
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE CRYSTAL CONSORTIUM. NEITHER THIS
DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED BY ANY
MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE CESAR
CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT. THE
RESEARCH LEADING TO THESE RESULTS HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S SEVENTH
FRAMEWORK PROGRAM (FP7/2007-2013) FOR CRYSTAL – CRITICAL SYSTEM ENGINEERING ACCELERATION JOINT
UNDERTAKING UNDER GRANT AGREEMENT N° 332830 AND FRO M SPECIFIC NATIONAL PROGRAMS AND / OR FUNDING
AUTHORITIES.

CRitical SYSTem Engineering AcceLeration

Use Case Definition

D502.010

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 2 of 26

DOCUMENT INFORMATION

Project CRYSTAL

Grant Agreement No. ARTEMIS-2012-1-332830

Deliverable Title Use Case Definition�

Deliverable No. D502.010

Dissemination Level CO

Nature R

Document Version V1.01

Date 2013-11-04

Contact Christoph Scherrer

Organization Thales Austria Gmbh (TRAIL)

Phone +43 1 27711 5864

E-Mail christoph.scherrer@thalesgroup.com

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 3 of 26

AUTHORS TABLE

Name Company E-Mail

Johannes Mach TRAIL johannes.mach@thalesgroup.com

Christoph Scherrer TRAIL christoph.scherrer@thalesgroup.com

Rupert Schlick AIT rupert.schlick@ait.ac.at

Egbert Althammer AIT egbert.althammer@ait.ac.at

Thomas Gruber AIT thomas.gruber@ait.ac.at

CHANGE HISTORY

Version Date Reason for Change Pages
Affected

V1.00 2013-10-18 Version for external review ALL

V1.01 2013-11-04 Revised version for release ALL

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 4 of 26

CONTENT

1 INTRODUCTION .. 6

1.1 ROLE OF DELIVERABLE ... 6
1.2 RELATIONSHIP TO OTHER CRYSTAL DOCUMENTS .. 6
1.3 STRUCTURE OF THIS DOCUMENT ... 6

2 USE CASE CONTEXT .. 7

2.1 OVERVIEW OF TAS CONTROL PLATFORM ... 7
2.2 TARGET DEVELOPMENT ... 8

3 USE CASE GOALS ... 9

3.1 BUSINESS GOALS ... 9
3.2 TECHNICAL GOALS ... 9

4 MODELLING METHODOLOGIES .. 10

4.1 MODEL-BASED SAFETY ANALYSIS ... 10
4.1.1 General Concept .. 10
4.1.2 Tool Description (MB-RAMS) ... 11
4.1.3 Data Flow .. 12

4.2 MODEL-BASED TEST CASE GENERATION .. 13
4.2.1 General Concept .. 13
4.2.2 Tool Description (MoMuT::UML) .. 13
4.2.3 Data Flow .. 15

4.3 VERIFICATION & VALIDATION MANAGEMENT ... 16
4.3.1 General Concept .. 16
4.3.2 Tool Description (WEFACT) ... 17
4.3.3 Data Flow .. 18

4.4 CODE GENERATION (OPTIONAL) .. 18
4.5 FORMAL SPECIFICATION (OPTIONAL) ... 18

5 INTEGRATION OF PROCESSES .. 19

5.1 DATA PROCESSING INTERFACES ... 19
5.2 TRACEABILITY ... 20

5.2.1 Traceability for Model-Based Safety Analysis.. 20
5.2.2 Traceability for Model-Based Test Case Generation .. 20
5.2.3 Traceability for V&V Management ... 21

6 FUNCTIONAL REQUIREMENTS ON MODELLING TOOLS .. 22

6.1 GENERAL AND INTEROPERABILITY REQUIREMENTS .. 22
6.2 MODEL-BASED SAFETY ANALYSIS (MB-RAMS) ... 22
6.3 AUTOMATIC TEST CASE GENERATION (MOMUT::UML) ... 23
6.4 VERIFICATION & VALIDATION MANAGEMENT (WEFACT) ... 23

7 TERMS, ABBREVIATIONS AND DEFINITIONS ... 25

8 REFERENCES ... 26

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 5 of 26

List of Figures

Figure 2-1: The TAS PLF layer structure: The safety middleware layer (light green) consists of several
components (dark green).. 7
Figure 2-2: TAS PLF redundancy configurations ... 8
Figure 4-1: Example illustration of viewpoint approach .. 10
Figure 4-2: Data Flow for MB-RAMS activities ... 12
Figure 4-3: Logic of model-based test case generation ... 13
Figure 4-4: Mutation-based test case generation is at the heart of MoMuT::UML ... 14
Figure 4-5: Usage variants of mutation-based TCG tools .. 14
Figure 4-6: Screenshot of the MoMuT::UML tool ... 15
Figure 4-7: Automatic test case generation and related data flows ... 16
Figure 4-8: Overall organization of the WEFACT framework ... 17
Figure 4-9: Dependencies of V&V management on other artefacts ... 18
Figure 5-1: Overview of UC 5.2 development process showing data processing interfaces 19
Figure 5-2: Relevant traceability links for model-based safety analysis ... 20
Figure 5-3: Relevant traceability links for model-based test case generation .. 21
Figure 5-4: Relevant traceability links for verification & validation management ... 21

List of Tables

Table 3-1: Technical goals of Use Case 5.2 .. 9
Table 7-1: Terms, Abbreviations and Definitions ... 25

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 6 of 26

1 Introduction
1.1 Role of deliverable
This document (D5.2.1) is the first deliverable of the WP5.2 of the CRYSTAL project. It reports the current
state of definition of the Use Case 5.2 “Integrated Modelling of Core Algorithms in TAS Control Platform”, as
agreed between the industrial partner (TRAIL) and the tool provider (AIT).

The focus of the use case definition is put on the detailed description of the considered modelling
technologies. Furthermore it contains a first, preliminary set of functional requirements on the tools and
methods (called technology bricks in CRYSTAL).

1.2 Relationship to other CRYSTAL Documents
The functional brick requirements contained in this document will be the basis of the interface requirements
analysis that will result in the UC 5.2 bricks interface requirements document (D5.2.2).

Together, D5.2.1 and D5.2.2 will form the basis for setting up the system engineering environment (SEE) for
UC 5.2 to be reported in the implementation and integration report (D5.2.3).

It will also be used as reference for the SEE and bricks assessment phase that will be delivered together
with the demonstrator D5.2.4.

1.3 Structure of this document
Chapter 1 is this introduction.

Chapter 2 summarizes the context of UC 5.2 including a brief overview of the TAS Control Platform and a
rough description of the target development.

Chapter 3 explains the goals and motivation for the introduction of the modelling technologies that will be
investigated in this use case.

Chapter 4 provides a detailed description of the envisaged modelling technologies and foreseen tools.

Chapter 5 describes the foreseen integration of new methods into the UC 5.2 development process.

Chapter 6 contains a preliminary list of functional requirements for these methods and tools (bricks).

Finally, terms and abbreviations are explained in chapter 7, whereas references are given in chapter 8.

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 7 of 26

2 Use Case Context
2.1 Overview of TAS Control Platform
The idea of TAS Control Platform (TAS PLF) is to build railway applications on top of a generic computing
platform and thereby support the fulfilment of the overall RAMS requirements. This separation reduces the
direct dependency of long-lived railway applications on short-lived hardware.
The TAS Control Platform includes all necessary generic elements for constructing replica deterministic,
fault-detecting 2oo2 (“2-out-of-2”) or fault-tolerant 2oo3 architectures. A basic set of services is provided for
1oo1 architectures, too. The services include a global time base, voting, membership, recovery and fault
management services, as well as a health monitor. The use of POSIX as generic interface for applications
enables the transparent integration of fault detection mechanisms. Applications can build upon the generic
TAS Control Platform safety concept and safety case to reach their safety goals.

Figure 2-1: The TAS PLF layer structure: The safety middleware layer (light green) consists of several
components (dark green).

The TAS Control Platform itself is structured in layers as depicted in Figure 2-1. The safety middleware layer
enables safe application execution on top of a common off-the-shelf POSIX operating system with its kernel
and drivers. Within the safety layer, all safety relevant platform services are executed to ensure detection
and/or isolation of any faults occurring in the layers below.
The figure also shows the relative lifetimes of components in the individual layers. This illustrates how the
safety and operating system layers are used to achieve a long lifetime for the interface to the application, as
well as the application itself.
The common time base, membership and voting services are implemented within the safety layer. They are
provided to the application via a message queue interface. Continuous online testing is performed by the
health monitor service and recovery is implemented as a separate service.

The applications on top of the layered architecture provide the actual services. The platform can currently be
operated in three different redundancy configurations, as shown in Figure 2-2.

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 8 of 26

Figure 2-2: TAS PLF redundancy configurations

To guarantee system availability, the safety layer also provides the functionality to re-integrate a failed node
into the system ("recovery"). A failed node that is re-integrated after a reset or after a hardware replacement
has to be brought into the same state as the other nodes. This also includes replicated applications, which
are recovered transparently during operation without interruption of service.
To ensure that no latent faults are aggregated in the hardware, the platform also performs continuous online
testing of the hardware. This online testing, which is performed by a background task, covers the CPU,
memory, buses, clocks, and disks.

2.2 Target Development
UC 5.2 will deal with the modelling of typical safety-relevant functions in railway control systems, e.g.:

(1) Safe communication protocol according to CENELEC standard EN 50159

(2) Synchronization algorithms for replicated state machines

(3) System monitoring and diagnosis functions

The exact development scope for UC 5.2 will be selected according to the expected effort and the suitability
for demonstration.

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 9 of 26

3 Use Case Goals

3.1 Business Goals
In agreement with the CRYSTAL project goals, Thales Austria pursues the following business goals that
shall be achieved by means of model-driven engineering (MDE).

(1) Efficiency: Accelerate overall development process, improve time-to-market

(2) Safety: Increase efficiency of safety engineering

(3) Quality: Improve SW and documentation quality

(4) Maintainability: Improve design for maintainability

3.2 Technical Goals
In order to achieve these business goals, several technical goals have been identified that shall be
addressed within UC 5.2 according to their associated priority and available resources (see Table 3-1).

Please note: Goals with medium or low priority (T4, T5) are OPTIONAL for UC 5.2. These goals will be
addressed only if sufficient resources are available. The actual effort needed for achieving the high priority
goals (T1, T2, T3) cannot be accurately predicted. Therefore the decision has to be taken at a later stage.

ID Goal Description Priority

T1 Support of safety analysis Safety analysis shall be supported by modelling
techniques (beginning from functional analysis /
architectural design) by e.g.:
+ Safety viewpoint
+ Efficient generation of FMEA, FTA
+ Integration of safety requirements & SAC

HIGH

T2 Automatic test case
generation

Automatic generation of system / component test
cases based on test model or specification model

HIGH

T3 Support of verification and
validation

Support of V&V planning and management e.g. by
means of:
+ Guidance for V&V planning according to standards
+ Systematic checklist for validation
+ Verification status monitoring
+ Traceability to verification evidence

HIGH

T4 Model-based code
generation

Code generation e.g. from a SCADE implementation
model

MEDIUM

T5 Formal specification Formal system specification e.g. using Rodin/Event-B:
+ consistent and complete specification
+ verifiable by formal proof

LOW

Table 3-1: Technical goals of Use Case 5.2

All modelling artefacts shall support traceability, enabling at least the following traceability links:

+ From user requirements to system requirements

+ From system requirements to related component requirements

+ From component requirements to design elements and source code

+ From requirements to test cases

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 10 of 26

4 Modelling Methodologies
4.1 Model-Based Safety Analysis
4.1.1 General Concept
One major objective of UC 5.2 is model-based safety analysis (MBSA), in particular FMEA and FTA
analyses. The basis for this objective will most probably be a “safety viewpoint” of the system model, which
shall represent all safety-relevant properties and interactions of system components. It is expected that this
representation will use a dedicated safety meta-model (or profile), which allows to express e.g. fault
probabilities, possible fault propagation, fault detection etc.

4.1.1.1 Safety Viewpoint Approach
In the viewpoint approach different views of a system can be created and analysed separately but still refer
to the same set of components, thereby ensuring consistency between e.g. the safety viewpoint and the
architectural design viewpoint [Thomas, 2011]. For example, it is not possible to add a redundant component
in the safety analysis without adding it in the architecture, too.

Safety Viewpoint

Logical Architecture

Figure 4-1: Example illustration of viewpoint approach

4.1.1.2 Technical Goals
It is expected that the efficiency of the RAMS process, which is regulated by [EN-50126], can be significantly
improved by means of model-driven engineering. Therefore, the following technical goals are addressed in
UC 5.2:

1. Tool-based support for FMEA:

• Derive basic structures of FMEA from the (architectural/functional) system model based on a
set of predefined fault models (depending on component / function type), see [IEC 60812].
These predefined fault models (e.g. “too early”, “too late”, “no signal”) shall be derived from
an analysis of available information about existing approaches.

• Perform semi-automatic effect analysis based on knowledge about fault propagation

• Traceability links from failure modes to SAC (safety application conditions)

• Traceability links from failure modes to safety requirements

• The focus is on a qualitative analysis rather than on a quantitative one.

• Generally, the focus is on software, but hardware failures are in scope, too.

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 11 of 26

2. Tool-based support for FTA:

• Treat also the effects of combined (multiple) faults by enabling tool support for fault tree
analysis (FTA), see also [IEC 61025].

• Traceability links from (combined) failure modes to SAC (safety application conditions)

• Traceability links from (combined) failure modes to safety requirements

• The focus is on a quantitative analysis, but simple qualitative analysis shall be possible, too.
3. Forcing consistency between functional system model and safety viewpoint:

• Provide consistency checking tool: In the first run a consistency checker tool shall be
selected (from existing ones) or designed (newly). Most important is that barriers are directly
traceable to the respective items in the system model.

• Further, analyse the possibilities for creating the safety viewpoint automatically out of the
(architectural/functional) system model: According to available time and budget design a tool
for automated creation of the safety viewpoint can be added (at a later stage). This can help
to improve efficiency of the process by effort reduction through automation.

4. Visualization of the safety aspects by a safety viewpoint

• Define a suitable meta-model (or profile) to express safety properties and relations, e.g.
failure causes, failure modes, fault probabilities, fault propagation, barriers, etc

• This model shall be visualized, on the one hand supporting safety analysis and on the other
contributing to the safety case.

5. Tool support for designing safety mechanisms

• This activity is optional and will be carried out depending on available time and budget.

• A tool can propose appropriate barriers where - according to the safety analysis - part of the
system violates safety conditions

6. Impact analysis of changes

• Changes on the system model, on subsystems and components, on requirements or on
SACs have an impact on the validity of the safety analysis. Based on the implemented full
traceability, any influence can be tracked to all affected elements in the safety analysis.

• As a result of a respective check function, the affected parts of the safety analysis can be
annotated or recalculated.

7. Interoperability

• Models for software elements are mostly created with Eclipse tools, for which traceability to
the requirements in DOORS is important. It is intended to realize the coupling between
Eclipse and DOORS through an OSLC interface. In general, the use of a standard OSLC
interface shall enable to use other requirements databases than DOORS.

4.1.2 Tool Description (MB-RAMS)
Generally, the model-based (MB) RAMS process shall be achieved mainly by re-using existing MB tools and
where necessary adapting them to the specific needs of the use case. The tools shall be integrated with
WEFACT where appropriate (see also chapter 4.3.2).

MB-RAMS activities start from an architectural and functional system model expressed in UML/SYSML. For
this purpose using the shareware tool Papyrus Eclipse is foreseen. However, also UML/SYSML models
created and maintained with IBM Rational Rhapsody shall be integrated.

The FMEA shall be realized as a structured list, for which an appropriate tool will be selected. One of the first
choices there is the Eclipse plug-in ProR. The Failure Cause objects contained in this list shall be associated
with the respective attributes (according to the FMEA process) and linked to requirements and SACs (safety
application conditions).

A dedicated safety meta-model (or profile) for the safety viewpoint will be designed, covering all relevant
properties like fault probabilities, possible fault propagation, fault detection, etc.

A tool for creating the safety viewpoint will be selected and adapted if required. Tools like the Eclipse
extension OBEO will be assessed with respect to their applicability for creating and maintaining the safety

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 12 of 26

viewpoint. Particular attention will be dedicated to the aspect of traceability to requirements, architecture
elements, FMEA entries and safety application conditions (SAC).

Figure 4-2 in section 4.1.3 depicts the use of the tools with the various models and views.

4.1.3 Data Flow
Figure 4-2 shows the data flow for MB-RAMS activities and the tools used in the MB-RAMS activities.

Figure 4-2: Data Flow for MB-RAMS activities

Wide arrows represent the data flows; dashed arrows show for which data flows or checks tools are used.
Note that traceability is not depicted here but in Figure 5-2.

Logical
model

SysML/UML
modelling tool,
e.g. Rhapsody

List-oriented
modelling tool,

e.g. ProR

Safety
viewpoint

Logical
architecture

Safety
model

FMEA / FTA

VIEW

VIEW

Model
consistency

check

Safety
modelling tool,

e.g. OBEO

Requirements

Fault models

Requirements
management tool, e.g.

WEFACT / DOORS

Safety
Case

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 13 of 26

4.2 Model-Based Test Case Generation
4.2.1 General Concept
Another major objective of UC 5.2 is the automatic, model-based generation of test cases. The basic logic of
this approach is explained in Figure 4-3. In this approach, instead of manually writing and implementing test
cases, they are automatically derived from a model. Test cases are defined in terms of sequences of input
and output events of the system under test (SUT). The input events are used to stimulate the SUT in the test
run, the output events serve as reference for the test case verdict (pass/fail decision).

There are two possibilities: (1) If a separate test model is created independently from the implementation
model, the tests will check not only the implementation (e.g. code generation) but also the correct
interpretation of requirements in the system model. (2) If the system model is used also as test model, only
the code generation step will be verified. In that case other measures have to be taken to strengthen the
verification of the system model (e.g. formal verification, model checking).

In Figure 4-3 these two alternatives are indicated by green and violet arrows.

Figure 4-3: Logic of model-based test case generation

It is possible to combine test case generation from a test model with test case generation from an
implementation (either code or implementation model), thereby achieving both requirements and code
coverage with an overall optimized test suite.
There are various techniques for model-based test case generation. The test case generation tool to be used
in UC 5.2 is based on the discrimination of model mutants. An overview of this tool will be given in the
following section.

4.2.2 Tool Description (MoMuT::UML)
MoMuT::UML uniquely combines a powerful fault-based test case generation strategy with standard
techniques to deliver high quality test suites with an excellent cost/benefit ratio. The heart of this new
technology is the concept of fault seeding or mutation. Figure 4-4 depicts our underlying model-based
mutation testing approach: MoMuT::UML uses customizable mutation operators to derive mutated models
from the original test model. A mutated model is an exact copy of the original minus one change introduced
by the mutation operator. Given a mutant and the original specification, the backend searches for a
sequence of inputs and outputs that uncovers any design refining (“implementing”) the mutant instead of the

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 14 of 26

original. It is in the nature of mutation-based test case generation that one such sequence, i.e. test, finds
(“kills”) multiple mutated models and, hence, has the ability to find faults that are not directly modelled by a
mutation operator.
Mutation-based test case generation is the most fine-grained and versatile test generation technique
available today. In principle, mutation-based test case generation can not only be used to test functional
properties of designs but also to generate tests that detect certain non-functional defects. It also allows
MoMuT::UML to know exactly which faults are caught by a particular test case, analyze or extend existing
test sets, and help localizing faults by (a) automatically selecting a set of mutants that can explain faulty
behaviour and (b) creating a short test case to help with debugging.

Figure 4-4: Mutation-based test case generation is at the heart of MoMuT::UML

MoMuT::UML either uses the ioco (input-output conformance) relation or the refinement relation. It translates
UML to an internal representation with clearly defined semantics (action systems). The frontend can connect
to state-of-the-art model checkers for further design verification and is able to trigger both, the concrete and
the symbolic test case generation backend. The backends also support model animation features.

Figure 4-5: Usage variants of mutation-based TCG tools
a) generate test case for killing a certain mutant

b) check whether an existing test case kills a mutant
c) check whether an existing test case complies with the original behaviour

Test
Case

Orig.
Model Mutant Kill

Check

Kill?
Yes/No

Test
Case

Orig.
Model

Validate
TC

Compliant?
Yes/No

Test
Case

Orig.
Model Mutant

TCG

a) b) c)

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 15 of 26

As shown in Figure 4-5, there are multiple ways to use the tool – generating the test cases for a mutant,
checking the quality of test cases by checking how many mutants they kill and using the model as an oracle
to decide which behaviours are compliant with the model.
By combining variants a) and b), pre-existing test cases can be evaluated for their mutation coverage and
only test cases for the missing mutants are created then. The pre-existing test cases can be legacy test
cases, can come from other tools (including white-box test case generation) or can come from prior system
iterations.

Figure 4-6 shows an example screenshot of the graphical user interface of MoMuT::UML, which was
produced with the symbolic TCG backend.

Figure 4-6: Screenshot of the MoMuT::UML tool

4.2.3 Data Flow
The following artefacts are involved in the envisaged data flow of model-based testing:

Input to TCG:
(1) Test model (System model including traceability from requirements to model objects)

(2) Test configuration (definition of model variables, instantiation, etc.)

(3) Pre-existing test cases (optional)

Output of TCG:
(4) Abstract test cases (sequences of input / output events)

(5) Traceability matrix test case to requirements

The role of these artefacts is depicted in the following data flow diagram.

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 16 of 26

Test execution

(incl. converters, result check)

Abstract Test Cases
(input/output events)

Abstract Test Cases
(input/output events)

Abstract Test Cases
(input/output events)

Test Report

Test configuration

Test Case Generator

(MoMuT::UML)

Test model
(UML, SysML,…)

TC-REQ
Traceability Matrix

Pre-existing
Test Cases

Pre-existing
Test Cases

Figure 4-7: Automatic test case generation and related data flows

The test execution may contain several stages, including

• test case translation (to specific test scenario and golden trace files)

• actual test run

• test result check (verdict)

• test report compilation

MoMuT::UML can be configured by means of a configuration file that controls the test case generation. This
file defines e.g. the mutation operators and the mutated elements.

Information about failing test cases can be fed back into the test case generator for generation of short test
cases to isolate the problem.

4.3 Verification & Validation Management
4.3.1 General Concept
The idea of the V&V management tool is to support the following activities

• Define verification activities (tests, analyses, reviews) according to applicable standards

• Trace and check verification evidence

• Monitor status of verification activities

• Check completeness of verification activities

• Re-validate documents and test results after changes

In addition, the tool can serve as systematic guidance for validation and safety audits. For this purpose, the
envisaged V&V management tool should have the following features:

• Systematic guidance through requirements of applicable CENELEC standards

• Creation and maintenance of a hierarchical list of verification activities

• Edit verification status of each defined activity

• Create traceability links to elements of other artefacts (paragraph in document, test reports, etc.)

• Detect need for re-validation of documents / test results

• Generate overall statistics of verification status

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 17 of 26

4.3.2 Tool Description (WEFACT)
The “Workflow Engine for Analysis, Certification and Testing” (WEFACT) [Erwin Schoitsch, 2006] has the
goal to facilitate validation, verification and certification of safety-critical systems in a modular manner.
WEFACT consists of the WEFACT framework which provides a flexible infrastructure for defining and
executing the V&V process and the external resources – external processes, tools and standards – which
are integrated into the WEFACT framework by well-defined interfaces. Additionally, an extensive on-line user
guide (“help file”) including a v-plan cook book (“How to develop a v-plan”) is available.
The overall organization of the WEFACT framework is shown in Figure 4-8. The gray boxes show the
elements of the WEFACT framework, the white boxes show the rest of the elements of the WEFACT
(belonging to the external systems), vertical alignments indicate ‘uses’ or ‘consists of’ relationships whereas
the arrows indicate major information flows.
The safety case is an argumentation to convince a licensing authority that a product is “sufficiently safe”.
Typically a safety case comprises the necessary safety arguments which correspond to the validation plans
(v-plans) for each artefact under test (AUT) and the related evidence.

Feedback to
developer

External tools

Certification
arguments

AUT (artefact
under test)

instantiation

Other sources
(e.g. domain)

Standard(s)

Artefact
Evidence

Negative
Results

V&V
Methods

Incomplete
Results

V&V Activities

Safety Case

Positive
Results

WEFACT framework (implementation in DOORS)

Requirements

V&V Tools

V-Plan
Validation

Report

Figure 4-8: Overall organization of the WEFACT framework

The WEFACT framework is implemented with IBM Rational DOORS which is based on distributed
client/server architecture. The data such as v-plans, V&V activities, requirements is stored in the central
DOORS database whereas the documents such as evidence and reports are stored in a separate document
repository. In order to setup the WEFACT framework for a user, he or she installs the DOORS client in order
to have access to the data and sets up the access to the document repository.

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 18 of 26

4.3.3 Data Flow

The WEFACT tool does not exchange data with other tools but rather manages links and references to
elements of other documents, data base records, model elements, etc.

V&V File

V&V Management

(WEFACT)
Eclipse IDE

<<access>>

<<storage>>

RM Tools
<<access>>

Figure 4-9: Dependencies of V&V management on other artefacts

Based on the CRYSTAL IOS, the tool will interface with any other requirements management tool (not only
DOORS). Access from Eclipse tools to the V&V management will also be possible.

4.4 Code Generation (OPTIONAL)
To close the gap between design modelling and SW code, another goal for UC 5.2 is the integration of
automatic code generation from a design / implementation model. However, this goal is optional and will be
addressed in UC5.2 only if sufficient resources are available.

The tool that is currently considered for code generation is Esterel’s SCADE Suite. It comes with a C code
generator that is certified according to several international safety standards, e.g. [EN-50128].

The SCADE modelling language is a data-flow oriented modelling language that combines state diagram
and activity diagram elements in a common diagram. The model is structured by operators which can be
reused by instantiation. The model is processed in a fixed processing loop, which provides unambiguous
runtime semantics. It therefore represents a platform independent model (PIM).

More information can be found e.g. in the SCADE Suite’s online documentation [SCADE].

4.5 Formal Specification (OPTIONAL)
Another innovative modelling method, which will be optionally integrated into UC 5.2, is model-based, formal
specification using the formal specification language Event-B together with the Eclipse-based development
platform RODIN.

Formal specification using Event-B is able to provide a consistent and complete system specification that
can be verified by formal proof. Complex systems can be managed using the principles of abstraction and
refinement. Please refer to [Abrial, 2009] or Abrial’s textbook [Abrial,2010] for more detailed information.

Recently emerging graphical modelling tools for Event-B, e.g. UML-B [Snook, 2008], have increased the
usability of formal specification in engineering of complex systems.

The RODIN Platform is an Eclipse-based IDE for Event-B that provides effective support for refinement and
mathematical proof. The platform is open-source, contributes to the Eclipse framework and is further
extendable with plug-ins [Event-B, RODIN].

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 19 of 26

5 Integration of Processes
A major goal of CRYSTAL is to smoothly integrate the new MDE methods and artefacts into the overall
development processes.

For this two different kinds of integration between artefacts have to be considered:

(1) Data processing interfaces: A tool can access and process data of another tool. (In case of inter-
operability two different tools can process the same artefact.)

(2) Traceability: The elements of an artefact can carry references to the elements of another artefact.

The following sub-sections summarize the interfaces and traceability links that are relevant for UC 5.2.

5.1 Data Processing Interfaces
Figure 5-1gives an overview of the main tools and artefacts of the UC 5.2 development process. New
artefacts that shall be integrated within CRYSTAL are highlighted in cyan. The yellow boxes stand for
conventional model artefacts.

Furthermore, the figure shows the new data processing interfaces between tools. Those that are foreseen for
automatic processing are marked by green connectors. Semi-automatic processing, which is going to be
applied for FMEA and FTA generation, is marked by orange arrows.

Please note that the usage of model-based test case generation for integration testing is technically possible.
However, its practical usefulness has to be further analyzed.

RM Tool

Safety App.
Conditions (SAC)

Test Execution Platform

V&V Manager

Test Modeling Tool

Rodin (OPTIONAL)

Test Case Generator

RM Tool

Software Repository

UML Tool (DM)

Architecture Modeling (AM) Tool

RM Tool

Comp. Design

Models

Requirements Management (RM) Tool

User
Requirements

System
Specification

System Test
Cases

Specification

Model

Source Code

Arch. Model

(SysML, UML)

V&V File
Standards

System Test

Model
System Safety
Requirements

Safety Model

(Viewpoint)

Binaries

System Test
Reports

Component
Specification

Comp. Safety
Requirements

Safety Analysis (SA) Tool

FMEA
FTA

Manual elaboration

Component

Test Models
Component
Test Cases

Component
Test Reports

Integration
Test Reports

SCADE (OPTIONAL)

Design/Impl.

Models

Semi-automatic processing

Automatic processing

New artefacts
considered for UC 5.2

Other model artefacts
Dashed = OPTIONAL for UC 5.2

Figure 5-1: Overview of UC 5.2 development process showing data processing interfaces

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 20 of 26

5.2 Traceability
Traceability between artefacts is of ultimate importance for the engineering of complex and safety-critical
systems. This applies even more for traceability with or from model artefacts.

Traceability does not only consist of the storage of links. The tools must also support tracing, i.e. following
the links and also relating objects via multiple links. For example, the following traceability capabilities will be
useful in UC 5.2:

• Tracing failed V&V activities to requirements

• Tracing failed test cases to model elements in the test model

• Tracing successful V&V activities to fulfilled (safety) requirements

There are two types of traceability links that have to be distinguished in order to avoid accidental corruption
and inconsistency of traceability links:

• Primary links: Links that must initially be established by an engineer.

• Derived links: Links that are derived from primary links and cannot be edited.

The following subsections describe the necessary traceability links that have been identified for the high-
priority bricks (referring to goals T1-T3) in a preliminary analysis. Primary links are represented by red
connectors, derived ones by black ones with a dashed line.

5.2.1 Traceability for Model-Based Safety Analysis
The primary and derived traceability links that are relevant for MB-RAMS are depicted in Figure 5-2.

SA Tool
AM Tool

RM Tool

Architecture

Model

(SysML, UML)

System Safety
Requirements

Comp. Safety
Requirements

FMEA/FTA
(Fault info)

Safety App.
Conditions (SAC)

Safety Model

(Safety properties

& measures)

Failure cause => AM element

Failure cause <=> Safety properties

Safety Properties => AM element

Failure cause => Req / SAC Safety property => Req / SAC

Figure 5-2: Relevant traceability links for model-based safety analysis

5.2.2 Traceability for Model-Based Test Case Generation
The primary and derived traceability links that are relevant for MoMuT::UML are depicted in Figure 5-3.

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 21 of 26

Test Modeling Tool

Test Case GeneratorRM Tool

System / Comp.
Specification

System Test
Cases

Safety
Requirements

TC => Model ElementModel element => Requirement

System Test

Model

TC => Requirement

Figure 5-3: Relevant traceability links for model-based test case generation

5.2.3 Traceability for V&V Management
The V&V file is essentially a large collection of traceability links to verification targets (e.g. a paragraph of a
safety standard) and to verification evidence items. Therefore the V&V Management Tool has to support
various kinds of traceability links, e.g. to:

• entire artefacts (version)

• individual requirement objects

• model objects

• source code objects

• text documents (or sections of it)

An overview of the applicable traceability links that are relevant for WEFACT is given by Figure 5-4.

Test Cases

RM Tool

Modeling Tool (AM, DM)

RM Tool

Comp. Design

Models

RM Tool

User
Requirements

System
Specification

System Test
Cases

Source Code
Files

Architecture

Model (UML)

Standards System Safety
Requirements

Text Documents
(DOCX, HTML, PDF,…)

Component
Specification

Comp. Safety
Requirements

Integration
Test Cases

SCADE (OPTIONAL)

Design/Impl.

Models

Component
Test Cases

Test Reports

System Test
Reports

Integration
Test Reports

Component
Test Reports

V&V Manager

V&V File

Links to verification
evidence

Links to verification targets
(artefacts or particular requirements)

Figure 5-4: Relevant traceability links for verification & validation management

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 22 of 26

6 Functional Requirements on Modelling Tools

6.1 General and Interoperability Requirements

ID Title Description Priority

GEN-01 Eclipse Integration Thales Austria aims for integration of as
many development related task types as
possible into their Eclipse based
development environment. The need for
switches to other tools/work environments
for the tasks addressed in the SEE shall be
minimized (within reasonable effort).

HIGH

GEN-02 RM agnostic integration Integration with requirement management
shall be transparent with respect to the
used Requirements Management Tool and
the real location of the requirement for other
tools in the SEE.

HIGH

GEN-03 Traceability between MDE
artefacts and code

Traceability shall be granted for all levels of
requirements and associated artefacts
down to the source code level

HIGH

6.2 Model-Based Safety Analysis (MB-RAMS)

ID Title Description Priority

MBR-01 Safety model tool support Tool support for creating the safety model HIGH

MBR-02 Safety model check Consistency and completeness check
between architectural/functional model and
safety model

HIGH

MBR-03 Safety model visualisation Visualization of the safety model (Safety
Viewpoint)

HIGH

MBR-04 FMEA structures Deriving structures for a qualitative FMEA
from system model and fault models.

HIGH

MBR-05 Safety model traceability Realize full traceability between (1) all items
in the safety model including safety
properties and relations (2) functions and
components or elements in the system
model, (3) the safety requirements and (4)
objects of the FMEA and FTA.

HIGH

MBR-06 FMEA generation Semi-automatic generation of qualitative
FMEA including effects, based on system
model, fault models and safety model

HIGH

MBR-07 FTA generation Semi-automatic generation of FTA for
treating effects of multiple faults based on
system model and fault models

MEDIUM

MBR-08 Impact analysis Tool-based support for analysing the impact
of changes in requirements,
functional/architectural model or
components used on the safety model

MEDIUM

MBR-09 Safety model generation Automatic creation of the safety model from
system model, FMEA, FTA and SACs.

LOW

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 23 of 26

MBR-10 Safety mechanisms tool Provide tool support for (a) checking
implemented safety mechanisms for
consistency with safety model and safety
requirements, or (b) proposing or creating
respective safety functions (barriers) to
cope with the safety requirements

LOW

6.3 Automatic Test Case Generation (MoMuT::UML)

ID Title Description Priority

TCG-01 Generate test cases from
a UML test model

Generate test cases from a system test
model in UML (Black Box Testing)

HIGH

TCG-02 Coverage selection Select coverage for test cases by mutation
operators, related requirements, and model
elements.

HIGH

TCG-03 Test model elements
traceability

Relate test model elements to requirements
(safety or not)

HIGH

TCG-04 Test case - model
traceability

Relate test cases to model elements HIGH

TCG-05 V&V activity - test case
traceability

Relate V&V activities to test cases

HIGH

TCG-06 Generate component test
cases (Black Box Testing)

Generate test cases from a component test
model

HIGH

TCG-07 Generate test cases from
an implementation model

Generate test cases from an implementation
model in SCADE

MEDIUM

TCG-08 Incremental test case
generation

Extending component test cases to
integration or system test cases.

MEDIUM

6.4 Verification & Validation Management (WEFACT)

ID Title Description Priority

VVM-01 V&V success tracing Trace successful V&V activities to fulfilled
(safety) requirements

HIGH

VVM-02 V&V fail tracing Trace failed V&V activities to requirements HIGH

VVM-03 TCG fail tracing Trace failed test cases to model elements in
the test model

HIGH

VVM-04 Standards guidance Systematic guidance through requirements of
applicable CENELEC standards

HIGH

VVM-05 Hierarchical V&V
activities list

Creation and maintenance of a hierarchical
list of verification activities

HIGH

VVM-06 Verification status input Edit verification status of each defined activity HIGH

VVM-07 Creation of traceability
links

Create traceability links to elements of other
artefacts (paragraph in document, test
reports, etc.)

HIGH

VVM-08 Detection of re-validation
need

Detect need for re-validation of documents /
test results

HIGH

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 24 of 26

VVM-09 Verification status
statistics

Generate overall statistics of verification
status

MEDIUM

VVM-10 Artefact versioning Support versioning of associated artefacts HIGH

VVM-11 V-plan version control Support version control of V-plan HIGH

VVM-12 Traceability for new
artefacts

Transfer link to new version of target artefact MEDIUM

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 25 of 26

7 Terms, Abbreviations and Definitions

Please add additional terms, abbreviations and definitions for your deliverable.

AM Architecture Model

CRYSTAL Critical SYSTem Engineering AcceLeration

CO Dissemination level “Confidential” (only for members of the consortium, including the JU)

DM Design Model

FMEA Failure Mode and Effect Analysis

FTA Fault Tree Analysis

IDE Integrated Development Environment

MB-SA Model Based Safety Analysis

MB-RAMS Model Based RAMS

MDE Model Driven Engineering

MOMUT Model Mutation based Test case generation

R Deliverable Type “Report”

RAMS Reliability, Availability, Maintainability and Safety

RM Requirements Management

RODIN Rigorous Open Development Environment for Complex Systems

SA Safety Analysis

SAC Safety Application Condition

SEE System Engineering Environment

SM Safety Model

SP Subproject

TAS PLF Abbreviation for “TAS Control Platform”

TCG Test Case Generator

UC Use Case

UML Unified Modelling Language

WEFACT Workflow Engine for Analysis, Certification and Testing

WP Work Package

Table 7-1: Terms, Abbreviations and Definitions

D502.010 Use Case Definition�

Version Nature Date Page

V1.01 R 2013-11-04 26 of 26

8 References

[EN-50126] European Standard EN 50126; Railway Applications – The specification and
demonstration of Reliability, Availability, Maintainability and Safety (RAMS); CENELEC
September 1999

[EN-50128] European Standard EN 50128; Railway applications - Communication, signalling and
processing systems - Software for railway control and protection systems; CENELEC June
2011

[IEC 60812] International Electrotechnical Commission; Analysis techniques for system reliability –
Procedure for failure mode and effects analysis (FMEA), 2006

[IEC 61025] International Electrotechnical Commission; Fault tree analysis (FTA), 2006

[SCADE] Online documentation of Esterel SCADE Suite;
URL: http://www.esterel-technologies.com/products/scade-suite/

[Event-B,
RODIN]

Event-B and the Rodin Platform;
URL: http://www.event-b.org/

[Schoitsch,
2006]

Egbert Althammer, Henrik Eriksson, Jonny Vinter, László Gönczy, András Pataricza,
György Csertán; Validation and Certification of Safety-Critical Embedded Systems - The
DECOS Test Bench ; International Conference on Computer Safety, Reliability and
Security - SAFECOMP, Proceedings, pp. 372-385, 2006

[Gerstinger et.
al., 2008]

A. Gerstinger, H. Kantz and C. Scherrer; TAS Control Platform: A Platform for Safety-
Critical Railway Applications; October 2008 (ERCIM News Nr. 75)

[Abrial, 2010] J.-R.Abrial; Modeling in Event-B – System and Software Engineering; text book, published
by Cambridge University Press

[Snook, 2008] C. Snook and M. Butler; UML-B and Event-B: an integration of languages and tools;
IASTED International Conference on Software Engineering – SE2008, Innsbruck

[Abrial, 2009] J.-R. Abrial et. al.; Rodin: An Open Toolset for Modelling and Reasoning in Event-B;
International Journal on Software Tools for Technology Transfer, 12

[Thomas,
2011]

F. Thomas, F. Belmonte; Using Topcased and a Viewpoint-based Framework to describe
Safety Concerns of Railway Signalling Systems; Proceedings of the Topcased Days,
Toulouse, France, February 2011

