
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE CRYSTAL CONSORTIUM. NEITHER THIS
DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED BY ANY
MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE CESAR
CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT. THE
RESEARCH LEADING TO THESE RESULTS HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S SEVENTH
FRAMEWORK PROGRAM (FP7/2007-2013) FOR CRYSTAL – CRITICAL SYSTEM ENGINEERING ACCELERATION JOINT
UNDERTAKING UNDER GRANT AGREEMENT N° 332830 AND FROM SPECIFIC NATIONAL PROGRAMS AND / OR FUNDING
AUTHORITIES.

CRitical SYSTem Engineering AcceLeration

Use Case Requirements Specifications
D501.020

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 2 of 37

DOCUMENT INFORMATION

Project CRYSTAL

Grant Agreement No. ARTEMIS-2012-1-332830

Deliverable Title Use Case Requirements Specifications

Deliverable No. D501.020

Dissemination Level CO

Nature R

Document Version V1-0

Date 2014-02-07

Contact Renato De Guglielmo

Organization Ansaldo STS (ASTS)

Phone +39 (0)81 243 7608

E-Mail Renato.DeGugliemo@ansaldo-sts.com

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 3 of 37

Authors

Name Company E-Mail

DE GUGLIELMO Renato Ansaldo STS
Renato.DeGugliemo@

ansaldo-sts.com

VELARDI Luigi Ansaldo STS Luigi.Velardi@ansaldo-sts.com

NARDONE Roberto Ansaldo STS
Roberto.Nardone.Prof608@

ansaldo-sts.com

MASSAROLI Gianpaolo Ansaldo STS
Gianpaolo.Massaroli.Prof644@

ansaldo-sts.com

MARRONE Stefano Second University of Naples stefano.marrone@unina2.it

VITTORINI Valeria
University of Naples

 "Federico II"
valeria.vittorini@unina.it

GENTILE Ugo
University of Naples

"Federico II"
ugo.gentile@unina.it

Reviewers

Name Company E-Mail

BARBERIO Gregorio Mate Consulting g.barberio@mateconsulting.it

SCHERRER Christoph Thales AT
christoph.scherrer@thalesgroup.

com

VALLÉE Frédérique All4Tec frederique.vallee@all4tec.net

Change History

Version Date Reason for Change
Pages

Affected

0-1 10/01/2014 Create document All

0-2 24/01/2014 Introduction of internal review comments and updates All

1-0 07/02/2014 Introduction of external review comments and updates All

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 4 of 37

CONTENT
D501.020 .. I

1 INTRODUCTION .. 6

1.1 ROLE OF DELIVERABLE... 6
1.2 RELATIONSHIP WITH OTHER CRYSTAL DOCUMENTS .. 6
1.3 STRUCTURE OF THIS DOCUMENT .. 6

2 ASTS USE CASE: THE RADIO BLOCK CENTRE ... 7

2.1 USE CASE CONTEXT .. 7
2.2 USE CASE GOALS ... 9
2.3 USE CASE DESCRIPTION .. 9

3 THE CRYSTAL WORKFLOW ... 12

3.1 GENERAL DESCRIPTION .. 12
3.2 FROM SYSTEM REQUIREMENTS TO TEST CASES .. 13
3.2.1 Meta-modeling solutions ... 14
3.2.1.1 MOF- Meta Object Facility .. 15
3.2.1.2 EMF – Eclipse Modelling Framework .. 17
3.2.2 Model Transformations .. 19
3.2.2.1 Transformation languages .. 20
3.2.3 Model Based Testing tools ... 21

3.3 FROM TEST CASES TO TEST SCRIPTS ... 27
3.4 TEST SCRIPTS EXECUTION .. 28
3.5 TEST REPORTS AND FEEDBACKS ... 28

4 TECHNOLOGY FUNCTIONAL REQUIREMENTS .. 29

4.1 REQUIREMENTS .. 29
4.2 INDUSTRIAL BENEFITS OF ADOPTABLE TECHNOLOGIES ... 29
4.3 MAPPING REQUIREMENTS WITH THE ADDRESSED TECHNOLOGIES ... 31
4.4 TAKING CHARGE OF METHODOLOGICAL REQUIREMENTS.. 33

5 TERMS, ABBREVIATIONS AND DEFINITIONS ... 35

6 REFERENCES ... 37

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 5 of 37

Content of Figures

Figure 2-1: ASTS validation approach .. 8
Figure 2-2: ERTMS/ETCS – Level 2 .. 11
Figure 3-1: The Crystal workflow .. 12
Figure 3-2: DSML definition: semantic and syntactic mappings... 14
Figure 3-3: Meta-model, Model, Language .. 14
Figure 3-4: Meta-modelling solutions ... 15
Figure 3-5: UML Profile: an example .. 17
Figure 3-6: Ecore Technologies ... 17
Figure 3-7: Ecore example ... 18
Figure 3-8: Transformation technologies .. 19
Figure 3-9: Kermeta .. 24
Figure 3-10: ParTeG Screenshot ... 25
Figure 3-11: Yakindu Statecharts screenshots... 26
Figure 3-12: architecture overview of the test environment ... 28

Content of Tables

Table 3-1: State based modeling tool – a quick comparison.. 22
Table 4-1: requirements-technology mapping .. 33
Table 4-2: methodological - technologic requirements mapping .. 34
Table 5-1: Terms, Abbreviations and Definitions ... 36

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 6 of 37

1 Introduction

1.1 Role of Deliverable

This document has the following main purposes:

 defining the details of ASTS use case.

 collecting all the requirements specifications for bricks to integrate to be adopted in ASTS use case.

1.2 Relationship with Other CRYSTAL Documents

This document is strictly connected with the deliverable “CRYSTAL_D_D501.010 – Data and Methodologies

report”, because the system workflow presented here is completely based on the modelling methodology

chosen to be adopted in ASTS use case and described there. Then, another link between the two

deliverables is represented by the translation of the main methodological requirements (presented in

D501.010) into the technological requirements necessary for the ASTS needs (presented here).

This document is also connected with the deliverable “CRYSTAL_D_D603.011 – Specification, Development

and Assessment for System Analysis and Exploration”, where the background and the state of the art on the

adopted technologies are reported.

Furthermore, this document is also linked with the deliverable “CRYSTAL_D_ D612.011 – Specification,

Development and Assessment for Validation Models - V1”, in particular with its Sections 10, 11 and 12,

because in these sections the bricks (and their Technical Items) which should satisfy all the technological

ASTS needs are listed and described.

1.3 Structure of This Document

This document is structured as follows:

 Section 1 (this Section) introduces the contents and the structure of the document, clarifying also the

relationships with other documents related to the CRYSTAL project;

 Section 2 provides a description of ASTS use case: at the beginning, it will focus on the problems

which have led Ansaldo STS to join the Crystal project; then on the desirable solutions (i. e., the

goals to be achieved); and finally on the application example in which these solutions are applied;

 Section 3 describes how the validation approach adopted in ASTS use case is implemented in the

system workflow;

 Section 4 lists, starting from the main methodological requirements, all the requirements

specifications for bricks to integrate to be adopted in ASTS use case;

 Section 5 reports the list of acronyms used in this document;

 Section 6 reports the list of references.

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 7 of 37

2 ASTS Use Case: the Radio Block Centre

2.1 Use Case Context

The increasing complexity of railway systems requires an evolution of the validation approach in order to be

more effective with minor time and costs efforts. These activities shall be conducted by the V&V team which

is independent from the development team and which should not know any information about the

development (mandatory since CENELEC standards are applicable). This team shall rely only on the

information contained in the requirements and in high-level behavioral description. Given the high

complexity, the actual control systems require the definition and the executions of thousands test cases,

which shall be able to verify also parallel execution flows. A great effort is spent not only in the definition

phase, but also in the realization of executable test scripts and in the log analysis. An improvement of the

actual validation approach is hence required in the rail domain with the aim to automatize standard and

repetitive operations and to introduce modern technologies in these activities.

One of the most critical components installed in modern railways is the signalling system which aims at

guaranteeing the complete control of the railway traffic, with a high-level of safety, essentially to prevent

trains from colliding. Actual signalling systems implements complex protocols to exchange information with

the trains and their implementation requires the usage of a high number of hardware components which

execute complex software. These systems shall be validated against system requirements, given by the

client and by applicable standards and norms ([CENELEC 50126, 2012], [CENELEC 50128, 2011]).

Since the signalling system is one of the most complex and critical, the use case chosen by ASTS in the

CRYSTAL project is the Radio Block Centre (RBC) system which represents the main component of a

possible implementation of European Rail Traffic Management System / European Train Control System

(ERTMS/ETCS) (for further details refer to Section 2.3). The RBC system collects all the information about

the positioning of trains and communicates with them giving, between other, movement authorization along

track portions.

The validation approach, actually implemented in ASTS, is centred on the system requirements, reported in

appropriate documents. With reference to the RBC system, these requirements are collected in the “RBC

System Requirements” document which contains also a behavioural description of the entire set of functions

implemented by the RBC (e.g. starting of mission procedures, ending of mission procedures, movement

authority granting, etc.). This document, hence, acts as input for the implementation and the validation

activities.

In the first step V&V Engineers try to formalize the system behaviour with the help of state-based formalisms

(highly recommended by the standards during these phases of the applicable lifecycle). Then requirements

are analysed and Test Specifications, able to demonstrate the validity of the requirements on the

implemented system are defined. In a following phase appropriate Test Cases are obtained from the set of

Test Specifications, which are then translated into executable tests (the RBC Test Scripts). RBC Test Scripts

are executed on the implemented system, both in simulated and in real environments. Each test execution is

logged on complete and complex Test Log files, which are then analysed in order to verify the correctness

referring to the expected outcomes. The test outcomes, in a more essential and comprehensible format, are

also reported in the “RBC Test Report” document, where also the mapping on the initial requirements is

highlighted.

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 8 of 37

Figure 2-1: ASTS validation approach

Figure 2-1 depicts the validation approach implemented by ASTS as previously described. The two

backward arrows indicate the feedbacks of the test execution on the implementations and/or on the Test

Specification (if some tests individuate bugs) of the RBC. These two arrows indicate that, if the outcomes of

a test are not those expected, a bug can be present in the implementation of the system and/or an error has

been made during the system modelling performed by the V&V Engineers.

In the actual validation approach, ASTS spends a high effort (in terms of time and costs) during the definition

of Test Specifications and Test Cases. This activity is manually performed by experts through the definition

of a system behavioral model. Test Cases are written in executable and proprietary language in order to be

executed on the real systems or on simulators. Execution logs are also manually analyzed. Manual activities

can also introduce errors. Furthermore changes of the requirements imply the manual identification of the

tests impacted by these changes and their update. Moreover, the model used to define the tests by V&V

team is only a representation of the system behavior and usually doesn’t allow any automatic verification of

its feasibility, as well as it’s not possible to define, automatically, any system test from the model itself.

Another problem which arises during the validation of a complex railway system is represented by the fact

that, in order to guarantee the interoperability among several sub-systems provided by different suppliers,

general test scenarios involving different sub-systems have to be defined and executed on them, but,

actually, each company has its own language to “feed” the system under test, and hence testing the

interoperability requires that each supplier adapts the general test scenarios to its own language, in order to

be able to execute them on its own environment.

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 9 of 37

2.2 Use Case Goals

For the above reasons (Section 2.1), having the opportunity to use a new methodology thanks to which the

model becomes a sort of “natural step” in the test definition process (so that, once the model is defined, the

test cases can be semi-automatically generated from it), would imply a significant reduction of time and costs

during the validation phase, limiting considerably the effort spent by V&V team.

Indeed, the traceability of the model, both on system requirements and on generated tests, could support the

engineers in the analysis of the impact of modifications in system requirements during the whole life cycle of

the system, reducing time needed to identify the impacted tests and to modify them after changes in

requirements.

Furthermore, the automatic traceability between requirements and tests would simplify the maintenance of

entire test suite and the analysis of the results, speeding up the identification of requirements or parts of the

system not rightly implemented.

Another desirable improvement during the validation phase of a complex railway system could consist in

realizing a modular structure of the tool chain, with the adoption of a standard language: in fact, it would

allow different companies/suppliers to share all the steps through the definition of general test scenarios,

reducing the risk of misunderstanding/incoherence and facilitating the setup of a multi-company

interoperable testing environment, speeding up the assessment of the overall system in different countries.

Moreover, by using a common language to define tests, the execution of interoperability tests could be

performed in laboratory and not by means of practical feasibility, with a considerable cost reduction.

2.3 Use Case Description

The use case chosen by ASTS, in which the new methodology provided by CRYSTAL project is applied, is

the RBC (Radio Block Centre) system, the main component of Level 2 of European Rail Traffic Management

System / European Train Control System (ERTMS/ETCS).

The ERTMS is an initiative backed by the European Union to enhance cross-border interoperability and the

procurement of signalling equipment by creating a single Europe-wide standard for train control and

command systems. The main component of ERTMS is the ETCS, a signalling, control and train protection

system designed to replace the many incompatible safety systems currently used by European railways,

especially on high-speed lines: it allows a train equipped with ERTMS/ETCS to travel without signal system

boundaries within the ERTMS/ETCS fitted infrastructure network, regardless of the country the train is

travelling in, the legal nature of the infrastructure manager or the supplier providing the ERTMS/ETCS

system.

The ERTMS concept has been developed in 4 different functional levels, depending on the system

architecture. Level 0, level 1 and level 2 of ERTMS/ETCS are already implemented (while Level 3 is currently

under development) and in revenue service in most European countries and beyond, with Ansaldo STS acts

as global leader in ERTMS/ETCS components and systems for Conventional and High-Speed lines.

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 10 of 37

The definition of the ERTMS level depends on how the route is equipped and the way in which the

information is transmitted to the train:

 it’s possible to talk of ERTMS/ETCS Level 0 when ERTMS/ETCS-compliant locomotives or rolling

stock interact with line-side equipment that is non-ERTMS/ETCS compliant. A driver shall observe

the physical signals encountered during the track, knowing the specific meaning of those signals on

the railway;

 ERTMS/ETCS Level 1, instead, consists of a cab signalling system that can be superimposed to the

existing conventional signalling system leaving the fixed signal system (national signalling and track-

release system) in place. The on-board equipment monitors and calculates the maximum speed and

the braking curve relying on the data received from the balises at fixed point;

 ERTMS/ETCS Level 2 is a train protection system based on continuous communication of variable

data between the RBC and the trains via a radio system (some additional information is received on

board via fixed balises);

 finally, ERTMS/ETCS Level 3 implements a full radio based train control and spacing hence fixed

track equipment is no longer required. This technology allows for detecting the current position of

each train always in time, hence it is possible to send continuously line-clear authorization to each

train.

As described in Figure 2-2, in ERTMS/ETCS Level 2 the RBC monitors continuously the train movements

because it automatically finds out from trains their exact positions, receives train detection and route status

information from the Interlocking and Automatic Block System as applicable, making all information available

to each train continuously via GSM-R in form of movement authorities. The RBC interacts with the on-board

by managing a Communication Session using the EURORADIO protocol and the GSM-R network. A single

RBC can manage contemporary until a fixed maximum number of trains depending on physical

characteristics of the GSM-R network.

Different RBCs are implemented for different railway projects. Obviously all the validation activities shall be

afresh performed but the implementation of a new RBC can reuse some of the activities and of the artefacts

produced for a different version. For this reason RBC is commonly structured in a portion common to

different implementation (the RBC core) and a portion which is coherently updated in each project (the RBC

specific). Requirements and test cases related to the RBC core between different projects are commonly

the same, hence the V&V activities should benefit from this situation in order to reduce time and costs. On

the other hand, the detection of a bug on this portion a real implementation should generate an alert which

requires a further verification on the other implementations.

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 11 of 37

Figure 2-2: ERTMS/ETCS – Level 2

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 12 of 37

3 The Crystal workflow

3.1 General description

The Crystal methodology, deeply described in the D501.010, shall improve the effectiveness (in terms of

time and costs) of the validation approach actually performed by ASTS. In synthesis a set of test scripts shall

be generated and executed on the real systems (in simulated or real environments) in order to demonstrate

the validity of the system requirements.

The validation of a new signalling system requires the implementation of a complex workflow, which starts

with the requirements analysis and ends (when no further corrective actions are required) with the

generation of appropriate Test Reports where the fulfilment of each requirement is demonstrated through the

validity of a test set. The detailed workflow is depicted in Figure 3-1, where all the necessary steps to

validate a system are depicted.

Figure 3-1: The Crystal workflow

The entire workflow starts from the “Analysis of Requirements and Model Creation” step. In this phase a

model is created on the basis of the information contained in the system requirements. The generation of this

model during validation phase allows conducting also a consistency and completeness check: if some

requirements have not been used during the modelling phase, it means that this requirement is unnecessary

or redundant. Otherwise a set of requirements could lead to conflicting portion of the model: in this case

these requirements need to be verified and interpreted in order to produce an unambiguous model of the

system behaviour.

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 13 of 37

After the creation of the model, the “Definition of Test Specification” step is performed. In this phase each

requirement is formalized as the system model and leads to one or more Test Specifications. A Test

Specification, hence, verifies one or more requirements: this link shall be clearly traced.

The workflow goes on with the “Generation of Test Cases”. In this phase Test Specifications are properly

translated into Test Cases which express all the steps of a test in terms of necessary inputs and expected

outputs. This step shall be automatically performed by proper methodologies and tools. The Test Cases are,

in this phase, written in a formal language comprehensible by the V&V Engineers. It is necessary, in fact, to

give them the possibility to operate on Test Cases and to have an idea of the model portion stressed by each

Test Case; hence each step of the Test Case shall also clearly identify states/transitions to which it is linked.

Test Cases could be also manually updated but it is not recommended.

When the set of Test Cases is clarified, the “Implementation of Test Scripts” step is performed. In this phase

Test Case, reported in a comprehensible language, are properly translated into executable scripts in order to

be executed on the simulated/real system. Since different systems are involved, it is preferable that these

tests are written in a common language in order to be executed by different simulators of different industries.

Test Cases are then executed on the real or on simulated environments. This step is taken in charge by

each railway operator in a different way since it depends of the specific implementation on the systems and

of the simulation environments. For this reason, the improvement of this step is external to the Crystal

project. The execution of Test Cases produces Test Logs where the execution is logged to verify the

correctness with respect to what expected.

Finally Test Logs are inputs for the “Generation of Test Reports” activity. In this step Test Logs are

automatically processed in order to produce Test Reports where it is reported the outcome of the test and

the not satisfied requirements are annotated.

In the following paragraphs the adoptable technologies are listed for each step of the Crystal workflow. A

great attention is given to the technologies which enable the automatic generation of Test Cases, since the

improvement of this step is the most complex from a methodological and technological point of view.

3.2 From System Requirements to Test Cases

According to the model driven test case generation process, described in the deliverable

“CRYSTAL_D_D501.010 – Data and Methodologies report”, a Domain Specific Modeling Language (DSML)

will be developed and used to model the behavior of the system under test (SUT) and the test specifications.

In the same deliverable some requirements have been specified for this process, resulting is a Finite State

Machine formalism provided with a formal semantics and specific features in order to be applied to UC5.1.

Hence, some steps have to be accomplished to define the DSML in the WP6.12. The first of them is the

definition of a proper syntax. At this aim a meta-modeling language must be chosen. A meta-modeling

languages in Model Driven Engineering (see the background in “CRYSTAL_D_D603.011 – Specification,

Development and Assessment for System Analysis and Exploration”) defines the abstract syntax of a DSML,

generally in form of a class diagram (called meta-model) [Harel, 2004]. Meta-models capture domain specific

concepts and their relationships (semantic mapping). Then, the abstract syntax is mapped to a concrete

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 14 of 37

syntax, i.e. the DSML constructs (syntactic mapping) [Harel, 2004], [Clark, 2001]. The relationships between

abstract syntax, concrete syntax and semantic domain are illustrated in Figure 3-2.

Concrete Syntax Abstract Syntax Semantic domainSyntax mapping

SyntaxSyntax
Semantics

Figure 3-2: DSML definition: semantic and syntactic mappings

The relationships among meta-model, modelling language and model are illustrated in Figure 3-3.

Metamodel

Model

Language<<Istance of>>

<<Describe>>

<<Expressed by>>

Figure 3-3: Meta-model, Model, Language

Hence, the choice of the meta-modeling language is of great importance, as this choice has consequences

on the entire process of test generation. In the next Subsection we describe the main alternatives and how

they determine different ways to implement and support the generation process.

3.2.1 Meta-modeling solutions

In evaluating different solutions, we have taken into account three main coordinates, i.e. if the meta-modeling

language enables:

1. the usage of easy-to-understand and user-friendly environments/workbenches to develop the models

(Editing);

2. the possibility of performing static analysis of the model during its construction (Analysis);

3. the possibility of executing the models, i.e. of performing simulations (Simulation).

According to these coordinates, we have grouped the different solutions into four categories:

4. Meta Object Facility (MOF) based: MOF is a OMG standard and is the basis of MDA (Model Driven

Architecture);

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 15 of 37

5. Eclipse Modelling Framework (EMF) based: this solution exploits the power of Eclipse, it might also

be conjugated with the usage of UML;

6. Grammar based: the meta-model is defined by using grammars like BNF or EBNF;

7. Other approaches: several approaches belong to this category, both open source and commercial

solutions. As example, MetaEdit+ is a commercial suite that enables the generation of full code

directly from models and allows for defining a new domain specific language from scratch.

Figure 3-4 provides a bird-eye view of the different possibilities and consequences on Editing, Analysis and

Simulation. Here below, they are described in more details.

Figure 3-4: Meta-modelling solutions

3.2.1.1 MOF- Meta Object Facility

Meta Object Facility (MOF) is a standard produced by OMG which is place at the top layer of Model Driven

Architecture.

MDA is a consolidate approach in which models and modelling techniques are the main artefacts of software

development cycle. The MDA architecture consists of four layers:

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 16 of 37

 M3, the meta-meta-model layer, which provides a model of the modelling language;

 M2, the meta-model layer, which describes the concepts used by the modelling language to

construct the model within M1 layer;

 M1, the model layer, in which there are the models of the element of the system. Layer M1 provides

the generalization of concepts in M0 layer;

 M0, the system layer.

MOF provides a language to describe modelling language hence it is defined at the M3 layer. Within MOF it

is possible to create both a new language and extensions of existing language.

This second approach is the one on which the UML profiles are based. An UML Profile allows for extending

UML models for specific domains and platforms. The extension could be made by using:

 Stereotypes, used to extend UML concepts, so providing constructs to build the models. Graphically

the application of a Stereotype is identified by the label <<Stereotype>> before its name on a UML

element; it is also possible to define icons which are showed after the stereotype application;

 Constraints, associated to stereotypes, which are used to impose restrictions to the stereotype. OMG

has defined a language named OCL to express a constraint. Any rule associated to the stereotype

can be expressed by using a constraint;

 Tagged values, which are meta-attributes associated to stereotypes or meta-classes. Each tagged

value has a name and a type associated to a specific stereotype.

Several UML Profiles are available; some of them are defined or standardized by OMG itself. Examples of

UML profiles from OMG are MARTE (Modeling and Analysis of Real-Time and Embedded systems) and

UTP (UML Testing Profile). UTP provides extensions to UML in order to support the design, visualization,

specification, analysis, construction, and documentation of the artefacts involved in testing activities [Dai,

2004].

To understand the reasons behind the adoption of the UML Profile we show an example depicted in Figure

3-5. In this example the stereotype “Figure” is added to UML meta-model by extending the “Class” meta-

class. The properties of the figure, i.e. colour and geometry, are described by using homonymic tagged

value.

This example shows some relevant advantages of the UML Profiles. Firstly they allow to introduce specific

concepts of an application domain at meta-model level (UML in fact does not have the concept of “figure”);

secondly they allow to add expressive power at modelling language. UML profiles also provide additional

information that can be used for M2M or M2T transformation [Fuentes, 2004].

Furthermore UML is widespread used during all software engineering processes; it is implemented by a large

amount of tools and software development environments. Finally the interoperability is guaranteed by the

XMI format, defined by the OMG group that allow the interchange of the same models between different

tools.

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 17 of 37

Figure 3-5: UML Profile: an example

3.2.1.2 EMF – Eclipse Modelling Framework

Eclipse Modelling Framework is a stable framework which provides facilities for building toolsets and Java

applications based on model manipulation. EMF allows for creating a model and generating code from it with

the same level of usability of an UML model.

As stated in previous Subsection, a model is an abstract representation of an object. A model can be

described using several languages. EMF introduces a new concept which is the passage between different

high-level representations. More specifically, as depicted in Figure 3-6, EMF unifies three relevant

technologies: UML, XML and JAVA. As an example, EMF allows to transform a XML schema into a UML

class diagram or directly in executable Java code [Steinberg, 2009]. The EMF is supported by the Ecore

format that is a simple format guaranteeing interoperability between tools. The Ecore format is also an open

format, easy to understand and manipulate, also in textual way.

Ecore

XMLUML

Java

Figure 3-6: Ecore Technologies

Hence EMF integrates both modelling and programming principles. There are several advantages behind

EMF-based solutions:

1. it is easy to provide a clear representation of what the system it is supposed to do;

2. Code generated from the model is high readable;

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 18 of 37

3. EMF adopts the Ecore format to provide interoperability and information interchange;

4. It is possible to perform queries on the structure of the model;

5. It is possible to generate an editor for a model with functionalities based on the model itself.

EMF consists of three main parts:

a. EMF.Core that includes a meta-model in Ecore format for describing models. Ecore is well supported

by large set of API for manipulating EMF objects;

b. EMF.edit, that includes generic classes for building editors for EMF models. This framework allows

to display EMF model in a standard Eclipse view and provides to manipulate models properties,

classes etc.

c. EMF.codegen, which provides the code generation facilities. EMF.codegen is based on Java

Development Tooling to build EMF editor. With EMF.codegen is possible to generate:

a. Classes from model, including factory methods and packages

b. Adapters that allow editing and display of generated classes;

c. Editor, which allows to customize the model. The editor is show in eclipse-like view.

The development workflow of EMF is very simple: first a model is created and defined using the Ecore

format. Second, when the model is defined, it is possible to generate java code from it.

Ecore includes few and essential concepts such those included in the Essential MOF (i.e. the meta-language

at the basis of UML): some of the basic types included in it are Eclass, Eattribute, and Ereference which

have the same meaning of the Class, Property and Reference of the Essential MOF. As an example,

considering the same objects of the UML Profile described before, it is possible to have the Ecore diagram

described in Figure 3-7. This diagram represents the meta-model describing the same domain reported in

Figure 3-5; the difference is that the UML profile of Figure 3-5 adds the “figure” concept to UML while the

Ecore of Figure 3-7 reports a new modelling language created from scratch: the usage of this domain model

does not allow to use other concepts than the one of “figure”.

Figure 3-7: Ecore example

Here the concept of stereotype is replaced by the Eclass concept while tagged values are replaced by the

Eattribute. Constraint can be inserted within Ecore diagram by using natural language or structured language

like OCL.

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 19 of 37

3.2.2 Model Transformations

A key concept within MDE context is the transformation of models.

Transformations allow for obtaining a model from another in automatic way. The OMG’s MDE standards

specify the need for change to move from platform-independent models to platform-specific models, raising

the level of abstraction during the modelling phase, and then reducing it for a specific platform, during the

development stages. Model transformations may be useful, for example, to generate a formal model starting

from a UML model.

Model transformations can be grouped into two categories:

 Model-to-Model (M2M) transformations: M2M transformations aim at transforming source models

into other models, also expressed in different formalisms. The main motivation of their need in our

context is that the new model enables to perform analyses that are not feasible in the previous

formalism. Hence M2M transformations implement these mapping by defining proper sets of rules

between the source and the target languages. An example of language used to write M2M and M2T

transformation is the ATLAS Transformation Language (ATL) [Jouault, 2006].

 Model-to-Text (M2T) transformations: M2Ts are able to generate text directly from a model

(conformant to a specific meta-model). M2Ts have a paramount importance in model driven software

development processes since automatic code generation represent a final but a necessary step in

such processes. In a wider perspective, M2Ts can be used to generate text, reports, configuration

files or to instantiate abstract models according to a specific concrete syntax. This last case can be

used when a formal model, expressed for example by means of an Ecore based language, must be

translated into a specific data format understandable by existing solvers. M2Ts can be divided into

two categories according to the constituting principles as indicate in WP6.03.

Figure 3-8 summarizes the possible choices of model transformation technologies given the source meta-

modelling language. An arc between a meta-modeling solution group and a language X (Java, ATL, QVT,

etc.) means that a model transformation from/to the specified meta-modeling languages may be

implemented by X.

Figure 3-8: Transformation technologies

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 20 of 37

3.2.2.1 Transformation languages

Java (general purpose language)

Java is one of the most important programming languages based on object orient paradigm. Java may be

also used to implement transformations between source and target languages. Despite the power of Java,

specific transformation languages are preferred because they provide a range of useful features which

facilitate writing, understanding and executing of the transformation.

ATL

ATL stands for Atlas Transformation Language, created by the ATLAS INRIA & LINA research group.

It is the answer to the OMG MOF and to QVT. It is a model transformation language specified both as a

meta-model and as a textual concrete syntax. It is a hybrid language since it is possible to define declarative

and imperative statements.

Most of the rules written by using ATL are declarative, which means that mappings can be expressed simply.

Despite the declarative way is preferred, imperative constructs are provided in order to manage situations

too complex to be also dealt by means of declarative rules.

An ATL transformation program is composed of rules that define how source model elements are matched

and navigated to create and initialize the elements of the target models.

The structure of an ATL program is composed by four parts: Header, Import, Rules and Helpers. The header

contains the transformation name and the declaration of both source and target model. The import section is

used to import definition specified by other ATL modules. This can be done by using the keyword “uses”

followed by the library name. Rules section is the core of ATL file because it contains the transformation

rules. Each rule defines source patterns, the element type of the source model to be transformed, and the

target pattern, used to generate a portion of the target model.

ATL supports the definition of helpers: a helper is used to declare functions and global variables used by the

transformation rules. Helper functions are written by using the OCL language.

QVT

QVT stands for Query/View/Transformation and it is a language for model transformation created and

standardized by OMG. Due to OMG derivation, QVT includes both MOF 2.0 and OCL 2.0 specifications. As

ATL previously described, this language is hybrid (declarative and imperative).

With QVT are provided three different transformation languages:

a. QVT-Core which is a declarative language designed to be simple and to be used on QVT Relations

target model. Due to the not fully specified nature of QVT-Core, QVT-Relational is more expressive.

b. QVT-Operational which is the imperative transformation defined for writing unidirectional

transformations;

c. QVT-Relations, which provide declarative transformations. The transformation written by using QVT-

Relational can be both unidirectional and bidirectional.

Compared to ATL QVT languages do not permit M2T transformations, since each model must conform to

MOF 2.0 meta-model. M2T transformations are being standardised separately by OMG in MOFM2T

standard [MOFM2T, 2008].

ETL

ETL stands for Eclipse Transformation Languages and provides M2M transformation language features to

Epsilon. ETL allows standard operations of a transformation language but also other advanced features like

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 21 of 37

manipulation, navigation and query of both source and target model. ETL is a hybrid language that

implements a mechanism composed by declarative definition of rules but also inherits the imperative

features to handle complex transformation which can’t be addressed with a declarative language.

ETL is similar to ATL because it is organized in modules (named EtlModule). A module contains a number of

transformation rules. Each rule has a unique name and specifies both source and target model. A

transformation rule can extend other transformation rules with different mechanisms (called lazy, primary or

abstract). EtlTransformation defines a block statement in which is collocated the logic for populating the

property values of the target model elements. ETL allows defining pre or post statements that can be

executed before or after the transformation rule. [Kolovos, 2008]

Text-based transformations

The expression “text-based transformation” denotes a transformation which transforms an input document

written according a text-format in an output document written according a different format. An example of

text-based transformation languages are the XML transformation languages which allow transforming an

XML document in another XML document or in a HTML document. Examples of XML transformation

languages are XSLT, which is a W3C recommendation or Xquery which is a de facto standard used by

Oracle, Microsoft etc.

Acceleo

Notwithstanding Acceleo is not properly a technology for model-to-model transformation, it has become a

leading technology for generation of text from a model conformant both to Ecore based language and to

annotated UML. It is based on the template-based paradigm in which the user creates text templates in

which some parts can be dynamically defined on the basis of some model query. Since its launch, Acceleo

has become a widespread solution in model driven engineering processes.

3.2.3 Model Based Testing tools

The previous sections have described several solutions to guide the choices of the meta-language on which

a test generation process can be based. As stated in D501.010, this is a crucial choice because it affects the

quality of the result of the developed brick. The testing process is based on “model-based” techniques.

Despite the generation of tests cases from a behavioural model of the SUT is mainly applied to functional

black-box testing we want to apply it to gray-box testing, in order to cope with specific issues posed by

critical systems. To model the system behaviour a FSM based DSML should be defined and proper tools

supporting the modelling and testing phases should be developed. Here a brief survey of the most

meaningful suites and environments is provided. Nevertheless many state-based testing tools are available.

These technologies are supported by a large set of model based testing tools coming from both commercial,

open source and academic contexts.

The broad spectrum of model-based testing tools makes difficult to cluster and compare them.

This section is focused on tools selected with two main criteria:

1. MBT tools that support a state-based language like UML or Finite State Machines (FSM);

2. MBT tools which provide automatic generation of abstract test case;

These two criteria are used for the construction of the table. In that table we consider other relevant features

that enable us to compare the tools between them. These features are:

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 22 of 37

 If the tool is based on a DSML or on meta-model and in case which approach it follows;

 If the tool is commercial or open source;

 If the tool allows to simulate the model;

 If the tool allows to execute the test suite generated;

 The usability of the tool.

Table 3-1 summarizes and compares some model based testing tool selected with the criteria depicted

before.

Tool Based on DSML or
meta-model

License Simulation Supported by
graphical
interface

Acceleo EMF-Based Open Source Yes Yes

AGEDIS suite MOF-Based Academic Yes Yes

Conformiq EMF-Based Commercial Yes Yes

GOTCHA Not Specified Commercial Yes Not specified

GraphWalker Not Specified Open Source Yes Yes

MaTeLo Not Specified Open Source Yes Yes

Nmodel Not Specified Open source Yes Yes

ParTeG EMF-Based Open Source Yes Yes

SpecExplorer Other approaches Commercial Yes Yes

Stateflow Not Specified Commercial Yes Yes

TestCast Not Specified Commercial Yes Yes

TestOptimal Other approaches Commercial Yes Yes

Torx Other approaches Academic Yes Not specified

Kermeta EMF-Based Open Source Yes Yes

Yakindu Statecharts EMF-Based Open Source Yes Yes

Table 3-1: State based modeling tool – a quick comparison

Acceleo

Acceleo is an open-source tool for code and test generation. Despite it is an implementation of MOFM2T

standard, code generation is provided for EMF based models. This code generation language uses a

template based approach in which there are dedicated parts where the text will be computed from elements

provided by the inputs models. The dedicated parts are specified on the entity of the input models used to

select and extract information from models. These expressions are often written with java implementation of

OCL.

AGEDIS Suite

The AGEDIS tools is a suite developed within the AGEDIS project, an European project for the creation a

methodology for automated model driven test generation and execution. The suite includes an integrated

environment for modelling, a code generator for test generation, a runtime environment for test execution,

and other feature like generation of report.

The input of AGEDIS tools is composed by three parts: the first is the behavioural model of the SUT, the

second and the third are the testing directives which describe testing strategies and testing architecture of

the SUT.

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 23 of 37

Both testing architecture and testing strategies are given by input using a UML modelling tools output. The

UML modelling tools must be equipped by AGEDIS UML Profile. The behavioural model can be specified by

UML diagrams like Class Diagram, Sequence diagrams, State Charts etc.

The AGEDIS suite has a model simulator which provides a feedback on the behaviour of the model and is

used for model debugging. The test generator is based on two state-based test generators, GOTCHA and

TGV, described below [Mishra, 2012].

Conformiq Automated Test Design

Conformiq Automated Test Design tool automates the design of functional tests for software and systems.

The tests generation produces tests from high-level system models without user intervention, complete with

test plan documentation and executable test scripts in industry standard formats like Python, TTCN-3, C,

C++, Java, and many others.

The generation starts from the model of the expected behavior of the real system from which Conformiq tools

generate automatically human readable test cases, and executable test scripts.

Conformiq Designer is an Eclipse-based tool and is could be inserted within EMF category. Models can be

described also with other third party modeler.

GOTCHA

The GOTCHA-TCBeans (which is the union of two previous tools, GOTCHA and Spider) is a framework

developed by IBM designed to support development, execution and control of function tests using APIs and

software written in Java, C, C++ [Farchi, 2002].

The main goal of GOTHCA-TCBean is to enhance testing activities with a systematic approach to test suite

generation. The systematic approach allows higher functional coverage and exposes more defects early in

the software development cycle. Main features of the GOTCHA-TCBean are:

 Creation and edition of models of SUT

 Simulation of models

 Generation of test suite from models

 Execution of the test suite

 Report and traceabili

GraphWalker

GraphWalker is MBT that allows both offline and online test sequences from Finite State Machines and

Extended Finite State Machines.

The main features of GraphWalker are:

 it isn’t based on UML but on FSM and EFSM (Extended FSM) and on a subset of UML rules, named

GraphML, which is easier than normal UML

 it supports online test sequence generation. Using this feature it is possible to individuate a test path

within model at runtime;

 it enables models reuse;

 the runtime environment allows models simulation;

 it hasn’t start or stop points. This means that during the testing the same path is not chosen every

test execution. The random variation will create a better ‘test coverage’ of the system under test.

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 24 of 37

Kermeta

Kermeta is a powerful meta-programming environment based on an object-oriented Domain Specific

Language optimized for meta-model engineering. It provides specification of abstract syntax, formal

semantics (OCL) and concrete syntax. It has model and meta-model prototyping and simulation.

Kermeta is fully integrated with Eclipse and includes features such as a compiler, an editor and various

import/export transformations. It is available under an open source license EPL.

Figure 3-9: Kermeta

MaTeLo

MaTeLo (Markov Test Logic) is a test tool which uses the Markov Chains theory designed to reduce the

costs and times of test phase of system or software. The usage model is made of transitions which represent

the stimuli of the system, and the control to be applied to the output, representing the expected results.

Transitions are separated one to the other through the use of states. States are stable states indicating the

state of the system before the incoming of a stimulus.

Nmodel

Nmodel is a model-based testing and analysis framework based on C# languages. The Nmodel includes a

library of attributes and data types for writing model programs in C#, a visualization and analysis tool named

“Model Program Viewer”, a test generation tool and a test executor for both online and offline testing.

Despite the model is written with C#, to express scenarios, it is possible to write simple finite state machines

(FSMs), then use composition to achieve scenario control during testing or to check temporal properties

during analysis [Jacky, 2008].

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 25 of 37

ParTeG

ParTeG is a test generation tool based on algorithm that satisfy control flow-based coverage criteria which

means that selected coverage criterion is transformed into a test model-specific set of test goals.

ParTeG is an Eclipse plug-in. It can be called from different views or diagrams: the state machine in the EMF

tree view, from inside the state machine diagram, and from the file of the state machine diagram. Figure 3-10

shows a screenshot of it. A specific feature of ParTeG is the support to mutation analysis.

By means of ParTeG, one can create a list of mutants and can generate the corresponding test suite. It also

uses an external tool, named Jumble, which measures the fault detection ability of test suite [Weibleder,

2013].

Figure 3-10: ParTeG Screenshot

Stateflow

Stateflow is a tool of Mathworks that, starting from the definition of FSM based model, allows the verification

of the created model and code generation in several programming language. Stateflow is a widespread tool

used for embedded software (in particular in automotive). It is based on a language with strong, formal

semantics.

TestCast MBT

TestCast MBT is a tool for Model based testing which combines both automated test generation and

execution. It allows defining coverage, generating tests, executing them and analyzing the results obtained.

The System Under Test is formalized into a UML Statechart model. That means that it is compatible with

every tools that allow the modelling with statecharts. One of the most relevant features of TestCast MBT is

the automated generation engine which automatically designs test cases from the formalized model of the

requirements. As stated before, TestCast MBT provides an intuitive interface to compare actual test results

to expected behaviours.

TestOptimal

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 26 of 37

TestOptimal is a web-based client-server tool that tests desktop and multi-tier enterprise applications.

TestOptimal relies on a model described by using FSM creating interactively during the analysis of the web

site under tested. Model can also be imported in GraphML formats. TestOptimal provides an XML based

scripting language called mScript to connect the model to the SUT. TestOptimal automatically generates test

adapter class skeletons where a tester can add function logic to run generated test cases.

SpecExplorer

Spec Explorer is a Model-Based Testing tool from Microsoft. Spec Explore is based on Spec#, a

programming language with specification language features that allows defining a model describing the

expected behaviour of a software system. From these models, the tool can generate tests automatically for

execution within Visual Studio framework but also within many other unit testing frameworks.

SpecExplorer covers most of the relevant step of a MBT methodology. It allows creating a model of system

and of the tests by using a State Machine which can be created, manipulated, explored by the tool.

Furthermore it is possible to define many scenarios (e.g. degraded situations) in which generate and execute

test cases. More reference can be found in [Utting, 2004] and [Campbell, 2008].

Torx

TorX is an automated tool for conformance testing. TorX generates the tests on-the-fly using a random

strategy, which can be constrained by test purposes.

In TorX, automatic test generation and test execution are not done in separate phases but they are

integrated. This is the key point of Torx because there is no complete test suite generated that is

subsequently executed [Tretmans, 2003].

YakinduStatechart Tool

Yakindustatechart tool is a EMF-based environment for the specification and development of reactive, event-

driven system based on the concept of statecharts. It combines four relevant features: it has a graphical

editor for statecharts, it allows the validation of the created model on line during the construction, and it

allows the simulation of the specifications described by model and allows generating code from model.

Despite this tool has not been created within the MBT aegis, it provides most of the MBT tools features.

Below it is possible to see some screenshots of it.

Figure 3-11: Yakindu Statecharts screenshots

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 27 of 37

Regarding the tool suite, the address is to adopt an open platform as Eclipse.

3.3 From Test Cases to Test Scripts

In a context where the importance of automation for the functional safety of all devices is increasingly

questioned as the rail domain is, taking advantage from the automatic test generation would imply an

important and concrete step towards an increase of railway system safety and reliability, due to its

effectiveness in reducing human errors.

This is also underlined in a standards produced by CENELEC (the European Committee for Electrotechnical

Standardization, which is responsible for standardization in the electrotechnical engineering field), the EN

50126 and EN 50128, which describe the processes and methods that are used to specify the most essential

and important aspects for operability and safety in the rail domain (with a particular focus on software

development).

In addition to the automatic test generation, there is also another critical point for the European railway

industry: supporting the initiative backed by the European Union of creating a single Europe-wide standard

for train control and command systems (ERTMS, see Par. 2.3).

A crucial step to guarantee and facilitate the interoperability of a trans-European high-speed rail system is

the definition of an interoperable testing environment with standardized interfaces among the railway

companies (in order to test several subsystems provided by different companies/suppliers), as stated in the

“Communication from the Commission to the European Parliament and the Council on the deployment of the

European rail signalling system ERTMS/ETCS” (04/07/2005), where UNISIG (the Union of Signalling

Industry, which includes Ansaldo, Alstom, Bombardier, Invensys, Siemens and Thales) was asked a

proposal for IOP (Interoperability) Testing.

In order to setup a multi-company interoperable testing environment, the adoption of a standard language is

required. This language would allow different companies/suppliers to share all the steps through the

definition of general test scenarios in a common language. The test step written in this general common

language shall be properly understood by different system implementing proper adaptors. The usage of this

standard language reduces the risk of misunderstanding/incoherence and enables the execution of

interoperability tests in laboratory.

Obviously, due to the fact that each testing environment is built in its own language, all the

companies/suppliers have to develop several adaptors for the interoperable testing environment (as depicted

in Figure 3-12).

Hence, the ASTS tool chain in Crystal has to give the opportunity to automatically generate, starting from

test cases, the test scripts, written in specific languages (either IOP or proprietary languages), by using

specific plug-ins. For interoperability sake, the IOP writer has the highest priority in the Crystal project.

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 28 of 37

Figure 3-12: architecture overview of the test environment

3.4 Test Scripts Execution

This step is external to the Crystal workflow since it is based on proprietary technologies and simulators.

3.5 Test Reports and Feedbacks

This step could be performed by implementing proper tools which are able to interpret Test Log files and to

visualize them in a user-friendly format. At the moment, the identification, starting from the not-passed tests,

of requirements or parts of the system not rightly implemented requires a considerable effort from the system

experts. On the contrary, thanks to the automatic traceability among requirements, test cases and test logs,

it would be possible to pull out this information in an automatic way relieving the experts of that effort.

Moreover, through the automatic generation of the report of the testing campaign, it will be possible to

reduce significantly the effort currently spent in manually analyzing that report, overcoming all the current

limitations affecting the entire process in terms of time and costs. Hence the supporting technology is that of

the programming language.

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 29 of 37

4 Technology Functional Requirements

4.1 Requirements

After a thorough analysis of the use case chosen by ASTS, in particular focused on the use case goals,

some technological requirements have been individuated. There requirements are listed in this paragraph

and give a technological answer to the methodological requirements reported in the deliverable

“CRYSTAL_D_D501.010 – Data and Methodologies report”.

In the following the list of requirements to which the technologies that will be adopted shall comply is

summarized:

 (REQ.501.020_01) the adopted/produced artefacts shall use interoperable data format (possibly

based on existing standards) in order to allow the implementation of automatic transformations;

 (REQ.501.020_02) the automated steps of the proposed methodology shall be properly

implemented;

 (REQ.501.020_03) the modelling environment shall support the tracing of system requirements on

model portions;

 (REQ.501.020_04) the test specifications shall trace the related system requirements;

 (REQ.501.020_05) the produced test cases shall trace the related test specifications;

 (REQ.501.020_06) the log analysis shall identify the satisfied/not satisfied requirements;

 (REQ.501.020_07) the involved artefacts shall be able to invalidate test cases after update of system

requirements;

 (REQ.501.020_08) the adopted/produced artefacts shall support the multi-user utilization

(cooperating with the RTP);

 (REQ.501.020_09) the adopted/produced artefacts shall support the versioning (cooperating with the

RTP);

 (REQ.501.020_10) all the adopted/produced artefacts shall be verifiable, in compliance with

CENELEC standard, since they shall be adopted in the lifecycle of railway systems;

 (REQ.501.020_11) the modelling environment shall allow future extensions of the implemented

modelling language;

 (REQ.501.020_12) the modelling environment shall support the implementation of a new language

which relies on a state-based formalism;

 (REQ.501.020_13) the modelling environment shall appear with a graphical interface and a palette

which contains the appropriate constructs;

 (REQ.501.020_14) the test generation approach shall implement model checking techniques;

 (REQ.501.020_15) the test generation approach shall be able to generate test cases from model

portions.

4.2 Industrial benefits of adoptable technologies

As deeply explained above, the automatic generation of the test cases is enabled by the application of the

Model-Driven methodology. This methodology can be applied in the industrial context if a well-structured and

semantically precise modelling language is defined in order to have a not ambiguous model of the system

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 30 of 37

under V&V. Between the different techniques able to define a new modelling language previously described,

two of them are very appealing in industrial settings: those which rely on the UML and EMF technologies.

The two methodologies are based on graphical approaches to model construction: this is necessary to better

understand of the system under V&V, of the tests and to manage test suite (revisions, reused test, etc.).

This paragraph explains the main industrial advantages given by the adoption of the EMF technology in the

development of the new modelling environment.

The UML profiling technique allows extending UML from the semantic point of view by introducing newest

concepts which extend those already present in the UML itself. The only constraint is that the new

stereotypes introduced at the modelling language level must be mapped on UML meta-classes: for example,

it is possible to extend the semantics of the UML State, defined in the State Machine context, to introduce

the concept of states associated with watchdog timer, while it is not possible to introduce new syntactic

concepts inside them. The main advantage in the usage of UML profiles is that they extend a language

universally known and standardized in the international environment by OMG, hence the syntax of any

model will be recognized in a standard way. In addition the syntax of the new modelling language should not

be defined, but it is necessary only to identify the extensions you wish to add to UML. The disadvantage

resides in the fact that UML is present as the basis of whatever UML profile: a modeler which wants to

describe a system using the UML profile is not “bonded” to apply stereotypes on each UML element but

she/he can model a portion of the system using the UML core; in this way it is very hard to set up a process

based on automatic translations. Finally, if on the one hand, there are many modelling tools capable of

working with UML and UML profiles, on the other hand is very hard to develop plugin able to extend them in

an ad-hoc way.

The main advantage obtainable adopting the EMF technology, on the other side, resides in the simplest

creation of graphical user interfaces of the modelling environment and in the highest customizability of

graphical appearance of the model. The creation of new plugins for static analysis of the models and their

simulation is also quite simple. EMF is widely adopted in industrial contexts of different application domains;

the automatic generation of artefacts from models developed using the EMF technology is supported by

various technologies currently integrated into Eclipse. The main disadvantage in the adoption of EMF is the

non-standardization of the modelling language: a model developed using the modelling language that will be

defined can be universally adopted within a company but it will not be written in a standard modelling

language.

For these reasons and after a careful analysis of the state of the art in the lifecycle adopted in Ansaldo STS

and in the railway domain, the EMF technology seems to be the most effective way able to implement the

Crystal methodology: the entire usability on the tool chain will be higher than that obtainable by adopting

UML profiles as well as the introduction of the Crystal process in industrial settings will be greatly simplified

(in terms of start-up efforts, training activities, etc.). Moreover, considering that the V&V phases correspond

to the ascending branch of a common life cycle “V”, there are no reasons which prevent the usage of UML

and UML profiles in the early stages of descent branch (i.e. during the design and the development of a

system); a step of automatic or semi-automatic translation can be inserted after the development in order to

transform UML design models into V&V models written with the EMF technology.

For what concerning generation of test scripts and log analysis, it would be necessary to develop ad-hoc

tools. In this sense the suitable technology would be the usage of general purpose languages (e.g. Java)

which allow the implementation of required domain specific features.

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 31 of 37

4.3 Mapping requirements with the addressed technologies

Table 4-1 reports how the requirements given by the Use Case are mapped onto technologies listed in the

previous Section. Each requirement shall be satisfied by one or more technologies, an empty cell (i, j)

indicate that j-th technology does not impact on the compliance with the i-th requirement.

Requirement EMF

Specific-purpose

transformation

languages (ATL /

ETL)

Eclipse-based

framework

General purpose

language

(e.g. Java)

REQ.501.020_01 EMF strongly relies

on XML and XMI

standard

 Tools developed

using general

purpose language

can implement

standard data

format

REQ.501.020_02 ATL allows to

implement

automatic

generation of

artefacts

Plug-ins allow the

possibility to embed

complex model

transformation

chains

Tools developed

using general

purpose language

can implement the

automated steps

REQ.501.020_03 EMF allows the

annotation of

traceability

information

REQ.501.020_04 EMF allows the

annotation of

traceability

information

REQ.501.020_05 EMF allows the

annotation of

traceability

information

ATL allows to

propagate

traceability

information

REQ.501.020_06 Tools developed

using general

purpose language

can implement

strategies to

individuate satisfied

/ not satisfied

requirements

REQ.501.020_07 EMF allows the

annotation of

traceability

information

 Tools developed

using general

purpose language

can read traceability

information

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 32 of 37

REQ.501.020_08 Eclipse is featured

with some plug-ins

that allow

interfacing with

OSLC-compliant

repositories

REQ.501.020_09 Eclipse is featured

with some plug-ins

that allow

interfacing with

OSLC-compliant

repositories

REQ.501.020_10 The definition of

high-engineered

rules opens to the

application of

verification

methodologies on

model

transformations.

Moreover, the use

of proven-in-use

transformation

engines is high

recommended

 Tools developed

using general

purpose language

can be properly

verified by current

techniques

REQ.501.020_11 EMF has the

capability to

generate languages

that can be easily

extended

ATL

superimposition is

an example of

technique that can

be addressed when

extending a model

transformation

REQ.501.020_12 Since its high

versatility, EMF can

be used to define

state-based

language

REQ.501.020_13 EMF tooling is

known to produce

more easy-to-use

solutions than other

meta-modelling

frameworks

 Eclipse allow the

adoption of the

GMF technology to

construct graphical

interfaces

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 33 of 37

REQ.501.020_14 ATL allows to

implement proper

transformation

chains able to

transform models

into a concrete

syntax of a model

checker

REQ.501.020_15 ATL can implement

transformations

which start from a

portion of the

source model

Table 4-1: requirements-technology mapping

4.4 Taking charge of Methodological Requirements

This paragraph reports how methodological requirements have been taken in charge by technological

requirements.

The list of methodological requirements is reported in the following: some of them (i.e. REQ.501.010_02,

REQ.501.010_07, and REQ.501.010_09) are qualitative, their effective implementation in the Crystal project

will be verified by ASTS after the implementation of the Crystal workflow:

 (REQ.501.010_01) the methodology shall be compliant with the lifecycle introduced by applicable

norms, in particular it shall be applied at the system testing level (i.e. generated tests shall be used

to perform the final validation against system requirements);

 (REQ.501.010_02) the methodology shall have an high level of automation, where possible;

 (REQ.501.010_03) the methodology shall trace the coverage between test cases, test reports and

requirements;

 (REQ.501_010_04) the methodology shall support the consistency when different users work on the

same system;

 (REQ.501_010_05) the methodology shall support versioning of the source models, of the test cases

and of the test reports;

 (REQ.501.010_06) all the steps of the proposed methodology shall be verifiable since it shall be

adopted in the lifecycle of critical systems;

 (REQ.501.010_07) the methodology shall be, whenever applicable, extensible in order to allow

future extensions of the modelling language and of the final scope;

 (REQ.501.010_08) the modelling approach shall rely on state-based formalism as source modelling

language;

 (REQ.501.010_09) the test case generation method shall be usable by experts of the rail domain

which may not know how tests are generated;

 (REQ.501.010_10) the test case generation method shall not generate a test case from a test

specification if the test specification is effectively infeasible, otherwise a test shall be eventually

generated;

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 34 of 37

 (REQ.501.010_11) the test case generation method shall not re-generate test cases when no

updates are performed on model portions.

For a detailed description of the methodological requirements please refer to the deliverable

“CRYSTAL_D_D501.010 – Data and Methodologies report”.

Table 4-2 shows the mapping between methodological and technological requirements. In particular the

technological requirements are reported as rows while the methodological ones on the columns. The green

cell (i, j) indicates that the implementation of the i-th technological requirement gives an answer to the j-th

methodological requirement. The results showed by the table are that methodological requirements are

completely covered by technological requirements and vice-versa.

501.
010
_01

501.
010
_02

501.
010
_03

501.
010
_04

501.
010
_05

501.
010
_06

501.
010
_07

501.
010
_08

501.
010
_09

501.
010
_10

501.
010
_11

501.020_01

501.020_02

501.020_03

501.020_04

501.020_05

501.020_06

501.020_07

501.020_08

501.020_09

501.020_10

501.020_11

501.020_12

501.020_13

501.020_14

501.020_15

Table 4-2: methodological - technologic requirements mapping

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 35 of 37

5 Terms, Abbreviations and Definitions

API Application Programming Interface

ASTS Ansaldo STS

ATL ATLAS Transformation Language

BNF Backus-Naur form

CENELEC European Committee for Electrotechnical Standardization

CO Confidential, only for members of the consortium (including the JU).

CRYSTAL Critical SYSTem Engineering AcceLeration

DSML Domain Specific Modeling Language

EBNF Extended Backus-Naur Form

EFSM Extended FSM

EMF Eclipse Modelling Framework

EPL Eclipse Public License

ERTMS European Rail Traffic Management System

ETCS European Train Control System

ETL Eclipse Transformation Languages

FSM Finite State Machines

GMF Graphical Modeling Framework

GSM-R Global System for Mobile Communications – Railway

HTML HyperText Markup Language

IOP Interoperability

M2M Model-to-Text

M2T Model-to-Model

MARTE Modeling and Analysis of Real-Time and Embedded systems

MBT Model-Based Testing

MDA Model-Driven Architecture

MDE Model-Driven Engineering

MOF Meta Object Facility

MOFM2T MOF Model to Text Transformation Language

OCL Object Constraint Language

OMG Object Management Group

OSLC Open Services for Lifecycle Collaboration

QVT Query/View/Transformation

R Report

RBC Radio Block Centre

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 36 of 37

SUT System Under Test

UML Unified Modeling Language

UNISIG Union of Signalling Industry

UTP UML Testing Profile

W3C World Wide Web Consortium

V&V Verification and Validation

XMI XML Metadata Interchange

XML eXtensible Markup Language

XSLT eXtensible Stylesheet Language Transformations

Table 5-1: Terms, Abbreviations and Definitions

D501.020
Use Case Requirements

Specifications

Version Nature Date Page

V1-0 R 2014-02-07 37 of 37

6 References

[CENELEC

50126, 2012]

CENELEC, EN50126 - Railway applications - The Specification and Demonstration of

Reliability, Availability, Maintainability and Safety (RAMS) - Part 1: Generic RAMS

process; 2012

[CENELEC

50128, 2011]

CENELEC, EN50128 – Railway applications - Communication, signalling and

processing systems - Software for railway control and protection systems; 2011

[Harel, 2004] D. Harel, B. Rumpe; Meaningful Modeling: What’s the Semantics of “Semantics”?;

IEEE Computer Society; 2004

[Clark, 2001] T. Clark, A. Evans, S. Kent and P. Sammut; The MMF approach to engineering
object-oriented design languages; In Workshop on Language Descriptions, Tools
and Applications; 2001.

[Fuentes, 2004] L. Fuentes-Fernandez, A. Vallecillo-Moreno; An Introduction to UML Profiles; The
European Journal for the Informatics Professional, Vol. V, No 2; April 2004

[Steinberg, 2009] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks; EMF: Eclipse Modeling
Framework; Addison-Wesley Professional; 2009

[Dai, 2004] Z. Dai; Model-driven testing with UML 2.0; In Proceedings of the 2nd European
Workshop on Model Driven Architecture, 2004.

[Jouault, 2006] F. Jouault and I. Kurtev; Transforming models with ATL; In Satellite Events at the
MoDELS 2005 Conference, pages 128–138. Springer; 2006.

[Obeo, 2013] Obeo; Acceleo; http://www.eclipse.org/acceleo

[Kolovos, 2008] D.S. Kolovos, R.F. Paige, F.A.C. Polack; The Epsilon Transformation Language;
Theory and Practice of Model Transformations, Lecture Notes in Computer Science
Volume 5063, pp 46-60; 2008

[MOFM2T, 2008] http://www.omg.org/spec/MOFM2T/1.0/

[Mishra, 2012] Mishra J.,Ali I.,Upadhyay A. K., Automated Model Based Testing, International Journal
of Engineering Research & Technology (IJERT) Vol. 1 Issue 4; June 2012

[Farchi, 2002] Farchi E., Hartman A., and Pinter S. S., Using a model-based test generator to test for
standards conformance. IBM Systems Journal 41 pp. 89-110; 2002

[Campbell,2008] Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N. and Veanes,
M.; Model-based testing of object-oriented reactive systems with Spec Explore. Formal
Methods and Testing 2008, LNCS 4949, Springer, pp. 39-76; 2008

[Basanieri, 2002] F. Basanieri, A. Bertolino, E. Marchetti, The Cow_Suite Approach to Planning and
Deriving Test Suites in UML Projects, Proc. Fifth International Conference on the
Unified Modeling Language - the Language and its applications UML 2002, LNCS
2460, Dresden, Germany, September 30 - October 4, pp. 383-397; 2002.

[Jacky, 2008] Jacky, J., Veanes, M.,Campbell, C., Schulte, W.; Model-based Software Testing and
Analysis with C# ; Cambridge University Press; 2008.

[Weibleder, 2013] Stephan Weibleder. ParTeG (Partition Test Generator). http://parteg.sourceforge.net.

[Tretmans, 2003] Tretmans J., Brinksma E. TorX : Automated Model Based Testing. First European
Conference on Model-Driven Software Engineering, pp. 31-43; 2003.

