
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE CRYSTAL CONSORTIUM. NEITHER THIS
DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED BY ANY
MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE CESAR
CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT. THE
RESEARCH LEADING TO THESE RESULTS HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S SEVENTH
FRAMEWORK PROGRAM (FP7/2007-2013) FOR CRYSTAL – CRITICAL SYSTEM ENGINEERING ACCELERATION JOINT
UNDERTAKING UNDER GRANT AGREEMENT N° 332830 AND FROM SPECIFIC NATIONAL PROGRAMS AND / OR FUNDING
AUTHORITIES.

CRitical SYSTem Engineering AcceLeration

Prototyping IOS concepts
D401.021

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 2 of 34

DOCUMENT INFORMATION

Project CRYSTAL

Grant Agreement No. ARTEMIS-2012-1-332830

Deliverable Title Prototyping IOS concepts

Deliverable No. D401.021

Dissemination Level CO

Nature D

Document Version V1.00

Date 2014-02-28

Contact R. Albers

Organization Philips

Phone +31 402763212

E-Mail r.albers@philips.com

Table 1 Document information

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 3 of 34

AUTHORS TABLE

Name Company E-Mail

R. Albers Philips healthcare r.albers@philips.com

E. Korff de Gidts Philips healthcare eric.korff.de.gidts@philips.com

Table 2 Authors table

CHANGE HISTORY

Version Date Reason for Change
Pages

Affected

1.0 24/2/2014 Initial version

Table 3 Change history

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 4 of 34

CONTENT

1 INTRODUCTION .. 6

1.1 ROLE OF DELIVERABLE ... 6
1.2 RELATIONSHIP TO OTHER CRYSTAL DOCUMENTS .. 6
1.3 STRUCTURE OF THIS DOCUMENT ... 6

2 OVERVIEW OF THE IOS PROTOTYPE .. 7

2.1 VERIFYING REQUIREMENTS WITH CALIBER AND QUALITYCENTER .. 7
2.2 VERIFYING REQUIREMENTS WITH IBM DOORS NEXT GEN AND QUALITY MANAGER 8

3 DESCRIPTION OF THE TOOL CHAIN.. 11

3.1 BORLAND CALIBERRM ... 11
3.2 PROPRIETARY INTERFACE .. 13
3.3 HP QUALITY CENTER ... 14
3.4 IBM DOORS NEXT GEN .. 17
3.5 IBM QUALITY MANAGER .. 19
3.6 IBM RATIONAL TEAM CONCERT .. 21

4 DESCRIPTION OF THE USAGE SCENARIOS ... 25

4.1 ENGINEERING METHOD UC_VERIFIYREQUIREMENT .. 25
4.1.1 Purpose ... 25
4.1.2 Engineering steps .. 25
4.1.3 Pre and post conditions ... 26
4.1.4 Artefacts ... 26

5 CONCLUSIONS AND WAY AHEAD ... 30

5.1 LESSONS LEARNED FROM THIS SPRINT .. 30
5.2 FEEDBACK FROM ENGINEERING TEAMS ... 30

5.2.1 Baseline size ... 30
5.2.2 Proprietary tooling .. 30
5.2.3 Object Linking and Embedding (OLE) .. 31
5.2.4 Bitmaps .. 31
5.2.5 Traceability audits .. 31
5.2.6 Vendor support ... 31
5.2.7 Information consistency ... 31
5.2.8 Traceability matrix editing ... 32
5.2.9 Ease of use ... 32
5.2.10 Variation management .. 32

5.3 FUTURE WORK .. 32
5.3.1 Variation management (User Story 2.03) ... 33
5.3.2 Rich content .. 33
5.3.3 Information consistency (User Story 4.01) ... 33

6 TERMS, ABBREVIATIONS AND DEFINITIONS ... 34

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 5 of 34

Content of Tables

Figure 1: V-model current process ... 7
Figure 2 Horizontal traceability in the V-model while utilizing OSLC ... 9
Figure 3 Separation of concerns in roles and actors .. 10
Figure 4 Sample screenshot of CaliberRM... 12
Figure 5 Sample detailed engineering requirement ... 12
Figure 6 Baseline content ... 13
Figure 7 Screenshot UI of proprietary interface ... 13
Figure 8 Screenshot QualityCenter : identification of releases .. 14
Figure 9 Screenshot QualityCenter : recognized levels in requirements ... 14
Figure 10 Screenshot QualityCenter : link requirements to an established test .. 15
Figure 11 Screenshot QualityCenter : supporting attributes for a given test .. 15
Figure 12 Screenshot QualityCenter : overview of test results .. 16
Figure 13 Overview of the Test Traceability Matrix using Doors and QualityCenter.. 16
Figure 14 Doors Next Gen : representing requirements .. 17
Figure 15 Details revealed while hovering a requirement (OSLC feature) ... 18
Figure 16 Visualizing artefact interrelationships ... 18
Figure 17 UI without hovering ... 19
Figure 18 UI with information highlighted while hovering content, includes links... 20
Figure 19 Sample on ‘Verify Movement’ ... 20
Figure 20 Overall status of a piece of test work ... 21
Figure 21 Screen capture Team Concert : work breakdown view.. 21
Figure 22 Screen capture Team Concert : traceability view ... 22
Figure 23 Team Concert : consistent OSLC based hovering information .. 23
Figure 24 Team Concert : search engine ... 24
Figure 25 Artefact UML diagram .. 27

Content of Figures

Table 1 Document information ... 2
Table 2 Authors table .. 3
Table 3 Change history... 3
Table 4 Affinity between unmet interoperability needs and engineering feedback .. 32
Table 5 Terms, Abbreviations and Definitions .. 34

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 6 of 34

1 Introduction

1.1 Role of deliverable

To support development of engineering methods in the Healthcare domain an extra deliverable has

been planned on Month 9 of the Crystal project. This deliverable is a simplified example of how an

engineering method should be setup, including the use of templates and describing artefacts

resulting in a demonstrable product. The delivered parts (documents, templates etc.) will go

through the official review process in order to identify any process areas that need extra

clarification. Other engineering methods are then able to follow this process in a “first time right”

approach.

As this is an example, a light weight engineering method is selected that is common in engineering
environments; Verify requirements. It is common as verifying a requirement makes use of the
whole V-model and can be applied on many different levels of detail and scopes, extended with
specific organizational processes and thus the needs for interoperability’s.

1.2 Relationship to other CRYSTAL Documents

This deliverable is a simplified example of how an engineering method should be setup. Please

consult the project archive for more detailed information on individual engineering methods.

1.3 Structure of this document
The first part of this document will focus on background information needed to understand choices

and company specific processes. In the second part this document will dive into the engineering

method and related deliverables, eventually concluding with unmet needs. The unmet needs will

be related to the verify requirement engineering method and translated into a first set of conceptual

IOS needs for development in the Crystal project.

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 7 of 34

2 Overview of the IOS Prototype

2.1 Verifying requirements with Caliber and QualityCenter

Philips Healthcare links clinical expertise with human insights to

create solutions that bring added value to the entire healthcare cycle

- from preventing disease to screening, diagnostics, treatment and

aftercare - at home as well as in the hospital. The BIU iXR develops

and maintains minimally invasive X-ray solutions that offer diagnosis

and treatment of cardiovascular disease.

Our safety critical systems are developed in a regulated environment with high quality demands,

extensive legislation and audits. To support these high quality standards Philips works according

the V-model in which several different layers are defined related to different parts of the system:

 Figure 1: V-model current process

In the first step, left side of the V-model, User needs will be gathered, focussing on the customer’s
whishes. In the opposite of User Needs in the V-model Validation is executed to make sure Philips
creates the right product. In the second step System Requirements are specified, detailing system
requirements that have a higher level of detail as the User needs have and also have a
development focus. System requirements are tested in the Verification step in the opposite arm of
the V-model. Verification shows the right product has been correctly developed and is working
according definitions. The next steps of the v-model continue on the above approach until smallest
unit parts have been reached.

As soon as the product has been created (whole V model has been worked through) regulating
bodies are informed of the new product (submission) and clearance is requested to market the
product.

Connections
• Excel file link: proprietary

custom-made data
interface between Caliber
and QualityCenter

• Manual traceability
between user interaction,
design, implementation
and test

(4) Implementation
Realization

(3) System Design
Specification

Component Design
Specification

(1) User Needs
Specification

(2) System Requirements
Specification

User Interaction Design

(5) Integration

(6) Verification

(7) Validation

5

6

7

4

1

2

3

Borland Caliber HP QualityCenter

Borland Caliber HP QualityCenter

Manual
traceability

Team A

Team C

Team D

Team B Team E

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 8 of 34

Each phase in the V-model is supported with different tooling and applications. Because of the
relation between the left arm of the V-model and the right arm of the v-model a need for
interoperability for tools with different purposes is needed. The high level Philips process is as
follows:

Requirements are created and maintained in Borland Caliber and serve as the starting point for all
projects. Whenever a solid starting point in Caliber is created a baseline is created. This baseline
will serve as input for the inhouse developed interface for uploading the requirements and the
preselected content into HP QualityCenter. The interface performs various content checks on the
baseline of Caliber, before reshuffeling the data into the export format that is compliant for
QualityCenter.

The interface checks if values defined in Caliber also exist in QualityCenter such as product
names, level, priority etc. When the values are missing in QualityCenter the interface will not start
the export of the requirements to QualityCenter but provides warnings. The warnings specify the
values used in Caliber but which are not available in QualityCenter, this needs to be solved first.

In QualityCenter the values are added for each warning provided by the interface (error prone,
redundant work and project related). Finally able to export the content from Caliber to
QualityCenter.

QualityCenter is used to create test cases, manage test execution and result gathering. This leads
to specific reports to support the information sharing to regulating bodies such as a Test
Traceability Matrix which indicates the link between a requirement and the test case that covers
the requirement and its content.

2.2 Verifying requirements with IBM Doors Next Gen and Quality

Manager

In the first engineering method, Verifying Requirements, the IBM toolset has been used to
prototype interoperability as a "desired state". The same underlying case has been implemented in
the IBM toolset as in the setup described above with Caliber and Quality Center. The IBM toolset is
based on the Jazz technology, which is a middleware layer common to a number of IBM systems
and software engineering tools. The IBM Jazz™ toolset among other provides a set of OSLC
interfaces (Open Service for Lifecycle Collaboration, an OASIS standard). By virtue of this
OSLC/Jazz based integration the IBM tools allow for a more flexible and dynamic configuration of
the V-model, since no data is copied or synchronised. OSLC implements the Linked Data concept
(see e.g. http://en.wikipedia.org/wiki/Linked_data). Of course, the same rigorous validation and
verification constraints hold true in any configuration of the V/model of the systems engineering
lifecycle. The "desired state" demo with IBM Jazz based tools intends to show how this is indeed
possible.

Requirements in this demonstration are defined, both at the level of User Needs and System
Requirements, in IBM Doors Next Generation (DNG). The DNG tool is designed to capture, trace,
analyze and manage requirements while maintaining compliance with industry standards and
regulations. Built using IBM Jazz™ technology on the team server, DOORS Next Generation
provides a single platform for global team collaboration and support for managing requirements
effectively, sharing common administration of users, servers and projects

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 9 of 34

 DNG comes with pre-defined templates for requirement types, attributes, links, validations and
other configuration details of a project environment. For this demonstration a simple DNG template
has been used, to which the notion of User Needs has been added (as a requirement type with
pre-existing attributes), and the notion of System Requirement has been redefined from an existing
type, to which custom attributes have been added. From DNG requirements can be linked to
amongst others planning and test artefacts.

Figure 2 Horizontal traceability in the V-model while utilizing OSLC

Validation and verification in this demonstration is managed in IBM Rational Quality Manager
(RQM). The RQM tool is a collaborative hub for business-driven software and systems quality
across virtually any platform and type of testing. RQM helps teams plan and organise their quality
work, design and construct test cases and test suites, intergate test engines and external tools via
adapters, execute and monitor local and remote tests, as well as link these artefacts to other OSLC
based resources outside RQM, like requirements or defects.

As a third element in the tool chain of this demonstration IBM Rational Team Concert (RTC) has
been introduced to plan and organise work between multi-disciplinary teams. In follow on work
RTC will be used more extensively, but in this case defects and tasks are tracked in RTC and a
three-level planning (iteration, release, product) is simulated in RTC. This tool provide features that
integrate development project tasks including iteration planning, process definition, change
management, defect tracking, source control, build automation, and reporting.

Together, the above mentioned IBM tools provide a basis for building an OSLC based tool chain
for healthcare specific safecty critical systems engineering, as well as a demonstration of the verify
Requirements engineering method. For the latter aspect we show in the demo how requirements

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 10 of 34

collected in Doors Next Gen are linked to Test Cases in RQM and Tasks and Defects in RTC. The
requirements collection is in the demonstration also linked to an RTC iteration plan and an RQM
test plan. By virtue of these links traceability views (planning dependencies, impact and coverage
analysis) are easily created in the toolset, again, without copying or synchronising data.

Figure 3 Separation of concerns in roles and actors

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 11 of 34

3 Description of the tool chain
The tool chain from the User needs until the verification and validation is extensive and not in full scope of

this example engineering method, to give an idea:

 Modelling tool

 Simulation tool

 Requirements management tool

 Documentation generation tool

 Design tool

 Interface tool

 Software Development tool

 Test management tool

 Document generation tool

 Archiving tool

 Reviewing tool

 Logistic tool

 Metrics and Dashboard tool

 And so on

To verify a requirement the start point is a requirement with the correct content. To define a requirement with

the correct content the need for models and visual representations are needed. To transport the requirement

an interface has been created that is copied to the test management tool so that test cases can be defined.

Before verification (test execution) can be done an actual system with a certain maturity level and quality is

needed hence software, hardware and electronics need to be designed, purchased / developed and

implemented into a system. This makes use of tool for reviewing, ordering (logistics), metrics, documentation

generation etc.

As this engineering method serves as a simplified example for the Healthcare domain a subset of this tool

chain is selected to provide input for interoperability: Requirement Management tool in Borland Caliber, Test

Management in HP QualityCenter and a proprietary interface to exchange information.

As an alternative together with IBM an alternative demo is shown containing OSLC features that shows the

benefits of an OSLC integrated environment.

3.1 Borland CaliberRM
In Caliber requirements are defined. These requirements use different fields (user defined fields):

 Requirement Name

 Version

 Status

 Priority

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 12 of 34

 Description

 Type

 Planned product release

 Safety related

 Security impact

 Etc.

Figure 4 Sample screenshot of CaliberRM

Eventually leading to a defined requirement with content:

Figure 5 Sample detailed engineering requirement

All the requirements combined together are saved in a baseline. This baseline secures

requirements in their context including the user defined fields:

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 13 of 34

Figure 6 Baseline content

3.2 Proprietary Interface
A custom interace has been developed by Philips that imports the requirements from Caliber into

Excel, maps the used fields and its content to QualityCenter and exports it to QualityCenter.

Figure 7 Screenshot UI of proprietary interface

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 14 of 34

The same user defined field content from Caliber needs to be set in QualityCenter before the

export is executed. This is an issue as most of the custom fields in QualityCenter are a multi select

list (not just a string value so automated copy pastes could be developed). The multi select lists are

editted in a specific customization window in QualityCenter as shown in the Demo movie Caliber

HP QC and Demo movie IBM Doors/RQM. The interface uses the API of Caliber using a specific

account and password. The user of the interface needs to identify the caliber project and the

correct baseline as well as the correct server, users, domain and project for QualityCenter. During

the project multiple baselines will be created containing updates and futher specified features

leading to imports to QualityCenter. In QualityCenter work can already be executed on previous

baseline content, so the interface has been designed to create alerts for requirements that have

been changed since the last baseline import.

3.3 HP Quality Center
When the export from the interface to QualityCenter is completed the verification setup can be started. This
starts with defining releases in relation to project milestones (integration, verification & validation) and related
to the V-model:

Figure 8 Screenshot QualityCenter : identification of releases

When the releases are defined the different levels of requirements are assigned to the releases:

Figure 9 Screenshot QualityCenter : recognized levels in requirements

https://projects.avl.com/11/0154/Data%20Exchange/007_Work/SP4_Health_Care/WP4_0%20SP%20Coordination%20Healthcare/Interim%20Review%20M9/Crystal_M9_demo_final.mp4
https://projects.avl.com/11/0154/Data%20Exchange/007_Work/SP4_Health_Care/WP4_0%20SP%20Coordination%20Healthcare/Interim%20Review%20M9/Crystal_M9_demo_final.mp4
https://projects.avl.com/11/0154/Data%20Exchange/007_Work/SP4_Health_Care/WP4_0%20SP%20Coordination%20Healthcare/Interim%20Review%20M9/SP4-M9-Jazz-Based-Demo-take5.avi

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 15 of 34

In the next step test designs and test cases are created and linked to specific requirements:

Figure 10 Screenshot QualityCenter : link requirements to an established test

The test cases use fields from Caliber (such as supported products from Caliber that are mapped to
Compatible Products in QualityCenter) but also make use of specific QualityCenter user defined fields for
managing the test activities such as status, priority, exection time etc.:

Figure 11 Screenshot QualityCenter : supporting attributes for a given test

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 16 of 34

Test execution is started collecting more data for analysis of test and results:

Figure 12 Screenshot QualityCenter : overview of test results

The most important field for test execution is the status as that identifies the result of the test execution.
When all tests for the verification level have been executed a Test Traceability Matrix is created. The Test
Traceability matrix is a proprietary report that combines requirement names, linked Test Designs and with
the test cases that cover the requirement and the test execution status.

Figure 13 Overview of the Test Traceability Matrix using Doors and QualityCenter

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 17 of 34

The Test Traceability Matrix is used to verify all requirements are covered correctly and thus verification has
been completed according process. This information is in general shared with regulating bodies as evidence
of successfully following the defined verification process.

3.4 IBM Doors Next Gen

User Needs and System Requirements are collected in Doors Next Gen as elements of two modules which
are hierarchical structures of requirements of a similar type in a document like presentation. Attributes and
links can be edited directly with primary requirements information. See illustration below.

Figure 14 Doors Next Gen : representing requirements

OSLC links between requirements, for instance a User Need being covered by System Requirements are
created. See illustration below.

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 18 of 34

Figure 15 Details revealed while hovering a requirement (OSLC feature)

Also OSLC links with artefacts outside Doors Next Gen are created, for instance to related test cases and
implementation tasks. The illustration below gives a visualization of a part of the web of artefacts that is thus
created.

Figure 16 Visualizing artefact interrelationships

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 19 of 34

3.5 IBM Quality Manager

Once requirements are collected in Doors Next Gen a set of test cases in RQM can be generated, or
associated, with the requirements collection, and links between test cases and requirements are established.

Figure 17 UI without hovering

The OSLC links automatically retrieve the linked data and present them in the RQM context using DNG data
and presentation logic. The fly out in the illustration below shows some requirement details from DNG within
the context of an RQM test case to which it is linked.

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 20 of 34

Figure 18 UI with information highlighted while hovering content, includes links

Test cases are linked in RQM to e.g. test case execution results, and several other artefacts in RQM.

Figure 19 Sample on ‘Verify Movement’

One of the OSLC links from the test case is to the Test Plan which is used to monitor the overall status of a
particular piece of test work, and shows in real time the actual status of the test plan against a number of
parameters (see the progress bars in the top right corner below).

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 21 of 34

Figure 20 Overall status of a piece of test work

3.6 IBM Rational Team Concert

The Test Plan is then also linked to the development plan in Rational Team Concert which is used to trach
the work of a number of teams against a number of product deliverables. Again the plan is a collection of
OSLC artefacvts, workitems, and they can be presented with realtime status in several ways. Below a
workbreakdown view is illustrated.

Figure 21 Screen capture Team Concert : work breakdown view

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 22 of 34

The same view of the M9 Iteartion Plan in RTC can be switched to a Traceability view, showing the objective
of this demonstration, namely links (or the lack of them) between tasks, system requirements, test case and
defects. One-to-many relationships are possible, and custom markers highlightcertain potential issues in
some rows.

Figure 22 Screen capture Team Concert : traceability view

OSLC linking shows in a similar uniform way as before details of an OSLC artefact in the current context.

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 23 of 34

Figure 23 Team Concert : consistent OSLC based hovering information

Manipulating links between elements in the view can be done with in-line editing.

The appropriate selection dialogue from DNG is invoked (in this case) to search for the right requirement(s)
to link to this row.

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 24 of 34

Figure 24 Team Concert : search engine

This concludes this desired state demo of an OSLC/Jazz based approach to Verify Requirements.

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 25 of 34

4 Description of the usage scenarios

4.1 Engineering Method UC_VerifiyRequirement

4.1.1 Purpose

The objective of this engineering method is to provide a clear and condensed overview of applicable

requirements, associated tests, the outcome of the tests, and - derived from this - the engineering status of a

work product. The matrix can be used in the engineering life cycle once the engineering requirements are

established and the associated test objectives are identified. The matrix highlights any unfinished or

problematic engineering requirement, as it backtracks the outcome of a test(s) to their originating

engineering requirement(s), but it can also be used for engineering progress tracking (assuming that tests

are available prior to the actual implementation). The matrix is depending on proper requirements

engineering and a proper test design, as missing or partially tested engineering requirements will pass

unnoticed. When supported with by automated regression testing, it can be particularly useful for iterative

engineering approaches, as it keeps track on the status of any engineering requirement outside the scope of

a particular iteration. Once incorporated into a report, the matrix is formally reviewed and archived as

supporting evidence at the milestone gate review of the subsequent next phase in the engineering life cycle.

4.1.2 Engineering steps

The engineering method “verify requirement” consists out of the following engineering steps;

1. Create requirements in an application for Requirements Lifecycle Management (RLCM) and make a
requirements document available in the Application for managing documentation lifecycles (PLDM).

1a. The OSLC interface propagates the approval status and traceability between requirements coming from
PLDM to any other engineering application.

2. In the Test Management & Execution application (TMAE) the requirement can directly be seen with its
content and its relation to other lifecycle artefacts (e.g. with requirements).

3. The RLCM and TMAE environment can generate a report that highlights all applicable requirements. Both
applications can handle the same template makeup.

4. A Test Design is created for a cluster of related requirements; requirements are decomposed into Test
Cases while their relationship is set for requirements-to-test traceability purposes (aka. Test Tracability
Matrix).

4a. Test Cases are automatically flagged when the content of a requirement changes. The flag indicates the
need for a proper impact assessment on the change impact on the Test Case itself.

5. As soon as all Test Designs and Test cases are created, different reports can be generated, such as a
traceability matrix, a test design overview, or a test case overview, and they are directly available in PLDM.

6. As soon as approvals in the PLDM application are given triggers are visible in the linked applications.

6a. In the Test management & execution software the test designs and cases are set on status reviewed /
approved.

7. Test Execution can be started. As soon as a test case is executed the status of that test case is updated
to all linked applications (live status updates).

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 26 of 34

7a. In RLCM the requirement with its linked test case and including the status is visible and can be reported
on.

4.1.3 Pre and post conditions

The engineering method requires the following pre-conditions to be present in order to proceed;

- Applications that can share data in its context

- Requirements are available

- Tests are available

- Test Results are available (optional)

- Defects are known (optional)

- Relations between requirements and test cases are defined

- Rework is pending (hence a need for changes)

The end stage of this engineering method results the following post conditions:

- The engineering requirement(s) are verified

- There is an authorized verification report containing the verified requirement(s)

- A Traceability matrix is available

There is no manual push and pull interfaces and extra manual checks on data integrity and consistency.

4.1.4 Artefacts

The figure below depicts an UML representation of the engineering artefacts required for this engineering
method. The sub-paragraphs elaborate further on the artefacts mentioned.

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 27 of 34

Figure 25 Artefact UML diagram

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 28 of 34

4.1.4.1 Artefact - Requirement

Individual requirement posed to the product under development, stating a desired characteristic of the
product or services. Includes functional or performance requirements (ISO). The requirements can be
organized and viewed into logical and/or hierarchical sub-groups. The description is as rich as hypertext,
thus allows for e.g. tables, mathematical formulates, references, multimedia content, illustrations, or even
interactive simulation. To ensure on the long term availability, content can be easily copied, extracted, or
uploaded from generally available editors (like word or excel), publishing tools, or web servers. Multiple
artifacts, their meta data, and trace relations and can be extracted from the import against a set of custom
rules. This to enhance the easy of repeatability/reproducibility and to avoid a laborious and error prone two-
stage approach.

Shared properties:

- Requirement headline
- Requirement reference ID
- Requirement description
- Requirement category tags
- Requirement author(s)
- Lifecycle status information

4.1.4.2 Artefact - Test

An individual test, setup to verify one or more characteristics of a product or service. It is a sequence of
actions and checks, where the actions indicate the test stimuli while the checks highlight the expected
response. Its characteristics match that of the 'Requirement' artefact.

For the ease of automated regression testing, an action and/or check may refer to one or more test scripts
that automate (part of the) procedure. Custom rule sets utilizing meta data allow for the sequencing of tests
into a test run, scheduled for a particular test environment (while assuming that the test environment is
suited for that particular test).

Shared properties:

- Test headline
- Test reference ID
- Test description
- Test category tags
- Test author(s)
- Lifecycle status information

4.1.4.3 Artefact – Test Result

Individual outcome of a test, capturing the outcome of the test, any deviations from the (formal) test
procedure, and/or particular remarks or observations made. Its characteristics match that of the
'Requirement' artefact.

Shared properties:

- Test date/time
- Test reference ID
- Test environment ID
- Test outcome
- Test deviations
- Test remarks
- Test engineer(s)

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 29 of 34

4.1.4.4 Artefact - Document

Individual document or report, consisting out of one or more files in formats supported by the engineering
environment. Information is subject to access and change control.

Shared properties:

- Document title
- Document type
- Document reference ID
- Document author(s)
- Lifecycle status information

4.1.4.5 Artefact – Traceability matrix

Compiled overview where, for each requirement applicable, the outcome of the associated tests are
interpreted and translated into a requirement outcome following a custom rule set. The enumerated states
and their associated conditions can be defined freely (and typically takes meta data like the lifecycle status of
the underlying information into consideration).

Shared properties:

- Req. headline
- Req. outcome
- Test headline
- Test outcome
- Req. outcome status info

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 30 of 34

5 Conclusions and way ahead

The Engineering method UC_VerifiyRequirement acts as a pilot for exploring the way of working for charting
other engineering methods. More engineering methods will follow, where the lessons learned from this
engineering method will be taken into consideration.

5.1 Lessons learned from this sprint
 Class Diagrams are an effective means for describing the interrelationship between the various artefacts.

 Industry partners and engineering institutes lack a common engineering language. Analysis of state-of-
the-art ontology shows that additional effort is needed to implement IOS ontology (1

st
) and explore the

possibility to generalize upon a shared and generic engineering ontology (2
nd

).

 Incorporating the lessons learned from CESAR and MBAT into the work packages of CRYSTAL is not a
trivial exercise.

5.2 Feedback from engineering teams
Charting the current way of working of the UC_VerifiyRequirement engineering method revealed various
unmet needs in the current engineering tool environment (CaliberRM + HP Quality Center). The main
observations, as received from the engineers involved, are elaborated upon here. This provides the bases
for the high-level abstract in terms of tool interoperability in paragraph 5.3.

5.2.1 Baseline size

One of the current problems we discovered in our engineering tooling relates to the baseline functionality of
CaliberRM (but it also applies to tooling from other vendors)

From a regulatory perspective, any particular platform release has to provide a complete and consistent set
of records on the development, design, verification, and validation effort, all in line with the characteristics of
the product released. In addition, we seek to emphasize on the similarities in intended use between the new
or modified platform release and the earlier release that was granted market approval by the regulatory
authorities.
Various business incentives thus favor the management of engineering requirements at platform level (as
also depicted in the UML diagram of the Public Use Case Healthcare Verify Requirement).

Proper baseline functionality is required in order to manage the ~ 15.000 engineering requirements that
make up the platform, its commercial variations/configuration, and subcomponents. Especially since various
engineering teams are working in parallel in a project setting to prepare for a new platform release or the
development of a particular subcomponent. The current engineering tooling environment can manage up to
~ 3500 engineering requirements. Requirements are thus currently centered on a theme or subcomponent in
order to deal with this limitation. This situation is however not ideal as it hampers traceability, reporting, or
material referencing.

In this requirement structure, a cluster of projects is created to handle a volume of 15.000 engineering
requirements.

5.2.2 Proprietary tooling

CaliberRM is currently in use for Requirements Life Cycle Management (RLCM).
HP Quality Center is used for Test Management and Execution (TMAE).

These engineering tools mentioned lack a level of interoperability that fits Philips engineering needs. Philips
developed a proprietary tool that satisfies these need, but this tool comes with a burden for tool validation (as
this is required by regulatory bodies) and a cost of ownership that Philips seeks to avoid. This requirement
shows the main characteristics of this proprietary tool.

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 31 of 34

5.2.3 Object Linking and Embedding (OLE)

Each individual requirement posed to the product under development states a desired characteristic of the
product or services, includes functional or performance requirements (ISO). A requirement description can
be as rich as hypertext, thus allows for e.g. tables, mathematical formulates, references, multimedia content,
illustrations, or even interactive simulation. In order to ensure on the long term availability of this content and
material, it is preferred that this kind of content can be easily copied, extracted, or uploaded from generally
available editors (like word or excel), publishing tools, or web servers.

Once the content is preserved it is handled as any other requirement description, where it can be
referenced/incorporated in reports like PowerPoint or word or altered from within the engineering
environment.

(e.g. via OLE, the matching editor can be started on the content and the engineering environment is updated
with any 'save' operation).

5.2.4 Bitmaps

Closely related to Object Linking and Embedding (OLE) discussion is an unmet need for being able to
incorporate and manipulate bitmaps in a requirements description. Basic operations like zoom, pan, crop, re-
scaling, edit transparency, etc. for high-resolution images are assumed present for managing the content (on
import) and/or for presentation purposes (on export when incorporated in a document).

5.2.5 Traceability audits

Closely related to the 'Baseline size' discussion is the unmet need for being able to conduct traceability
audits crossing the scope of a 'project'. Most requirement engineering tools recognize the concept of a
'project' or 'binder' or some other type of container that acts as top-level structure under which all relevant
engineering requirements are organized. This same top-level structure is also found to be a logical boundary
for many of the tools engineering support features.
(e.g. a traceability link has to come from within a 'project' structure, or a traceability matrix can include
information originating from this structure)

Being able to relate project to one another may offer a means to cross these boundaries and thus provides
the means for conducting traceability audits across multiple 'projects', all within the scope of platform.
This would allow for more, instead of fewer but bigger top-level structures, assuming that there are easy
means to define something like a soft-links or symbolic link alike in such a structure.

5.2.6 Vendor support

Closely related to the 'Proprietary tooling' discussion is the call for tailoring options and vendor support.
Philips, as well as other engineering companies, seeks engineering tools that seamlessly integrate in their
organize structure, environment, and way of working. Tools typically fail to meet all criteria posed, hence
some level of adaptation is required; both from an organizational perspective, as from within the tools
themselves. For the latter part, a company will seek the support of the tool vendor where it has to rely on
some level of support for tweaking the tools to their particular needs. Improvements on the current level of
tailing options and vendor support is requested.

5.2.7 Information consistency

Most engineering tools consider the requirements engineering environment as the primary means and portal
for modifying the requirements content, meta data, and references. Within our organization, requirements
are subject to a reviewing process / formal inspection, where the requirements are 'exported' from the tooling
environment into a document. The document itself is subject to a document life cycle and archived in a
document management system, and is considered the 'authorized' representation of a requirement. Hence
the unmet need for information consistency between the content of the document management system and
its meta data with the requirements engineering environment, all in a controlled manner that includes change
or baseline management.

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 32 of 34

5.2.8 Traceability matrix editing

The pattern here is more or less closely related to the 'Information consistency' discussion, but
now specifically for the produced Traceability matrix. In the current way of working, when a mistake is found
in the produced traceability matrix, one needs to find the matching entries in the requirements engineering
environment, edit it, repeat the report generation part, and cross-check that the new output matches the
desired rework outcome. This is a rather laborious path. Instead it is preferred to edit the outcome, where the
requirements engineering environment follows in pursue.

5.2.9 Ease of use

Requirements engineers prefer engineering tools that are effective and efficient and don't require many user
interface interactions for accomplishing a certain task. Being able to manipulate a group of requirements all
at once helps to boost productivity, especially considering the high volume of requirements at hand. The
depth of menus and dialogs, and the amount of mouse clicks and selections too are factors to consider for
the ease of use.

5.2.10 Variation management

A platform typically supports various commercial configurations and variations. As such, one seeks a

mechanism that allows for the identification of all relevant engineering requirements that match the individual

product makeup. E.g. an X-ray product may support 3 table types, 2 detector types, and some optional

components, while other configurations aren't supported within that particular product. Which engineering

requirements do apply for this configuration? (Note that some configurations can be mutually exclusive,

influence one another, or depend on each other)

5.3 Future work
While interpreting the unmet needs from 5.2, some high-level conceptual tool interoperability issues were

recognized. The table below shows the affinity and interrelationship between these two, thus gives an

indication of their relative weight and contribution.

The CRYSTAL IOS is expected to be a major enabler to design a solution for the following unmet needs.

Feedback from engineering teams

B
a
s

e
li

n
e
 s

iz
e

(§
5

.2
.1

)

P
ro

p
ri

e
ta

ry
 t

o
o

li
n

g

(§
5

.2
.2

)

O
b

je
c

t
L

in
k

in
g

 a
n

d

E
m

b
e

d
d

in
g

 (
§

5
.2

.3
)

B
it

m
a

p
s

(§
5

.2
.4

)

T
ra

c
e

a
b

il
it

y
 a

u
d

it
s

(§
5

.2
.5

)

 V
e

n
d

o
r

s
u

p
p

o
rt

(§
5

.2
.6

)

 In
fo

rm
a

ti
o

n
 c

o
n

s
is

te
n

c
y

(§
5

.2
.7

)

T
ra

c
e

a
b

il
it

y
 m

a
tr

ix
 e

d
it

in
g

(§
5

.2
.8

)

E
a

s
e

 o
f

u
s

e

(§
5

.2
.9

)

V
a

ri
a

ti
o

n
 m

a
n

a
g

e
m

e
n

t

(§
5

.2
.1

0
)

U
n

m
e

t
n

e
e

d

Variation management
(§5.3.1): ▲▲ ▲ ▲▲ ▲ ▲▲▲

Rich content
(§5.3.2)

 ▲▲▲ ▲▲

Information
consistency (§5.3.3)

 ▲▲ ▲▲ ▲▲▲ ▲▲

Table 4 Affinity between unmet interoperability needs and engineering feedback

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 33 of 34

5.3.1 Variation management (User Story 2.03)

The need for variation management covers various related themes of needs;

 A platform typically supports various commercial configurations and variations. As such, one seeks a
mechanism that allows for managing the variation points and common platform features within the
product family, along with their dependencies and constraints. Ultimately this will allow for ‘configuring’ a
particular new product built while re-using the common features of the product platform. Once the
configuration is defined, it would allow for the identification of all relevant engineering requirements,
associated tests, or other artefacts relevant, which would aid the regulatory needs for having a
consistent set of product documentation and verification/validation evidence for a given product release.

 While engineering requirements are managed at product platform level, concurrent engineering teams
are active in (re)defining some artefacts within the scope of their project assignment. Their project
specific contribution has to be split between ‘generalized’ contributions and ‘configuration specific’
contributions, but can also conflict with engineering decisions made by the other concurrent teams.
Within the software engineering realm various configuration management tools offer support for
branches and/or (auto) merging source code lines. A similar concept is appreciated.

 Most engineering tools recognize some ‘top-level’ structure with supporting meta data (e.g. a project with
its engineering team members and the associated roles and permissions). This ‘top-level’ structure
typically also acts as natural ‘boundary’ for e.g. engineering reports, cross-referenced information, or a
search function. While more complex products typically have volumes of information, one seeks to
partition this information across logical and/or architectural compositions where details are added the
deeper one goes into the structure. It would be ideal when the presence of a new top-level structure is
propagated across the eco systems of engineering tools used (instead of having to manually add a new
project in any of the engineering tools used), while the volume data can be partitions (e.g. soft-link alike).

 Variation management extends to DSLs and/or models used for engineering that particular product
release. As variation management is not yet fully supported, one can easily run into inconsistencies or
erroneous model assumptions.

5.3.2 Rich content

Most engineering tools use text as their predominant format description format. While a natural language can
be descriptive, alternatives like tables, mathematical formulates, references, multimedia content, illustrations,
or even interactive simulation can be more powerful means of communication. Support for rich content that
is easily imported and/or copy-pasted from generally available editors (like word or excel), publishing tools,
or web servers aids the engineering teams and ensure on the long term availability of content and material.

5.3.3 Information consistency (User Story 4.01)

Like for variation management, various needs on information consistency issues were identified;

 Most engineering tools consider a certain engineering environment as a primary means and portal for
editing their content or meta data. E.g. CaliberRM for requirements or HP Quality Center for test related
artefacts. Artefacts are typically 'exported' from an engineering environment into a document, where the
document is considered to be the 'authorized' representation of the incorporated artefacts. The
document itself is subject to formal reviews/inspections, has its own document life cycle, and is archived
in a document management system as part of regulatory evidence and/or to ensure on the long term
availability of product related documentation. As documents are important artefacts one seeks to have
their content kept consistent with the underlying engineering environments; e.g. when a document is
reworked one would prefer to have the associated engineering environments to follow in pursue, or the
opposite around. All in a controlled manner that includes change or baseline management. One thus
prefers multi entry points for editing the same content.

 Engineering tools support and preferably automate certain engineering tasks (e.g. visualize or model
requirements, generate code via DLSs, or check for consistencies). It is observed that these tools
operate in isolation; there is no systematic approach to relate different models or to maintain the
consistency between them. Overall information consistency is desired but most likely hard to achieve. A
generic way to ensure upon the traceability of information is considered an easier to reach alternative.

D401.021 Prototyping IOS concepts

Version Nature Date Page

V1.0 R 2014-02-28 34 of 34

6 Terms, Abbreviations and Definitions

Please add additional terms, abbreviations and definitions for your deliverable.

CRYSTAL CRitical SYSTem Engineering AcceLeration

R Report

P Prototype

D Demonstrator

O Other

PU Public

PP Restricted to other program participants (including the JU).

RE Restricted to a group specified by the consortium (including the JU).

CO Confidential, only for members of the consortium (including the JU).

WP Work Package

SP Subproject

Table 5 Terms, Abbreviations and Definitions

