
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE CRYSTAL
CONSORTIUM. NEITHER THIS DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE
USED, DUPLICATED OR COMMUNICATED BY ANY MEANS TO ANY THIRD PARTY, IN WHOLE OR IN
PARTS, EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE CESAR CONSORTIUM THIS
RESTRICTION LEGEND SHALL NOT BE ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT.
THE RESEARCH LEADING TO THESE RESULTS HAS RECEIVED FUNDING FROM THE EUROPEAN
UNION’S SEVENTH FRAMEWORK PROGRAM (FP7/2007-2013) FOR CRYSTAL – CRITICAL SYSTEM
ENGINEERING ACCELERATION JOINT UNDERTAKING UNDER GRANT AGREEMENT N° 332830 AND
FROM SPECIFIC NATIONAL PROGRAMS AND / OR FUNDING AUTHORITIES.

CRitical SYSTem Engineering AcceLeration

Use – Case Definition
D304.011

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 2 of 85

DOCUMENT INFORMATION

Project CRYSTAL

Grant Agreement No. ARTEMIS-2012-1-332830

Deliverable Title Milestone Report – V1

Deliverable No. D304.011

Dissemination Level CO

Nature R

Document Version V1.0

Date 2014-01-30

Contact Gerald Stieglbauer

Organization AVL

Phone +43 316 787 7803

E-Mail gerald.stieglbauer@avl.com

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 3 of 85

AUTHORS TABLE

Name Company E-Mail

Gerald Stieglbauer AVL gerald.stieglbauer@avl.com

Jörg Settelmeier AVL-R joerg.settelmeier@avl.com

REVIEW TABLE

Version Date Reviewer

0.65 15.01.2014 Jörg Settelmeier (Common and UC3.4a part)

0.7 16.01.2014 Gerald Stieglbauer (UC3.4b part)

0.9 22.01.2014 Reuter/Hopp/Melzi External Review

1.0 28.1.2014 Adaptation according to external review comments

CHANGE HISTORY

Version Date Reason for Change
Pages

Affected

0.1 1.12.2013 Initial Versions of UC3.4a and UC3.4b descriptions

0.5 11.12.2013 Merge of UC description in a single document

0.6 10.01.2014 Internal Review of JoSe – Chapter 1 and 2 1-12

0.61 10.01.2014 Internal Review of JoSe – Chapter 3 13-17

0.62 10.01.2014 Internal Review of JoSe – Chapter 5, 5.1 26-30

0.63 13.01.2014 Internal Review of JoSe – Chapter 5, 5.2

0.64 13.01.2014 Internal Review of JoSe – Chapter 7

0.65 15.01.2014 Internal Review of JoSe of remaining chapters

0.7 16.01.2014 Internal Review of GST

0.8 16.01.2014
Integration of review results into document – ready for
external review

0.9 23.01.2014 External Reviewed Document

1.0 28.01.2014 Integration of review results

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 4 of 85

CONTENT
D304.011 .. I

1 INTRODUCTION .. 8

1.1 ROLE OF DELIVERABLE ... 8
1.2 RELATIONSHIP TO OTHER CRYSTAL DOCUMENTS .. 8
1.3 STRUCTURE OF THIS DOCUMENT ... 9

2 USE CASE OVERVIEW AND MOTIVATION .. 10

2.1 OVERALL MOTIVATION OF UC3.4A .. 10
2.2 OVERALL MOTIVATION OF UC3.4B .. 11

3 USE CASE PROCESS DESCRIPTION OF UC3.4A ... 13

3.1 THE USE CASE SCENARIO FOR UC3.4A ... 13
3.1.1 Integrated Model-based Requirement Engineering as user story .. 13
3.1.2 Short Introduction to WLTP .. 13
3.1.3 Interoperability challenges in UC3.4a ... 14

3.2 TESTING A HYBRID VEHICLE ACCORDING TO WLTP AS USE CASE SCENARIO ... 15

4 DETAILED DESCRIPTION OF THE USE CASE PROCESS OF UC3.4A ... 18

4.1 ACTIVITIES .. 18
4.1.1 Classical V/W-model aspects ... 18
4.1.2 Testing V-model aspects ... 20

4.2 INTEROPERABILITY CHALLENGES ... 22
4.2.1 Mapping the V/W-model to test phases associated testing V-models ... 23
4.2.2 Data Categories and applied Tools in UC3.4a .. 24
4.2.3 AVL Data Backbone .. 28

5 USE CASE PROCESS DESCRIPTION OF UC 3.4B .. 31

5.1 USE CASE SCENARIO 1: MODEL EXCHANGE AND INTEGRATION OF A SYSTEM-OF-SYSTEMS (SOS)
PLATFORM ... 31

5.1.1 Enabling simulation and plant models exchange .. 31
5.1.2 Integration and configuration of a versatile System-of-System (SoS) platform 32

5.2 USE CASE SCENARIO 2: INTEGRATED TOOL ENVIRONMENT FOR EMBEDDED CONTROLS DEVELOPMENT..... 33
5.3 USE CASE SCENARIO 3: IMPROVEMENT OF THE DEVELOPMENT VIA „EFFICIENT VARIANT HANDLING WITHIN

V-MODEL .. 36
5.3.1 Basic definition.. 37
5.3.2 Requirements Engineering ... 38
5.3.3 Architecture ... 38
5.3.4 Powertrain Software Framework .. 38
5.3.5 Project .. 39

6 DETAILED DESCRIPTION OF THE USE CASE PROCESS OF UC3.4B ... 41

6.1 ACTIVITIES .. 41
6.2 STAKEHOLDERS & ROLES .. 42

7 DETAILED DESCRIPTION OF RELATION BETWEEN UC3.4A AND UC3.4B ... 43

7.1 MOTIVATION .. 43
7.2 TOWARDS AN INTEROPERABILITY APPROACH FOR MODEL EXCHANGE BETWEEN UC3.4A AND UC3.4B VIA

OSLC 45

8 IDENTIFICATION OF ENGINEERING METHODS FOR UC3.4A ... 49

8.1 FORMALIZATION OF REQUIREMENTS .. 49
8.1.1 Engineering Activities .. 50
8.1.2 Data Artefacts ... 50

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 5 of 85

8.1.3 Applying to the use case scenario ... 50
8.2 VERIFICATION OF REQUIREMENTS ... 52

8.2.1 Engineering Activities .. 53
8.2.2 Data Artefacts ... 53
8.2.3 Applying on the use case scenario .. 54

8.3 REQUIREMENT TRACEABILITY TO AUTHORING TOOLS .. 54
8.3.1 Engineering activities ... 55
8.3.2 Data artefacts.. 55
8.3.3 Applying on the use case scenario .. 56

8.4 TEST AND CALIBRATION ITERATIONS ... 56
8.4.1 Engineering activities ... 58
8.4.2 Data Artefacts and Data Model .. 59
8.4.3 Applying on the use case scenario .. 60

8.5 DATA MANAGEMENT ACROSS DEVELOPMENT PHASES ... 61
8.5.1 Engineering Activities .. 62
8.5.2 Data Artefacts ... 63

8.6 HETEROGENEOUS SIMULATION .. 64
8.6.1 Engineering activities ... 65
8.6.2 Data artefacts.. 66
8.6.3 Applying on the use case scenario .. 66

9 IDENTIFICATION OF ENGINEERING METHODS OF UC3.4B .. 69

9.1 REQUIREMENTS DELIVERY ... 69
9.1.1 Engineering activities ... 69

9.2 ANALYSIS OF SW SYSTEM REQUIREMENTS .. 70
9.2.1 Engineering activities ... 70

9.3 ALGORITHM DEVELOPMENT PREPARATION ... 70
9.3.1 Engineering activities ... 70

9.4 SW IMPLEMENTATION PREPARATION .. 70
9.4.1 Engineering activities ... 70

9.5 SW IMPLEMENTATION TEST ... 70
9.5.1 Engineering activities ... 70

9.6 FUNCTION GROUP TEST AND SW SYSTEM TEST PREPARATION .. 71
9.6.1 Engineering activities ... 71

10 TERMS, ABBREVIATIONS AND DEFINITIONS ... 72

11 ANNEX I: DETAILED DESCRIPTIONS OF THE ENGINEERING METHODS 73

11.1 ENGINEERING METHODS FOR WP3.4A .. 73
11.2 ENGINEERING METHODS FOR WP3.4B .. 78

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 6 of 85

Content of Figures
Figure 2-1 Overview of the use case structure ... 10
Figure 2-2: The FASD (Function And Software Development process) V-Model .. 11
Figure 3-1: A generic pattern about applying OSLC to combine various standards .. 14
Figure 3-2: Vehicle vs. Testing requirements ... 16
Figure 4-1: Classical V-model applied on the topic of building a vehicle ... 18
Figure 4-2: Early verification through frontloading W Model .. 19
Figure 4-3 Schematic illustration of interlinking of data artefacts ... 20
Figure 4-4: V-model for the testing process ... 21
Figure 4-5 Test and calibration iteration pattern ... 22
Figure 4-6: Mapping the W-model to vehicle test phases .. 23
Figure 4-7: Test cases as data container for the various testing data artefacts ... 25
Figure 4-8 The AVL Data Backbone concept ... 28
Figure 4-9 Integration of OSLC and the AVL Data Backbone concept .. 29
Figure 5-1: Overview Use case Scenario 1 .. 32
Figure 5-2: Integration of a configurable SoS Platform with Use Case requirements 33
Figure 5-3: Overview Use Case Scenario 2 ... 34
Figure 5-4: Used Tools in AVL-PTE Controls development process (overview) .. 35
Figure 5-5: Overview User Scenario 3 ... 37
Figure 5-6: Variant storage within PSF-Library .. 39
Figure 5-7: Variant Handling via separated projects (ARE2071 / ARE2072) ... 39
Figure 5-8: Variant Handling within one project line (Prj1: Release 1.5.1 / Prj2: Release 2.1.1) 40
Figure 6-1: AVL-PTE Development Process .. 41
Figure 7-1: Model exchange between two different development process via IOS interfaces. 43
Figure 7-2 Interrelation between two models in two different development processes (may even developed
and/or applied in different development phases) ... 44
Figure 7-3: General OSLC pattern of the interconnecting data of different data backbones via OSLC 46
Figure 7-4 Possible OSLC architecture for exchanging simulation models ... 47
Figure 7-5 Possible OSLC architecture of exchanging simulation models based on a set of related
requirements ... 48
Figure 8-1: Links between textual requirements and (semi-)formalized requirements 49
Figure 8-2: Formalized WLTP requirement RQ1 .. 51
Figure 8-3: Formalized WLTP requirement RQ2 .. 51
Figure 8-4: Formalized WLTP requirement RQ3 .. 52
Figure 8-5: Establishing links between requirements, test cases and measurement results 53
Figure 8-6: Traceability across a requirement, a test case and a measurement result 54
Figure 8-7: Towards an IOS OSLC scheme for interlinking authoring tools and requirements 55
Figure 8-8 Linking requirements against simulation models and sub-elements of these models 56
Figure 8-9: The test and calibration pattern.. 57
Figure 8-10: Associate Test and Calibration pattern parts to data categories and data artefacts 57
Figure 8-11: Test and calibration iteration in testing phase I (simulation) .. 58
Figure 8-12: OSLC linked-data approach for calibration data management .. 60
Figure 8-13 Example of interlinked data artefacts .. 60
Figure 8-14 Data migration from testing phase I to testing phase II .. 61
Figure 8-15: Typical project activities and data artefacts in testing phase I ... 62
Figure 8-16: Typical project activities and data artefacts (including data re-use) in testing phase I 63
Figure 8-17: Towards a project-independent data model (common data artefacts) .. 64
Figure 8-18: Combining the OSLC linked-data approach with co-simulation aspects 65
Figure 8-19: An automotive example about the co-simulation of an overall vehicle and vehicle environment
model and a more detailed engine model .. 65
Figure 8-20 Possible interoperability scenario for co-simulation in the use case scenario 67
Figure 8-21 Using FMI in testing phase II... 68
Figure 9-1: AVL-PTE Engineering methods ... 69

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 7 of 85

Content of Tables

Table 1: Examples for parameter and calibration data ... 17
Table 2: Examples for vehicle requirements .. 17
Table 3: Examples for parameters ... 26
Table 4: Examples for parameters ... 27
Table 5: Examples for requirements ... 28
Table 6: Stakeholders & Roles ... 42
Table 7: Terms, Abbreviations and Definitions ... 72

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 8 of 85

1 Introduction

1.1 Role of deliverable
This document has the following major purposes:

 Define of the overall use case, including a detailed description of the underlying development
processes and the set of involved process activities and engineering methods

 Provide input to WP601 (IOS Development) required to derive specific IOS-related requirements

 Establish the technology baseline with respect to the use-case, and the expected progress beyond
(existing functionalities vs. functionalities that are expected to be developed in CRYSTAL)

1.2 Relationship to other CRYSTAL Documents
This document has a series of relationships especially to SP6 deliverables, whose related tools and methods
should be improved, extended and applied to the use cases of WP3.4.
These relationships are:

 WP6.3 (System analysis and exploration)

o Method of model-based requirement engineering (T6.10.3),

o ARTISAN Studio integration (T6.3.15),

o AVL Cruise integration (T6.3.5)

 WP6.5 (AUTOSAR Tools & Components)

o Model Based Software Development (T6.5.1)

o TTEthernet Design & Development Tools (T6.5.8)

o SoS Infrastructure Middleware Bricks (T6.5.9)

o SoS Infrastructure Wireless Interface (T6.5.10)

 WP6.8

o HP QC integration (T6.8.4)

o PTC Source und Integrity (workflow management) (T6.8.9)

 WP6.10

o System Family Engineering Framework (T6.10.2)

o Variant Analysis (T6.10.3)

o automatic testing (SiL, HiL) (T6.10.4)

o AVL Creta/Cameo integration (T6.10.7)

 WP6.11

o Via PTC indirect relation to Communicate the IOS to SCLC (T6.11.2)

 WP6.12

o AVL VeVaT/Magic integration and development (T6.12.5)

o Integrated Tool Environment for embedded controls development former Embedded
Verification Platform (T6.12.10 / T6.12.6)

 WP6.13

o AVL Simulation Model Data Backbone (T6.13.1)

o MathWorks Simulink (T6.13.2)

o AVL ARTE.Lab (T6.13.4)

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 9 of 85

1.3 Structure of this document
The structure of the document is extended to the common UC template due to the reason that WP3.4
consists of two sub use case, i.e. UC3.4a and UC3.4b. The document is structured so that every chapter
(except the use case overview Chapter 2 as well as Chapter 7, which is about the commonalities of the sub
use cases) is described in a separate chapter. In that manner UC3.4a is described by the Chapters 3, 4 and
8, whereas UC3.4b is described by the Chapters 4, 6 and 9.

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 10 of 85

2 Use Case Overview and Motivation
AVL supports the automotive industry in many ways. On the one hand AVL helps vehicle manufacturers with
engineering services to master their developing challenges. On the other hand, AVL creates and supplies
also the products that support these engineering services. Products are for instances test benches,
measurement devices but also software tools to handle these devices and testing processes. Even not
stopping here, AVL goes also beyond that by a high degree of virtualization of testing methods and
procedures through the use of simulation models for both, the unit under test as well as the testing
environment: Tools and models for simulating a vehicle (or parts of it such as the combustion process) and
its environment thus enables vehicle development frontloading. Development frontloading denotes the
process of vehicle development, whereas no physical components are needed (or are partially replaced by
simulation models) at an early development phase.

In the Crystal project, AVL participates with two use cases (UCs) reflected by the WP3.3 and WP3.4. This
chapter is all about WP3.4. It consists of several sub-use cases, which are, however, related to each other
and have partially overlapping content. Figure 2-1 shows an overview about this structure.

Figure 2-1 Overview of the use case structure

UC3.4a is led by AVL Graz and is about the interoperability challenges for vehicle testing scenarios at
different vehicle development stages. AVL Regensburg is leading UC3.4b which is mostly about integrated
tool environments for embedded control development and improvement of the development via an efficient
variant handling within the V-cycle. The latter UC is extended by an additional aspect about the integration
and configuration of versatile systems of systems (SoS) platforms, which is driven by TTTech.

In the following, the motivations of the two use cases are described as well as how these UCs are roughly
related. The latter aspect will be explained in more detail in Chapter 7. Since both use case variants are
heavily based on simulation models, whereas the same, similar or related models are applied in both use
cases, a concept for simulation model exchange across the UCs has to be provided. This concept will be
denoted as data backbone or simulation model data backbone (through its focus on development
frontloading as mentioned above).

2.1 Overall Motivation of UC3.4a
UC3.4a deals with the complexity of different testing scenarios over the various vehicle development phases
and the question how to enable an integrated development cycle over these development phases. To
evaluate and improve the related interoperability challenges, a particular use case scenario about testing a
hybrid vehicle under consideration of emission legislation is defined. Such an integrated development cycle
should support answering specific questions regarding testing issues. These questions are for instance (by
no means of being complete):

 Which concrete data artefacts were involved in a concrete test run performed three weeks ago?

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 11 of 85

 How can I re-use simulation models, measurement and calibration results in a later development
phase?

 Are there differences (e.g. measurement results) for a concrete test run in different development
phases (simulation phase vs. component test bed)?

 Why did I set up a certain test run as I did (e.g. artefact navigation)?

 What was the history of changes until I finally got my last test run results (e.g. version
management)?

In corresponding testing environments a number of tools are involved, which are currently operating on many
data sources. Answering question such as above lead to the strong need of tool interoperability on the one
hand and some kind of central data repository on the other hand. UC3.4a will address both aspects.

2.2 Overall Motivation of UC3.4b
AVL Powertrain Engineering is a key development partner for innovative powertrain systems. From diesel
engines to electric drives, from alternative fuels to control software, from transmissions to batteries, we have
been supporting the automotive and mobility industries for more than 60 years. Unique synergies with AVL
Instrumentation & Test Systems and AVL Advanced Simulation Technologies lead to highly creative, mature
and application-specific solutions for our customers to meet their future market challenges.
To fulfil the Customer request, AVL-R follows the Software development process represented via the
classical V-model. This V-model demonstrates the relationships between each phase of the development life
cycle (left side) and its associated phase of testing (right part). It illustrates a general overview of
development process but still excludes details such as chronological order, development iterations, etc.

Figure 2-2: The FASD (Function And Software Development process) V-Model

http://en.wikipedia.org/wiki/Software_testing

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 12 of 85

On the left side of the V-model, the development process starts with the activity analysis of software system
requirements. These software system requirements delivered by the customer are analysed and put into a
form to be used as basis for the software development. Based on the software system requirements, the
software system test cases and the software system architecture and its software components are defined.
The software system requirements are assigned to the software components and handed over the function
algorithm developers and software algorithm developers for further analysis.
Software component development starts with algorithm development and specification of the detailed
software component requirements. This step already involves the set-up of a model itself (e.g. Simulink
model) and is documentation. Based on the software component requirements, the software component is
developed. After this development step, the software components adhere to the functionality specified in the
software requirements.
On the right side of the V-model, the implemented software components have to be tested according to the
defined test cases. As result of the defined test cases, software component test reports and the tested
software component (incl. documentation) have to be delivered.
If all software components have been tested, they are integrated and validated with the final software system
tests. Finally, the software system including the test results is delivered to the customer.

The main motivation for UC3.4b is to increase quality and efficiency of powertrain system engineering
activities by implementation of a seamless tool chain, increased automation of HiL test case generation and
a suitable simulation model variant management. On one side many steps are done manually, e.g. creating
simulation models for different purposes, adapting them for several variants, compiling and composing them
for a certain test case scenario and on the other side requirements are either defined implicitly within the
models or are stored in a requirement management tool without an suitable relation to the respective models
and tests. Due to this, an automatic verification is impossible which has to be clarified by CRYSTAL.

A major objective of this work package is to provide an integrated variant management and test case
generation. This shall be done by coupling the appropriate tool chains within the CRYSTAL project and apply
corresponding methods to ensure these major objectives. Due to an improved interoperability of
modelling/simulation tools, the current situation can be improved significantly. Modelling/simulation
environments could exchange or link data by applying well defined interfaces and services. Furthermore, a
System-of-Systems platform will be linked for prototype testing of selected use case aspects.
Consequences are an improved degree of automation, a reduced set of development overhead and the
Project collaboration becomes more straightforward.

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 13 of 85

3 Use Case Process Description of UC3.4a
This chapter describes the use case in a high level manner. This description is aligned with the definition of a
so-called use case scenario. This scenario is the foundation in respect of creating a concrete prototype
implementation later on during the CRYSTAL project. The scenario is comprises of some initial vehicle and
testing requirements, which should be verified during an integrated (model-based) requirement engineering.
The Chapters 4 and 8 – about UC details and engineering methods – are referring to this use case scenario
where applicable.

3.1 The use case scenario for UC3.4a
The public use case for the automotive domain of the CRYSTAL (developed in WP3.7) is based on the
overall user story of building a vehicle. UC3.4a is related to this public use case by applying AVL’s methods,
devices and tools throughout the development phases in form of testing procedures and techniques. In
particular, the use case is comprised of a particular use case scenario (do not mistake this for user story as
defined in the CRYSTAL application document) about developing a hybrid vehicle. In addition, the use case
is aligned with the principles of integrated model-based requirement engineering (defined as user story in the
CRYSTAL application document).

In addition, the scenario should be applied on the latest trends regarding standardized vehicle test cycles
and emission legislation, which will play even a more important role in the immediate future for vehicle
manufactures than ever before. Consequently, the upcoming WLTP (World-wide harmonized Light-duty Test
Procedure) standard is an essential element in this use case.

As described in more detail by the following sections, development frontloading by early vehicle simulation
and calibration iterations as well as re-using of these simulation and calibration results in later development
phases are further key challenges of this use case. All challenges have in common that corresponding
methods and infrastructure for a sophisticated simulation model and data management has to be applied in
order to establish traceability between all essential data artefacts.

3.1.1 Integrated Model-based Requirement Engineering as user story

The user story of UC3.4a is about full integrated (model-based) requirement engineering throughout the
whole development process. This means that in case of building a vehicle, it has to be shown (semi-
automatically) that a vehicle or sub-parts of it (virtualized by simulation or not) are fulfilling the given
requirements. This is only possible, if traceability is established between all artefacts that are created during
the overall goal of building a vehicle. This traceability is needed to verify the given requirements and the
requirements have to be (semi-)formalized by adequate requirements models in order to enable (semi-)
automatic requirement verification. It is a research goal of this use case to compare (or even combine)
several requirement formalization approaches (e.g. boilerplate approach, sequence charts, etc.).

The requirements itself will be derived from the WLTP standard on the one hand and typical additional
(hybrid) vehicle requirements. An initial set of such requirements is presented later on in this chapter and will
be enhanced and adapted during the CRYSTAL project.

3.1.2 Short Introduction to WLTP

Currently, various emission legislations are actively applied all over the world. In Europe, for instance, the
Euro 5 is the latest released. Its equivalent in the US is Tier II or PNLT in Japan. Consequently, there is
some need for harmonizing all these different approaches, which is one major goal of the WLTP. The project
is set up accordingly to the UNECE 1998 world harmonization agreement. Originally sponsored by EU,
Japan and the US, the latter one, however, has withdrawn sponsoring in June 2010. Other objectives
besides just emission harmonization are:

 Development of a drive cycle that reflects an average world-wide driving behaviour.

 Development of harmonized test procedures by harmonized parameter definition, calculation
formulas, testing equipment, etc.

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 14 of 85

The WLTP
1
 (currently available as a draft) consists of two definition phases. In Phase I the drive cycle and

test procedure standards are defined. In Phase II topics such as off-cycle emissions, low ambient
temperature, high altitude, etc. will play an important role.

3.1.3 Interoperability challenges in UC3.4a

In the CRYSTAL project and thus also in UC3.4a, a major interoperability challenge is not to build (or
standardize) every interoperability technique from scratch, but to re-use existing technologies and standards.
This, however, does not mean that these existing standards should be harmonized to a single one. This
would not be possible either due to the huge standardization efforts on the one hand, and on the other hand
due to the fact that many standards a very specialized for a specific issue. Alternatively, existing standards
should be used side-by-side and combined where possible.

Since in this use case establishing traceability across the several vehicle development phases, methods and
disciplines should be established, there is a strong need to interlink the involved data artefacts (such as
requirements, test cases, measurement results, etc.) across these development phases. For this data
artefacts linkage, an additional interoperability approach should be applied that could operate independently
from existing standards. The OSLC standard seems to be a good candidate for this demand. In the Figure
3-1 below, a generic pattern of using OSLC in common with other, more specialized standards, is illustrated.

Figure 3-1: A generic pattern about applying OSLC to combine various standards

Bottom part of Figure 3-1:

A specialized tool X may save its data in a proprietary format containing all the details needed by the tool. In
order to exchange the data with another tool for certain purpose Standard A was developed. Via an export
function or using a tool interface (not necessarily standardized), Tool A is able to convert the data to this
standard either by transform the full or only a part of its current data set. For another purpose, Standard B is
about other aspects of the proprietary data set. Another export functions is also capable to perform that kind
of transformation. In any case of export, data dependency between the proprietary and the exported data is
usually not linked, which means that important information is lost.

1
 For more information see at https://www2.unece.org/wiki/pages/viewpage.action?pageId=2523179

https://www2.unece.org/wiki/pages/viewpage.action?pageId=2523179

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 15 of 85

Top part of Figure 3-1:

To compensate this loss and even go further, OSLC adds a kind of additional layer on top of the involved
tools and data artefacts as illustrated by the figure above. So-called OSLC adapters map essential elements
of the proprietary and the standardized data sets to so-called OSLC resources. OSLC resources are
standardized elements assigned to a certain domain. A domain, for instance, could be Requirement
Engineering (abbreviated with OSLC RM) or Quality Measurement (OSLC QM). The key idea behind these
domains is that not every detail of the proprietary or standardized data set has to be mapped to an OSLC
resource. Instead, a resource is only introduced if there is a linkage need across the OSLC domains, which
significantly reduces complexity of creating an overall standard for interoperability: The complexity remains at
the tools and OSLC just focus on the cross-dependency aspects of the data.

If a specialized standard (such as ASAM ODS for measurement results) goes beyond that cross-
dependency aspect, then such an OSLC approach abstracts from the selected standard.. The same is true if
there is a lack of a low level standard and only proprietary data representations are available. Finally, a
uniform workbench would then be able to navigate on the top level OSLC elements but would still delegate
to the tools and data providers for detailed data operations and representation visualizations.

The interoperability challenges of UC3.4a are mostly derived from the interoperability pattern described
above represented by corresponding engineering methods such as:

 Formalize requirements, e.g. the WLTP requirements

 Verification of Requirements through analysis of the formalized requirements

 Requirement Traceability to Authoring Tools

 Test and calibration iteration in the context of testing a vehicle

 Data management across development phases

 Heterogeneous Simulation of different kind of models

Each of this engineering method and its relation to the interoperability pattern above will be explained in
more detail in Chapter 8.

3.2 Testing a hybrid vehicle according to WLTP as use case scenario
In our use case scenario, we want to highlight a particular aspect of the overall goal of building a vehicle,
namely testing a vehicle. Even more specific we are focussing on testing a hybrid vehicle according to the
specifications of the WLTP.

In order to describe the use case scenario in more detail, selected requirements are applied on a concrete
testing procedure with concrete tools and artefacts. These requirements are by no means complete, but are
used to describe the use case from a practical point of view. During the project the requirement list will be
updated and enhanced accordingly. In addition, the requirements can either belong to vehicle requirements
(see Section 3.2.1.2 - driven by certain example scenarios) or special testing requirements (see Section
3.2.1.3) as demanded by the WLTP or even both as illustrated in the Figure below by the overlapping area
(see Section 3.2.1.1). Or in other words, for testing a vehicle, the original set of requirements is extended by
those that are just needed for testing aspects (e.g. a certain configuration demands of a test bed, concrete
test-run constraints, etc.).

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 16 of 85

Figure 3-2: Vehicle vs. Testing requirements

The selected requirements are described in more detail in the following subsections. These requirements are
the starting base for the overall development process with its phases; they are applied on the engineering
methods and will be verified by executing concrete test-runs for a specific hybrid vehicle.

3.2.1.1 Emission limitation requirement

A requirement that belongs to both categorizations, i.e. a vehicle requirement and a testing requirement, is
for instance a requirement called emission limit requirement: As defined in the WLTP specification, the CO2
emission of a certain vehicle should be below a certain level, let’s assume 95g/km in our case. In order to
enable requirement validation and verification, this requirement needs then to be formalized accordingly (e.g.
by and appropriate requirement model) in the first step. Then, the requirement should be captured by every
development step and has to be verified by appropriate testing procedures. For instance, the initial step
would be to test various architectural vehicle designs (a hybrid vehicle design would be one of them) by
simulation of appropriate vehicle models that represent these architectural vehicle designs.

During this simulation, the models have to be configured within their possible range by performing
parameterization and calibration testing iterations.

Parameterization means to modify the physical specification of certain sub-elements of the virtual vehicle,
whereas calibration means to modify a certain configuration of sub-elements, without the need of physically
exchanging it. For instance, changing the value of the cylinder capacity or the number of gears of an
automatic gear box belongs to parameterization, whereas changing the injection time of the engine or the
shifting thresholds of the automatic gear box belongs to calibration. For some more examples see Table 1.

Simulating the models (i.e. testing the virtual vehicle) leads to simulation results that verify the given
requirements for a concrete parameterization and calibration set (see Table below) or falsify the models in
combination with their associated architectural vehicle design (such as a hybrid vehicle). In the latter case,
the parameterization and calibration has to be modified and adjusted followed by further simulation test
iteration(s).

In later development phases, simulation models will be more and more replaced by real-world components
(e.g. engine, gearbox, etc.). However, the parameterization and calibration of the unit under test (i.e. the
hybrid vehicle) remain the same in principle with the difference that pure architectural design parameters of
the real-world component cannot be changed without a physical re-design (e.g. changing the number of
cylinder capacity of an engine) as it is possible for virtual components of a simulation models. Or in other
words: efforts of changes increases over the different development phases. A concrete list of development
phases considered in this use case are listed and described in Chapter 4.

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 17 of 85

Description Type Typical value, e.g.

Cylinder capacity Parameterization 1.3l

Number of gears Parameterization 5

Injection time Calibration 50ms

Shifting thresholds (for shift up) Calibration 100 rad/s

Shifting thresholds (for shift down) Calibration 400 rad/S

Table 1: Examples for parameter and calibration data

3.2.1.2 Vehicle requirements

Independent of the WLTP or any other emission specification, vehicle requirements (e.g. postulated by a
specific customer) are considered during the vehicle development process. For our use case scenario, we
are starting some vehicle requirements listed in Table 2, which will be extended accordingly during the
project:

Requirement description Example Value

Maximal speed 150 km/h

Time for acceleration 0 to 50 km/h <= 5s

Range of vehicle > 200 km

Fuel consumption <4.5l/100km

Maximal Weight 1.5t

Number of Passengers 5

Table 2: Examples for vehicle requirements

3.2.1.3 Testing requirements

Finally, emission specifications such as the WLTP add further requirements on the testing procedure (input
vector set), rules (constrains on the test run execution), methods (calculations, formulas) and equipment
(such as measurement devices). In our use case scenario, we have a close look on three special gear
shifting requirements (i.e. testing rules) as defined by the WLTP.

 WLTP_RQ1. First gear shall be selected 1 second before beginning an acceleration phase from
standstill with the clutch disengaged. Vehicle speeds below 1 km/h imply that the vehicle is standing still.

 WLTP_RQ2. Gears shall not be skipped during acceleration phases. Gears used during accelerations
and decelerations must be used for a period of at least 3 seconds.

 WLTP_RQ3. Gears may be skipped during deceleration phases. For the last phases of a deceleration to
a stop, the clutch may be either disengaged or the gear lever placed in neutral and the clutch left
engaged.

Note that these requirements do not have anything to do with the vehicle design. The vehicle itself may be
still able to break with any of these rules (e.g. skipping a gear during acceleration), however during testing,
they have to be ensured. Finally, these three testing requirements are formulated by ordinary prose. In order
to enable (semi-)automatic verification of these requirements, they have to be formalized by an appropriate
method. In this use case, several approaches are planned to be applied for requirement formalization.

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 18 of 85

4 Detailed Description of the Use Case Process of UC3.4a
This chapter explains the role and important aspects of testing a vehicle throughout the overall vehicle
development process. For that purpose, so-called testing V-models enhance the general vehicle
development V-model. The relations between these testing V-models and the classical vehicle development
V-model are described below. Finally, interoperability challenges are derived from that.

4.1 Activities
As indicated in the Chapter 3, requirements verification through simulation models is only one out of other
development phases. In this section, these development phases and their belonging activities are described
in more detail by applying them on the classical V-model on the one hand and by introducing a testing V-
model on the other hand.

4.1.1 Classical V/W-model aspects

Since several decades, the prominent V model (suggested by Barry Boehm in the year 1979) is present in
the automotive industry and represents the typical stages of vehicle manufacturing and the validation of
these processes. A V-model has typically a central development entity, whose creation, developing and
manufacturing it is all about. In case of the automotive industry and according to our use case, this
development entity is a hybrid vehicle. A typical V model as applied in the automotive industry is illustrated in
Figure 4-1.

Figure 4-1: Classical V-model applied on the topic of building a vehicle

Based on a set of vehicle requirements, an engineer creates an overall vehicle concept (maybe based on
previous projects with similar requirements). Then, a team of engineers continues with the conceptualization
of the subparts (such as engine, powertrain, and chassis) followed by the development of concepts for even
more details and so on. After the implementation of the concepts, first the modules are tested against their
particular concept specification. Then the modules are integrated step-wise, which goes along corresponding
integration tests. Finally, the original requirements of the resulting vehicle are verified.

Variants of this classical representation of a V-model add the additional aspect of virtualization of the
implementation in form of simulation models (e.g. of an engine). These simulation models make validation of
certain design decisions possible at an early stage - also called development frontloading. Development
frontloading enables early comparison and validation of different designs. Independent of that, the goal of or
the story behind these models is the same: Building a vehicle.

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 19 of 85

A reasonable enhancement of the V-model in that manner illustrated above in form of a so-called W-model
2

is illustrated in Figure 4-2.

Figure 4-2: Early verification through frontloading W Model

As shown in this figure, requirements validation and verification becomes possible already at the vehicle or
module conceptualization phase (2 and 3) by vehicle and module simulation (2a and 3a).

For simplicity, we distinguish by now between three elementary vehicle modules, namely engine, powertrain,
and chassis. During module conceptualization these modules are specified through design, parameterization
and calibration in an iterative simulation and test cycle. During these iterations, modules are specified at an
ever more detailed level, e.g. by separating the engine model into two models, whereas the first one covers
the physical aspects of the engine and the second one is a model of the engine control unit.

Through this stepwise refinement, the implementation phase (4) finally results in real physical components
(engine, powertrain, chassis, control units, etc.) and software that runs on the control units (and may be
automatically generated out of the simulation models).

These components and software units need to be tested in concrete module tests (5) according to the given
requirements. In addition, intermediate integration tests may be added (5b), which combines for instance
engine and powertrain testing but still includes a rest vehicle simulation, of those parts that are not physically
present in the particular testing scenario. In both scenarios, additional equipment is needed to test the
physical components, i.e. a so-called test bed. This test bed needs to be configured according to the vehicle
requirements as well.

Development phase (6) leads then to a full integration test. This is as well accomplished with the use of a
test bed, where the environment of the vehicle (driver, street, weather conditions, etc.) still needs to be
simulated. In order to overcome this remaining simulation part as well, so-called in-vehicle tests are
performed, where a real driver is steering the vehicle on a real road and the testing equipment is built directly
into a car (6b). This final test phase leads then to the system validation and verification (7) according to the
given requirements.

APPLYING THE USE CASE SCENARIO ON THE CLASSICAL V/W-MODEL

In our use case scenario, the emission limit requirement has to be tested in all conceptualization,
development, implementation and integration phases. In order to achieve that, traceability of the emission
limit requirement and the corresponding artefacts in the testing phases have to be established. Artefacts are

2
 The W-model presented in this document is loosely inspired by that proposed by Herzlich, P. (1993). “The

Politics of Testing”, proceedings of 1
st
 EuroSTAR conference, London, Oct. 25-28, 1993. Herzlich suggest

early verification of activities on the left leg of the V-model by introducing testing approaches.

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 20 of 85

in this case simulation models, parameterization and calibration data, simulation (or measurement) results,
test-runs data and so on. Regarding our use case scenario of a hybrid vehicle we have thus simulation
models about the combustion and the electrical engine including the control unit of those; we need a battery
model as well as parameterization data (e.g. cylinder capacity of the combustion engine, weight of the
battery, etc.) and calibration data (e.g. ignition time of the combustion engine, shifting time of the gear box,
etc.). Certain test-runs defines at what level and at what time the accelerator and brake pedal is pushed, and
so on. These test-runs lead to outputs in form of simulation or measurement results, respectively the test
contain virtual components or not.

Figure 4-3 Schematic illustration of interlinking of data artefacts

As illustrated in the Figure 4-3 and in order to validate the emission limit requirement, all artefacts need to be
linked to each other in a sufficient manner to associate this requirement with the final test results (e.g. the
maximum of the occurred CO2 value during a particular test-run). But even beyond that, important questions
(such as which test-run performed at what time is associated with what requirements, models, calibration
and parameterization data) have to be answered. This would allow detailed (historical) analysis of a
particular test phase and would even enable detailed comparison of different test phases (e.g. answering the
question, if simulation leads to the same results as the real-world test or if it is necessary to improve the
accuracy of my models).

4.1.2 Testing V-model aspects

The overall goal of the public use case in CRYSTAL’s SP3 is about building a vehicle. Testing a vehicle is a
part of the process of building a vehicle. Applying appropriate test methods, devices, and tools throughout
the development processes is essential. Adequate testing procedures, techniques, and environments finally
should verify the given vehicle requirements.

In addition to the given vehicle requirements, specific testing requirements enhances the list of requirements.
These requirements are based for instance on a certain testing specifications such as the WLTP (see
Section 3.1.2) or others. Such specifications define concrete test-runs, the accuracy of measurement
devices, formulas that have to be applied for measurement result analysis, and so on. The needed test
environment (needed measurement devices, test-run input vectors, etc.) is then derived from this testing
requirement as well.

The concrete configuration of the test environment depends then on the concrete position within the V or W
model for building a vehicle. For instance, for early simulation phases, simulation models (e.g. for control
software and virtualized physical components such as engines, etc.) are fully sufficient, whereas after the
implementation phase, various test bed settings are required for a stepwise substitution of simulation models
by their physical counterparts. Furthermore, the selection of development and testing tools may differ as
well, since one tool is more specialized for a certain development phase than another. Or in other words:

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 21 of 85

Every testing phase may come up with its own tool set. It is one key interoperability challenge to share data
across these development and testing phases as described in more detail by Section 4.2. Setting up test
environments is a complex task and needs to be easily adaptable to the requirements of the current position
in the development process (i.e. the V/W-model) including addition boundaries (or testing requirements)
coming from specifications such as the WLTP. Further enhancements are specifications to define concrete
test-runs, the accuracy of measurement devices, formulas that have to be applied for measurement result
analysis and so on.

This means that besides the vehicle and model conceptualization and implementation on the one hand (left
side of the V-model) and the actual test case execution, system validation and verification on the other hand
(right side of the V-model), a lot of knowledge and efforts are going into the test case conceptualization and
implementation as well. One may say that this test case conceptualization and implementation is a further
sub-development step of the overall assignment of building a vehicle. Depending on the concrete position in
the V/W model, however, a particular test case conceptualization and implementation has its own selection
of testing processes and techniques in form of testing tools and methods as stated above. Therefore, testing
a vehicle is a development task by its own and can therefore be represented by a separate V-model. In
contrast to a classical automotive V or W model that focuses on building a vehicle, an alternative V model
that focus on testing a vehicle would look as illustrated in Figure 4-4.

Figure 4-4: V-model for the testing process

Besides the already mentioned requirement specification and test case conceptualization phase, the latter
one has to be separated in further sub-modules, similar as done for the vehicle conceptualization phase.
However, instead of the vehicle itself, the test environment is now in the focus of the V model and thus these
sub-modules differ significantly.

A general pattern of a test environment is about UUT calibration as shown in Figure 4-5.

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 22 of 85

Figure 4-5 Test and calibration iteration pattern

The test case conceptualization is divided into two set-ups (test modules): the calibration and the test bed
set-up. The test bed set-up configures the testing environment (with further sub-modules such as needed
measurement devices, UUT configurations, etc.), while the calibration set-up is specialized on tuning
selected parameters of the UUT in order to fulfil the given set of requirements. The specification of these set-
ups with all there sub-modules finally leads to the implementation and integration of the overall test set-up,
which can be executed with a set of given test-runs.

In many cases, the test modules test case execution and calibration are clearly separated: During a test-run
execution, measurement results are linked to given test run input vectors. These pairs of data are used in
corresponding calibration tools to create a calibration model that interpolates even not tested constellations
and therefore support speeding up the calibration process as a whole.

4.2 Interoperability Challenges
In the previous sections, the testing V-model was separated from the classical vehicle development V/W-
model order to change the focus of what should be achieved in both development processes. Since testing a
vehicle remains a development element of the overall story of building a vehicle, the aspect of testing a
vehicle automatically inherits the set of vehicle requirements. Or in other words, the set of vehicle
requirements is extended by additional testing requirements such as demanded by the WLTP or a specific
test bed environment as described in the previous section.

In this section, interoperability challenges for verifying both kinds of requirements under the special aspect of
testing in different vehicle development phases (that correlates to the position in the V/W-model about
building a vehicle) are described. These challenges are derived from the need that data within a (testing) V-
model has to be interlinked properly to ensure traceability as described in the previous sections and are thus
called interoperability challenges.

The key user story (as defined in the project’s application document) of the UC 3.4.a is about full integrated
(model-based) requirement engineering throughout the whole development process. This means that in case
of building a vehicle, it has to be shown that a vehicle or parts of it (virtualized by simulation models or not)
are fulfilling the requirements. This is only possible, if traceability is established between all artefacts that are
needed to verify the requirements.

This is also true in case of testing a vehicle. All test artefacts that are needed to build up the test case
conceptualization (as defined by the testing V-model in the previous section) have to be linked to the
requirements and even have to be grouped themselves to a certain test case. Through its execution and the
analysis of the testing results, finally, the requirements are verified (semi-)automatically.

According in the V/W-model about building a vehicle, the development phases are separated starting with
the requirement specification and leading to concrete implementation of these requirements. The

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 23 of 85

intermediate step of vehicle conceptualization could be subdivided in conceptualization of the main parts of a
vehicle, namely the engine, powertrain and chassis conceptualization.

In the following, a systematic mapping of the vehicle development phases to the major testing phases is
established. As stated in the previous chapter, each testing phase come up with their own challenges, tool
chains, but need to be synchronized regarding their (testing) requirements, data sets and test cases.

4.2.1 Mapping the V/W-model to test phases associated testing V-models

Figure 4-6 illustrates a mapping of the W-model about building a car to test phases. These mapping and the
resulting test phases are then described in more detail.

Figure 4-6: Mapping the W-model to vehicle test phases

Let’s first describe the W-model about building a vehicle once more under the aspect of testing.

1. Vehicle conceptualization (2): This phase can be accomplished by virtually modelling the vehicle
according to its requirement specification (1). These requirements can then be validated on vehicle
level by simulating the vehicle model for certain test cases (2a).

2. Engine, powertrain, and chassis conceptualization (3): Simulation models are an essential aspect in
the conceptualization of these three vehicle components. Associated simulation models are
designed with a high detail level for each of these parts. The execution of these simulation models
according to appropriate test cases (3a) validates the results of the overall vehicle conceptualization.

3. After a concrete implementation phase (4), the concrete sub parts of the vehicle need to be tested
against its conceptualization specification. In our use case, this is done for the engine (5a) and the
powertrain (5b) with appropriate test beds, whereas the powertrain is comprised already of that
engine, which was tested at the previous testing phase (5a). In the integration phase (6) the subparts
are assembled and verified using an integration test (6) that has to validate the overall vehicle

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 24 of 85

conceptualization (2). This is usually done by a chassis test bed
3
, whereas the concrete environment

is still simulated (this may also the vehicle driver).

4. Finally, the virtual driver and environment are replaced by real ones and tests are performed by so-
called in-vehicle tests (7), which finally validate the requirements of (1).

Based on this description, testing phases can be assigned to specific development steps of the presented
W-model, whereas each testing phase is described by its own testing V-model as illustrated in the picture
above. In our use case, five different testing phases can be separated from the description above:

1. Testing Phase I: Performing vehicle simulation (associated with development phases 2a + 3a)

2. Testing Phase II: Applying an engine test bed (associated with development phase 5a)

3. Testing Phase III: Applying a powertrain test bed (that includes engine testing; associated with
development phase 5b)

4. Testing Phase IV: Applying a chassis test bed (associated with development phase 6)

5. Testing Phase V: Performing an in-vehicle test (associated with development phases 6b)

These development phases are by no means complete (further phases such as HIL/SIL testing could be
interlaced). However, additional phases do not abandon the principle concept of separate testing V-models
linked to a specific vehicle development phase. In addition, however, this does not exclude a possible
overlap of methods and tools across the five testing phases (for instance, the simulation of the environment
takes place in any test scenario except the in-vehicle test).

The interoperability challenge is now the transfer of the created data set from one development phase to the
subsequent. In the first stage of the CRYSTAL project, the focus will be set on Phase I and Phase II in order
to understand and solve these interoperability challenges in more detail.

4.2.2 Data Categories and applied Tools in UC3.4a

In the Section 4.2.1, it was stated that every testing V-model is comprised of its own methods and tools.
Usually, independently developed tools (if not integrated in a certain tool suite) have its own data sources
and sinks. Tool interoperability is then often established by point-to-point integration, data transformation or
data import features. This is also true in many times for AVL testing tools, which are traditionally developed
as separate products and interoperability is made ad-hoc where needed..

A drawback of that is not the full potential of interoperability may be addressed. For instance, if two separate
products of two separated testing phases (and thus V-models) are used by two different development teams,
similar task that has to be done in both phases are performed redundantly and may be also slightly
differently for no obvious objective reason. Due to that, data created during the first phase is not compatible
for the second phase and so on.

Consequently, the first step towards interoperability is to categorize the data sources and then try to
understand how the resulting data categories are instantiated in the several testing phases and how they are
related across these phases as schematically sketched in Figure 4-7.

3
 A chassis test bed is equipped with complete vehicle put on some moving rolls, whereas the drive and the

vehicle environment is still simulated.

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 25 of 85

Figure 4-7: Test cases as data container for the various testing data artefacts

In addition, to the data categories relations, a kind of data container is needed that assigns concrete
instances of the data categories to a concrete test case. Such a containers enables test configuration
analysis to answer questions such as: Which calibration and testing set-up has been used to produce a
specific set of measurement result?

In respect to the five testing phases, the following data categories are derived and its relation to the use case
scenario (as defined in Section 3.1) is described:

 Requirements for vehicle development and testing: Requirements are represented in different forms. At
the beginning of a project, they are formulated by informal textual representations. In order to verify
requirements (semi-)automatically the need to be (semi-)formalized. (Semi-) formalized representations
would be for instance boilerplate expressions.

APPLYING THE USE CASE SCENARIO

In our use case scenario, for instance, the WLTP specification is the foundation for the testing
requirements (in addition to the vehicle requirements). Thus these specifications have to be formalized.
We will examine three (semi-)formal representations: Boilerplates, requirement models in form of SysML
models (e.g. state charts) and sequenced based requirement representations. All these representations
are created by different tools and need to be interlinked to enable traceability. Examples for vehicle and
(WLTP-based) testing requirements are listed in Section 4.1.2.

The requirements should be represented in as much representations as possible/useful. The following
tools are considered for the various representations:

o HP Quality Center (currently used within some departments of AVL)

 Stores an informal requirement representation

 an ALM tool such as PTC Integrity (already used within some departments of AVL) is
considered to be an alternative tool for this use case

o ViF Boilerplate Prototype tool

o Artisan Studio (for SysML representations)

 Simulation models play a central role in testing. In most testing phases - not only in phase I – simulation
models are heavily used. If testing the powertrain (that include engine testing) the remaining vehicle has

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 26 of 85

still to be virtualized (rest vehicle simulation). Even if a complete vehicle is tested on a chassis test bed,
the environment (and may be also the driver) has to be simulated according the testing scenario.

APPLYING THE USE CASE SCENARIO

In our use case, we are focussing on the testing phases I and II (as described in Section 4.1.1). Usually
in these phases the following type of models and tools are applied:

o Vehicle models: These models simulate the physical behaviour of either the whole vehicle or
parts of it (such as a particular engine). Depending on the concrete application (needed
details, real-time properties, etc.), either Simulink models or AVL Cruise models are used for
that.

 AVL Cruise is a simulation tool environment with certain specific simulation domains
such as computational fluid dynamics (CFD) simulation, mechanical or system (i.e.
vehicle) simulation.

 Mathworks Simulink is a de-facto industry standard for a wide range of simulation
applications. In our case, Simulink models are applied mostly for the simulation of
control software.

 Test runs define the input data of a particular testing scenario either for simulation or for a particular
physical unit under test (UUT), such as the engine, the powertrain or the whole vehicle. The WLTP, for
instance, contains exact definitions, which events have to happen at what time during a test run. Events
could be a certain throttle position or particular driving manoeuvres (breaking, steering, etc.)

 Parameters: To configure a certain testing procedure, a huge set of parameters is available, which can
be assigned to different parameter categories. These parameter categories are used to configure test
beds, the test method or the UUT itself or even its environment if simulated. This means
parameterization of simulation models is subsumed here as well.

APPLYING THE USE CASE SCENARIO

In our use case, we try to establish a clear separation of these categories. Nevertheless, the current
state is the parameters are spread over different tools in different representations (especially if different
test phases are considered). The table below considers the assignment of two typical vehicle parameters
to the corresponding tool and testing phase. In order to establish tool interoperability, it has to be
considered how these different parameter representations can be mapped to each other within and
across testing phases.

Parameter Tool Testing phase

Cylinder capacity AVL Cruise I

Cylinder capacity AVL Puma II, III

Cylinder capacity AVL Cameo/Creta I, II, III

Number of gears AVL Cruise I, III

Number of gears AVL Puma II, III

Number of gears AVL Cameo/Creta I, II, III

Table 3: Examples for parameters

o AVL Cameo/Creta: AVL Cameo performs the modelling and optimization tasks based on the
measured engine response. AVL Cameo’s primary use is for (automated) UUT calibration. AVL
Creta is responsible for calibration data management.

o AVL PUMA: Integrates all system functions of a test bed and is used for testing tool and test bed
component management.

 Calibration data are related to parameters but focus on special UUT parts such as the control software of
an engine or a powertrain. In other words the calibration date does not configure the testing procedure,
but fine-tunes the UUT according to the results of the testing procedure. What is subsumed as

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 27 of 85

calibration data depends on the actual testing phase. Generally spoken, calibration data are concrete
values of parameters that could be easily changed in a particular a testing/calibration iteration. If
simulating a vehicle, more or less everything can be seen as calibrate able (e.g. even the cylinder
capacity of a particular engine), whereas in later phase (e.g. on an engine test bed) this is not possible
any more. In Section 8.4, the engineering method of calibration iterations are described in more detail.

APPLYING THE USE CASE SCENARIO

In the context of our use case scenario, the table below chooses four parameters as calibration
candidates and assigns them to corresponding tools and testing phases. Note that the parameter
‘Cylinder capacity’ can be only assigned to testing phase I, since it is not possible to change this engine
design parameter once the engine is physically build and tested in a corresponding testbed.

Parameter Tool Testing phase

Cylinder capacity AVL Cruise M I

Injection time AVL Cruise M I

Injection time AVL Puma II, III

Injection time AVL Cameo/Creta I, II, III

Shifting thresholds (for shift up) AVL Cruise I, II

Shifting thresholds (for shift up) AVL Puma III

Shifting thresholds (for shift up) AVL Cameo/Creta I, II, III

Shifting thresholds (for shift down) AVL Cruise I, II

Shifting thresholds (for shift down) AVL Puma III

Shifting thresholds (for shift down) AVL Cameo/Creta I, II, III

Table 4: Examples for parameters

 Measurement results is the data output of a concrete test-run execution. These results need to be
analysed and requirements have to be validated against these analyses. Furthermore test-run inputs and
measurement outputs are building the basis for the definition of a calibration model.

APPLYING THE USE CASE SCENARIO

The following requirements could be associated with concrete measurement results. The exact content
and meaning of measurement results often differs from case to case and especially between different
testing phases. Consequently a mapping and unique interpretation of the measurement results is
considered as an interoperability challenge. The table below associates selected vehicle and testing
requirements to particular tools that manages them in various testing phases. If a 1:1 mapping of
measurement result and the related requirement is not possible measurement result post-processing is
provided by separate tools (e.g. AVL Magic or Concerto)

Related requirement Tool Testing phase

Emission limit requirement AVL Cruise I

Emission limit requirement AVL Santorin II, III

Emission limit requirement AVL Cameo I, II, III

Maximal speed AVL Cruise I

Maximal speed AVL Santorin II, III

Maximal speed AVL Cameo I, II, III

Time for acceleration 0 to 50 km/h AVL Cruise I

Time for acceleration 0 to 50 km/h AVL Santorin II, III

Time for acceleration 0 to 50 km/h AVL Cameo I, II, III

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 28 of 85

WLTP_RQ1 AVL Cruise I

WLTP_RQ1 AVL Santorin II, III

WLTP_RQ1 AVL Cameo I, II, III

WLTP_RQ2 AVL Cruise I

WLTP_RQ2 AVL Santorin II, III

WLTP_RQ2 AVL Cameo I, II, III

Table 5: Examples for requirements

AVL Santorin: Based on ASAM-ODS standards, the AVL Santorin Server provides the infrastructure for
consolidated storage and manufacturer independent analysis of measurement data.

4.2.3 AVL Data Backbone

In the previous sections of this chapter, development and testing processes, data categories and their
assignment to tools are explained. Various tools are used to create different kinds of artefacts throughout the
testing process. Most of them are currently stored locally or in a non-transparent manner (and thus are
hardly to access), which makes data-reuse and traceability complicated or even impossible.

The AVL Data Backbone is a generic concept to overcome these limitations. Figure 4-8 below illustrates the
basic idea of this concept.

Figure 4-8 The AVL Data Backbone concept

The AVL Data Backbone a kind of single-source-of-truth for all tools and data categories applied in all testing
phases represented by different testing V-models (and thus different tools). With this concept consistency
among the development processes should be enabled and effective frontloading of development tasks
becomes possible.

It is important to understand what consistency means in this context. For some situations it is maybe
sufficient that a central data repository ensures the single-source-of-truth concept, i.e. a unique storage
location and transparent way of data access for the involved applications. In practise, however, a single-

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 29 of 85

source-of-truth concept does not necessarily causes consistency of data content (e.g. re-using the same set
of calibration data throughout two testing phases). It may happen that for various reasons (e.g. if different
naming conventions are common in different development phases) two variants of calibration data sets are
created at two testing phases.

A stronger meaning of consistency may forces that the data content of the several data categories is aligned
with the different testing phases. For instance, with a fully consistent data set, the parameters, calibration
data, and measurement results of two test-runs in different test phases phase became directly re-useable
and comparable. It is part of the project to evaluate, which interpretation of consistency is sufficient to
overcome the most important limitations of today’s systems.

Figure 4-9 illustrates a possible concept based on the OSLC concepts. The various data categories are
stored in one or even more (3

rd
 party) data providers. The data consists of all the details created by the

related authoring tool and only these authoring tools are able to fully interpret and modify this kind of data.
OSLC adapters, however, abstract from these details and provide only a reduced data model per data
category (also called OSLC domains). These (potentially standardized) OSLC domains are designed in a
minimal manner in order to just fulfil the needs for defining data interrelations and navigation across the data
categories. On top of this minimal OSLC data structure a uniform workbench could navigate over this data
structure, without the need of understanding all the details the authoring tools have to deal with. If a deeper
data analysis or modification is needed, the workbench just delegates this task by invoking the
corresponding tool with the appropriate OSLC link or requests an appropriate data artefact representation.

In addition, an AVL customer has the freedom of choice which kind of data backbone he wants to use. For
instance, a classical ALM tool such as PTC Integrity may provide important features such as variant and
version management. However, this feature may not be needed by every customer, consequently another
data provide (e.g. an AVL data backbone) is sufficient. With the use of OSLC both the authoring tools as well
as the uniform workbench does not depend on which data provider is in use.

Figure 4-9 Integration of OSLC and the AVL Data Backbone concept

In terms of OSLC, it is mandatory to develop a corresponding OSLC model that interlinks the data categories
appropriately. One purpose of the CRYSTAL project is to develop and standardise such appropriate OSLC
resource models by analysing the interoperability challenges of the provided use cases.

Applying to the use case scenario

D304.011 Use – Case Definition

Version Nature Date Page

V01.00 R 2014-01-30 30 of 85

In the context of the use case scenario (as defined in Section 3.1), the data backbone plays a central role.
Starting from the (formalized) requirements, all the data artefacts created in the following testing phases
should be stored and managed by such a data backbone concept. The selected tools of choice will be AVL
Santorin and AVL Navigator. AVL Santorin is traditionally used for managing measurement result data and
complies with the ASAM ODS standard. On the other hand, it is also a database that is able to hold other
data as well. In terms of version and variant management, however, the possibility is limited and
alternative/parallel solutions may be considered for the use case scenario (e.g. by integration of a PLM tool).
The AVL Navigator is able to navigate on top level elements of data categories, but it delegates functionality
of editing and interpreting the data content to specialized tools. Thus the AVL navigator naturally fits into the
data backbone concept sketched above and would be an instance of a uniform workbench.

Based on the use case scenario description, these tools should be applied to demonstrate a fully integrated
requirements engineering process including requirement verification and data migration over development
phases. In terms of OSLC, is mandatory to develop a corresponding OSLC model that interlinks the data
categories appropriately. The description of the engineering methods in Chapter 8 delivers a first draft of
such a data model, which need to be evaluated and adapted by applying the use case scenario during the
CRYSTAL project.

D304.011
Use Case Scenario 1: Model Exchange and Integration of a

System-of-systems (SoS) platform

Version Nature Date Page

V01.00 R 2014-01-30 31 of 85

5 Use Case Process Description of UC 3.4b
UC3.4b use case process is based on the following three different use case scenarios in order to improve
the software component development at AVL-R:

1) Model Exchange and integration of a System-of-systems (SoS) platform.
2) Establishing an integrated tool environment for embedded controls development.
3) Improving of the software component development via an efficient variant handling within V-model.

Every use case scenario has to deal with different interoperability challenges, which are described by the
following sections.

All Use Case Scenarios base on the same V-model with described activities in Chapter 6.1.

5.1 Use Case Scenario 1: Model Exchange and Integration of a System-of-systems
(SoS) platform

Due to a model-based software development process, AVL-R provides appropriate simulation models of
vehicle control systems. To improve the quality of these control system models, proper simulation models of
the plant and the physical vehicle behaviour enables development frontloading. For vehicle simulation, AVL-
R is using the simulation environment AVL BOOST RT

4
.In addition the imported AVL BOOST RT have to be

integrated and configured in the versatile System-of-systems (SoS) platform where different hardware or
software systems to create a new execution environment.

5.1.1 Enabling simulation and plant models exchange

BOOST RT is a real-time capable, system-level, engine simulation tool dedicated for the investigation of
transient operating conditions offline in desktop applications and online in HiL environments. It is the
consequent next step to further integrate the well-established BOOST 1D Cycle Simulation tool and
CRUISE, the vehicle dynamics, fuel consumption and emission simulation package. BOOST RT focuses on
three main application areas used in the different engine development phases:

a) Concept Development Phase: BOOST RT supports a fast setup and simulation of engine
design variants without considering all details of pipe gas dynamics to get guidelines on engine
performance.

b) Powertrain Design Phase: BOOST RT engine runs drive cycles fully coupled with a detailed
vehicle model (built in CRUISE) resolving both engine and vehicle dynamics with adequate level
of modelling depth within reasonable computational times.

c) Component, Powertrain, Vehicle Test Phase: BOOST RT engine runs as plant model to
support the development, calibration and testing of engine control functions.

The exchange of the configured engine model is currently done via time-consuming personal request to the
responsible persons and should thus be improved by a tool supported approach.

Tool supported approach means that Integrity is able to have a link to other data providers such as the AVL
data backbone (developed by UC3.4a and described in Section 4.2.3), which shall be realized via an OSLC
adapter on Integrity side.

The interoperability challenge for this use case scenario is thus the model exchange between a AVL data
backbone and PTC Integrity tool.

4
 Based on AVL PRODUCT DESCRIPTION BOOST RT

https://www.google.de/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=1&cad=rja&ved=0CC8QFjAA&url=https%3A%2F%2Fwww.avl.com%2Fc%2Fdocument_library%2Fget_file%3Fuuid%3D71957383-1be2-4a53-89e4-40b37ad489ff%26groupId%3D297166&ei=fKPBUsDoAof_ygPjnYCgAg&usg=AFQjCNGl92p_92JMfZirmD2v9RUbCtKKjQ&bvm=bv.58187178,d.bGQ

D304.011

Version Nature Date Page

V01.00 R 2014-01-30 32 of 85

A proposal for such a common simulation model data backbone is given in Section 4.2.3. As described in
more detail in Chapter 7, this data backbone relates the two sub use cases UC3.4a and UC3.4b.

Figure 5-1: Overview Use case Scenario 1

Figure 5-1 shows the interoperability challenge between Data Backbone (upper part) and the different
development steps of the V-Cycle in INTEGRITY (bottom part).
The improvement is given by a simulation model exchange (i.e. BOOST RT models) between the AVL data
backbone and the AVL-R tool environment based on PTC Integrity. An IOS-based interface between the
involved tools ensures improved tool interoperability compared to the current situation.
The concrete scenario simulation model exchange has to be evolved during the CRYSTAL project (e.g.
importing simulation models vs. linked-data approach.

5.1.2 Integration and configuration of a versatile System-of-System (SoS) platform

In UC3.4 b the exchange models will be additionally used for the design and development of a flexible and
configurable System-of-Systems (SoS) platform including the necessary tools for configuration of hardware,
software, application, and communication aspects. The motivation for this step is that many upcoming
applications in the automotive domain require versatile and adaptable systems (or system platforms) that
can be tailored to specific application area requirements and constraints. To reach this ambitious goal
(interoperability challenge), research and development not only on a platform level but also in the area of
engineering processes and tooling needs to be undertaken. In particular, ways to integrate different
subsystems and applications to a common platform and to provide tailored configuration tool-chains that
support this process are the main work items of this use case scenario.

D304.011
Use Case Scenario 2: Integrated Tool Environment for

embedded controls development

Version Nature Date Page

V01.00 R 2014-01-30 33 of 85

Figure 5-2: Integration of a configurable SoS Platform with Use Case requirements

Figure 5-2 illustrates the user scenario targeted in this use case. Main aspects are the interconnection of
multiple hardware platforms towards one system-of-systems platform and their variable interconnection. The
configuration of communication and platform aspects will allow to instantiate a tailored system platform for
specific use cases out of more generic blueprints. In this use case scenario, the usage of a simulation model
– imported from the Simulation Data Model Backbone – within an embedded verification platform will build
the basis of the SoS Platform. Interfacing to the IOS, configuration tools can obtain requirements from there
and could even gather information from simulated system parts (Simulation Data Model Backbone)
integrating all these in the SoS Platform. In addition, the requirement sets get the possibility to be instanced
variably and variant management aspects can be supported. A further topic is the practical test and
validation of the use case and its applications.

5.2 Use Case Scenario 2: Integrated Tool Environment for embedded controls
development

The interconnection between several tools and their interoperability capabilities and the integrated tool
environment (AVLab) is currently realized in a not standardized way and has to be improved.
For an improvement it has to be analysed about an IOS implementation. Furthermore, the “Integrated Tool
Environment” provides a single point of control during all development steps including MiL/SiL Tests and
should be extended to support HiL / Engine Bench tests which are currently done manually.

The interoperability challenges are located in the harmonization improvement between the different tools and
there interfaces. The aim is to provide a standard interface for the “Integrated Tool Environment” in order to
harmonize interfaces, facilitate the substitution of tools, and to be more independent of concrete tool
versions. Furthermore, seamless traceability between all artefacts should be supported by adopting IOS
concepts.

D304.011
Use Case Scenario 2: Integrated Tool Environment for

embedded controls development

Version Nature Date Page

V01.00 R 2014-01-30 34 of 85

Figure 5-3: Overview Use Case Scenario 2

Figure 5-3 shows the interoperability challenge within the V-Cycle of AVL-R. The red highlighted part shows
the current implementation of AVL-R’s integrated tool environment which have to be improved by adopting
IOS concepts. For information exchange between the development steps within the yellow highlighted part
must be implemented and simultaneously enhanced by applying IOS concepts as well.

Overview about the current tool landscape:
Various tools are used for the different development steps throughout the software development V-model as
illustrated in Figure 5-4. Additionally is shown, that AVLab currently supports the V-model starting with
requirements until the SiL-test and do not support the HiL and Vehicle tests.

D304.011
Use Case Scenario 2: Integrated Tool Environment for

embedded controls development

Version Nature Date Page

V01.00 R 2014-01-30 35 of 85

Figure 5-4: Used Tools in AVL-PTE Controls development process (overview)

AVL-R is currently using the Integrated Tool Environment (AVLab) as a common user interface, which is a
single point of contact for all related tools, i.e. AVLab bundles several tools supporting each development
activity steps from modelling over testing to code generation, which should lead to a seamless tool chain as
listed in the following:

• ADD (Visu-IT!) Simulink: Data synchronization via SyncTool

• Integrity (PTC) Matlab: Support and Integration of PTC Integrity Source in AVLab

• Simulink (The Mathworks) AVL Concerto: allowed Concerto Plots for data visualization via AVLab

• MXAM (MES) with AVL modelling rules is started from AVLab

• MIL / SIL / back2back tests supported by AVLab

• Code Generation

It also provides some kind of guidance for the developer through the development process (requirement
management, architecture, model development, tests, and code generation).
Further background is the harmonization of the process & tool environment for PTE Controls.

Key points for this harmonization are:

• Component based development approach is enforced.

• Scheduling of components in function groups (and domain) is enforced by model template in
AVLab.

• SW Architecture is enforced by ADD as architecture tooling.

• Code generation for SW components is supported by tool environment in Embedded Coder and
Target Link. Code generator configuration is unified.

• Build environment (= generation of flash able hex file) is based on generated and archived C-
Code.

• Integrated test framework enforces common way of testing.

D304.011 Use Case Scenario 3:

Version Nature Date Page

V01.00 R 2014-01-30 36 of 85

AVLab currently supports function development from model development over model testing to code
generation in a Matlab/Simulink environment, with Embedded Coder or TargetLink as code generator. In
addition, AVLab shall support the methods in engineering area:

• A three Level Architecture is the basement of the component-based development

• Naming is ensured by the usage of the Name Checker inside ADD

• Modelling Guidelines are checked by the usage of MXAM (model style checker)

• Product Documentation is ensured by the usage of FunDoc (Visu-IT)

• Verification/Validation is supported via MiL, SiL and Back-to-back testing in AVLab

• Coding Guidelines are supported via Code Generation Helpers (Embedded Coder Toolbar or TL
Code Generator)

• Build is directly supporting component-based approach

The current implementation of AVLab increases the efficiency / quality of function development.

• Provide a template for modelling, with operating system to allow a simulation closer to the reality
than a pure Simulink simulation.

• Simulink toolbar, with shortcuts for faster action in Simulink

• Traceability between Model, ADD Container, Integrity

5.3 Use Case Scenario 3: Improvement of the Development via „Efficient Variant
Handling within V-Model

AVL-R provides software solutions for various domains (e.g. automotive, shipping, trucks). Solutions for
single domains can be very different, but within one domain there is often a huge potential for reuse.
Currently, there is no explicit and systematic variant handling at AVL-R. SW variants are stored in PTC
Integrity, without mechanisms to search for or select a specific variant.
Furthermore, there is no detailed definition of variant handling and usage throughout the development
process.
Variant handling cannot be considered as an interoperability challenge on its own, but has to be considered
for the IOS specification in general. For instance, if a linked-data approach such as OSLC is applied, a link
management concept, which can deal with variants of the associated data artefacts, has to be provided.

Figure 5-5 shows the needs of variant handling within the V-Cycle of AVL-R.

http://rgb-wiki.avl.com/rgbwiki/index.php/MXAM

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 37 of 85

Figure 5-5: Overview User Scenario 3

The red highlighted part illustrates the part of the V-Cycle which is supported by INTEGRITY and used since
a certain time. The yellow part is also supported by INTEGRITY but with less experience about the current
implementation.

To improve the current existing implementation, the used variant handling has to be checked about usability.
An improvement could be the implementation of mechanisms within INTEGRITY to get a suitable variant
management. Therefore the current development steps must be analysed and a variant management for the
complete V-model has to be implement in the ALM Tool.

In the following chapters, the several development steps are described the current implementation.

5.3.1 Basic definition

In order to set up a suitable variant management strategy, the following requests / definitions must be
clarified.

 What is the definition of a Variant?
Current AVL understanding of a variant:
A variant is the developed solution requested from the customer.

 What is the content of a reusable Variant?
Is it only a SW component? Does it also have linked test cases, requirements, and so on?

 Definition for an Efficient reuse of requirements, architecture, functions, SW, tests, tasks…
… via new creation, copy, delta…

 Is it possible to build a common (configurable) code base or should there be a modularized structure
of SW components?

Variant management is a task which has to be described throughout the development process. It has to be
decided if there should be a centralized variant handling which consistently controls variability in all artefacts
or if a separate approach should be used for each single artefact in the development process. The former
seems to be more likely, but the concrete variant handling strategy should be developed in the course of this
project. Below, we describe the needs for each development stage at AVL-R.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 38 of 85

5.3.2 Requirements Engineering

Currently, there is no variant management for the requirements applied in the AVL-R software development
process. In addition, there is also no traceability approach from the requirements to the implementation and
the test management, so far. One main reason is the fact that requirements from customers have various
formats and are often not machine process able and have to be entered manually.
Without linking requirements to SW components and corresponding test cases, there is no real benefit for
developers to write proper requirements. It further prevents the automatic validation of the system based on
the requirements and traceability. Including variant management already in the requirements phase could
also help to locate existing SW components which have already been implemented by just filtering
requirements.

5.3.3 Architecture

AVL-R is currently using the ADD tool (Automotive Data Dictionary tool) as an architecture tool during
development. The tool already provides variant management functionality which is currently not used,
because the current process does not support this tool feature. For that reason, it has to be decided if this
functionality should be activated or a other approach will be used for the variant management.,
To handle the different variants / versions is needed to reproduce a former state of architecture.

5.3.4 Powertrain Software Framework

The Powertrain Software Framework (PSF) is an existing solution at AVL-R for software component reuse.
It is a method to classify software components in such a way, that a Powertrain Software Architecture can be
built up in an easy way. Moreover it is a clip inside the configuration management system between the
customer’s projects information, software system requirements and the representing solutions. All elements
in the Powertrain Software Library are classified within the Powertrain Software Framework which base on a
Three Level Concept.
The AVL Powertrain Software Architecture defines three levels which help to organize a software system:

Function Domain (PSF-Level1): is the highest level of software split for solutions inside the
software system. The Function Domain is a physical component based split.

Function Group (PSF-Level2): is a sub element of the Function Domain containing a group of
smallest elements, the function Component and their connectors inside. These elements can
be shared or reused. All Function Components e.g. application, actuator and sensor
software components for one physical component belong together.

Function Component (PSF-Level3): is the smallest element of the PSF Architecture. This is the
lowest level where development files must be stored and handled. These elements can be
shared or reused via a Function Group.

The main purpose of the PSF is the improvement of the current software development process in efficiency.
One main aspect is the possibility to easily access information about available implementations and their
requirements during a quotation, project start-up and during the development.
The usage of PSF supports …

 the development of one function / software only once (avoid double work on solution level)

 the reuse of functions in different applications

 the information exchange via usage of knowledge database

 the software systems built-up for different applications

 the reuse or development over different locations

 the development time reduction and efficiency increase by reuse

 the strategic decisions for future R&D projects

The following figure illustrates the current structure to store the Software components in Integrity. In this
example is shown the Function Group Combustion Engine (CmbEng) which consists out of Engine Speed
Control (EngSpdCtlr) and Tot Mass Fuel Limitation (TotMFuLimn) and composed within the Variant 0001.
This Variant build’s the bases for an usage within a project.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 39 of 85

Figure 5-6: Variant storage within PSF-Library

Currently, it is only possible to provide a “one line free text” variant description, which is not sufficient in
practice. There is no structured description of variants, e.g. using keywords. Therefore, the selection of
variants has to be done manually.

5.3.5 Project

The implemented solutions are always based on customer requests. Until now, customers requested
software solutions which have then been embedded in their own xCU’s. Nowadays, more and more requests
about “multi project line” development must be supported.
A “Multi project line” is a project with a parallel customer request for more than on product (e.g. He requests
in parallel a solution for a 4 Cylinder and 3 Cylinder engine) and a requested high overlap in functionality with
and possible the reuse between these projects.

Because of no defined rules for this kind of reuse, each project handles the customer requests to the best
knowledge without a dedicated way.

Figure 5-7: Variant Handling via separated projects (ARE2071 / ARE2072)

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 40 of 85

Figure 5-8: Variant Handling within one project line (Prj1: Release 1.5.1 / Prj2: Release 2.1.1)

Basically to find a suitable development process, a definition of a project must be done. This should be in
relation to AVL’s “MULTI PROJECT MANAGEMENT TOOL” (ProCalc).
It has to be pointed out, that there are currently two different kinds of projects at AVL-R:

 One R&D per project line. (see Figure 5-7)

 One R&D for both project lines (see Figure 5-8)

The issue of efficient variant handling arises if project A is the lead project and project B is the follower which
reuse project A (100% reuse) or reuse project A with some own adaptation in the functionality.

The question about an efficient handling come up, e.g. if Project A is the lead project and Project B is the
follower which only reuses components from Project A.

In this case following requirement derives:

 It must be possible to be efficient in project parallel development.

 It must be possible to change simply the lead from one project to another and vice versa.

 Assumption: the both projects are in one development “thread”.

 Definition of the most efficient handling for project variants.

 Definition of an efficient handling / reuse of all project items (e.g. also Tasks).

Furthermore we need concepts about the efficient creation, handling of project variants, effective reuse
within a further project and its bug tracking at a reuse other project lines.

Therefore have to be defined:

 the way of project variant usage
… when / how created (fixing at each Project Release)?

 the relation between a variant and a project release.

 the usage of the possibility to share (i.e. link) between projects.

 the possibility to calibrate SW-code.
… currently not mandatory, but could be helpful.

 The influence about generic development, because this is currently not supported.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 41 of 85

6 Detailed Description of the Use Case Process of UC3.4b
In addition to Chapter 2.2, this Chapter illustrates the detailed description of the UC3.4b use case process
with its activities and the stakeholders and roles.

6.1 Activities
The applied V-model is comprised of various activities as illustrated in Figure 6-1. These activities are
described in the following sections in more detail or implemented in the Excel sheet of Chapter 11.1. The
operability challenges between the several activities are described in Chapter 9.

Figure 6-1: AVL-PTE Development Process

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 42 of 85

The Activities of the Use Case process are:

Software System Requirements Engineering:
The SW system requirements that are delivered by the customer are analysed and put into a form
that can be used as basis for the software development. Based on the SW system requirements, the
SW system integration tests are specified.

Software System Architecture
The software system architecture is being defined, based on the SW system requirements. The SW
system requirements are assigned to the SW components and handed down for further analysis to
the function and software algorithm developers.

Algorithm Development
Algorithm development and the specification of the detailed SW component requirements are
conducted here. The step already involves the set-up of a SW component model and the SW
component documentation as well. Based on the SW component requirements, test cases for the
SW component are developed. In addition to this, the SW components will be will grouped to so
called Function Groups and get the similar tests scenarios as SW components.

Software Component Implementation
The SW requirements are implemented in the SW component, the model and documentation is
refined.

Software Component Test
The software component is tested according to the defined test cases. The test report is delivered as
well as the SW component including the documentation.

Function Group Integration & Test
The various software components are integrated and tested in the composition of a Function Group.

Software System Integration Test
The software system is integrated and tested according to the defined test cases. Test results and
the SW system are delivered back to the customer

6.2 Stakeholders & Roles

Stakeholders Role

Function & Software Project Manager Definition of Software System Requirements

Function & Software System Architect Definition of the Software System Architecture

Creation of Software Component Test Report

Creation of Test Software Component + Documentation

Creation of Integrated SW System + Documentation

Function & Software Algorithm Developer Definition of Software Component Requirements

Creation of Software Component Model

Creation of Software Component Documentation

Function & Software Component Developer Creation of Software Component Documentation

Creation of Software Component Model

Creation of Software Component Code

Function & Software Component Tester Test of Software Component

Function & Software System Tester Creation of Software System Test Report

Creation of Tested Software Package + Documentation

Table 6: Stakeholders & Roles

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 43 of 85

7 Detailed Description of Relation between UC3.4a and UC3.4b
As described in the introduction of this document, WP3.4 consists of two sub use cases with a different focus
regarding their development subject leading to two different development V-models. In the Figure 7-1 these
two V-model variants are sketched. The first variant (UC3.4a) has a strong focus about test case compilation
and verification based on a set of requirements defined by a corresponding requirement model. The second
variant (UC3.4b) deals especially with the development of the embedded verification platform to fulfil the
requirement during the development. Both UC variants will be based on the use of simulation models for
their corresponding purposes.
More than just being two separate instances of the common base UC, both variants should be combined as
well in the following way: Since both use case variants are heavily based on simulation models, whereas the
same, similar or related models are applied in both use cases (or are at least interrelated by certain
simulation model parameters), the implementation of an appropriate Simulation Model Data Backbone (see
brick No. B3.83, which is implemented in tight relationship with WP6.13) is essential to share certain models
between the use cases. The simulation model data backbone should be attached to the appropriate tools in
the several use cases as well under consideration of the principles of the interoperability standard (IOS).

Figure 7-1: Model exchange between two different development process via IOS interfaces.

This chapter is structured as followed: In Section 7.1 further reflections regarding the motivations of
combining different development V-models are described, whereas in Section 7.2 some concepts for feasible
approaches under consideration of IOS are presented.

7.1 Motivation
The following scenario description details the major objectives described above and thus leads to the
assignments that have to be accomplished by this work package:
1. Within a certain project and at a particular development stage, simulation models X are created for a

specific purpose. These models describe several aspects of a certain object of interest (e.g. a
mechanical part, the behaviour of a certain device, complex physical processes, etc.). The models are
developed and embedded in certain development and simulation environments, whereas each
environment may have its own execution semantics.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 44 of 85

2. At different development stages of the same project or in an arbitrary development stage of another
project, other simulation models Y are created with a similar or related purpose than simulation models X
(see picture below). Due to the constraints, boundaries or requirements of the project or the
development stage, the modelled aspects of Y may vary more or less significantly from the simulation
model X, however, may also be comprised of overlapping or related aspects. Besides the deviation of
the purpose of model X and Y, constraints such as simulation granularity and real-time requirements
determine the model’s content and simulation platform. Especially in this case, however, models X and Y
may also be comprised of overlapping or related aspects.

Figure 7-2 Interrelation between two models in two different development processes (may even developed
and/or applied in different development phases)

3. As a consequence of 1) and 2) the following limitations would occur:
a. Various model aspects (including the parameters and common variants of the modelled object)

have to be re-modelled in every different project (or even development stage)
b. Due to the lack of model sharing, the participants of the projects (or even the participants in the

same project at different development stages) have limited or no access (and have thus as well
often no awareness) of the model in other projects (or development stages).

c. Even if the awareness is given, it is still a standard situation that interrelated data has to be
exchanged manually with all the known limitations (e.g. lack of consistency, error-prone step,
time efforts, etc.)

4. The CRYSTAL project will provide a significant contribution to the described limitation by providing an
interoperability standard, which should provide a more straightforward access to the simulation platforms
and its simulation models.

5. In addition to interoperability aspects, a centralized simulation model management environment (e.g. a
simulation model data backbone) enables further perspectives to improve model development
collaboration including the definition of relations between models.

6. Consequences of 4) and 5) are thus:
a. Project collaboration becomes more straightforward (e.g. introducing a simulation model

development categories and model development status across projects or development stages)
b. An improved degree of automation (e.g. automatic synchronization of model data)
c. A reduced set of development overhead (e.g. re-using of models)
d. A standardized way how to access modelling data (e.g. introducing model categories, complying

with interoperability standard)
e. Enables the possibility of defining, exchanging and aligning of commonalities between models

(e.g. model parameters)
f. Should act as a door opener for further aspects such as versioning and variant management,

applying requirement management, etc.

In the following section, a concept approach is presented with an IOS concept such as OSLC.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 45 of 85

7.2 Towards an Interoperability Approach for Model Exchange between
UC3.4a and UC3.4b via OSLC
In this section, an approach about simulation model exchange is presented. As sketched in the previous
sections, different development processes are producer and consumer of models.

In case of UC3.4a for instance, simulation models for certain control systems (such as an engine control unit)
are needed. These simulation models are provided by UC3.4b usually in form of appropriate Simulink
models. As described as an engineering method e.g. in Section 8.6.3, these models may are used for co-
simulation in an early testing phase in order to simulated the behaviour of an ECU in a particular vehicle,
whose physical behaviour including its environment is (partly) simulated as well (e.g. for calibration
iterations).

On the other hand, the control model needs to be tested as well, which is accordingly described by the V-
model of UC3.4b. In order to test such functions without have the possibility to do that directly in a ready-to-
use vehicle, vehicle simulations are needed. The AVL simulation tools Cruise and Boost are specialized
tools for such kind of simulation models. These tools are applied at UC3.4a and are able to provide
appropriate models for UC3.4b.

In Figure 7-3, a general interoperability pattern with the use of OSLC on top of various data backbones is
presented. Let’s assume that there is an in-house data backbone (called in AVL Data Backbone in case of
WP3.4a), which stores various data categories assigned to the testing V-models of UC3.4a such as
explained in Section 4.2.3. In addition, however, further data backbones have to be considered, e.g.
provided by third party tools (such as PTC Integrity in case of UC3.4b). Depending on the data categories
stored in these data backbones, a meta-model structure has to be defined on top of the data backbones that
abstracts from the detailed content of each data backbone. This means in other words that these meta-
model is defined independent of the location of storage on the one hand and is limited to only those data
entities (across the data categories) that need to be linked to each other.

The OSLC concept perfectly matches to that demand. So-called OSLC domains capture a certain data
category and OSLC resources reflect data entities that need to be linked against each other. It is important to
mention that these OSLC resource models should be defined as minimalistic as possible and should thus be
driven by the necessity of data relations. Every detail of a specific data entity should remain to the tool that
creates and edits these details and/or the data backbone that is used to store these details.

It is the purpose of the OSLC adapters to map the concrete stored data entities to corresponding OSLC
resources. As a consequence, the OSLC domains and resource models become independent of the
belonging authoring tools and data backbones. Similarly, so-called uniform workbench is able to browse
across the OSLC resource model, without the necessity of being aware of any data entity details: If such
details are needed the workbench just delegates this to the corresponding authoring tool, e.g. by invoking
the corresponding application via the OSLC adapter, which fetches the data from the data backbone and
provide the data set to the invoked authoring tool.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 46 of 85

Figure 7-3: General OSLC pattern of the interconnecting data of different data backbones via OSLC

Figure 7-4 illustrates a possible OSLC architecture for exchanging simulation models between UC3.4a and
UC3.4b. A possible implementation of the AVL Data Backbone is by using the AVL tool Santorin. Santorin is
originally specialized on the management of measurement results of testing cycles and adheres to the
measurement-related ASAM ODS standard. Since this tool is based on a database, it can be also used for
the storage of other data entities (for the given example this would be for instance Boost simulation models
needed by UC3.4b). In addition, the ASAM ODS provided possibilities of extending its data storage model if
needed. In addition, Santorin comes up with a Navigator frontend the give support for browsing on the data
entities stored in the database.

By introducing an OSLC architecture such as described before, the Navigator part of Santorin could now
browse on a certain instance of the OSLC resource model. It could implement its own business model that
reflects how to relate the different data set stored in the Santorin database. If details of the data are needed
to be shown or edited, the Navigator just opens the adequate tool, which would be the built-in functionality in
case measurement results and Boost in case of simulation models.

In addition, however, the Navigator would be also capable to browse on other data sources as Santorin. In
UC3.4b PTC Integrity is used for data storage, which also holds the corresponding Simulink models for the
ECU control software developed by this use case. The OSLC data structure thus enables establishing of
relations across data backbones and development processes: For a specific project in UC3.4 a direct link to
an ECU simulation model of UC3.4b could be established.

Correspondingly, from the UC3.4b point of view, the same mechanism can be applied: Needed vehicle
simulation models (e.g. Boost models) developed in UC3.4a are referenced via corresponding OSLC links.
The tool AVLab, used in UC3.4b, operates on the OSLC data structure (it has not to be the same instance as
in UC3.4a) as well.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 47 of 85

Figure 7-4 Possible OSLC architecture for exchanging simulation models

In Figure 7-5, a possible extension to the description above is illustrated: In UC3.4a requirements are stored
in a corresponding requirement repository of the tool HP Quality Center. However, in UC3.4b this is done by
the tool PTC Integrity. Based on the assumption that different OSLC data instances are used for UC3.4a and
UC3.4b, requirements could be directly linked via the OSLC data structure to adequate models that fulfil
these requirements. This would ease for instance the search of adequate models independent of the applied
development process: E.g. by searching and browsing requirements of previous or parallel projects, possible
simulation model candidates could be found more straightforward.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 48 of 85

Figure 7-5 Possible OSLC architecture of exchanging simulation models based on a set of related
requirements

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 49 of 85

8 Identification of Engineering Methods for UC3.4a
In this chapter, the derived engineering methods including their related activities, tools, data artefacts and
their possible relation to the CRYSTAL IOS concepts are shown. Finally, a first draft version of an overall
OSLC model is sketched, which needs to be refined during the projects by applying to corresponding tool
chains. The content of this chapter is subject of change along the CRYSTAL project proceeds and thus
represents the current snapshot of the use case specification.

8.1 Formalization of Requirements
The major purpose of this engineering method is deriving (semi-)formal, machine-processible requirements
from natural language requirements. Currently at AVL, tools such as HP Quality Center or Excel are used to
manage these natural language requirements. In UC3.4a we want to evaluate three methods to formalize
them:

 Using SysML RM profiles to model requirements in SysML

 Using sequence chart based techniques to model some of the requirements (also in SysML/UML)

 Applying Boilerplate techniques

For these three approaches AVL works together with Fraunhofer IESE (SysML RM profiles), Chalmers
(sequence chart based techniques) and ViF (Boilerpate). Purpose of applying three approaches is to learn
about the benefits and drawbacks of each method in order to be applied in practise. For the boilerplate
approach, ViF will develop a prototype tool, whereas for the requirement models Artisan studio should be
used.

As illustrated in the Figure 8-1, the mentioned data artefacts need to be linked against each other. For that
purpose, OSLC adapters should ensure traceability.

Figure 8-1: Links between textual requirements and (semi-)formalized requirements

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 50 of 85

8.1.1 Engineering Activities

Precondition for the engineering activities listed below is that natural language requirements are available
and stored in a requirement management tool (e.g. HP QualityCenter). As a special activity in UC3.4a
selected parts of the WLTP emission legislation define some of the requirements that should be formalized
accordingly.

The engineering activities are then comprised of the following steps:

1. Reading the natural language requirements from natural language requirements tool into a
requirements formalization tool (e.g. boilerplate).

2. The requirements engineer derives semi-formal textual requirements by means of the refinement
tool. It can be the case that one natural language requirement is represented by n semi-formal
textual requirements.

3. The requirements are validated against consistency, completeness, correctness, redundancy and
unambiguousness.

4. The semi-formal textual requirements are stored in the requirements management tool.

5. Each semi-formal requirement gets linked to its corresponding natural language requirement.

6. The requirement engineer creates requirement models based on the semi-formal textual
requirements (e.g. SysML-models in Artisan Studio).

7. The requirement models are stored in the modelling tool.

8. The requirement models get linked to their corresponding semi-formal requirements.

Consequently, the post-condition of these steps is that the semi-formal textual requirements and requirement
models are stored properly and are interlinked to accordingly.

8.1.2 Data Artefacts

The following data artefacts are accessed, used or created by the engineering method:

 Original requirements in terms of natural language requirements (referred by a requirement ID)

 Boilerplate templates which are used during the formalization process

 Ontology database in order to use the right terms during the formalization process

 Formal textual requirements (boilerplates) with defined semantics for concrete numerical values as
isolated numerical attributes as well as for physical units

 Requirement models in SysML/UML

8.1.3 Applying to the use case scenario

In the introducing Section 3.2.1.3, several testing requirements derived from the WLTP draft are defined.
These requirements have to be formalized as described by Figure 8-2, Figure 8-3 and Figure 8-4 by using a
so-called boilerplate approach. Boilerplates are requirement templates in order to standardize the expression
of requirements to make them machine-processible.

Additionally, other formalization approaches such as the use of state diagrams to express these WLTP
requirements enables even more: If a certain set of input vector of a particular test-run is known, these test-
run can be tested against its compliance to the WLTP standard. Once this test has been positively evaluated
and due to the fact that requirement traceability is ensured, the whole iteration within a testing V-model is
evaluated to adhere to the WLTP specifications. More than that, if something changes within the WLTP
specification itself, impact analysis on existing and formally used test-runs can be performed.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 51 of 85

Figure 8-2: Formalized WLTP requirement RQ1

Figure 8-3: Formalized WLTP requirement RQ2

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 52 of 85

Figure 8-4: Formalized WLTP requirement RQ3

8.2 Verification of Requirements
Purpose of this engineering method is the verification of requirements against a specific test results (e.g.
measurement results) of a specific test case as illustrated in Figure 8-5. At this point of the engineering
method, it is not distinguished between natural textual requirements and (semi-)formalized requirements.
Thus the tools on the requirement management side are HP QualityCenter, Artisan Studio and the
boilerplate prototype application. The requirements defined by these tools are verified by concrete test cases
that lead to specific measurement results. AVL Santorin is the tool of choice in this use case to manage and
access these measurement results. The actual process of requirement verification is captured by the AVL
VeVaT tool. Due to the availability of proper data artefact links, AVL VeVaT is able to compare the
measurement results against the formalized requirements and finally verifies or falsifies the associated
natural language requirement. If some measurement value post-processing is needed for that step, AVL
VeVaT instruments AVL Magic, which is designed for such tasks.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 53 of 85

Figure 8-5: Establishing links between requirements, test cases and measurement results

8.2.1 Engineering Activities

The pre-condition of for this activity is that the requirement formalization activity has been finished and the
(formalized) requirements are stored and accessible. Furthermore the associated test cases have been
executed and the test results (e.g. measurement values) are stored and accessible as well.

The engineering method is now comprised in more detail of the following activities:

1. Requirements (formal and natural language) are read from the requirements store or tools into the
AVL VeVaT requirement verification tool

2. The linked test cases and the UUT-related measurement data are read

3. AVL VeVaT analyses the measurement data (e.g. via AVL Magic) and compares them to the
formalizes requirement limits

4. The verification results (i.e. passed or failed for all checked requirements) are generated – optionally
with some addition information (such as failure reason, detected deviation from limits. etc.)

5. The verification results are stored as annotations in the requirement management tools

8.2.2 Data Artefacts

The following list summarizes the occurring data artefacts:

 (Verified) semi-formal requirements with properties such as requirement IDs, numerial limits,
physical units and additional pass/failed flag with an optional description

 Validation rules comprised of formulas, scripts, algorithms which are called for analysing the test
results (measurement data) and compare them to the formalized requirements

 Test cases are containers with references to further data artefacts that are needed to execute
concrete test runs, which produce then concrete test results.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 54 of 85

 Test results (measurement data) are usually time-based numerical data channels with channel
names, units, sequence of numeric values (standardized by ASAM ODS).

8.2.3 Applying on the use case scenario

In Figure 8-6, a possible data structure of the relations between requirements, test cases and measurement
results is sketched, which adhere to the idea of our use case scenario: The requirement about emission
limitation has some relations to a concrete test case that should verify this requirement. The test case itself
consists of further data artefacts related to the use case scenario: Test runs defined by the WLTP, the
injection time parameter, which is used here for calibration and finally the configuration for the sensor the
measures the emission value, which is then verified against the requirement. This data structure has to be
further evolved during the project duration.

Figure 8-6: Traceability across a requirement, a test case and a measurement result

8.3 Requirement Traceability to Authoring Tools
As already indicated by the previous engineering method in Section 8.2, requirements and test cases have
to be linked against further data artefacts that are verifying the requirements and are executing the
appropriate test cases. In our use case, for instance, this aspect is especially needed for simulation models.
Simulation models play an important role in most of the testing activities and phases and exchanging models
across development phases is a crucial factor. It would be a significant shift for supporting model re-use if
traceability between requirements and models elements (that are about to verify these requirements) is
established consistently.

In Figure 8-7, a proper scheme for related interoperability challenges is sketched: An authoring tool (e.g.
Simulink, AVL Cruise, etc.) is connected to an ALM Environment (e.g. HP Quality Center, PTC Integrity) via
OSLC adapters. On top of these adapters an OSLC resource model addresses exclusively the top level
elements such as requirements, test cases as well as models including their basic elements. Everything else
remains to be interpreted by the authoring/ALM tool itself.

This engineering method is a relevant foundation for the engineering method about verification of
requirements as described in Section 8.2.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 55 of 85

Figure 8-7: Towards an IOS OSLC scheme for interlinking authoring tools and requirements

8.3.1 Engineering activities

Common engineering activities for establishing appropriate traceability would be:

1. Creating a new project and setting requirements and test cases

2. Analysing a relevant set of requirement and test cases against their coverage rate by checking if
every selected requirement and test case is covered by a corresponding simulation model or
simulation model element.

3. If requirement coverage is not sufficient then assign a simulation model and/or test case to a affected
requirement

a. Searching for simulation models and test cases that are already assigned to similar
requirements (e.g. from previous projects)

b. If no simulation models are found define new ones new ones.

8.3.2 Data artefacts

Due to its relation to engineering method about verification of requirements, see Section 8.2.2 for involved
data artefacts. Test cases usually act as a kind of container for further data artefacts. Note that in Figure 8-8
simulation models are also among those artefacts. In addition, however, they should also have a direct link
to the associated requirement. Even more, it should be also possible to link requirements against sub-
elements of such simulation models as illustrated in Figure 8-8.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 56 of 85

Figure 8-8 Linking requirements against simulation models and sub-elements of these models

8.3.3 Applying on the use case scenario

Due to its relation to engineering method about verification of requirements, see Section 8.2.3 for more
information and note especially Figure 8-5, whereas a link from the emission limitation requirement to a
simulation model is set.

8.4 Test and Calibration Iterations
In Section 4.1.2, the test and calibration pattern was initially described: Based on the proper definition of
requirements test and calibration iterations are performed as illustrated once more in Figure 8-9. The pattern
consists of five parts called requirement definition, calibration set-up, testbed and UUT set-up test-run
simulation/execution and iteration results.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 57 of 85

Figure 8-9: The test and calibration pattern

As illustrated in Figure 8-10, four of these five parts (except the test-run simulation/execution; see middle
part of the figure) can be naturally associated to our five data categories (upper part of the figure) as defined
in Section 4.2.2 as well to concrete data artefacts as shown in Figure 8-10.(lower part of the figure).

Figure 8-10: Associate Test and Calibration pattern parts to data categories and data artefacts

The requirement definition and verification activities were already described in detail by the corresponding
engineering methods in the Sections 8.1 and 8.2 and thus capture the questions how the requirements are
defined and how the iteration results are applied on the requirement verification process.

This engineering method in this section explains the activities between requirement definition and
verification. In Figure 8-11, these activities are sketched for a test and calibration iteration during testing
phase I (vehicle simulation), which is entirely based on simulation. The next engineering method in Section 0
explains also the test and calibration pattern for testing phase II (engine test bed) in order to demonstrate
data migration from testing phase I to testing phase II.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 58 of 85

8.4.1 Engineering activities

Pre-condition for this engineering method is that requirements are well defined and formalized as well as
linking between requirements and models has been established (as described by the engineering method is
Section 8.1 and 8.3). In addition, access to data (e.g. test cases, requirements) of previous projects should
be established in order to re-use initial data sets.

Figure 8-11: Test and calibration iteration in testing phase I (simulation)

The engineering activities inspired by the test and calibration iteration (including their artefacts) illustrated in
Figure 8-9, Figure 8-10 and Figure 8-11 are the following.

1. Selection of the appropriate requirements that need to be fulfilled (see Section 8.1)

2. Selection of the appropriate simulation models that are linked to that requirements (see Section 8.3)

3. Configuration of the corresponding Calibration Set-up:

a. Selection of calibration variables

b. Selection of initial calibration values (e.g. from calibration models linked to similar
requirements of previous projects)

4. Configuration of the corresponding test bed set-up (this task activity can be skipped in the testing
phase I, since the whole test-run is based on simulation models):

a. Selecting of existing test bed set-ups based on similar projects and requirements

b. Creation of a new variant for this test bed setup

c. Adaptation of the new variant according to the given requirements

5. Configuration of the corresponding UUT Set-up

a. Configuration of the physical part of the UUT Set up such as UUT parameters (this task
activity can be skipped in testing phase I)

b. Configuration of the simulated part of the UUT such as simulation model parameters (rest-
vehicle simulation)

i. Creation of a new variant of existing simulation models of previous projects with
similar requirements or simulation models used in previous testing phases.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 59 of 85

ii. Adaptation of the new created model variant according to the requirements and the
remaining simulation parts of the rest-vehicle simulation

6. Performing the ((partially) simulated) test run

a. Selection of the test run input values for the given test case (e.g. WLTP-based)

b. Execute the corresponding test case

7. Collecting and analysing the test run results against requirements as described in more detail by the
engineering method in Section 8.2

8. Applying calibration methods against requirements

a. Creating or adapting a calibration model-based on the test run results

b. Adjusting calibration variables against requirements

c. Roll-out calibration variables to associated parameters

9. Start next test and calibration iteration as described in paragraph 4.

Post-condition is then a fully calibrated and parameterized UUT that should fulfil the given requirements. The
whole set of data artefacts should act as the basis for a test and calibration iteration in the next testing
phase, whereas some parts of the (rest) vehicle simulation is replaces by a physical UUT.

8.4.2 Data Artefacts and Data Model

The most important data artefacts that are consumed and produced during the current engineering method
are already described in the previous sections especially by Figure 8-10. Therefore they will be not described
once more in this section. However, in this engineering method the necessity of data relations that adhere to
a data model becomes mandatory: without such data relations, the activities of this method will not be
successful. In Section 3.1.3 it is suggested that these interoperability challenges are mastered by introducing
a high-level data model based on the OSLC linked-data approach.

In Figure 8-12, such an approach is sketched for calibration data management: A calibration tool (e.g. AVL
Cameo) is storing its data in a proprietary format, but is also capable of exporting some aspects of this data
to different standardized formats (such as ASAM MCD-2 MC for calibration data and ASAM ODS for
measurement results). The exported data may be stored in a central data base such as the AVL data
backbone concept (e.g. using AVL Santorin). OSLC adaptors on top of all involved tools and data providers,
however, allow direct access to top level elements of the data artefacts applied in the engineering method
about test and calibration iteration. These top level elements are elements of a high level OSLC resource
model that complies with artefacts presented by this engineering method. A uniform workbench (such as the
AVL Navigator tool) can then be used to navigate on a concrete instance of this OSLC model. Consequently,
if the activities (of which the current engineering method is comprised) are embedded in this workbench
properly, the usage of this tool would ensure that links are set properly and enables corresponding data
navigation and reuse in related projects or later testing phases.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 60 of 85

Figure 8-12: OSLC linked-data approach for calibration data management

8.4.3 Applying on the use case scenario

An example for interlinked data artefacts (based on the requirement of our use case scenario) based on an
OSLC model is sketched in Figure 8-13. It is part of the project to find and define the best suited data model.

Figure 8-13 Example of interlinked data artefacts

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 61 of 85

8.5 Data Management across Development Phases
The previous section describes the engineering method about the test and calibration pattern with examples
from the testing phase I (vehicle simulation). In this section, a closer look to data migration from one testing
phase to another – one of the key issues of UC3.4a – is presented especially for this application pattern.
Figure 8-14 illustrates an example for such a scenario for the test and calibration patter especially regarding
data migration from testing phase I (vehicle simulation) to testing phase II (engine testbed).

Figure 8-14 Data migration from testing phase I to testing phase II

The testing and calibration iteration is complemented by another tool called AVL Puma, which is the central
control software for AVL test beds. On a first glance, the major difference between the phases belongs just
to the essential fact that a former virtual component (i.e. the vehicle engine) is replaced by a physical
component (embedded in a test bed set-up). A consequence of that is, that physical parameters (such as the
cylinder capacity) are not part of the calibration iteration any more. In other words, the number of calibration
variables is lower in phase II than in phase I.

The remaining data artefacts seem to be the same in both phases. However, there are number of serious
constraints that make things not that straightforward as they might look like. The two most prominent
constraints are:

 In many cases, projects that belong to testing phase I and testing phase II are de-coupled and
performed by different project teams with separated data repositories. In addition, if one project in
testing phase I has been finished, the continuing project for testing phase II is not started
immediately. Due to the de-coupled projects parameters, calibration data and measurement values
are often not consistent in their semantics.

 In the different development phases, different simulation models have to deal with different
demands. In some cases, accuracy is of highest important, which leads to long simulation durations.
Especially if physical components are part of the testing procedure (such as in testing phase II), real-
time constraints have to be considered. This leads to different representations of models and hinder
a 1-by-1 re-use. However, this does not mean that there is not a great potential in ensuring semantic
consistency between these models.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 62 of 85

8.5.1 Engineering Activities

In Figure 8-15, some typical project-related activities are illustrated as the usually happen in testing phase I
(vehicle simulation).

Figure 8-15: Typical project activities and data artefacts in testing phase I

Let’s assume that a customer wants to build a new vehicle. Then the engineering methods are usually
comprised of the following activities:

1. Open/Create a new project for the new vehicle. This project should be defined globally and
independent of the development/testing phase and the project team

2. Open a new Sub-Project for the specific development/testing phase usually assigned to a specific
project team

3. Collect and define requirements for the new vehicle (eventually based on former requirements of
similar projects)

4. Based in these requirements perform a pure office simulation

a. For that find an initial simulation model from a similar project associated with similar
requirements

b. Create a new variant of this simulation model

c. Refine the initial model considering overall project requirements.

5. Perform the simulation and calibration iteration as described in Section 8.4.

In Figure 8-16, the data re-use from testing phase I (vehicle simulation) in testing phase II (engine test bed)
is illustrated with the following activities:

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 63 of 85

1. Based on the assumption that the development of the same vehicle started in the previous testing
phase I should be continued, the associated overall vehicle project is reactivated.

2. A new sub-project associated with the actual testing phase is added.

3. The simulation models from the previous phase are re-used as initial vehicle models for the actual
testing phase.

4. Where necessary, new variants of the simulation model are created. A typical variant for testing
phase II (engine testbed) is to replace the engine model of the overall vehicle simulation model by
corresponding interfaces to the testbed control system. This testbed control systems consists of a
physical engine.

5. Associated test case data artefacts (calibration data, measurement results, test-runs) are allocated
form the previous testing phase and are re-used or mapped to the actual testing environment.

6. For the test bed itself, an initial test bed configuration is selected from previous and similar projects.

7. A new variant of this test bed configuration is created.

8. This new variant needs to be adapted according to the actual requirements and UUT parameters
(i.e. engine parameters).

9. Testing and calibration iterations are performed as described in Section 8.4.

Figure 8-16: Typical project activities and data artefacts (including data re-use) in testing phase I

8.5.2 Data Artefacts

Many of the needed data artefacts categories for data management across development phases are already
illustrated in the activity diagrams above. Besides re-using these data artefacts in different testing phases,
their interrelations need to be standardized across these testing phases. This could be done by a
corresponding meta-model, e.g. by a corresponding OSLC resource model. In Figure 8-17, a first reasonable
draft is sketched. This draft needs to be evaluated and adapted according the research insights gained
during the CRYSTAL project.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 64 of 85

Figure 8-17: Towards a project-independent data model (common data artefacts)

8.6 Heterogeneous Simulation
Another example of combining OSLC with other standards is illustrated in Figure 8-18. Heterogeneous
simulation (also called co-simulation) is the ability to couple two or more simulation models executed in
different tools at run-time. The FMI standard currently evolves itself to be the standard for co-simulation (so
far there has been none). This kind of interoperability has by nature nothing to do with the linked-data
concept of OSLC. Nevertheless, a useful combination of these interoperability types is possible: Independent
of the run-time aspects and details such as which data ports of the models have to exchange data, the given
fact that two models are related to each can be defined by OSLC links as well. Corresponding OSLC
adapters abstract from the particular modelling tools and map the corresponding model to a OSLC resource
model, which consists just of basic standard modelling elements representing a hierarchically structure and
which model elements of a model A are related to what model elements of model B. Details of these model-
interrelations such as the applied data types of concrete connected ports may remain on the responsibility of
the FMI co-simulation standard.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 65 of 85

Figure 8-18: Combining the OSLC linked-data approach with co-simulation aspects

Figure 8-19 illustrates an example from the automotive domain: A rather overall vehicle model, which is
embedded in an adequate vehicle environment model, and a more detailed engine model should be co-
simulated. Two different simulation tools may be involved here, whereas each is specialized for its domain.
For instance, the motor model is about a software model that consists about the control algorithms of the
engine’s ECU.

Figure 8-19: An automotive example about the co-simulation of an overall vehicle and vehicle environment
model and a more detailed engine model

8.6.1 Engineering activities

Engineering method in case of co-simulation is comprised of the following activities:

1. Based on the given requirements, the most adequate simulation models are selected from a model
library as described by the engineering method in Section 8.3 (e.g. data backbone, models that are
linked to similar requirements, etc.)

a. If available, the models need to be modified or configured according the given requirements

b. If not available, the appropriate simulation tool has to be selected

c. If the selected models are based on the same simulation tool, no co-simulation is needed
and thus the next steps need not to be considered

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 66 of 85

2. The selected simulation models have to be analysed regarding their type and relation to each other

3. The model relations need to be documented, e.g. by high level OSLC link relations.

4. Communication interfaces (data ports) according to the principles of FMI have to be defined.

5. Data ports have to be analysed regarding their properties (data type, sample time, etc.)

6. Depending on the results of 5, co-simulation properties have to be configured (e.g. data interpolation
for different sample times, etc.)

7. The co-simulation is executed

8. Simulation results are collected and verified according to the given requirement, e.g. as described for
the calibration iteration for the corresponding engineering method in Section 8.4.

8.6.2 Data artefacts

The involved data artefacts for this engineering model include:

 Input data

o Requirements that should be verified by simulation models

o Simulation model of different types (simulation tools, model solvers, time base, etc.)

o Simulation model parameterization

o Simulation engine and co-simulation parameterization

 Output data

o Simulation results (e.g. virtual measurement variables)

o Verified requirements

Beside the definition of data relation as described in the Section 8.3 and 8.4, the relations of the co-
simulated models have to be defined such as illustrated by Figure 8-18.

8.6.3 Applying on the use case scenario

Regarding the use case scenario for UC3.4a co-simulation plays a role throughout the various testing
phases. In the following two examples for the testing phase I (vehicle simulation) and phase II (engine test
bed) are described.

8.6.3.1 Co-Simulation in Testing Phase I (Vehicle Simulation)

Figure 8-20 illustrates an appliance of co-simulation for the task of calibration regarding testing a hybrid
vehicle. In the simulation phase, this hybrid vehicle is represented by an AVL Cruise simulation model. The
model is calibrated by initial value and simulation is performed. The simulation results are then analysed by
the calibration tool AVL Cameo as described by the calibration iteration engineering method (see Section
8.4).

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 67 of 85

Figure 8-20 Possible interoperability scenario for co-simulation in the use case scenario

The next step in the vehicle V-model is to increase the accuracy of the simulation by a finer grained
simulation of vehicle sub-components. The functionality of ECU controller is such a sub-component and
Simulink models are wide-spread to model that functionality. In Figure 8-20, the Cruise hybrid model is thus
extended by a hybrid controller Simulink model. The Cruise and the Simulink model should then interact at
run-time via the FMI interfaces. In addition the hybrid controller model needs also to be involved in the
overall calibration process. In fact, ECUs calibration is the most classical use case for calibration.
Consequently, existing calibration values should be re-used from previous projects if possible. The AVL
Creta tool is able to manage such calibration data and acts thus as an input source for hybrid controller
model calibration as illustrated in Figure 8-20 as well.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 68 of 85

8.6.3.2 Co-Simulation in the testing phase II (engine test bed)

Figure 8-21 illustrates the use of FMI in testing phase II: The engine test bed is controlled on a real-time
operating system on the one hand, and by non-real-time configuration tools running under Windows on the
other hand. Within the real-time part, different kinds of simulation models are applied, such as AVL Cruise
models and Simulink models. In the latter case, Simulink models are embedded into an execution
environment called ARTE.Lab. During the CRYSTAL project, co-simulation via FMI between AVL Cruise and
ARTE.Lab has to be ensured.

Figure 8-21 Using FMI in testing phase II

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 69 of 85

9 Identification of Engineering Methods of UC3.4b
This chapter gives a short overview about the derived engineering methods. The related activities, tools,
data artefacts and their possible relation to the CRYSTAL IOS concepts are implemented in the Excel sheet
of Chapter 11.1.

Requirements Delivery

Algorithm Development
preparation

SW Implementation preparation

SW System Test Preparation

Function Group Test Preparation

SW Implemenation Test

Analysis of SW System
Requirements

Figure 9-1: AVL-PTE Engineering methods

9.1 Requirements Delivery
This Engineering method deals with the decomposition of Control System Requirements to SW System
Requirements.

9.1.1 Engineering activities

To take place decomposition, the Control system Requirements must be checked about content and
completeness and correctness.

After a successful check the Control System Requirements will be split into

 SW System Requirements.

 BSW Requirements

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 70 of 85

 Electronic Hardware Requirements

 Functional Sensor, Actuator, Busses and interfaces Requirements

and will be separated stored in the Requirements Development tool.

9.2 Analysis of SW System Requirements
To get a suitable SW System architecture, the present SW System requirements must first be analysed.

9.2.1 Engineering activities

The following step in used for the analysis of SW System Requirements via checking about the ontology and
also the fitting to existing generic architecture specification. If needed, the SW System Requirements will be
adapted to the existing generic architecture specification and stored in the Requirements Management tool
Integrity.

9.3 Algorithm Development Preparation
To go in the development, the created Architecture will be the basis for the coming algorithm development.

9.3.1 Engineering activities

These engineering activities must be focused on the following two different aspects:

First, the link to the AVL Data Backbone has to be considered about the needed configuration for the import
of a model.

The second focus is related to the Integrated Tool Environment for embedded controls development. For
this, the SW System Architecture must be set in relation to the SW System Requirements. Furthermore the
Version of SW System Requirements and SW System Requirements must be synchronized.

9.4 SW Implementation Preparation
After a successful (model-based) algorithm development, these algorithms have to be transformed into real
software code.

9.4.1 Engineering activities

As described in Chapter 9.3, the relation between the AVL Data Backbone relation and the Integrated Tool
Environment has to be considered as well. In this context the focus will be set on the configuration and
import of simulation models. Additionally, the definition of deviation of MiL and SiL test and the needed
configuration of the Embedded Coder must be worked out.

9.5 SW Implementation Test
The created software must be tested about reliability. These tests must be prepared in this engineering
method. Regression tests and the impact of code changes during the SW tests are also in focus of this
engineering method.

9.5.1 Engineering activities

This Engineering method is close related to the former engineering method about the integration of AVL
Data Backbone by focussing on the configuration and import of the SW model.

With this engineering method further steps have to be developed to the prepare Test vectors for SiL-Test
based on MiL-Test environment appropriately.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 71 of 85

9.6 Function Group Test and SW System Test Preparation
Preparing the tests on function group level and – after that - on SW System level completes the presented
development V-Cycle for Function and Software development.

9.6.1 Engineering activities

The configuration and import of a model from AVL Data Backbone may depend on the customer request
described in the Requirements.

Nevertheless, the pre-conditions for the function group test must be collected and checked by the related
engineering activities. These activities must also be applied on software system level and are basically the
same as on function group level.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 72 of 85

10 Terms, Abbreviations and Definitions

ASAM Association for Standardization of Automation and Measuring Systems

ASAM ODS ASAM Open Data Services

ECU Electronic Control Unit

FMI Functional Mock-up Interface

HiL Hardware-in-the-Loop

IOS Inter-Operability Specification

OSLC Open Services for Lifecycle Collaboration

SiL Software-in-the-Loop

SoS System-of-Systems

SUT System Under Test

UC Use Case

UUT Unit Under Test

WLTP World-wide harmonized Light Duty Test Procedure

WP Work Package

PSF Powertrain Software Framework

FASD Function And Software Development

Table 7: Terms, Abbreviations and Definitions

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 73 of 85

11 Annex I: Detailed Descriptions of the Engineering Methods
These are captured by the Excel templates. The Excel files will be inserted here, when this document is in
the final version before it is submitted to the ARTEMIS JU

11.1 Engineering methods for WP3.4a
For a detailed description of the engineering methods, artefacts and activities see Chapter 8 in addition to
the Excel Sheet summary:

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 74 of 85

Name Original requirements Name Boilerplate templates Name Formal requirements

Generic Type:

(Tool or language independend

type)

Natural language requirements Type: Text elements Generic Type:

(Tool or language independend

type)

Formal textual requirement

Required Properties:

(Information required in

interactions between steps)

Requirement ID, Requirement

statement in natural language

(containing numeric limits at

least as text)

Properties: Collection of allowed text

components incl. placeholders

for variables, needed for

composing requirement

statements

Provided Properties:

(Information provided in

interactions between steps)

Requirement ID, Requirement

statement as formal text

(boilerplates), Numerical limits

(minima and/or maxima) as

isolated numerical attributes,

Physical unit of limits

Name Name Ontology database Name

Generic Type:

(Tool or language independend

type)

Type: Collection of text elements Generic Type:

(Tool or language independend

type)

Requirement models in SysML

Required Properties:

(Information required in

interactions between steps)

Properties: Allowed (domain-specific)

artefact names

Provided Properties:

(Information provided in

interactions between steps)

tbd

Name Name Name

Generic Type:

(Tool or language independend

type)

Type: Generic Type:

(Tool or language independend

type)

Required Properties:

(Information required in

interactions between steps)

Properties: Provided Properties:

(Information provided in

interactions between steps)

Engineering Method: UC304_Formalize requirements_001

Purpose: Deriving semi-formal, machine-processible requirements from natural language requirements

Comments:

Pre-Condition
Engineering Activities

(made of steps)
Post-Condition

Natural language requirements are stored in a requirement

management tool (e.g. HP Quality Center, Doors, Requisite pro)

1. Reading natural language requirements from requirements

store into a requirements formalization tool (e.g. boilerplate tool

like DODT)

2. Requirements engineer derives semi-formal textual

requirements by means of the refinement tool

3. Requirements are validated (consistency, completeness,

correctness, redundancy, unambiguousness)

4. The semi-formal textual requirements are stored in the

requirements management tool

5. Each semi-formal requirement gets linked to its corresponding

natural language requirement

6. Requirements engineer creates requirement models based on

the semi-formal requirements (e.g. SysML-models in Artisan

studio)

7. Requirement models are stored in the modelling tool

8. Requirement models get linked to their corresponding semi-

formal requirements

Semi-formal textual requirements (e.g. boiler plates) are stored

in a requirement management tool and linked to their

corresponding natural language requirements.

SysML requirement models (based on specific SysML profile) are

stored in the modelling tool and linked to the corresponding

formal requirements.

Notes: In UC304a, the natural language requirements correspond

to the emission legislation WLTP (Worldwide harmonized Light

duty Test Procedure)

Notes: Is sequence (textual formalization - modelling) in right

order?

Benefit/necessity of "graphical" requirement models?

Are textual formalization and requirements modelling two

Engineering Activities?

Separate step for traceability links or separate engineering

methods?

Notes:

Artefacts Required as inputs of the Activities
Artefacts used internally within the Activities

(optional)
Artefacts Provided as outputs of the Activities

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 75 of 85

Name Formal requirements Name Validation rules Validated requirements

Generic Type:

(Tool or language independend

type)

Semi-formal Requirements Type: proprietary Generic Type:

(Tool or language independend

type)

semi-formal Requirements

Required Properties:

(Information required in

interactions between steps)

Requirement ID, Numerical

limits (minima and/or maxima),

Physical unit of limits,

Requirement statement as

formal text (boilerplates)

Properties: Formulas, scripts, algorithm

calls for analyzing the SUT

output data and comparing

them to requirements

Provided Properties:

(Information provided in

interactions between steps)

Same properties as unchecked

requirements but additionally:

PASSED/FAILED status and

optionally further details like

failure reason, detected

deviation from limits etc.

Name SUT Output data Name Name

Generic Type:

(Tool or language independend

type)

Time-based numerical data

channels

Type: Generic Type:

(Tool or language independend

type)

Required Properties:

(Information required in

interactions between steps)

Channel names, units, sequence

of numeric values etc. - as usual

for measured data

Properties: Provided Properties:

(Information provided in

interactions between steps)

Name Name Name

Generic Type:

(Tool or language independend

type)

Type: Generic Type:

(Tool or language independend

type)

Required Properties:

(Information required in

interactions between steps)

Properties: Provided Properties:

(Information provided in

interactions between steps)

Semi-formal requirements are stored in a requirements

management system (e.g. HP Quality Center, Doors, Requisite

pro)

Test Cases (that are linked to the Requirements) have been

executed and SUT output data (e.g. measured and/or simulated

time-based data channels) are stored in a database (e.g. ASAM-

ODS) or in a file system

1. Requirements are read from the requirements store into a

validation tool (e.g. AVL VEVAT)

2. The linked test cases and SUT output data are read

3. The validation tool analyzes the SUT output data and compares

them to the requirement limits

4. Validation results (PASSED/FAILED states for all checked

requirements) are generated - optionally additional information

(failure reason, detected deviation from limits etc.) may be

generated

5. Validation results are stored (added to the requirements) in

the requirement management tool (requirements store)

For each test execution there is an individual validation result.

Validation results are linked to Test Cases and stored in an

appropriate data store

Engineering Method: UC304_ValidateRequirements_001

Purpose: Validate Requirements based on Test Results of Test Case (which are linked to Requirements)

Comments:

Pre-Condition
Engineering Activities

(made of steps)
Post-Condition

Notes: Is sequence (textual formalization - modelling) in right

order?

Benefit/necessity of "graphical" requirement models?

Are textual formalization and requirements modelling two

Engineering Activities?

Separate step for traceability links or separate engineering

Notes: Validation results usually are test-specific (i.e. depending

on test input parameters the same requirement may be once

PASSED or once FAILED

A requirement is stated as PASSED, if every linked Test Case has

been stated as PASSED

Artefacts Required as inputs of the Activities
Artefacts used internally within the Activities

(optional)
Artefacts Provided as outputs of the Activities

Description & Interoperability Additional constraints: Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints:

Standardized data file format (e.g. ASAM-ATF) or data base (e.g.

ASAM ODS).

Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 76 of 85

Name Formalized requirements Name Name Validation Results

Generic Type:

(Tool or language independend

type)

Formalized requirements Type: Generic Type:

(Tool or language independend

type)

Pair of requirement and

validation result

Required Properties:

(Information required in

interactions between steps)

Concrete values needed for

validation

Properties: Provided Properties:

(Information provided in

interactions between steps)

Tells if a requirement is

fullfilled by a certain test run

with a given configuration or

not

Name Test-Cases Name Name Measurement Results

Generic Type:

(Tool or language independend

type)

Series of input parameters for

test run

Type:

Generic Type:

(Tool or language independend

type)

Set of values produced by a test

run and an appropriate test

environment (simulation

models, testbed)

Required Properties:

(Information required in

interactions between steps)

Values in order to performe a

concrete test case via

simulation and/or via a test bed

set-up

Properties: Provided Properties:

(Information provided in

interactions between steps)

Concrete output values of the

UUT for the given Test Case

Name Simulation Models Name Name Applied Simulation Models

Generic Type:

(Tool or language independend

type)

Simulation Models for various

aspects of a vehicle

Type: Generic Type:

(Tool or language independend

type)

Simulation Models for various

aspects of a vehicle

Required Properties:

(Information required in

interactions between steps)

Models should be appropriate

for test case and the selected

part of the UUT (e.g. engine vs.

engine control SW)

Properties: Provided Properties:

(Information provided in

interactions between steps)

Models should be appropriate

for test case and the selected

part of the UUT (e.g. engine vs.

engine control SW)

Name Testbed Configurations Name Name Applied Testbed Configurations

Generic Type:

(Tool or language independend

type)

Series of parameter, scripts, etc.

that set-up everything beside a

UUT in a testbed environment

Type:

Generic Type:

(Tool or language independend

type)

Series of parameter, scripts, etc.

that set-up everything beside a

UUT in a testbed environment

Required Properties:

(Information required in

interactions between steps)

Configuration of measurement

devices, physical dynos, fuel

conditioning units etc.

Properties: Provided Properties:

(Information provided in

interactions between steps)

Configuration of measurement

devices, physical dynos, fuel

conditioning units etc.

Name Initial Calibration Values Name Name Calibration Data

Generic Type:

(Tool or language independend

type)

Set of relevant parameter/value

pairs

Type: Generic Type:

(Tool or language independend

type)

Set of relevant parameter/value

pairs

Required Properties:

(Information required in

interactions between steps)

Concrete initial values for a first

educated guess of the

calibration iteration

Properties: Provided Properties:

(Information provided in

interactions between steps)

Final calibration data that

fulfills the requirements with a

specific UUT

Engineering Method: UC304_TestAndCallibrationIteration_001

Purpose: Within the overall use case, several development phases about testing a vehicle are defined. Each developent phase consists of a Test and Callibration iteration. During this iterations

several data artifacts are consumed and produced by a series of tool, that need to be interconnected via IOS

Comments:

Pre-Condition
Engineering Activities

(made of steps)
Post-Condition

*) Requirements are well defined and formalized.

*) Linking between requirements and models has been

established properly.

*) Access to data of previous projects and development phases

has been established

1. Selection of the appropriate requirements that need to be

fulfilled (see Section 8.1)

2. Selection of the appropriate simulation models that are linked

to that requirements (see Section 8.3)

3. Configuration of the corresponding Calibration Set-up:

a. Selection of calibration variables

b. Selection of initial calibration values (e.g. from calibration

models linked to similar requirements of previous projects)

4. Configuration of the corresponding test bed set-up (this task

activity can be skipped in the testing phase I, since the whole

test-run is based on simulation models):

a. Selecting of existing test bed set-ups based on similar projects

and requirements

b. Creation of a new variant for this test bed setup

c. Adaptation of the new variant according to the given

requirements

5. Configuration of the corresponding UUT Set-up

a. Configuration of the physical part of the UUT Set up such as

UUT parameters (this task activity can be skipped in testing

phase I)

b. Configuration of the simulated part of the UUT such as

simulation model parameters (rest-vehicle simulation)

i. Creation of a new variant of existing simulation models of

previous projects with similar requirements or simulation models

used in previous testing phases.

ii. Adaptation of the new created model variant according to the

*) UUT confirmes requirements

*) Data artifacts are stored, exported to appropriate

formats/standards and linked against each other accordingly

 --> It has to be reproduceable, which test results are produced

with which configuration

Notes: Notes: Notes:

Artefacts Required as inputs of the Activities
Artefacts used internally within the Activities

(optional)
Artefacts Provided as outputs of the Activities

Description & Interoperability Additional Constraints:

Level of formalization should be adaquate for requirement

verification after performing a test run and the appropriate test

results

Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Variants and version of the simulation models are created during

the calibration/test iteration. These have to be stored and

maintenained accordingly

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Variants and versions of the applied testbed configuration are

created during the calibration/test iteration. These have to be

stored accordingly

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Calibration data has to be interlinked with artifacts and may act

as a basis for initial calibration values for other calibration

iterations of similar projects

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 77 of 85

Engineering Method: UC304_DataManagementAcrossDevPhases_001

Comments: Global Data Management is needed to re-use and interlink data artefacts across the several development and test phases about building and testing a vehicle

Pre-Condition
Engineering Activities

(made of steps)
Post-Condition

Interlinked artifacts (c.f. UC304_TestAndCalIteration) are

available from previous AVL-wide projects or specific sub-

projects and are the basis for data re-use for new testing

projects. In addition there is a common infrastructure to access

and store these data artifacts.

Let’s assume that a customer wants to build a new vehicle. Then

the engineering methods are usually comprised of the following

activities:

1. Open/Create a new project for the new vehicle. This project

should be defined globally and independent of the

development/testing phase and the project team

2. Open a new Sub-Project for the specific development/testing

phase usually assigned to a specific project team

3. Collect and define requirements for the new vehicle

(eventually based on former requirements of similar projects)

4. Based in these requirements perform a pure office simulation

a. For that find an initial simulation model from a similar project

associated with similar requirements

b. Create a new variant of this simulation model

c. Refine the initial model considering overall project

requirements.

5. Perform the simulation and calibration iteration as described

in UC304_TestAndCalProcess.

If data re-use from a previous testing phase (e.g. vehicle

simulation) should be applied, the following activities are

performed:

1. Based on the assumption that the development of the same

vehicle started in the previous testing phase I should be

continued, the associated overall vehicle project is reactivated.

2. A new sub-project associated with the actual testing phase is

The data artifacts of the finalized sub-project is accessable by

the next development-phase-specific sub-project or projects for

data-reuse. By integrating the engineering method such as

UC304_TestAndCalibrationIteration, the data artifacts relations

of a specific sub-projects are available for navigation, impact

analysis, etc.

Notes: Notes: For a proposed input and output data see the suggested

data model in the Deliverably CRYSTAL_D_304_011_v1-0.doc

(Section 8.5.2)

Notes:

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 78 of 85

Name Requirements Name Simulation results

Generic Type:

(Tool or language independend

type)

Requirement Generic Type:

(Tool or language independend

type)

Data sequence of

(measurement) values

Required Properties:

(Information required in

interactions between steps)

Formal or informal

representation

Provided Properties:

(Information provided in

interactions between steps)

Type of value, physical

dimension, value itself

Name Simulation model Name

Generic Type:

(Tool or language independend

type)

Model Generic Type:

(Tool or language independend

type)

Required Properties:

(Information required in

interactions between steps)

Model Element, Sub-Element,

Model-Parameter

Provided Properties:

(Information provided in

interactions between steps)

Name

Simulation model

parameterization

Generic Type:

(Tool or language independend

type)

Parameter

Required Properties:

(Information required in

interactions between steps)

Parameter Name, Parameter

Value

Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints:

Requirements should be verified by simulation models

Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints:

Simulation model of different types should be supported

(simulation tools, model solvers, time base, etc.)

Description & Interoperability Additional Constraints:

Notes: Notes: Notes:

Artefacts Required as inputs of the Activities
Artefacts used internally within the Activities

(optional)
Artefacts Provided as outputs of the Activities

Engineering Method: UC304_HetereogenousSimulation_001

Purpose:

Comments:

Pre-Condition
Engineering Activities

(made of steps)
Post-Condition

The safety data is stored in a safety in-house tool

Dysfunctional models are available

1. Based on the given requirements, the most adequate

simulation models are selected from a model library as

described by the engineering method in Section 8.3 (e.g. data

backbone, models that are linked to similar requirements, etc.)

a. If available, the models need to be modified or configured

according the given requirements

b. If not available, the appropriate simulation tool has to be

selected

c. If the selected models are based on the same simulation tool,

no co-simulation is needed and thus the next steps need not to

be considered

2. The selected simulation models have to be analysed

regarding their type and relation to each other

3. The model relations need to be documented, e.g. by high

level OSLC link relations.

4. Communication interfaces (data ports) according to the

principles of FMI have to be defined.

5. Data ports have to be analysed regarding their properties

(data type, sample time, etc.)

6. Depending on the results of 5, co-simulation properties have

to be configured (e.g. data interpolation for different sample

times, etc.)

7. The co-simulation is executed

8. Simulation results are collected and verified according to the

given requirement, e.g. as described for the calibration iteration

for the corresponding engineering method

Fault-trees are generated

11.2 Engineering methods for WP3.4b

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 79 of 85

Name Control System Requirements Name Name Basis SW System Requirements

Generic Type:

(Tool or language independend

type)

Natural Language Requirement Type: Generic Type:

(Tool or language independend

type)

Natural Language Requirement

Required Properties:

(Information required in

interactions between steps)

ID, System Level, Category,

Requirement Text, Requirement

Summary,Rationale, Acceptence

Criteria, Stakeholder Comment,

State, Priority, Responsibility,

Level=4, Origin, Safety Level,

Safety Standard, Text

Attachments, Re-Use Potential,

System Structure Nodes,

Stakeholder ID

Properties: Provided Properties:

(Information provided in

interactions between steps)

ID, System Level, Category,

Requirement Text, Requirement

Summary,Rationale, Acceptence

Criteria, Stakeholder Comment,

State, Priority, Responsibility,

Level=5, Origin, Safety Level,

Safety Standard, Text

Attachments, Re-Use Potential,

System Structure Nodes,

Stakeholder ID

Notes: The here mentioned "Natural language requirements" are

"Control System Requirements" (Level3 Requirements).

Variant handling cannot be considered as an interoperability

challenge on its own, but has to be considered for the IOS

specification.

Notes: The Control System Requirements (Level 4 Requirements)

could be delivered from Customer or from CoSyp (previous

development process).

Notes:

Variant handling cannot be considered as an interoperability

challenge on its own, but has to be considered for the IOS

specification.

Artefacts Required as inputs of the Activities to
Integrated Tool Environment for embedded controls development

Artefacts used internally within the Activities

(optional)
Artefacts Provided as outputs of the Activities

Integrated Tool Environment for embedded controls development

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

2. Integrated Tool Environment for embedded controls

development

Natural language requirements are stored in a Requirement

Management tool (Integrity).

3. Improvement of the Development via „Efficient Variant

Handling within V-Cycle"

Variant information linked to required artefacts as input for the

activites

Engineering Method: UC304b_RequirementsDelivery_001

Purpose: Delivery of SW System Requirements

Comments:

Pre-Condition
Engineering Activities

(made of steps)
Post-Condition

2. Integrated Tool Environment for embedded controls

development

Decomposition of Control System Requirements to SW System

Requirements

1) Check of Control system Requirements

2) Splitting of Control System Requirements into

- SW System Requirements.

- BSW Requirements

- Electronic Hardware Requirements

- Functional Sensor, Actuator, Busses and interfaces

Requirements

3) Store the SW System Requirements in the Requirements

Development tool.

3. Improvement of the Development via „Efficient Variant

Handling within V-Cycle"

Variant information linked to internal used artefacts within the

activites

2. Integrated Tool Environment for embedded controls

development

Basis for SW System Requirements stored in Requirements

management Tool (Integrity).

3. Improvement of the Development via „Efficient Variant

Handling within V-Cycle"

Variant information linked to provided artefacts as output for the

activites.

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 80 of 85

Name SW System Requirements Name Name SW System Requirements

Generic Type:

(Tool or language independend

type)

Natural Language Requirement Type: Generic Type:

(Tool or language independend

type)

Natural Language Requirement

Required Properties:

(Information required in

interactions between steps)

ID, System Level, Category,

Requirement Text, Requirement

Summary,Rationale, Acceptence

Criteria, Stakeholder Comment,

State, Priority, Responsibility,

Level=5, Origin, Safety Level,

Safety Standard, Text

Attachments, Re-Use Potential,

System Structure Nodes,

Stakeholder ID

Properties: Provided Properties:

(Information provided in

interactions between steps)

ID, System Level, Category,

Requirement Text, Requirement

Summary,Rationale, Acceptence

Criteria, Stakeholder Comment,

State, Priority, Responsibility,

Level, Origin, Safety Level,

Safety Standard, Text

Attachments, Re-Use Potential,

System Structure Nodes,

Stakeholder ID

Engineering Method: UC304b_AnalysisOfSwSystemRequirements_002

Purpose: Check about the quality of a requirements for further usage in SW System Architecture definition

Comments:

Pre-Condition
Engineering Activities

(made of steps)
Post-Condition

2. Integrated Tool Environment for embedded controls

development

SW System Requirements stored in Requirements management

Tool (Integrity).

3. Improvement of the Development via „Efficient Variant

Handling within V-Cycle"

Variant information linked to required artefacts as input for the

activites

2. Integrated Tool Environment for embedded controls

development

Analysis of SW System Requirements

1) Checked about onthology

2) Check if the SW System Requirements are fitting to existing

generic architecture specification

3) Adaptation of SW System Requirements to existing generic

architecture specification.

4) Store the SW System Requirements in the Requirements

Managment tool (Integrity).

3. Improvement of the Development via „Efficient Variant

Handling within V-Cycle"

Variant information linked to internal used artefacts within the

activites

2. Integrated Tool Environment for embedded controls

development

Approved or modified SW System Requirements stored in

Integrity.

3. Improvement of the Development via „Efficient Variant

Handling within V-Cycle"

Variant information linked to provided artefacts as output for the

activites.

Notes:

Variant handling cannot be considered as an interoperability

challenge on its own, but has to be considered for the IOS

specification.

Notes: Generic architecture specification is stored in Integrity-

source

Notes:

Variant handling cannot be considered as an interoperability

challenge on its own, but has to be considered for the IOS

specification.
Artefacts Required as inputs of the Activities to

Integrated Tool Environment for embedded controls development

Artefacts used internally within the Activities

(optional)
Artefacts Provided as outputs of the Activities

Integrated Tool Environment for embedded controls development

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 81 of 85

Name

Configuration Data to be used

Model from Data Backbone Name Name

Baselined model from AVL Data

Backbone to be used in

Generic Type:

(Tool or language independend

type)

Configuration data Type: Generic Type:

(Tool or language independend

type)

Model

Required Properties:

(Information required in

interactions between steps)

Parameter depend on the the

model configuration.

A List of Requirements is to

long.

Properties: Provided Properties:

(Information provided in

interactions between steps)

Compiled Model

to be used in Target System.

Compiled S-Function for Matlab

Simulink System

Name SW System Requirements Name Name

Baselines of SW System

Requirements

Generic Type:

(Tool or language independend

type)

Natural Language Requirement Type: Generic Type:

(Tool or language independend

type)

Snapshot of the SW System

Requirements

Provided Properties:

(Information provided in

interactions between steps)

ID, System Level, Category,

Requirement Text, Requirement

Summary,Rationale, Acceptence

Criteria, Stakeholder Comment,

State, Priority, Responsibility,

Level=5, Origin, Safety Level,

Safety Standard, Text

Attachments, Re-Use Potential,

System Structure Nodes,

Stakeholder ID

Properties: Provided Properties:

(Information provided in

interactions between steps)

Name SW System Architecture Name Name Baselines of SW Architecture

Generic Type:

(Tool or language independend

type)

Stored in Architecture Tool Type: Generic Type:

(Tool or language independend

type)

Snapshot of the SW System

Architecture

Provided Properties:

(Information provided in

interactions between steps)

Architecture of the System Properties: Provided Properties:

(Information provided in

interactions between steps)

Engineering Method: UC304b_AlgorithmDevelopmentPreparation_003 - really needed?

Purpose: Preparation of Algorithm development

Comments:

Pre-Condition
Engineering Activities

(made of steps)
Post-Condition

1. AVL Data Backbone to enable models exchange with

integration and configuration of versatile System-of-systems

(SoS) platform

Configuration data to be used Model from Data Backbone

2. Integrated Tool Environment for embedded controls

development

- SW system requirements stored in Integrity

- SW System Architecture stored Architecture Tool.

3. Improvement of the Development via „Efficient Variant

Handling within V-Cycle"

Variant information linked to required artefacts as input for the

activites

1. AVL Data Backbone to enable models exchange with

integration and configuration of versatile System-of-systems

(SoS) platform

a) Configure and import Model from AVL Data Backbone

b) Import of Model from Data Backbone

2. Integrated Tool Environment for embedded controls

development

a) Set SW System Architecture in relation to the SW System

Requirements.

b) Version of SW System Requirements and SW System

Requirements must be synchronized

c) Fix Versions in Intergrity

3. Improvement of the Development via „Efficient Variant

Handling within V-Cycle"

Variant information linked to internal used artefacts within the

activites

1. AVL Data Backbone to enable models exchange with

integration and configuration of versatile System-of-systems

(SoS) platform

Baselined model from AVL Data Backbone to be used in

Algorithm development

2. Integrated Tool Environment for embedded controls

development

Baselines of SW System Requirements and SW Architecture

within Integrity.

3. Improvement of the Development via „Efficient Variant

Handling within V-Cycle"

Variant information linked to provided artefacts as output for the

activites.

Notes:

Variant handling cannot be considered as an interoperability

challenge on its own, but has to be considered for the IOS

specification.

Notes:

… to be compatible with to existing Architecture rules.

… to be compatible with to existing Architecture rules.

Notes:

Variant handling cannot be considered as an interoperability

challenge on its own, but has to be considered for the IOS

specification.

Artefacts Required as inputs of the Activities to
Integrated Tool Environment for embedded controls development

Artefacts used internally within the Activities

(optional)
Artefacts Provided as outputs of the Activities

Integrated Tool Environment for embedded controls development

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Artefacts Required as inputs of the Activities
AVL Data Backbone to enable models exchange with integration and

configuration of versatile System-of-systems (SoS) platform

Artefacts used internally within the Activities

(optional)

Artefacts Provided as outputs of the Activities
AVL Data Backbone to enable models exchange with integration and

configuration of versatile System-of-systems (SoS) platform

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 82 of 85

Name

Configuration Data to be used

Model from Data Backbone Name Name

Baselined model from AVL Data

Backbone to be used in

Generic Type:

(Tool or language independend

type)

Configuration data Type: Generic Type:

(Tool or language independend

type)

Model

Required Properties:

(Information required in

interactions between steps)

Parameter depend on the the

model configuration.

A List of Requirements is to

long.

Properties: Provided Properties:

(Information provided in

interactions between steps)

Compiled Model

to be used in Target System.

Compiled S-Function for

Software System

Name SW Component Requirements Name Name

Generic Type:

(Tool or language independend

type)

ID, System Level, Category,

Requirement Text, Requirement

Summary,Rationale, Acceptence

Criteria, Stakeholder Comment,

State, Priority, Responsibility,

Level=5, Origin, Safety Level,

Safety Standard, Text

Attachments, Re-Use Potential,

System Structure Nodes,

Stakeholder ID

Type:

Generic Type:

(Tool or language independend

type)

Provided Properties:

(Information provided in

interactions between steps)

Properties: Provided Properties:

(Information provided in

interactions between steps)

Name SW Component Model Name Name Embedded Coder configuration

Generic Type:

(Tool or language independend

type)

Simulink, ASCET, … Type: Generic Type:

(Tool or language independend

type)

GNU

Provided Properties:

(Information provided in

interactions between steps)

*.m -File

*.ddx File

Properties: Provided Properties:

(Information provided in

interactions between steps)

Configuration File with

configuration parameters

Name SW Component Documentation Name Name

Generic Type:

(Tool or language independend

type)

Natural Language

Documentation

Type: Generic Type:

(Tool or language independend

type)

Provided Properties:

(Information provided in

interactions between steps)

Properties: Provided Properties:

(Information provided in

interactions between steps)

Name Function Group Architecture Name Name

Generic Type:

(Tool or language independend

type)

Stored in Architecture Tool Type: Generic Type:

(Tool or language independend

type)

Provided Properties:

(Information provided in

interactions between steps)

Function Group Architecture of

the System

Properties: Provided Properties:

(Information provided in

interactions between steps)

Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description:

Artefacts Required as inputs of the Activities to
Integrated Tool Environment for embedded controls development

Artefacts used internally within the Activities

(optional)
Artefacts Provided as outputs of the Activities

Integrated Tool Environment for embedded controls development

1. AVL Data Backbone to enable models exchange with

integration and configuration of versatile System-of-systems

(SoS) platform

Configuration data to be used Model from Data Backbone

2. Integrated Tool Environment for embedded controls

development

- Software Component Requirements (for Function Group /

Function Component) stored in Integrity

- SW Component Model stored in Integrity-Source

- SW Component Documentation stored in Integrity-Source.

- Architecture (Interfaces) on Function Group Level

3. Improvement of the Development via „Efficient Variant

Handling within V-Cycle"

Variant information linked to required artefacts as input for the

activites

Artefacts Required as inputs of the Activities
AVL Data Backbone to enable models exchange with integration and

configuration of versatile System-of-systems (SoS) platform

Notes:

Variant handling cannot be considered as an interoperability

challenge on its own, but has to be considered for the IOS

specification.
Artefacts used internally within the Activities

(optional)

Artefacts Provided as outputs of the Activities
AVL Data Backbone to enable models exchange with integration and

configuration of versatile System-of-systems (SoS) platform

Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description:

Post-Condition

1. AVL Data Backbone to enable models exchange with

integration and configuration of versatile System-of-systems

(SoS) platform

a) Configure and import Model from AVL Data Backbone

b) Import of Model from Data Backbone

Remark:

Depend on the "usage" mechanism of the model from the AVL

Data back bone, a) and b) could be obsolete and the model from

the former Engineering method can be used with adaptation to

this activity.

2. Integrated Tool Environment for embedded controls

development

- defintion of deviation of MiL and SiL test ist allowed

- definition of Embedded Coder configuration

3. Improvement of the Development via „Efficient Variant

Handling within V-Cycle"

Variant information linked to internal used artefacts within the

activites

1. AVL Data Backbone to enable models exchange with

integration and configuration of versatile System-of-systems

(SoS) platform

Baselined model from AVL Data Backbone to be used in

Algorithm development

2. Integrated Tool Environment for embedded controls

development

Embedded Coder configuration

3. Improvement of the Development via „Efficient Variant

Handling within V-Cycle"

Variant information linked to provided artefacts as output for the

activites.

Notes:

Variant handling cannot be considered as an interoperability

challenge on its own, but has to be considered for the IOS

specification.

Notes:

for Autocode creation for floating point model

Description: Description & Interoperability Additional Constraints:

Engineering Method: UC304b_SwImplementationPreparation_004

Purpose: Preparation of the Software implementation

Comments:

Pre-Condition
Engineering Activities

(made of steps)

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 83 of 85

Name

Configuration Data to be used

Model from Data Backbone Name Name

Baselined model from AVL Data

Backbone to be used in

Generic Type:

(Tool or language independend

type)

Configuration data Type: Generic Type:

(Tool or language independend

type)

Model

Required Properties:

(Information required in

interactions between steps)

Parameter depend on the the

model configuration.

A List of Requirements is to

long.

Properties: Provided Properties:

(Information provided in

interactions between steps)

Compiled Model

to be used in Target System.

Compiled S-Function for

Software System

Name Software Component Code Name Name Test vector

Generic Type:

(Tool or language independend

type)

C++ Type: Generic Type:

(Tool or language independend

type)

Test suite stored in Integrity

Required Properties:

(Information required in

interactions between steps)

code of the Software

Compoenent with interfaces to

other components

Properties: Provided Properties:

(Information provided in

interactions between steps)

to be final defined (due to

current implementation in

Integrity

Name SW Component Model Name Name C-Code

Generic Type:

(Tool or language independend

type)

Matlab Simulink, ASCET Type: Generic Type:

(Tool or language independend

type)

C++

Required Properties:

(Information required in

interactions between steps)

Model of the Software

Compoenent with interfaces to

other components

Properties: Provided Properties:

(Information provided in

interactions between steps)

code of the Software

Compoenent with interfaces to

other components

Description & Interoperability

Additional Constraints:

Description: Description & Interoperability

Additional Constraints:

Name

 Result of MiL-Test from

algorithm development Name Name

Generic Type:

(Tool or language independend

type)

Type: Generic Type:

(Tool or language independend

type)

Required Properties:

(Information required in

interactions between steps)

Properties: Provided Properties:

(Information provided in

interactions between steps)

Description & Interoperability

Additional Constraints:

Description: Description & Interoperability

Additional Constraints:

Artefacts Required as inputs of the Activities to
Integrated Tool Environment for embedded controls development

Artefacts used internally within the Activities

(optional)
Artefacts Provided as outputs of the Activities

Integrated Tool Environment for embedded controls development

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

1. AVL Data Backbone to enable models exchange with

integration and configuration of versatile System-of-systems

(SoS) platform

Configuration data to be used Model from Data Backbone

2. Integrated Tool Environment for embedded controls

development

- Software Component Code (for Function Group / Function

Component) stored in Integrity

- SW Component Model stored in Integrity-Source

- Result of MiL-Test from algorithm development stored in

Integrity-Source

3. Improvement of the Development via „Efficient Variant

Handling within V-Cycle"

Variant information linked to required artefacts as input for the

activites

1. AVL Data Backbone to enable models exchange with

integration and configuration of versatile System-of-systems

(SoS) platform

a) Configure and import Model from AVL Data Backbone

b) Import of Model from Data Backbone

Remark:

Depend on the "usage" mechanism of the model from the AVL

Data back bone, a) and b) could be obsolete and the model from

the former Engineering method can be used with adaptation to

this activity.

2. Integrated Tool Environment for embedded controls

development

Preparation of Test vectors for SiL-Test based on MiL-Test

environment.

… adaptation of Testvectors for SiL-Test

3. Improvement of the Development via „Efficient Variant

Handling within V-Cycle"

Variant information linked to internal used artefacts within the

activites

1. AVL Data Backbone to enable models exchange with

integration and configuration of versatile System-of-systems

(SoS) platform

Baselined model from AVL Data Backbone to be used in

Algorithm development

2. Integrated Tool Environment for embedded controls

development

Test vectors for SiL-Test.

C-Code based on MiL-Test model.

3. Improvement of the Development via „Efficient Variant

Handling within V-Cycle"

Variant information linked to provided artefacts as output for the

activites.

Notes:

Variant handling cannot be considered as an interoperability

challenge on its own, but has to be considered for the IOS

specification.

Notes:

for Autocode creation for floating point model.

Depend on the "usage" mechanism of the model from the AVL

Data back bone

Notes:

Variant handling cannot be considered as an interoperability

challenge on its own, but has to be considered for the IOS

specification.

Engineering Method: UC304b_SwImplementationTest_005

Purpose: Test of the SW implementation

Comments:

Pre-Condition
Engineering Activities

(made of steps)
Post-Condition

Artefacts Required as inputs of the Activities
AVL Data Backbone to enable models exchange with integration and

configuration of versatile System-of-systems (SoS) platform

Artefacts used internally within the Activities

(optional)

Artefacts Provided as outputs of the Activities
AVL Data Backbone to enable models exchange with integration and

configuration of versatile System-of-systems (SoS) platform

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 84 of 85

Name

Configuration Data to be used

Model from Data Backbone Name Name

Baselined model from AVL Data

Backbone to be used in

Generic Type:

(Tool or language independend

type)

Configuration data Type: Generic Type:

(Tool or language independend

type)

Model

Required Properties:

(Information required in

interactions between steps)

Parameter depend on the the

model configuration.

A List of Requirements is to

long.

Properties: Provided Properties:

(Information provided in

interactions between steps)

Compiled Model

to be used in Target System.

Compiled S-Function for

Software System

Name Software Component Code Name Name Software Component Code

Generic Type:

(Tool or language independend

type)

C++ Type: Generic Type:

(Tool or language independend

type)

C++

Required Properties:

(Information required in

interactions between steps)

code of the Software

Compoenent with interfaces to

other components

Properties: Provided Properties:

(Information provided in

interactions between steps)

code of the Software

Compoenent with interfaces to

other components

Name Function Group Architecture Name Name Function Group Architecture

Generic Type:

(Tool or language independend

type)

Structure stored in Integrtiy Type: Generic Type:

(Tool or language independend

type)

Structure stored in Integrtiy

Required Properties:

(Information required in

interactions between steps)

Architecture of Function Group Properties: Provided Properties:

(Information provided in

interactions between steps)

Architecture of Function Group

Name Function Group Requirements Name Name Function Group Requirements

Generic Type:

(Tool or language independend

type)

Natural Language Requirement Type: Generic Type:

(Tool or language independend

type)

Natural Language Requirement

Required Properties:

(Information required in

interactions between steps)

ID, System Level, Category,

Requirement Text, Requirement

Summary,Rationale, Acceptence

Criteria, Stakeholder Comment,

State, Priority, Responsibility,

Level=5, Origin, Safety Level,

Safety Standard, Text

Attachments, Re-Use Potential,

System Structure Nodes,

Stakeholder ID

Properties: Provided Properties:

(Information provided in

interactions between steps)

ID, System Level, Category,

Requirement Text, Requirement

Summary,Rationale, Acceptence

Criteria, Stakeholder Comment,

State, Priority, Responsibility,

Level=5, Origin, Safety Level,

Safety Standard, Text

Attachments, Re-Use Potential,

System Structure Nodes,

Stakeholder ID

Name Function Group test cases Name Name Function Group test cases

Generic Type:

(Tool or language independend

type)

Test cases stored in Integrity Type: Generic Type:

(Tool or language independend

type)

Test cases stored in Integrity

Required Properties:

(Information required in

interactions between steps)

to be final defined (due to

current implementation in

Integrity

Properties: Provided Properties:

(Information provided in

interactions between steps)

to be final defined (due to

current implementation in

Integrity

Notes:

Variant handling cannot be considered as an interoperability

challenge on its own, but has to be considered for the IOS

specification.

Engineering Method: UC304b_FGTestPreparation_006

Purpose: Preparation of the Function Group Tests

Comments:

Pre-Condition
Engineering Activities

(made of steps)
Post-Condition

Artefacts used internally within the Activities

(optional)
Artefacts Provided as outputs of the Activities

Integrated Tool Environment for embedded controls development

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

1. AVL Data Backbone to enable models exchange with

integration and configuration of versatile System-of-systems

(SoS) platform

Configuration data to be used Model from Data Backbone

2. Integrated Tool Environment for embedded controls

development

- SW components (including Test and Review)

- FG-Architecture

- FG requirements

- FG test cases

3. Improvement of the Development via „Efficient Variant

Handling within V-Cycle"

Variant information linked to required artefacts as input for the

activites

1. AVL Data Backbone to enable models exchange with

integration and configuration of versatile System-of-systems

(SoS) platform

a) Configure and import Model from AVL Data Backbone

b) Import of Model from Data Backbone

Remark:

Depend on the "usage" mechanism of the model from the AVL

Data back bone, a) and b) could be obsolete and the model from

the former Engineering method can be used with adaptation to

this activity.

2. Integrated Tool Environment for embedded controls

development

Collection, check of all Pre-conditions

3. Improvement of the Development via „Efficient Variant

Handling within V-Cycle"

Variant information linked to internal used artefacts within the

activites

1. AVL Data Backbone to enable models exchange with

integration and configuration of versatile System-of-systems

(SoS) platform

Baselined model from AVL Data Backbone to be used in

Algorithm development

2. Integrated Tool Environment for embedded controls

development

- SW components (including Test and Review)

- FG-Architecture

- FG requirements

- FG test cases

3. Improvement of the Development via „Efficient Variant

Handling within V-Cycle"

Variant information linked to provided artefacts as output for the

activites.

Notes:

Variant handling cannot be considered as an interoperability

challenge on its own, but has to be considered for the IOS

specification.

Notes:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Artefacts Required as inputs of the Activities
AVL Data Backbone to enable models exchange with integration and

configuration of versatile System-of-systems (SoS) platform

Artefacts used internally within the Activities

(optional)

Artefacts Provided as outputs of the Activities
AVL Data Backbone to enable models exchange with integration and

configuration of versatile System-of-systems (SoS) platform

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Artefacts Required as inputs of the Activities to
Integrated Tool Environment for embedded controls development

D304.011
Improvement of the Development via „Efficient Variant

Handling within V-Model

Version Nature Date Page

V01.00 R 2014-01-30 85 of 85

Name All Function Groups Name Name All Function Groups

Generic Type:

(Tool or language independend

type)

Matlab Simulink model, C-Code,

Documentation, *.ddx

Container, Model tests, SW

tests

Type:

Generic Type:

(Tool or language independend

type)

Matlab Simulink model, C-Code,

Documentation, *.ddx

Container, Model tests, SW

tests

Required Properties:

(Information required in

interactions between steps)

Matlab Simulink model, C-Code,

Documentation, *.ddx

Container, Model tests, SW

tests

Properties: Provided Properties:

(Information provided in

interactions between steps)

Matlab Simulink model, C-Code,

Documentation, *.ddx

Container, Model tests, SW

tests

Name SW System Architecture Name Name SW System Architecture

Generic Type:

(Tool or language independend

type)

Stored in Architecture Tool Type: Generic Type:

(Tool or language independend

type)

Stored in Architecture Tool

Required Properties:

(Information required in

interactions between steps)

Architecture of the System Properties: Provided Properties:

(Information provided in

interactions between steps)

Architecture of the System

Name SW System Requirements Name Name SW System Requirements

Generic Type:

(Tool or language independend

type)

Natural Language Requirement Type: Generic Type:

(Tool or language independend

type)

Natural Language Requirement

Required Properties:

(Information required in

interactions between steps)

ID, System Level, Category,

Requirement Text, Requirement

Summary,Rationale, Acceptence

Criteria, Stakeholder Comment,

State, Priority, Responsibility,

Level=5, Origin, Safety Level,

Safety Standard, Text

Attachments, Re-Use Potential,

System Structure Nodes,

Stakeholder ID

Properties: Provided Properties:

(Information provided in

interactions between steps)

ID, System Level, Category,

Requirement Text, Requirement

Summary,Rationale, Acceptence

Criteria, Stakeholder Comment,

State, Priority, Responsibility,

Level=5, Origin, Safety Level,

Safety Standard, Text

Attachments, Re-Use Potential,

System Structure Nodes,

Stakeholder ID

Name SW System test cases Name Name SW System test cases

Generic Type:

(Tool or language independend

type)

Test cases stored in Integrity Type: Generic Type:

(Tool or language independend

type)

Test cases stored in Integrity

Required Properties:

(Information required in

interactions between steps)

to be final defined (due to

current implementation in

Integrity

Properties: Provided Properties:

(Information provided in

interactions between steps)

to be final defined (due to

current implementation in

Integrity

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

Description & Interoperability Additional Constraints: Description: Description & Interoperability Additional Constraints:

2. Integrated Tool Environment for embedded controls

development

Collection, check of all informations

3. Improvement of the Development via „Efficient Variant

Handling within V-Cycle"

Variant information linked to internal used artefacts within the

activites

2. Integrated Tool Environment for embedded controls

development

- All Function Groups (including Test and Review)

- SW System Architecture

- SW System requirements

- SW System test cases

3. Improvement of the Development via „Efficient Variant

Handling within V-Cycle"

Variant information linked to provided artefacts as output for the

activites.

Notes:

Variant handling cannot be considered as an interoperability

challenge on its own, but has to be considered for the IOS

specification.

Notes: Notes:

Variant handling cannot be considered as an interoperability

challenge on its own, but has to be considered for the IOS

specification.
Artefacts Required as inputs of the Activities to

Integrated Tool Environment for embedded controls development

Artefacts used internally within the Activities

(optional)
Artefacts Provided as outputs of the Activities

Integrated Tool Environment for embedded controls development

2. Integrated Tool Environment for embedded controls

development

- All Function Groups (including Test and Review)

- SW System Architecture

- SW System requirements

- SW System test cases

3. Improvement of the Development via „Efficient Variant

Handling within V-Cycle"

Variant information linked to required artefacts as input for the

activites

Engineering Method: UC304b_SwSystemTestPreparation_007

Purpose: Preparation of the SW System Tests

Comments:

Pre-Condition
Engineering Activities

(made of steps)
Post-Condition

