
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE CRYSTAL CONSORTIUM. NEITHER THIS
DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED BY ANY
MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE CESAR
CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT. THE
RESEARCH LEADING TO THESE RESULTS HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S SEVENTH
FRAMEWORK PROGRAM (FP7/2007-2013) FOR CRYSTAL – CRITICAL SYSTEM ENGINEERING ACCELERATION JOINT
UNDERTAKING UNDER GRANT AGREEMENT N° 332830 AND FROM SPECIFIC NATIONAL PROGRAMS AND / OR FUNDING
AUTHORITIES.

CRitical SYSTem Engineering AcceLeration

Motion control of patient table and X-ray beam
positioning

Use – Case Definition
D403.010

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 2 of 29

DOCUMENT INFORMATION

Project CRYSTAL

Grant Agreement No. ARTEMIS-2012-1-332830

Deliverable Title Use – Case Definition

Deliverable No. D403.010

Dissemination Level CO

Confidentiality R

Document Version V1.0

Date 2013-10-31

Contact Rogier Vermeulen

Organization Philips Healthcare

Phone +31402769495

E-Mail rogier.vermeulen@philips.com

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 3 of 29

AUTHORS TABLE

Name Company E-Mail

Rogier Vermeulen Philips Healthcare rogier.vermeulen@philips.com

CHANGE HISTORY

Version Date Reason for Change
Pages

Affected

1.0 2013-10-31 Initial version. -

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 4 of 29

CONTENT

D403.010 .. I

1 INTRODUCTION .. 6

1.1 ROLE OF DELIVERABLE ... 6
1.2 RELATIONSHIP TO OTHER CRYSTAL DOCUMENTS .. 6
1.3 STRUCTURE OF THIS DOCUMENT ... 6

2 USE CASE CONTEXT .. 7

2.1 RATIONALES.. 7
2.2 THE GOAL OF USE CASE 4.3 .. 8
2.3 IN-THE-LOOP SIMULATION ... 8

2.3.1 Model in-the-Loop simulation ... 9
2.3.2 Software in-the-Loop simulation .. 9
2.3.3 Processor in-the-Loop simulation .. 9
2.3.4 Hardware in-the-Loop simulation ... 9

2.4 CONTINUOUS INTEGRATION ... 10

3 USE CASE PROCESS DESCRIPTION ... 11

3.1 CURRENT DEVELOPMENT PROCESS ... 11
3.1.1 The “Implement and Test” cycle .. 12
3.1.2 System Verification .. 16

3.2 PROPOSED DEVELOPMENT PROCESS ... 17
3.2.1 The “Implement and test” cycle .. 17
3.2.2 System Verification .. 19

4 IDENTIFICATION OF ENGINEERING METHODS .. 20

5 TECHNICAL CASE STUDY: TESTING THE TABLE FORCE SENSOR ... 22

5.1 SPECIFICATION ... 22

6 TERMS, ABBREVIATIONS AND DEFINITIONS ... 25

7 REFERENCES ... 26

8 ANNEX I: DETAILED DESCRIPTIONS OF THE ENGINEERING METHODS ... 27

8.1 TEST WITH IN-THE-LOOP-SIMULATION .. 27
8.2 REPORT VERIFICATION RESULTS .. 28

9 ANNEX II: TECHNOLOGY BASE LINE & PROGRESS BEYOND ... 29

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 5 of 29

Content of Tables

Figure 2-1: the V-model showing the process (left) and the documentation (right). Pictures are borrowed from
internet sources and Mouz et. al. (1996,2000) ... 7
Figure 2-2: In-the-loop simulation definitions.. 9
Figure 3-1: System Verification process in more detail. ... 16
Figure 3-2: Implement and Test cycle (proposed). ... 18
Figure 3-3: System Verification process (proposed). ... 19
Figure 4-1: identification of engineering methods (system verification). .. 21
Figure 5-1: Monitor Ceiling Suspension. .. 22

Content of Figures

Table 6-1: Terms, Abbreviations and Definitions ... 25

Content of Appendix

No table of contents entries found.

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 6 of 29

1 Introduction

1.1 Role of deliverable

This document has the following major purposes:

 Define of the overall use case, including a detailed description of the underlying

development processes and the set of involved process activities and engineering

methods

 Provide input to WP601 (IOS Development) required to derive specific IOS-related

requirements

 Provide input to WP602 (Platform Builder) required to derive adequate meta models

 Establish the technology baseline with respect to the use-case, and the expected progress

beyond (existing functionalities vs. functionalities that are expected to be developed in

CRYSTAL)

1.2 Relationship to other CRYSTAL Documents

1.3 Structure of this document

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 7 of 29

2 Use case context

2.1 Rationales
Healthcare systems are subject to strict regulations from ISO, IEC and FDA regarding safety of operators
and patients [Ref ISO/IEC/FDA norms]. A well-defined development process needs to be defined including
harm and hazard analysis, risk management and extensive documentation for that purpose. The
development process is typically following the ‘traditional’ V-model; Figure 1 (left) outlines this V-model while
Figure 1(right) maps this onto the documentation.

Figure 2-1: the V-model showing the process (left) and the documentation (right). Pictures are borrowed from
internet sources and Mouz et. al. (1996,2000)

V-Model: Advantages of linearly following the V-model, in particular for safety, include the well-documented
record and audit-trail of process and products, and the ‘push-forward’ nature of obtaining the final product,
which fits engineers quite well. Among the downsides are a lack of incremental approaches, the late system
integration and the extensive documentation (which must be updated upon every change and for every
different member of a product family). A particular consequence of the late integration is that negative effects
of safety measures on usability are observed only in a very late stage, or even only in the field. In practice
this leads to much manual effort in producing documentation and defining tests.

New challenges: Safety-critical systems engineering faces also new challenges. The complexity of systems
is ever increasing due to higher customer demands, more advanced functionality and integration with other
medical equipment. System components, in particular, software components become COTS rather than
proprietary and, since many safety aspects are software defined, new methods are needed for guaranteeing
safety for component-based systems. In addition, systems have to be compliant with updated and new
regulatory norms. Because of this, and because of error corrections and changing requirements, updates in
the field have to be performed. Finally, in order to maintain a competitive edge, time-to-market must be kept
as small as possible or at least predictable.

Improvements: Although current systems do satisfy the safety requirements, there is a need to improve on
the following aspects:

1. The call-rate due to a mismatch between user needs and final implementation.

2. The development effort and lack of early feedback on extra-functional requirements.

3. High release effort due to late integration and manual testing.

4. Effort to show complete requirements traceability for regulatory affairs audits.

The goal of the CRYSTAL project is to improve these four metrics through a change in the
engineering process but more importantly, in the tool support. At the same time these four are the
respective drivers of the three use cases of Philips in the healthcare domain in CRYSTAL.

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 8 of 29

2.2 The goal of Use Case 4.3
Use Case 4.3 will target improvement items 2 and 3 and will focus on the part of the V-model as indicated in
Figure 2-1. It’s aim is to reduce development and test effort through the use of In-the-loop simulation and
applying a Continuous Integration strategy. In the remainder of this chapter these techniques will be
explained.

Focus of use case 4.3

Figure 2-1: Development process scope of UC4.3.

2.3 In-the-loop simulation

Hardware-in-the-Loop simulation definition [Wikipedia]:

Hardware-in-the-loop (HIL) simulation is a technique that is used in the development and test of complex
real-time embedded systems. HIL simulation provides an effective platform by adding the complexity of the
plant under control to the test platform. The complexity of the plant under control is included in test and
development by adding a mathematical representation of all related dynamic systems. These mathematical
representations are referred to as the “plant simulation”. The embedded system to be tested interacts with
this plant simulation.

Next to HiL simulation a number of other simulation definitions exist (see figure below):

http://en.wikipedia.org/wiki/Simulation
http://en.wikipedia.org/wiki/Embedded_systems
http://en.wikipedia.org/wiki/Platform_(computing)
http://en.wikipedia.org/wiki/Representation_(mathematics)
http://en.wikipedia.org/wiki/Dynamic_systems

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 9 of 29

Software HardwareCommunication

simple

adapter

detailed model

incl actuators,

sensors

SW code

detailed model

incl IO, actuators,

sensors

protocol

emulator

protocol

model

IO

code

compiled

SW code

protocol

emulator
compiled

IO code

target pc emulator

target pc
real com

HW

real-time

simulator

target pc real HW

real-time model

incl IO, actuators,

sensors

basic model

real com

HW

detailed model

basic model
1. Model in-the-Loop

single pc

not real-time

modelling

environment

5. Real setup

2. Software in-the-Loop

single pc

not real-time

3. Processor in-the-Loop

single pc

real-time

4. Hardware in-the-Loop

multiple pc’s

real-time

Integration level

MiL

SiL

PiL

HiL

D
e

v
e

lo
p

m
e
n

t
p

ro
c

e
s
s

Figure 2-2: In-the-loop simulation definitions.

2.3.1 Model in-the-Loop simulation

Here models of software and or hardware can be simulated and give the designer feedback on the
dynamical behavior of his design/architecture. A software model in combination with the actual hardware can
be used for rapid prototyping (note that the model will typically not be real-time, but this need not be a
problem when a part of the software is simulated which is non real-time).

2.3.2 Software in-the-Loop simulation

Here SW code is not run on the target hardware, but on a PC (non real-time) and executed together with a
model of the hardware. This is very useful for implementation and debugging, but SW performance testing is
not possible. And there are always problems that occur on the target hardware/OS and not in a PC
simulation (and vice versa).

2.3.3 Processor in-the-Loop simulation

Here SW code is run on an emulation of the target machine (e.g. a VMWare session of the target OS),
together with a model of the hardware. This is more representative than SiL; the code could now for instance
be subject to real-time scheduling. Performance testing may still be a problem because of the emulation.

2.3.4 Hardware in-the-Loop simulation

Here SW code is run on the target PC/OS together with a real-time simulation of external hardware. The
detail of the hardware model determines how much software testing can be done without using the actual
hardware.

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 10 of 29

2.4 Continuous Integration

Continuous Integration definition [Wikipedia]:

Continuous integration (CI) is the practice, in software engineering, of merging all developer working
copies with a shared mainline several times a day. It was first named and proposed as part of extreme
programming (XP). Its main aim is to prevent integration problems, referred to as "integration hell" in early
descriptions of XP. CI can be seen as an intensification of practices of periodic integration advocated by
earlier published methods of incremental and iterative software development, such as the Booch method. CI
isn't universally accepted as an improvement over frequent integration, so it is important to distinguish
between the two as there is disagreement about the virtues of each.

CI was originally intended to be used in combination with automated unit tests written through the practices
of test-driven development. Initially this was conceived of as running all unit tests and verifying they all
passed before committing to the mainline. This helps avoid one developer's work in progress breaking
another developer's copy. If necessary, partially complete features can be disabled before committing
using feature toggles.

Later elaborations of the concept introduced build servers, which automatically run the unit tests periodically
or even after every commit and report the results to the developers. The use of build servers (not necessarily
running unit tests) had already been practised by some teams outside the XP community. Nowadays, many
organisations have adopted CI without adopting all of XP.

In addition to automated unit tests, organisations using CI typically use a build server to
implement continuous processes of applying quality control in general — small pieces of effort, applied
frequently. In addition to running the unit and integration tests, such processes run additional static and
dynamic tests, measure and profile performance, extract and format documentation from the source code
and facilitate manual QA processes. This continuous application of quality control aims to improve the quality
of software, and to reduce the time taken to deliver it, by replacing the traditional practice of applying quality
control after completing all development. This is very similar to the original idea of integrating more frequently
to make integration easier, only applied to QA processes.

In the same vein the practice of continuous delivery further extends CI by making sure the software checked
in on the mainline is always in a state that can be deployed to users and makes the actual deployment
process very rapid.

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Trunk_(software)
http://en.wikipedia.org/wiki/Extreme_programming
http://en.wikipedia.org/wiki/Extreme_programming
http://en.wikipedia.org/wiki/Booch_method
http://en.wikipedia.org/wiki/Test-driven_development
http://en.wikipedia.org/wiki/Feature_toggle
http://en.wikipedia.org/wiki/Quality_control
http://en.wikipedia.org/wiki/Software_quality
http://en.wikipedia.org/wiki/Software_quality
http://en.wikipedia.org/wiki/Continuous_delivery

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 11 of 29

3 Use Case Process Description
In this chapter we describe the current development process and from an analysis of the bottlenecks in this
process we derive a new development process.

3.1 Current development process
In this section the current development process for the lower right half of the V-model (Figure 2-1) is
described in more detail and an analysis is done of the problems regarding development and test effort
encountered there.

Software Verification

System Verification

Development Team

Test Team

Development Team

Increment (feature or set of features) finished

Formal handover from Development Team to Test Team. Module tests are passed (includes non-

functionals: performance ok/no violations of coding standard/no memory leaks/test coverage ok)

System Validation

Implement & test
Daily implementation

and test cycle.

Validation

Team

Defect analysis/solving/

testing

Development Team

Problems found

Problems fixed

All features finished and all problems solved.

Incremental development and

verification approach

Figure 3-1: Right side of the V-model in more detail.

As can be seen in Figure an incremental way of working is employed. During each increment one or more
features are implemented and tested. Each increment passes through the following stages:

 Implementation & test: This is in itself an iterative process where the development team implements
the software in daily implementation and test cycles. The aim is to always have a working integrated
subsystem (this is part of the Continuous Integration philosophy).

 Software verification: the development team provides evidence for the quality of the delivered
software product. Module level verification reports have to be produced showing that all tests are
passed.

 (Sub)System verification: the test team verifies that the subsystem requirements are met. Here
requirements for the integrated (sub)system (mechanics/electronics/software) are tested. The test
team executes the test cases developed for the new features and regression test cases. The testing
done on this level is almost entirely manual. Problems found are fixed by the Development Team.

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 12 of 29

The verification of safety requirements is carried out by the Test Team and the Development Team
together. The regression testing strategy for Safety Requirements is risk based, but usually a lot is
retested.

For the process sketched above it holds that the later a problem is found the more costly is to fix it. When a
developer finds a bug testing his SW update on his PC it may take 1 manhour to fix it. When a problem is
found during System Verification a PR (Problem Report) must be made (by the tester), a developer has to do
an invest (and document it in the PR), implement the solution (and document what he has done in the PR)
and the tester verifies that the problem is fixed (and documents this in the PR). All these activities are
coordinated by a CCB (Change Control Board). This process will atleast cost 8 to 16 manhours. When a
serious problem is found in the field several man-months may be required to fix it an deploy the solution to
the field. Initial quality is of the utmost importance given the increasing cost of finding and solving a defect
later on in the V-model.

An important driver for reducing development and test effort is therefore improving initial quality.

3.1.1 The “Implement and Test” cycle

Initial quality is the responsibility of the Development Team and should be covered to a large extent in the
“Implement and Test” cycle. In the figure below this cycle is shown in more detail (including the tooling used):

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 13 of 29

Quality checks by SW developer

Implement additional

module test cases

Run module test
Manual testing on

simulated Subsystem

Manual testing on full

system

Regression tests on

simulated Subsystem

Perform code review

with other engineer

Run static code

checker

Build SW update

Deliver code to

archive

Continuous Integration framework

Automatic build of the

new baseline

Run all module tests

Publish build and test

results + SW binaries

Create new SW

baseline (includes

deliveries of this day)

Fix problems found in

CI and/or smoke test

Install binaries on full

system and do smoke

test

MS Visual Studio

MS Visual Studio

Nunit/Google Test PosTool

PosTool

ClearQuest TICS

ClearCase/ClearQuest

ElectricCommander

ElectricCommander/

several Compilers

Nunit/Google Test

ElectricCommander/

QlikView

Implement SW update

MS Visual Studio

Continuous Integration framework

Build and test servers

ElectricCommander

Nunit/Google Test

PosTool

offload build

offload test

Geo nightjob

Run all module tests

Run all regression

tests on simulated

Subsystem

Nunit/Google Test

PosTool

Publish test results

(on project drive)

Figure 3-2: The daily implementation and test cycle in more detail.

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 14 of 29

3.1.1.1 Identification of bottlenecks and improvements

The table below lists the steps from the “Implement and test”-cycle, the known problems regarding effort and
providing initial quality, recent improvements and possible future improvements. The improvements marked
yellow (hardware-in-the-loop simulation) and green (continuous integration) are in the scope of Crystal
UC4.3.

nr Development step problems Recent
improvements

Possible future improvements

1 Implement SW update - - -

2 Build SW update 4 hours for full
build

0,5 hr for full
build

(snapshot views,
SSD disks,
offloading to fast
machine, making
better use of
multiple cores).

Incremental building.

Further parallellization
(Incredibuild tooling).

3 Implement additional test
cases

High effort - Use coverage tooling to
optimize testing.

4 Run module tests Some tests take
long (> 1 hr).

- Use coverage tooling to
optimize testing.

5 Manual testing on full system Test systems are
scarce (shared
between projects).

- Better simulation may reduce
the need for test systems.

6 Manual testing on simulated
system

Windows
simulation not
representative
enough for the
actual VxWorks
target.

- Provide simulation on (or of)
VxWorks.

7 Simulation of
hardware not
representative
enough.

Simulation of
bodyguard
sensor via 3D
model
information.

Further improvements of the
quality of simulation (HiL):

- model more sensors

- model motor behavior

- model electrical
circuits and their
failure modes

- etc.

8 Regression tests on
simulated subsystem

Windows
simulation not
representative
enough for the
actual VxWorks
target.

- See 6

9 Coverage is low
(simulation of
hardware not
representative
enough).

 See 7.

10 Perform code review Not always done. - Provide feedback to
developer on deliveries not

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 15 of 29

reviewed.

11 Static code checking Slow. Speed improvements. Less
checking. Different tool.

12 Not always done. Provide feedback to
developer on violations in
deliveries.

13 Deliver code to archive - - -

14 Create new baseline - - -

15 Automatic build of new
baseline.

4 hours for full
build

See above. See 2.

16 Run all module tests. 6 hours for all
tests

- Use coverage tooling to
optimize testing.

Split up tests to run on
different machines.

Provide a fast partial test run
and an extended full test run.

17 Tests are run in CI
environment and
in the Geo
Nightjob
environment
(predecessor of
CI)

- Move also simulated
subsystem tests to CI and get
rid of old environment.

18 Run all regression tests on
simulated subsystem

6-8 hours for all
tests

- Use coverage tooling to
optimize testing.

Split up tests to run on
different machines.

19 Test are not
executed from CI
environment.

 See 17.

20 Coverage is low
(simulation of
hardware not
representative
enough).

- See 7.

21 Performance not
regression tested
(manual testing
during SW
Verification phase,
about 1-2 man-
weeks)

- Provide simulation on (or of)
VxWorks to automatically test
performance.

Deploy SW on target HW +
VxWorks from the CI
environment.

Show performance trend via
QlikView.

22 Publish build and test results
+ SW binaries

- - -

23 Publish test results (on
project drive)

Duplication of 22. - See 17.

24 Install binaries on full test
system and do smoke test

High effort (5
hrs/wk).

- Do automatic deployment
(+test) on test systems from
CI environment.

25 Fix problems found in CI a/or - - -

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 16 of 29

smoke test

Tabel 3-1 : bottlenecks and improvements.

3.1.2 System Verification

Below the current System Verification process is depicted.

Define test cases

Define test plan

(select test cases)

Report verification

results

Requirements

Test casesRequirements

Bi-directional tracing

Test cases TestPlan

tracing
SW binaries

retest failed test case

when problem solved

from development (CI environment)

Test results Test cases

tracing

Verification results

(formal evidence)

Test results

HP QC
MS Word

PLM (agile)

HP QC

HP QC

MS Word

PLM (agile)

HP QC

Caliber RM

Execute test plan

(manual tests on

system)

ElectricCommander /

(publish location on network drive)

ClearQuest

based on

Figure 3-1: System Verification process in more detail.

1. Define test cases: Test cases are documented in HP QC. The test cases are traced to requirements,
which are first imported from Caliber RM. From HP QC a word document is generated and stored in
the documentation archive (PLM). It is the word document which is reviewed and which counts as
evidence for the FDA.

2. Define test plan: For a project a selection of test cases to execute is made (risk based).

3. Execute test plan: Test cases are executed. These are manual test cases. Individual verification
steps can be set to PASSED or FAILED in HP QC by the tester. In case of failure a PR (problem
report) will be written in ClearQuest. When the defect handling process is completed and the
problem is solved the tester will re-execute the test case.

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 17 of 29

4. Report verification results: Word documents containing the test results are created from the
information in HP QC and stored in PLM as official evidence.

3.1.2.1 Identification of bottlenecks and improvements

nr Development step problems Recent
improvements

Possible future
improvements

1 Import requirements Proprietary import
mechanism (possible
maintenance trap).

- Use OSLC link between
CaliberRM and HP QC.
This is part of another
Crystal Use Case (4.1).

2 Define test cases Requirement specification
is complex. Much effort
required to define test
cases.

Simplification and
unification of
Bodyguard
behaviour

(not yet
implemented).

Continue simplifying the
requirement specification.

3 Define test plan - - -

4 Execute test plan Test systems are scarce
(shared between projects).

A lot of different HW
configurations need to be
tested.

- Better simulation may
reduce the need for test
systems.

5 Lot of effort involved in
manual testing.

- Use automatic testing
where possible. When
combined with simulation,
results from the CI nightjob
can be used as test
evidence.

6 Export test results - - -

3.2 Proposed Development Process

3.2.1 The “Implement and test” cycle

Below the proposed “Implement and test” cycle is depicted, showing the improvements (indicated in blue)
identified in section 3.1.1.1.

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 18 of 29

Quality checks by SW developer

Implement additional

module test cases

Run module test

Manual testing on full

system

Perform code review

with other engineer

Run static code

checker

Build SW update

Deliver code to

archive

Continuous Integration framework

Automatic build of the

new baseline

Run all module tests

Run all regression

tests on HiL target

Publish build and test

results + SW binaries

Create new SW

baseline (includes

deliveries of this day)

Fix problems found in

CI and/or smoke test

Automatic installation

of binaries on full

system + smoke test

MS Visual Studio

MS Visual Studio

Nunit/Google Test

ClearQuest TICS

ClearCase/ClearQuest

ElectricCommander

ElectricCommander/

several Compilers

Nunit/Google Test

PosTool + HiL simulators

ElectricCommander/

QlikView

Implement SW update

MS Visual Studio

Continuous Integration framework

Build and test servers

ElectricCommander

Nunit/Google Test

PosTool

offload build

offload test

offload test

Deploy SW on HiL

target PC
ElectricCommander

ElectricCommander

Run regression tests

on HiL target

PosTool + HiL simulators

Manual testing on HiL

target

PosTool + HiL simulators

Geo nightjob

Run all module tests

Run all regression

tests on simulated

Subsystem

Nunit/Google Test

PosTool

Publish test results

(on project drive)

Figure 3-2: Implement and Test cycle (proposed).

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 19 of 29

3.2.2 System Verification

Below the proposed System Verification process is depicted, showing the improvements (indicated in blue)
identified in section 3.1.2.1. The picture includes the currently used tooling and the proposed new tooling.

Define test cases

Define test plan

(select test cases)

Report verification

results

Implement tests

Requirements

Test casesRequirements

Bi-directional tracing

Test scripts

HiL simulation

Test cases

Bi-directional tracing

Test cases Test plan

tracing

SW binaries

Execute test plan

(run selected

automatic tests on

simulation)

Execute all regularly

from development (CI environment)

Test logging Test scripts
HiL simulation

SW binaries

tracing

Verification results

(formal evidence)

Test results

generated from

HP QC

MS Word

PLM (agile)

Caliber RM

QlikView

HP QC

ClearCase ?

TAF ?

PosTool ?

HP QC

HP QC QlikView

ClearCase

ElectricCommander /

(publish location on network drive)

ElectricCommander /

(publish location on network drive)

Test logging

tracing

ClearCase ?

Matlab ?

Gazebo ?

Figure 3-3: System Verification process (proposed).

Description of the changed process activities:

1. Implement tests: This is a new step. The test cases are implemented. This (possibly) requires
scripting tools and HiL simulation tools. The resulting work products will also need to be stored in a
database. For these new work products traceability and versioning is required (a change in a test
case may invalidate the associated test script).

2. Execute test plan: The automatic (subsystem level) test cases are executed regularly in the
Continuous Integration environment. The test results must be traceable to software baselines and
test implementation versions (which must be traceable to test cases). The traceability should make it
possible to obtain the “Verification results” from the “Test logging” automatically (in the Report
Verification Results activity).

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 20 of 29

4 Identification of Engineering Methods

Quality checks by SW developer

Implement additional

module test cases

Run module test

Manual testing on full

system

Perform code review

with other engineer

Run static code

checker

Build SW update

Deliver code to

archive

Continuous Integration framework

Automatic build of the

new baseline

Run all module tests

Run all regression

tests on HiL target

Publish build and test

results + SW binaries

Create new SW

baseline (includes

deliveries of this day)

Fix problems found in

CI and/or smoke test

Automatic installation

of binaries on full

system + smoke test

MS Visual Studio

MS Visual Studio

Nunit/Google Test

ClearQuest TICS

ClearCase/ClearQuest

ElectricCommander

ElectricCommander/

several Compilers

Nunit/Google Test

PosTool + HiL simulators

ElectricCommander/

QlikView

Implement SW update

MS Visual Studio

Continuous Integration framework

Build and test servers

ElectricCommander

Nunit/Google Test

PosTool

offload build

offload test

offload test

Deploy SW on HiL

target PC
ElectricCommander

ElectricCommander

Run regression tests

on HiL target

PosTool + HiL simulators

Manual testing on HiL

target

PosTool + HiL simulators

Engineering method:

Test with In-the-loop simulation.

Figure 4-1: identification of engineering methods (implementation and test cycle).

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 21 of 29

We distinguish between manual and automatic testing engineering methods because they may require
different tooling. For both behavioral modelling is needed, but for manual testing also graphical user
interfaces are needed (Joystick control, 3D model view showing the movements of the system,...).

Engineering method:

Test with In-the-loop simulation.

Define test cases

Define test plan

(select test cases)

Report verification

results

Implement tests

Requirements

Test casesRequirements

Bi-directional tracing

Test scripts

HiL simulation

Test cases

Bi-directional tracing

Test cases Test plan

tracing

SW binaries

Execute test plan

(run selected

automatic tests on

simulation)

Execute all regularly

from development (CI environment)

Test logging Test scripts
HiL simulation

SW binaries

tracing

Verification results

(formal evidence)

Test results

generated from

Test logging

tracing

Engineering method:

Report verification results

Figure 4-1: identification of engineering methods (system verification).

The “Report Verification Results” engineering method is about providing the correct test evidence. In this
case this involves the collecting of results of automatic tests.

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 22 of 29

5 Technical case study: testing the Table Force Sensor

The table force sensor is a safety measure introduced to detect collisions between a patient and the monitor
ceiling suspension (MCS). In order to facilitate automatic testing of this feature some form of simulation is
required as collision forces from the environment are needed as input. This makes the force sensor a good
candidate for HiL simulation testing.

Frontal stand

Table

MCS

Figure 5-1: Monitor Ceiling Suspension.

Below is an excerpt from the requirement specification for the table force sensor behavior.

5.1 Specification

The patient table is equipped with a Force Sensor measuring a force vertically applied to the surface of the
tabletop. Normally the measured force will be determined by the patient weight. The behavior is indicated in
the following flow diagram:

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 23 of 29

 When during the motorized movement the Force Sensor detects a collision force that exceeds the threshold,
which in most cases will be below 350N but always below 450N:

 Movement Stepback function: The motorised movement moves as quickly and fast as possible in
reverse direction during at least 0.5 sec;

 The UIMessage TABLE_COLLISION_ACTIVE is given to warn the user about the collision.

But for some movements, typically performed during CPR, it is required to continue uninterrupted by the
Force Sensor:

 motorized table movement function: The stopped movement is performed but now in override of the
force sensor according the flow diagram above .

 The UIMessage TABLE_COLLISION_OVERRIDE is given to warn the user about the collision.

 NOTE: To prevent interrupting the CPR no audible signal is given

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 24 of 29

When the main usecase movement is stopped by the force sensor it only can be continued in override when
it is activated again, within the defined timeout interval, in the same movement direction. But when the
movement is activated in override and the joystick is released it can be activated again in override, within the
defined timeout interval, in each direction.

The override pending status couples the ChangeTableheight and TiltTable main usecases such that the
override mode is combined for both usecases. When tilting in override and the joystick is released than
within the defined time out interval the height can be changed in override and v.v.

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 25 of 29

6 Terms, Abbreviations and Definitions

Caliber RM Caliber Requirements Management (tool).

ClearCase Configuration Management (code archive).

ClearQuest Change Control Management tool (defect handling)

ElectricCommander Continuous Integration tool

Google Test C++ unit test framework

HiL Hardware-in-the-Loop

HP QC HP Quality Centre

MiL Model-in-the-Loop

NUnit C# unit test framework

PiL Processor-in-the-Loop

PLM/Agile Product Lifecycle Management (documentation archive)

PosTool Proprietary perl-based tool to manage the subsystem simulation (selecting

configurations, starting/stopping the subsystem, selecting and starting tests,

etc.).

QlikView Dashboard tooling (provides reporting of build results/test results/quality

checks.

SiL Software-in-the-Loop

TAF Test Automation Framework. Proprietary Excel and Visual Basic based tooling

to perform tests on (sub)system level.

TICS Static code checker from TIOBE (checks violations against the coding

standard).

Table 6-1: Terms, Abbreviations and Definitions

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 26 of 29

7 References

Please add citations in this section.

[Author, Year] Authors; Title; Publication data (document reference)

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 27 of 29

8 Annex I: Detailed Descriptions of the Engineering Methods

8.1 Test with In-the-loop-simulation

See excel sheet: EngineeringMethods-TestWithInTheLoopSimulation v1.0.xls (screendump below).

Name Name Name

Generic Type:
(Tool or language independend type)

Generic Type:
(Tool or language independend type)

Generic Type:
(Tool or language independend type)

Shared Properties:
(Information to be shared in interaction

between steps)

Shared Properties:
(Information to be shared in interaction

between steps)

Shared Properties:
(Information to be shared in interaction

between steps)

Name Name Name

Generic Type:
(Tool or language independend type)

Generic Type:
(Tool or language independend type)

Generic Type:
(Tool or language independend type)

Shared Properties:
(Information to be shared in interaction

between steps)

Shared Properties:
(Information to be shared in interaction

between steps)

Shared Properties:
(Information to be shared in interaction

between steps)

Name Name Name

Generic Type:
(Tool or language independend type)

Generic Type:
(Tool or language independend type)

Generic Type:
(Tool or language independend type)

Shared Properties:
(Information to be shared in interaction

between steps)

Shared Properties:
(Information to be shared in interaction

between steps)

Shared Properties:
(Information to be shared in interaction

between steps)

Description: Description: Description:

Description: Description: Description:

Description: Description: Description:

Notes: The simulation environment takes care of glue code to

connect the model (e.g., to simulate a certain communication

protocol), and user windows to generate input or to inject faults.

Notes: research is needed to determine how to execute the physical

model in combination with (a model of) the software. Preferably, a

single simulation environment will be selected

Notes:

Artefacts provided as input of the activity Artefacts produced during of the activity Artefacts which are the result of the activity

Engineering Method: UC43 - Test with In-The Loop-Simulation

Purpose: detect software problems early, especially concerning relation with hardware

Comments: related to heterogeneous simulation, but this method allows also other combinations

Pre-Condition Engineering Activity as Steps Post-Condition

Availability of model(s) for the hardware (for different system

configurations and with different level of detail) and control

software or models of this software (also including different

configurations).

Models and control software are not defined in same language (e.g.

Matlab, Dymola, POOSL)

1. The user installs the simulation environment(s) and software

components on the appropriate resources.

2. The user selects simulation purpose (e.g., functional, real-time)

and mode (e.g., manual, automated testing).

3. The user selects the machine configuration (e.g., component

types, software version) to be simulated. The simulation

environment presents a subset of the models that can be selected

for the desired simulation (e.g., detailed models, fast high-level

models).

4. The user selects the models to be used, the tool environment

prepares appropriate glue / communication code that allows

communication between hardware model and (model of) the

software.

5. In case of automated testing, test scripts (including input data for

the models) are downloaded from a database, taking into account

the machine configuration.

6. The user starts the simulation; the simulation of the hardware

model is synchronized with (the model of) the software.

7. During manual simulation: a 3D visualziation of the system is

shown giving the user feedback on movements; the user can provide

input (to the software; and via the simulation environment to the

models) and inject faults; Giving input to the models should be user-

friendly (e.g.: for testing an object distance sensor the user should

not have to input distances, but rather place a foreign object in the

3D environment, to which distances can be calculated).

8. The simulation results (e.g., pass/fail) are automatically stored in a

database.

File with results of the simulation, e.g, results of test cases.

Insight in the correctnes of the software, including the impact of

faults.

Identification of problems and bottlenecks, especially concerning

the combination of hardware and software.

Database where simulation results of different configurations,

software versions, etc, are collected.

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 28 of 29

8.2 Report verification results

See excel sheet: Engineeringmethods-ReportVerificationResults v1.0.xls (screendump below).

Name Test cases Name Name Verification result

Generic Type:
(Tool or language independend type)

Textual descriptions Generic Type:
(Tool or language independend type)

Generic Type:
(Tool or language independend type)

PASSED/FAILED

Shared Properties:
(Information to be shared in interaction

between steps)

identifications,

including some version control

Shared Properties:
(Information to be shared in interaction

between steps)

Shared Properties:
(Information to be shared in interaction

between steps)

identification (linked to

versioned test case)

Name Test plan Name Name Verification logging

Generic Type:
(Tool or language independend type)

set of test cases Generic Type:
(Tool or language independend type)

Generic Type:
(Tool or language independend type)

log files

Shared Properties:
(Information to be shared in interaction

between steps)

Shared Properties:
(Information to be shared in interaction

between steps)

Shared Properties:
(Information to be shared in interaction

between steps)

identification (linked to

versioned test case)

Name Test logging Name Name Verification report

Generic Type:
(Tool or language independend type)

Generic Type:
(Tool or language independend type)

Generic Type:
(Tool or language independend type)

document

Shared Properties:
(Information to be shared in interaction

between steps)

Must be traceable to test cases Shared Properties:
(Information to be shared in interaction

between steps)

Shared Properties:
(Information to be shared in interaction

between steps)

Description: the output of test execution, including

PASSED/FAILED result, software log files.

Description: Description: document describing the results of the tests

executed (test plan).

Description: textual specification of a test Description: Description:

Description: a set of test cases (to be executed). Description: Description: files containing detailed logging of test execution.

Notes: Notes: copying the test logging could be an import action in the test

management tool, an export action in the test logging database tool

(dashboard), or an import-export action in a separate tool.

Notes:

Artefacts provided as input of the activity Artefacts produced during of the activity Artefacts which are the result of the activity

Engineering Method: UC43 - Report Verification Results

Purpose: provide test evidence

Comments:

Pre-Condition Engineering Activity as Steps Post-Condition

* test cases present in test management tool.

* test plan present in test management tool.

* test logging available in some database (e.g. dashboard)

* Select the appropriate test logging; this will typically involve things

like:

 * Selecting a project.

 * Selecting a SW baseline.

 * ...

* Copy the test logging to the test management tool and link it to the

test cases.

* Generate verification report from the test result data.

The results (PASSED/FAILED) and the detailed logging of the

executed test cases (test plan) are stored in the test management

tool and is linked to the associated test cases.

A verification report of the executed test plan is present in the

document archive. This is the official evidence, which is

authorized by the responsible person.

D403.010 Use – Case Definition

Version Confidentiality Level Date Page

V01.00 R 2013-10-31 29 of 29

9 Annex II: Technology Base Line & Progress Beyond

This information will be collected globally, and the respective part will be inserted here. Basically it could be
something like a table with a row for each engineering method and a column for the current functionality,
which is the technology baseline (e.g., “data has to be transferred by hand”), and a column for the expected
progress in CRYSTAL (e.g., to be implemented in CRYSYTAL / “future work”).

The exact content of this section will be defined in the next technical Board Meeting.

