

Natural Language Requirement

Required Properties:

(Information required in

interactions between steps)

Req.-ID, text description in

natural language, component ID

Properties: Req.-ID, text description,

component ID,author name,

assignee, responsible, priority,

severity, release, version,

milestone, …, plus links to test

cases, version management,

project management, code,

"Lastenheft"

Provided Properties:

(Information provided in

interactions between steps)

Req.-ID, text description in

natural language, component ID

Name Similarity Detection Result Name Analyzer internal requirement Name Similarity Detection Result

Generic Type:

(Tool or language independend

type)

List of Integers Type: Requirement as stored in

Analyzer

Generic Type:

(Tool or language independend

type)

List of Integers

Required Properties:

(Information required in

interactions between steps)

List of Req.-Ids Properties: Req.-ID, text description,

component ID

Provided Properties:

(Information provided in

interactions between steps)

List of Req.-Ids

Name Name Name

Generic Type:

(Tool or language independend

type)

Type: Generic Type:

(Tool or language independend

type)

Required Properties:

(Information required in

interactions between steps)

Properties: Provided Properties:

(Information provided in

interactions between steps)

Engineering Method: 3.2_CreateNewRequirement_1
Purpose: Requirement Engineer wants to create a new entry in the Requirements Tracking Tool. He uses a tool (Analyzer) to analyze similarities to existing requirements in order to group

requirements / attach new requirement to existing group / avoid redundancy. Requirement is stored in a Requirements Database (RegDB).

Comments:

Pre-Condition Engineering Activities Post-Condition
List of informally collected requirements is available 1. Requirements Engineer opens new requirement entry

2. List of all requirements is sent to Analyzer

3. Request is forwarded to ReqDB

4. Send status “received”

5. Requirement entry information is entered and sent to Analyzer

6. Similarities are detected and sent to Requirement Tracker

7. Requirements Engineer reacts to similarities

8. Finish requirement entry

Requirement Database is updated depending on new requirement

Notes: Notes: control structures, e.g., loops, conditional behavior can

not be expressed in this template

Notes:

Artefacts Required as inputs of the Activities Artefacts used internally within the Activities Artefacts Provided as outputs of the Activities

Description & Interoperability Additional Constraints: Description: detailed requirement information Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: all requirement data the analyzer needs for Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

