
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE CRYSTAL CONSORTIUM. NEITHER THIS
DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED BY ANY
MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE CESAR
CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT. THE
RESEARCH LEADING TO THESE RESULTS HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S SEVENTH
FRAMEWORK PROGRAM (FP7/2007-2013) FOR CRYSTAL – CRITICAL SYSTEM ENGINEERING ACCELERATION JOINT
UNDERTAKING UNDER GRANT AGREEMENT N° 332830 AND FROM SPECIFIC NATIONAL PROGRAMS AND / OR FUNDING
AUTHORITIES.

CRitical SYSTem Engineering AcceLeration

Data and Methodologies report
D501.010

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 2 of 27

DOCUMENT INFORMATION

Project CRYSTAL

Grant Agreement No. ARTEMIS-2012-1-332830

Deliverable Title Data and Methodologies report

Deliverable No. D501.010

Dissemination Level CO

Nature R

Document Version V1-0

Date 2014-02-07

Contact Renato De Guglielmo

Organization Ansaldo STS (ASTS)

Phone +39 (0)81 243 7608

E-Mail Renato.DeGugliemo@ansaldo-sts.com

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 3 of 27

Authors

Name Company E-Mail

DE GUGLIELMO Renato Ansaldo STS
Renato.DeGugliemo@

ansaldo-sts.com

VELARDI Luigi Ansaldo STS Luigi.Velardi@ansaldo-sts.com

NARDONE Roberto Ansaldo STS
Roberto.Nardone.Prof608@

ansaldo-sts.com

MASSAROLI Gianpaolo Ansaldo STS
Gianpaolo.Massaroli.Prof644@

ansaldo-sts.com

MARRONE Stefano Seconda Università di Napoli stefano.marrone@unina2.it

VITTORINI Valeria Università “Federico II” di Napoli valeria.vittorini@unina.it

GENTILE Ugo Università “Federico II” di Napoli ugo.gentile@unina.it

Reviewers

Name Company E-Mail

BARBERIO Gregorio Mate Consulting g.barberio@mateconsulting.it

POISSON Pascal Alstom Transport
Pascal.poisson@transport.alsto

m.com

KRENN Willibald AIT Austrian Institute of Technology Willibald.Krenn@ait.ac.at

Change History

Version Date Reason for Change
Pages

Affected

0.1 10/01/2014 Create document All

0.2 21/01/2014 Introduction of internal review comments and updates All

1-0 07/02/2014 Introduction of external review comments and updates All

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 4 of 27

CONTENT
D501.010 .. I

1 INTRODUCTION .. 6

1.1 ROLE OF DELIVERABLE... 6
1.2 RELATIONSHIP WITH OTHER CRYSTAL DOCUMENTS .. 6
1.3 STRUCTURE OF THIS DOCUMENT .. 6

2 ASTS USE CASE: THE RADIO BLOCK CENTRE ... 7

2.1 OVERVIEW OF USE CASE ... 7
2.2 CONTEXT OF USE CASE ... 8
2.3 ASTS REQUIREMENTS MANAGEMENT APPROACH ... 10
2.4 ASTS VALIDATION APPROACH .. 11
2.5 REQUIREMENTS OF THE CRYSTAL METHODOLOGY.. 12

3 MODELLING METHODOLOGIES .. 14

3.1 AUTOMATED TEST CASE GENERATION .. 15
3.2 MODEL-BASED TESTING ... 16

3.2.1 A motivation for state-based modelling ... 18
3.2.2 A motivation for model driven techniques... 18
3.2.3 A motivation for model checking based test case generation ... 19

3.3 TEST GENERATION METHODOLOGY... 20
3.3.1 General Concept .. 20
3.3.2 Process definition ... 20
3.3.3 Motivations for the proposed methodology .. 22

4 TERMS, ABBREVIATIONS AND DEFINITIONS ... 25

5 REFERENCES ... 26

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 5 of 27

Content of Figures

Figure 2-2: Document flow of the ASTS requirements management approach ... 11
Figure 2-3: ASTS validation approach .. 12
Figure 3-1: General testing process schema.. 14
Figure 3-2: Model Based Testing overview (from [Zander, 2011]) ... 17
Figure 3-3: Developing the TG methodology: macro-activities to be performed .. 20
Figure 3-4: Detailed process schema ... 21

Content of Tables

Table 3-1: UC requirements-methodology mapping .. 24
Table 4-1: Terms, Abbreviations and Definitions ... 25

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 6 of 27

1 Introduction

1.1 Role of Deliverable

This document has the following main purposes:

• specifying the main methodological requirements for Radio Block Centre, selected as ASTS use
case;

• describing the state-of-art of modelling methodologies;

• showing the modelling methodology to be adopted in ASTS use case.

1.2 Relationship with Other CRYSTAL Documents

This document is strictly connected with the deliverable “CRYSTAL_D_D501.020 – Use Case
Requirements Specifications”, where the details of ASTS workflow, based on the methodology
chosen to be adopted in ASTS use case (here described), are shown. Indeed, in D501.020 the
main methodological requirements presented in Section 2 of this document are translated in
technological requirements which are necessary for the ASTS needs.

1.3 Structure of This Document

This document is structured as follows:

 Section 1 (this Section) introduces the contents and the structure of the document, clarifying
also the relationships with other documents related to the CRYSTAL project;

 Section 2 provides a short description of RBC (Radio Block Centre), selected as ASTS use
case, the context in which it is located and the fundamental requirements of the CRYSTAL
methodology;

 Section 3 describes the state-of-art of testing automation, describing the adopted methodology
and explaining the reasons which conduct us to this choice;

 Section 4 reports the list of acronyms used in this document;

 Section 5 reports the list of references.

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 7 of 27

2 ASTS use case: the Radio Block Centre

2.1 Overview of Use Case

The use case chosen by ASTS, in which the new methodology provided by CRYSTAL project is applied, is

the RBC (Radio Block Centre) system, the main component of Level 2 of European Rail Traffic Management

System / European Train Control System (ERTMS/ETCS).

The ERTMS is an initiative backed by the European Union to enhance cross-border interoperability and the

procurement of signalling equipment by creating a single Europe-wide standard for train control and

command systems. The main component of ERTMS is the ETCS, a signalling, control and train protection

system designed to replace the many incompatible safety systems currently used by European railways,

especially on high-speed lines: it allows a train equipped with ERTMS/ETCS to travel without signal system

boundaries within the ERTMS/ETCS fitted infrastructure network, regardless of the country the train is

travelling in, the legal nature of the infrastructure manager or the supplier providing the ERTMS/ETCS

system.

The ERTMS concept has been developed in 4 different functional levels, depending on the system

architecture. Level 0, level 1 and level 2 of ERTMS/ETCS are already implemented (while Level 3 is currently

under development) and in revenue service in most European countries and beyond, with Ansaldo STS acts

as global leader in ERTMS/ETCS components and systems for conventional and high-speed lines.

The definition of the ERTMS level depends on how the route is equipped and the way in which the

information is transmitted to the train:

 It’s possible to talk of ERTMS/ETCS Level 0 when ERTMS/ETCS-compliant locomotives or rolling

stock interact with line-side equipment that is non-ERTMS/ETCS compliant. A driver shall observe

the physical signals encountered along the route, knowing the specific meaning of those signals on

the railway;

 ERTMS/ETCS Level 1, instead, consists of a cab signalling system that can be superimposed to the

existing conventional signalling system leaving the fixed signal system (national signalling and track-

release system) in place. The on-board equipment monitors and calculates the maximum speed and

the braking curve relying on the data received from the beacons at fixed points;

 ERTMS/ETCS Level 2 is a train protection system based on continuous communication of variable

data between the RBC and the trains via a radio system (some additional information is received on

board via fixed beacons);

 Finally, ERTMS/ETCS Level 3 implements a full radio based train control and spacing hence fixed

block track equipment is no longer required. This technology allows for detecting the current position

of each train always in time, hence it is possible to send continuously line-clear authorization to each

train.

As described in Figure 2-1, in ERTMS/ETCS Level 2 the RBC continuously monitors the train movements

because it automatically finds out from trains their exact position, it receives train detection and it routes

status information from the interlocking and automatic block system as applicable, making all information

available to each train continuously via GSM-R in form of movement authorities. The RBC interacts with the

on-board unit by managing a communication session using the EURORADIO protocol and the GSM-R

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 8 of 27

network. A single RBC can contemporary communicate with a different trains depending on the maximum

number allowed by physical characteristics of the GSM-R network.

Figure 2-1: ERTMS/ETCS – Level 2

Different RBCs are implemented for different railway projects; for this reason implementation and validation

activities shall be performed again.

For what concerning the implementation, RBC is commonly structured in a portion common to different

implementations (the RBC core) and a portion which is coherently updated in each project (the RBC

specific). Requirements and test cases related to the RBC core are commonly similar between different

projects.

The V&V activities should benefit from this situation in order to reduce time and costs of the RBC core

validation. Furthermore the detection of a bug on the RCB core of a particular implementation should

generate an alert which requires a further verification on the other implementations.

2.2 Context of Use Case

As explained in Section 2.1 ERMS/ETCS allows the interoperability of European railway signalling systems

specifying the traffic management interfaces which shall be implemented both at technological and at

procedural levels. This system provides the specification of the traffic management and the train control

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 9 of 27

system that enables the transit of high speed trains through national borders. In this way all the real

implementations of the ERTMS/ETCS shall comply with the Union of Signalling Industry (UNISIG) System

Requirement Specification (UNISIG SUBSET-026).

The ERTMS/ETCS provides the safe movement of trains and the optimal regulation of traffic of high speed

trains; for this reason the entire system (and specifically the RBC) shall be classified as safety critical

although complex system: it shall guarantee the safety of the train movement, preventing collisions in any

case, also in situations of breakdowns and human errors. In this context several international standards are

applicable since the reliability and safety evaluation and management are mandatory for this kind of

systems. The basic one is the IEC EN 61508 [Nordland, 2003], an international standard for the functional

safety of programmable electronic safety-related systems (PES) produced by International Electrotechnical

Commission (IEC). This standard defines the SIL (an indicator -whose acronym stands for Safety Integrity

Levels- which represents the integrity level of safety functions) of a system as measurement of safety

required/obtained by itself; this definition is applicable to all kind of industries for both hardware and software

components. It is important to remember that the SIL is related to a single safety function and not the entire

system or individual components: within a given system a lot of safety features will exist, each of them

related to a particular hazard to which an appropriate SIL will be associated. The whole set of components of

each security system must be such as to respect the SIL class to respect.

This standard does not define the SIL to achieve for the specific application domain but it lists all the

operations that must be carried out, i.e. a risk analysis of the specific system and an assessment of

acceptable risk as a combination of the probability and the hazard level. This standard covers the complete

safety lifecycle decomposed into 16 phases addressing analysis, realisation and operation of a safety critical

system. The main concepts defined by this standard lie in the fact that safety must be considered from the

beginning of the lifecycle, non-tolerable risks must be reduced and zero risk can never be reached.

Safety related concepts are interpreted in specific application domains and appear under different other

standards; in the railway field three of them are nowadays applicable: EN 50126, EN 50128 and EN 50129

[Nordland, 2003]. These standards have been produced by CENELEC, the European Committee for

Electrotechnical Standardization, which is responsible for standardization in the electrotechnical engineering

field. CENELEC produces standards and reference documents. CENELEC applies international standards,

wherever possible, through its collaboration with IEC.

The three aforementioned CENELEC standards represent the backbone of the RAMS demonstration

process of a railway system: possible failures and hazards are identified during the overall lifecycle, they are

properly corrected or mitigated considering their occurrence rate and the effort to spend; finally the risk is

evaluated. In detail EN 50126 describes the processes and methods that are used to specify the most

essential and important aspects for operability and safety in the rail domain; the EN50128 and the EN 50129

give a set of requirements which have to be satisfied during the safety-critical software (the former) /

hardware (the latter) development, deployment and maintenance phases. The lifecycle suggested for these

systems is a common ‘V’ lifecycle where the design is implemented during the descendent activities, which

correspond to the verification and validation activities performed during the ascending branch.

The same standards also define the list and the minimal contents of the documents and deliverables that

have to be produced during the lifecycle of a new railway system: in particular it is clear that the entire set of

requirements, test cases and reports have to be traced in appropriate documents. It also imposes the

clarification of the traceability between requirements and test reports in order to demonstrate how each

requirement has been satisfied by outcomes of test cases.

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 10 of 27

The ERTMS/ETCS, and RBC specifically, implement also functions classified as SIL 4 (the most dependable

one). This is a key factor in system verification and validation: in fact some techniques listed in standards are

highly recommended for these systems. In particular, among others, the adoption of a structured

methodology is required for SIL 4 systems; formal methods and a modelling approach are needed during the

requirements specification as well as during design and implementation. Formal proof, static and dynamic

analysis and testing are highly recommended during component and integration testing; modelling is

required at system level to have a clear and complete understand of the system behaviour. Furthermore the

evaluation of some coverage metrics is necessary: specific test cases which stress a predefined portion of

the system shall be defined in order to individuate which portions are active and which ones are

unreachable.

2.3 ASTS Requirements Management Approach

Actually ASTS implements a well-defined documental process to manage requirements related to RBC

during each railway project. All the requirements of a specific signalling system are traced in a document,

which is properly updated during the entire system lifecycle. This document, known as “Technical

Specifications”, lists all the requirements of the system including specific requirements indicated by the client.

These requirements are reported in natural language and then, after their complete understanding in

collaboration with the client, they are properly translated into semi-formal specification (the “System

Requirements”). After these steps all the requirements are apportioned and assigned to all the sub-systems

involved, and specifically to the RBC.

The list of RBC requirements is hence reported in a specific technical document, commonly known as “RBC

System Requirements”. This document reports all the functions implemented by the RBC specifying also

their interfaces. The document flow is depicted in Figure 2-2.

The “RBC System Requirements” document contains all the information necessary to implement a new RBC

system and to produce its Test Specification. In particular this document contains the complete description of

each function that shall be implemented by the RBC and its specific requirements. Most of the requirements

are reported in a “state / condition / action” format: the “state” specifies the state in which the RBC is in a

specific instant of time, the “condition” expresses the set of conditions to which eventually the RBC shall

react, the “action” defines which are the action that shall be performed. Since this document contains the

entire description of the RBC behaviour, the implementation can be based on this information. The document

also represents the basis of the validation activities. In fact, in the current engineering lifecycle, V&V

engineers rely on this information to define the RBC Test Specification.

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 11 of 27

Figure 2-2: Document flow of the ASTS requirements management approach

2.4 ASTS Validation Approach

The validation approach actually implemented in ASTS is structured as described in this section. As

described previously, the Validation approach is centred on the information contained in the “RBC System

Requirements” document. Specifically, this document acts as input for the implementation and the test

specification activities. Appropriate Test Cases are obtained from the set of Test Specifications, and are then

translated into executable tests (the Test Scripts). Test Scripts are executed on the implemented system,

both in simulated and in real environments. Each test execution is logged on complete and complex Test

Log files, which are then analysed in order to verify the correctness referring to the expected outcomes. The

test outcomes, in a more essential and comprehensible format, are also reported in the “RBC Test Report”

document, where also the mapping to the initial requirements is explicated.

Figure 2-3 depicts the validation approach implemented by ASTS as described. The two backward arrows

indicate the feedbacks of the test execution on the implementations and/or on the Test Specification (if some

tests discover bugs) of the RBC.

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 12 of 27

Figure 2-3: ASTS validation approach

2.5 Requirements of the Crystal methodology

This paragraph reports the main methodological requirements that have been defined after the context

analysis. These requirements are here listed, their mapping with the Crystal methodology are indicated in the

following Section 3.

ASTS verification and validation activities are conducted by engineers that need to comply with the

applicable norms and standards, both in terms of system engineering lifecycle and of required

formalisms/techniques. In particular it is necessary that the Crystal methodology shall be able to support the

test case generation at system level and, at the same time, it shall be extensible in order to support future

extensions.

The input of the approach shall be the system model that is defined using a proper state-based formalism;

this language shall support the definition of graphical interfaces and it shall support future specializations and

extensions.

The entire methodology shall be verifiable since the target systems are safety critical. It shall have a high

level of automation, where possible, in order to reduce the influence of human errors during the generation of

test case. In this way the methodology shall be able to generate eventually a test case if it is effectively

practicable, otherwise it shall be certain that, if a test can’t be generated, it is infeasible. Human influences

shall be reduced to the modelling and updating of the source model; in fact the entire methodology shall be

used by experts of the rail domain who may not know which is the adopted approach of test generation.

Furthermore, since the signalling system is classified as complex systems, the entire methodology shall be

usable by different users who shall conduct the validation of the same system at the same time. The multi-

user requirement in conjunction with the necessity to trace requirements, test cases and test reports (as

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 13 of 27

imposed by applicable standards) requires the implementation of a Concurrent Versions System, which

includes the trace of the users which update documents and/or artefacts.

At last regression testing shall be supported: test cases that impact on a portion of the source model

shouldn’t be re-generated after the updating of the source model in other portions.

In the following the list of requirements to which the Crystal methodology shall comply is summarized; some

of them (i.e. REQ.501.010_02, REQ.501.010_07, and REQ.501.010_09) are qualitative, their effective

implementation in the Crystal project will be verified by ASTS after the implementation of the Crystal

workflow:

 (REQ.501.010_01) the methodology shall be compliant with the lifecycle introduced by applicable

norms, in particular it shall be applied at the system testing level (i.e. generated tests shall be used

to perform the final validation against system requirements);

 (REQ.501.010_02) the methodology shall have an high level of automation, where possible;

 (REQ.501.010_03) the methodology shall trace the coverage between test cases, test reports and

requirements;

 (REQ.501_010_04) the methodology shall support the consistency when different users work on the

same system;

 (REQ.501_010_05) the methodology shall support versioning of the source models, of the test cases

and of the test reports;

 (REQ.501.010_06) all the steps of the proposed methodology shall be verifiable since it shall be

adopted in the lifecycle of critical systems;

 (REQ.501.010_07) the methodology shall be, whenever applicable, extensible in order to allow

future extensions of the modelling language and of the final scope;

 (REQ.501.010_08) the modelling approach shall rely on state-based formalism as source modelling

language;

 (REQ.501.010_09) the test case generation method shall be usable by experts of the rail domain

which may not know how tests are generated;

 (REQ.501.010_10) the test case generation method shall not generate a test case from a test

specification if the test specification is effectively infeasible, otherwise a test shall be eventually

generated;

 (REQ.501.010_11) the test case generation method shall not re-generate test cases when no

updates are performed on model portions.

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 14 of 27

3 Modelling Methodologies

Testing automation is an objective to pursue in order to achieve high process efficiency and product quality.

This objective can be accomplished by creating a software suite, distinct from the System Under Test (SUT).

It is used to control the execution of tests and to analyze the results comparing them to what expected. This

process is composed by four different stages as depicted in Figure 3-1:

 Test Generation a high-level description of the test suite (the abstract test suite) is generated from the

SUT specification. This suite generally is not executable;

 Test Implementation: the abstract test suite is rewritten to obtain a test suite written in a machine-

readable language;

 Test Execution: the test suite is executed on the SUT

 Test Result Analysis: outcomes from the tests running are analyzed and compared with predicted

outcomes generated by oracles.

Figure 3-1: General testing process schema

Testing automation activities can be applied at three different levels:

 Unit testing, in which each single unit (as functions or modules) of SUT is tested separately;

 Component testing, where some units are aggregated and their interactions are tested as well as their

interfaces;

 System testing, where all the subparts of the SUT are integrated in their environments concurring to

provide system functionalities (that are the objective of this testing phase).

This section addresses test case generation when applied at system level by using model-based

approaches.

Automated Model Based Testing (MBT) is considered a leading-edge technology in industrial settings since

it has proven to increase both quality and efficiency of V&V processes. According to MBT the focus of the

testing activities is shifted from test data elaboration and procedure programming to modeling.

Models can be used to represent the behavior of a SUT, as well as testing strategies and test environments.

One of the reasons why MBT has received growing attention in recent years was the success of model-

driven development and the availability of efficient tools support.

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 15 of 27

A wide literature on MBT is available: a brief review of meaningful surveys and books on MBT is provided in

D_603.011. Here, the focus is on model based test case generation for system testing of critical embedded

system and specifically on the modeling approach underlying the generation process. In the following the

assumption is made, that the modeling notation adopted to describe the behavior of the SUT is state-based.

This assumption is motivated in this section.

3.1 Automated Test Case Generation

In the scientific literature, there are several approaches to support automatic generation of test cases

according to the adopted testing paradigm.

Black Box Testing

In the black box approach test are generated starting from system specifications: the internal structure of the

system may be unknown. Most of the black-box testing automation techniques support conventional

techniques like:

 Equivalence partitioning: a technique whose objective is to reduce the total number of test cases

necessary by partitioning the input conditions into a finite number of equivalence classes [Myers,

2011]. There are two main types of classes: the set of valid inputs to the program is a valid

equivalence class, and all other inputs are grouped in invalid equivalence class.

 Boundary value analysis: test cases are based on boundary conditions which are the values at,

immediately above or below the boundary or “edges” of each equivalence classes.

Other approaches consider lightweight models of the system according to its properties/features. Feature

oriented testing generates test cases starting from the features of the system as they are represented into a

feature model [Kitamura, 2012]. The relationship between inputs and outputs is addressed in another paper

that exploits such rules to reduce the complexity of the brute force approach [Schroeder, 2002]. Learning

techniques exploits the implicit knowledge that comes from the real interaction between the user and

software in interactive systems to automatically derive test cases [Mariani, 2011].

White Box Testing

Normally, this kind of automation test refers to Control Flow Graph (CFG) which is a directed graph G={V, E,

s,e} in which V is the set of nodes each one representing a single statement, E is the set of edges

connecting the statements; s and e are the start and end points of the program under test. The main goal in

white box testing is to find an admissible path on CFG to reach a sufficient level of code coverage. Many

techniques support testing automation in the white box approaches:

 Random Testing: this approach aims at producing random test data to give as input to SUT. This

method normally is used during Integration or Unit testing because it aims to large structural

coverage. The benefits that random testing techniques bring to the testing process are mainly its

inexpensiveness, its capability to be applied in the evaluation of software reliability level, its

capability to be exploited to perform stress testing. The disadvantages are that there is no assurance

for full code coverage and that it needs an automatic log verification phase due to the huge size of

produced logs.

 Path-Oriented Methods: this approach generates test data using a path, or series of paths, on the

CFG. The analysis can be static or dynamic. In the first case test case generation is made without

program execution. A major technique in this approach is the Symbolic execution. It involves

executing a program using symbolic values of variables instead of actual values. With this method, it

is possible to obtain inequalities describing the necessary conditions to cross the path. In general

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 16 of 27

formulation, path-oriented testing is NP-Hard, but with linear constraint it is possible to use linear

programming techniques. The way to overcome statically problems is to use dynamic approach in

which the analysis is made during run-time of program under test. Program execution flow is

monitored during run-time: in case of deviations from expected flow, some techniques based on

(meta-)heuristics like simulated annealing [McMinn, 2004] or backtracking, are used to identify the

problem. The major disadvantages of this technique derive from program execution due to the high

number of iterations needed to generate the test suite.

 Goal-Oriented: instead of path oriented approach, in goal-oriented one, test generator can generate

test suite also for non-complete path, in which there are missing path. This operation is easier than

respective in path oriented. One of the major techniques based on goal-oriented approaches are the

chaining and the assertion approaches. In the first, a sequence of events is used to find a testing

path; the sequence is based on the software nodes to visit in order to reach the objective of the test.

On the other hand, an assertion can represent pre-conditions or post-conditions that must be

satisfied during the program execution. The objective of testing is to find a path that satisfies the

assertions. The most peculiar feature of this last technique is that test oracles are embedded in the

code.

 Genetic Algorithm: genetic algorithms are search heuristics based on the natural process of the

evolution [Srinivas, 1994]. Genetic algorithms start from a random population of solutions (called

chromosomes). Through a recombination process and gene mutation operators, a genetic algorithm

evolves the population to the (sub-)optimal solution. The first step of this process is the selection of

the solutions in the current population that will be used as parents for the solutions of the next

generation. The parameter on which the choice is done is called fitness. A solution closer to

optimality has a higher fitness value than others. The most important operators are: selection,

mutation and recombination. In testing context, single tests are chromosome and the fitness is the

code coverage. Many works were conducted on genetic algorithms [Pargas, 1999] [Tonella, 2004].

Regression testing

Automated approaches are present also during the regression testing phases. Regression testing deals with

rerunning previously defined test cases during the lifetime of the system. Typically, this is necessary during

maintenance and late development lifetime phases; it mainly aims at checking that changes have not

affected previously tested software functions. Regression test can be performed in several ways: one of

them is to rerun all tests in the test suite, but this is the most expensive way. The research objective in this

context is to minimize test cases to re-execute. A tool that has this objective can be found in [Fischer, 1982]:

the tool is based on objective functions subject to some constraints. Moreover, regression testing can exploit

model based techniques in order to achieve high order of efficiency [Felderer, 2012].

3.2 Model-based Testing

According to [Zander, 2011], there are several approaches for automatic test case generation in literature. In

the rest of the report the main focus will on such techniques more suitable to critical embedded systems.

Model based testing is a first-class citizen in testing safety critical systems from a system perspective: Figure

3-2 depicts a reference schema of the approaches for embedded systems.

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 17 of 27

Figure 3-2: Model Based Testing overview (from [Zander, 2011])

The expression “model-based” applied to testing assumes several means [Utting, 2012], like:

 Generation of test input data from information about the domains of the input values (domain model).

This reduces hand-made work but does not provide any information to know whether a test has

passed or failed;

 Generation of test cases from an environment model. A model represents the environment of SUT.

This approach does not provide information on testing outcome, too;

 Generation of tests cases from a behavioural model. A model describes the expected behaviour of

the SUT. This approach needs oracle information to compare outcomes;

 Generation of test scripts from abstract representation of tests. Models describe test cases. From

them proper transformations generate machine-readable tests.

The success of this approach is based on: notation used for model (clear and scalable), generation test

algorithms and tools used for test execution and outcomes evaluations. Some example of model-based

testing can be found: some researcher of BellCore produce an easy notation to model input domain [Dalal,

1999], this notation suffer of testing oracle absence and of dimension of the system; in other approaches

model-based is used for testing automation by means of a combination of model-based testing with formal

methods concept to create a tool named Torx [Tretmans, 2003].

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 18 of 27

Model based test case generation has been studied in some European research projects (as MOGENTES),

too [MOGENTES, 2008].

According to a review of the scientific literature and to the needs of real world industries, the methodology

presented in Subsection 3.3 is mainly based on the choice of specific techniques inside the discussion about

methodological concerns. These themes include: the modelling paradigm, the process schema and the

algorithm for test cases generation.

In the rest of this Subsection a discussion and a motivation for each of these three themes is reported.

3.2.1 A motivation for state-based modelling

Suitable formalisms for modeling reactive systems span from UML via Process Algebras to domain-specific

languages. State based notations are widely used in modeling safety critical systems. Specifically, in the rail

domain, this technique is highly recommended by applicable standards and norms in developing SIL 1 to SIL

4 systems. In fact, the behavior of safety-critical systems shall be completely specified against every input in

every state: a state based representation describes how the system moves from one state to another

depending on the input and the current state.

Hence, the behavior of the SUT and the requirements of a critical system are usually specified in form of

state-transition machines and/or tables. Automatic test generation processes require that the input models

are expressed by means of a machine-processable notation.

At this aim, several state-based modeling languages may be used. A not-exhaustive list includes Finite State

Machines (FSMs), Extended FSMs, Abstract State Machines (ASMs), Statecharts, UML State Machines,

Timed Automata, Input-Output Automata, Petri Nets, State Flow Diagrams and Markov Chains. The

operational semantics of state-based models enable a variety of activities to be performed, such as model

checking, reachability analysis and simulation.

We restrict the following discussion to not-timed notations, as our application domain does not require

introducing a notion of time explicitly. In particular we focus on FSMs and their extensions (EFSMs, ASMs,

State Charts and UML state machines with no notion of time), as they allow for defining the control structure

of the system not only in terms of states and possible inputs, but also by specifying the associated actions.

The usage of FSMs is explicitly mentioned by the CENELEC standards [CENELEC, 2004]. FSMs reflect the

system complexity; they are modular and can be structured in accordance to the structure of the system.

FSMs can also be statically checked for completeness (an action and new state must be specified for every

input in every state), for consistency (only one state change is defined for each state/input pair) and

reachability (whether or not it is possible to get from one state to another by any sequence of inputs). These

are important properties for critical systems and they can be checked on the model before its implementation

and/or verification and validation activities.

FSMs have been extended in several ways to improve the description of complex system behaviors, for

example by enabling the construction of hierarchical models, introducing the representation of composition

(parallelism), inter-level transitions, history states, etc. A very useful feature is the nesting of internal states

and transitions, which enables the possibility to reveal or conceal the internal states at need.

3.2.2 A motivation for model driven techniques

Model Driven Engineering (MDE) is a promising approach that is able to cope with the increasing complexity
of platforms. More in general, model-driven techniques bring together two important aspects:

https://www.google.it/search?biw=1128&bih=856&q=hierarchical+modeling+input+site:uk&spell=1&sa=X&ei=o-2lUpbfCIbMygPiw4LYDQ&ved=0CCoQvwUoAA

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 19 of 27

 Domain-specific modelling languages (DSMLs), which formalize the application structure, behaviour,

and requirements within a specific domain;

 Transformation engines and generators that analyse certain aspects of models and synthesize

different types of artefacts, such as source code, simulation inputs, XML deployment descriptors, or

representation of models.

The MDE initiative proposes a process definition wider and not limited to the development as for other

approaches (Model Driven Architecture [OMG, 2003], Model Driven Software Development [Mellor, 2003]). A

brief description of the key aspects of MDE and MDD is provided in D603.011.

MDE methods and techniques are applicable to general purpose software systems as well as to critical

systems. In particular, in this last case, the effort must be oriented to support the qualitative and quantitative

analyses since the verification of system properties plays a crucial role for the system success. Great

benefits may derive from the adoption of MDE in the development of critical systems: the paradigm of

systems design “construct-by-correction”, typical of processes based on testing and verification of the late-

time properties of a system, can be replaced by paradigms “correct-by-construction” where, by verifying the

correctness of both initial system model and model transformation, one can assure the correctness of the

final model. The effort of verification can thus be concentrated in the initial stages of the system lifecycle.

Within the quantitative evaluation, outlined above, and within the scope of the techniques and methods of the

MDE, a first scenario of application of these techniques to critical systems is clearly defined: there is the

possibility to increase the spread of formal methods in industrial development processes in real systems. In

fact, the ability to define high-level languages closer to the user (for abstraction and ease of use) as well as

the ability to generate automatically models (formal models for quantitative analysis) enables the usage of

formal methods in a “transparent” way.

In the context of this project, model-driven techniques play an important role since they are able to fill the

gap between high level – user friendly modelling approaches and lower level test case generation

algorithms.

3.2.3 A motivation for model checking based test case generation

Among test case generation techniques, a very interesting approach is the one based on formal methods

and model checking. Model checking is a technique used to analyze a finite-state representation of system

for property violations. The main component, the model checker, analyses all reachable states evaluating if

the property is verified. Otherwise, if a violation of the property is observed in a state, the model checker

returns a “counterexample”, i.e. a sequence of states which conduct in the state where the property is

violated.

Model checking in automation testing context is used for two reasons [Gargantini, 1999]: first, the model

checker can be used as a oracle for test outcomes evaluation and second for the model checker ability of

generate counterexamples which is used to construct test sequences. This is the major challenge for testing

based on model checking because it is necessary to force the model checker to construct test sequences.

[Gargantini, 1999] proposes a method to generate tests case from properties: if we have to verify property P,

we have to express it by a temporal logic (e.g. CTL). As our goal is to generate test case we, ask to model

checker to verify the negation of P. To demonstrate violation, the model checker produces a counterexample

which is the trace of steps that start in valid state and end in the state in which there is the violation: this

trace contains steps of single test of test suite.

In the context of this project, the usage of model checking to generate test cases is very interesting. Model

checking exploits both formal languages and analysis techniques that are recommended for critical systems

by international standards. Moreover model checking uses a state-based modeling language that has been

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 20 of 27

already discussed. Notwithstanding, model checking gives the absolute confidence that a test is feasible or

not feasible, helping the system developer or test engineer to verify all the system requirements.

3.3 Test Generation Methodology

In this Section, a summary description of the proposed methodology is reported.

3.3.1 General Concept

Figure 3-3 depicts the schema of the macro-activities that will be conducted during the development of the

methodological bricks related to the UC 5.1. This schema is already defined in the deliverable D_603.011

related to WP 6.3. In D_603.011 where a generic “abstract” version of the process is defined; here a

concrete version is provided, instantiated by starting from the techniques previously discussed and

motivated.

Figure 3-3: Developing the TG methodology: macro-activities to be performed

A first macro-activity (DSML definition) requires that a modelling language is defined to represent the system

behaviour and the test properties. The second macro-activity (MT development) requires the definition and

implementation of proper Model Transformations (MT) in order to generate the artefacts needed in the test

generation step from the models represented by means of the DMSL: this step will tailor the target

languages for the model transformation into formal languages able to be easily analysed by means of model

checkers. The third macro-activity (MG Definition) concerns the definition of Modelling Guidelines (both for

system and test properties) since, in order to define industrial appealing process, some guidelines (in

particular by using system and testing specification patterns) will be developed. Finally, the fourth macro-

activity (UC Integration) addresses the integration of the resulting model driven process and tools into

existing and assessed V&V processes as they are adopted by industries.

3.3.2 Process definition

According to the general schema of the Figure 3-3, a more detailed process of the activities to follow is

reported in Figure 3-4.

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 21 of 27

Figure 3-4: Detailed process schema

At the middle of phase (a) the modelling languages involved in the process are defined. Two different

classes of languages are needed: DSMLs, used to model testing concepts for critical system domain, and

languages involved to describe the formalism used to generate test cases (i.e. a model checking language

as Promela, etc.): namely, the CSTL Metamodel
1
 and the MCL Metamodel

2
.

The definition of both metamodels is a part of WP6.12 and it will be described in the related deliverables. It is

important to underline that these metamodels represent languages strongly formalized with respect to

semantics aspects.

1
 CSTL stands for Critical System Testing Language

2
 MCL is a language that supports the application of model checking algorithm

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 22 of 27

Phase (a) also deals with the definition of proper modelling guidelines that are in charge of helping the

modeller by means of patterns and best practices. Two different activities are to be developed since patterns

are needed for both system modelling and test specification modelling (System Model Patterns and Test

Specification Patterns).

Phase (b) copes with the definition of model transformations. Two kinds of model transformations are

needed: Model-to-Model (M2M) and Model-to-Text (M2T) transformations. M2M transformations are in

charge of transforming high level into solvable formal models. M2T transformations are in charge of

translating formal models into a textual representation format, according to the tool used to solve the model.

As for the M2M transformations, the source and target languages are respectively the CSTL Metamodel and

MCL Metamodel. The same holds for M2T transformations: in this case the source language is the MCL

Metamodel.

Finally, phase (c) consists of the activities that must be performed within the V&V process of a system. A

high level model of the system is created during the System Model activity using both the language defined

by the CSTL Metamodel and the patterns defined in System Model Patterns. At the same way a model of the

test specifications is created during the Test Specification Model activity using the patterns defined in Test

Specification Patterns instead of System Model Pattern. The M2M transformations are then applied to

generate formal models which perform either model-based analysis or are used as an intermediate step

towards test cases automatic generation. During the same activity, test cases are obtained by applying

model checking techniques. Finally, proper M2T transformations are used during the Test case generation

activity in order to obtain textual representations of the generated test cases.

3.3.3 Motivations for the proposed methodology

Table 3-1 reports how some requirements given by the UC owner are mapped onto the methodological

choices described in this Section.

Requirement State-based formalism Model Driven Techniques
Model checking based

test case generation

REQ.501.010_01 State based formalisms are

indicated by CENELEC as

highly recommended

during the V&V phases and

are widely used to produce

a model of the system

under V&V which

expresses the behaviour of

the entire system and the

surrounding environment.

All the information needed

by the source models are

available at this stage.

REQ.501.010_02 Model Driven techniques

boost the productivity of

organization by improving

the level of automation.

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 23 of 27

REQ.501.010_03 Model Driven techniques

enable to transform a

model into another and/or

into text, hence it is

possible to maintain

information about the

source model version

during the transformation

chains.

REQ.501.010_04 State based formalism

support the creation of a

model as composition of

different sub-models.

REQ.501.010_05 Model Driven techniques

can cooperate with

concurrent versioning

systems which manage

versioning.

REQ.501.010_06 The definition of modelling

languages strongly

formalized with respect to

semantic aspects and the

use of proven-in-use

languages and engines for

model transformations

open for a further phase of

verification and

assessment of each step of

the proposed methodology.

REQ.501.010_07 Model Driven based

approaches are extensible.

Both DSML and model

transformation may be

specialized and/or

developed by reusing the

existing ones.

REQ.501.010_08 By assumption.

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 24 of 27

REQ.501.010_09 Model Driven techniques

rise up the level of

abstraction of the

engineering process and

enable the usage of

graphical modelling

languages. Hence they

improve the usability level

and allow for the

development of user-

friendly graphical

interfaces.

REQ.501.010_10 By exhaustive search,

model checking guarantees

that, if the test is not

feasible, no test case

(counterexample) is found.

REQ.501.010_11 By writing proper test

specifications, test cases

can be generated to test

specific parts of the model

(those affected by some

modifications).

Table 3-1: UC requirements-methodology mapping

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 25 of 27

4 Terms, Abbreviations and Definitions

ASM Abstract State Machine

CFG Control Flow Graph

CO Confidential, only for members of the consortium (including the JU).

CRYSTAL Critical SYSTem Engineering AcceLeration

CSTL Critical System Testing Language

DSML Domain Specific Modelling Language

EFSM Extended Finite State Machine

ERTMS European Rail Traffic Management System

ETCS European Train Control System

FSM Finite State Machine

GSM-R Global System for Mobile Communications – Railway

IEC International Electrotechnical Commission

M2M Model-to-model

M2T Model-to-text

MBT Model Based Testing

R Report

RBC Radio Block Centre

SIL Safety Integrity Level

SUT System Under Test

TC Test Case

UML Unified Modelling Language

UNISIG Union of Signalling Industry

V&V Verification and Validation

Table 4-1: Terms, Abbreviations and Definitions

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 26 of 27

5 References

[CENELEC,

2004]

CENELEC, EN50128 - Railway applicationsCommunications, signalling and processing

systems - Software forrailway control and protection systems; 2004

[Dalal, 1999] S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C.M. Lott, G.C. Patton; Model-Based

Testing in Practice; Proceeding of ICSE'99 (ACM Press) (Proceedings of ICSE'99 (ACM

Press)), 1999.

[Felderer,

2012]

P. Zech, M. Felderer, P. Kalb, R. Breu , A Generic Platform for Model-Based Regression

Testing; Leveraging Applications of Formal Methods, Verification and Validation,

Technologies for Mastering Change; Lecture Notes in Computer Science Volume 7609, pp

112-126; 2012.

[Fischer,

1982]

K.F., Fischer; A test case selection method for the validation of software maintenance

modification; Proceedings COMPSAC82, 529-537; 1982.

[Gargantini,

1999]

A. Gargantini, C. Heitmeyer; Using model checking to generate tests from requirements

specifications; ESEC/FSE-7 Proceedings of the 7th European software engineering

conference held jointly with the 7th ACM SIGSOFT international symposium on

Foundations of software engineering, 146-162; 1999.

[Kitamura,

2012]

T. Kitamura, N. Thi Bich Do, H. Ohsaki, L. Fang, S. Yatabe; Test-Case Design by Feature

Trees; in Leveraging Applications of Formal Methods, Verification and Validation.

Technologies for Mastering Change; Lecture Notes in Computer Science Volume 7609,

pp 458-473; 2012.

[Mariani,

2011]

L. Mariani, M. Pezzè, O. Riganelli, and M. Santoro: AutoBlackTest: a tool for automatic

black-box testing. In Proceedings of the 33
rd

 International Conference on Software

Engineering (ICSE ‘11). ACM, New York, NY, USA, 1013-1015; 2011 (DOI:

10.1145/1985793.1985979).

[McMinn,

2004]

P. McMinn; Search-based software test data generation: a survey; Software testing,

verification and reliability (STVR), 105-156; 2004.

[Mellor, 2003] S.J. Mellor, A.N. Clark, T. Futagami; Model-driven development - Guest editor's

introduction, Software, IEEE , vol.20, no.5, pp.14,18, Sept.-Oct; 2003 (DOI:

10.1109/MS.2003.1231145)

[MOGENTES,

2008]

MOGENTES research team, MOGENTES: Model-Based Generation of Test-Cases for

Embedded Systems - State of the Art Survey - Part a: Model-based Test Case Generation

Techniques Vers. 1-19a 1.1r; 2008.

[Myers, 2011] G.J. Myers, C. Sandler, T. Badgett ; The Art of Software Testing; 3rd Edition, Wiley ,

ISBN: 978-1-118-03196-4; December 2011.

[Nordland,

2003]

O. Nordland: A critical look at the CENELEC Railway Application Standards. Presented at

the TÜVIT seminar Application of the international standard IEC 61508, held in January

2003 in Augsburg, Germany.

[OMG, 2003] Object Management Group, Model driven architecture, V. 1.0.1; 2003

[Pargas, 1999] R.P. Pargas, M.J. Harrold , R. Peck; Test data generation using genetic algorithms.

Software Testing, verification and reliability; 1999.

[Schroeder,

2002]

P.J Schroeder, P. Faherty, B. Korel; Generating expected results for automated black-

box testing; Automated Software Engineering, 2002. Proceedings. ASE 2002. 17
th
 IEEE

International Conference on, pp.139,148; 2002 (DOI: 10.1109/ASE.2002.1115005)

[Srinivas, M. Srinivas ,L.M. Patnaik; Genetic Algorithms : a survey. IEEE computer, 17-26; 1994.

D501.010
Data and Methodologies

report

Version Nature Date Page

V1-0 R 2014-02-07 27 of 27

1994]

[Tonella,

2004]

P., Tonella; Evolutionary testing of classess; ISSTA '04: proceeding of the 2004 ACM

SIGSOFT international symposium on Software Testing and Analysis, 119.128, 2004.

[Tretmans,

2003]

J. Tretmans, E. Brinksma; TorX : Automated Model Based Testing; First European

Conference on Model-Driven Software Engineering, 31-43; 2003.

[Utting, 2012] M. Utting, A. Pretschner, B. Legeard; A taxonomy of model-based testing; STVR 22:5;

2012.

[Zander, 2011] J. Zander, I. Schieferdecker, and P. J. Mosterman; A Taxonomy of Model-Based Testing

for Embedded System; 2011

http://dx.doi.org/10.1002/stvr.456

