
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE CRYSTAL CONSORTIUM. NEITHER THIS
DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED BY ANY
MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE CESAR
CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT. THE
RESEARCH LEADING TO THESE RESULTS HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S SEVENTH
FRAMEWORK PROGRAM (FP7/2007-2013) FOR CRYSTAL – CRITICAL SYSTEM ENGINEERING ACCELERATION JOINT
UNDERTAKING UNDER GRANT AGREEMENT N° 332830 AND FROM SPECIFIC NATIONAL PROGRAMS AND / OR FUNDING
AUTHORITIES.

CRitical SYSTem Engineering AcceLeration

Brick Interfaces
D502.020

D502.020 Brick Interfaces

Version Nature Date Page

V1.01 R 2014-04-30 2 of 18

DOCUMENT INFORMATION

Project CRYSTAL

Grant Agreement No. ARTEMIS-2012-1-332830

Deliverable Title Brick Interfaces

Deliverable No. D502.020

Dissemination Level CO

Nature R

Document Version V1.01

Date 2014-04-30

Contact Rupert Schlick

Organization AIT

Phone +43 50550 4124

E-Mail rupert.schlick@ait.ac.at

mailto:rupert.schlick@ait.ac.at

D502.020 Brick Interfaces

Version Nature Date Page

V1.01 R 2014-04-30 3 of 18

AUTHORS TABLE

Name Company E-Mail

Rupert Schlick AIT rupert.schlick@ait.ac.at

CHANGE HISTORY

Version Date Reason for Change
Pages

Affected

V0.01 2014-01-14 Initial version All

V0.02 2014-04-28 Refined structure, pre-Final Section 3.2 All

V0.03 2014-04-28 Extended section 4 (section 4)

V0.04 2014-04-28 Ready for WP internal Review All

V1.00 2014-04-29 Reviewed by TRAIL All

V1.01 2014-04-30 Integrated WP external review comments from TTTech
2,3,7,8,9,11,12,14,

15

D502.020 Brick Interfaces

Version Nature Date Page

V1.01 R 2014-04-30 4 of 18

CONTENT

1 INTRODUCTION .. 6

1.1 ROLE OF DELIVERABLE ... 6
1.2 RELATIONSHIP TO OTHER CRYSTAL DOCUMENTS .. 6
1.3 STRUCTURE OF THIS DOCUMENT ... 6

2 USE CASE CONTEXT .. 7

3 INTERACTION ... 8

3.1 DEVELOPMENT ACTIVITIES OVERVIEW .. 8
3.2 TOOL INTERACTION SCENARIOS .. 8

3.2.1 Technical Requirements Specification .. 8
3.2.2 Architecture and Specification Model Development ... 9
3.2.3 Safety Analysis ... 9
3.2.4 Implementation ... 9
3.2.5 Module Test .. 9
3.2.6 V&V Management and Documentation... 10

4 TOOLS AND THEIR INTERFACES ... 11

4.1 REQUIREMENTS MANAGEMENT .. 11
4.1.1 DOORS .. 11
4.1.2 ProR ... 11

4.2 MODELLING ... 12
4.2.1 Rodin .. 12
4.2.2 Topcased/Papyrus MDT ... 13

4.3 SAFETY ANALYSIS .. 13
4.3.1 Safety Architect .. 13

4.4 IDE .. 14
4.4.1 Eclipse for implementation .. 14

4.5 TEST CASE GENERATORS .. 14
4.5.1 MoMuT::UML .. 14
4.5.2 MoMuT::Event-B .. 15
4.5.3 Sonar .. 15

4.6 TEST EXECUTION .. 15
4.6.1 Hudson build and test server .. 15

4.7 WORKFLOW AND TRACEABILITY ... 16
4.7.1 WEFACT ... 16
4.7.2 Mylyn task management front end .. 16

5 TERMS, ABBREVIATIONS AND DEFINITIONS ... 18

D502.020 Brick Interfaces

Version Nature Date Page

V1.01 R 2014-04-30 5 of 18

Content of Figures

Figure 2-1: Artefacts in the development process and (semi-)automated activities... 7
Figure 3-1: Development Activities ... 8

Content of Tables

Table 5-1: Terms, Abbreviations and Definitions ... 18

D502.020 Brick Interfaces

Version Nature Date Page

V1.01 R 2014-04-30 6 of 18

1 Introduction

1.1 Role of deliverable
This document is the second deliverable of the WP5.2 of the CRYSTAL project. It describes the interactions
and interfaces for the bricks to be used in the use case.

1.2 Relationship to other CRYSTAL Documents

Builds on D502.010 TRAIL Use Case Definition.

Provides foundations for D604.902 Safety Tools Specification, Development and Assessment Report V2 and
D502.902 TRAIL Use-Case Development Report - V2

1.3 Structure of this document
Chapter 2 briefly summarizes the development process and artefacts as elaborated in D502.010.

Chapter 3 gives an overview of the overall brick interactions and describes the scenarios in which tools
interact or interoperate.

Chapter 4, finally, defines the interfaces used, also giving an initial gap analysis, describing the existing
assets and highlighting the developments done within the project.

D502.020 Brick Interfaces

Version Nature Date Page

V1.01 R 2014-04-30 7 of 18

2 Use Case Context

The main new aspects in the systems engineering environment for this use case are model based safety
analysis and model based test case generation, accompanied with improved automated tracking and
reporting of verification and validation activities.

Figure 2-1 shows the overview over artefacts and tools for the whole development process, based on the V-
model as blocks, with process steps deriving one artefact from another as arrows. Arrows highlighted in red
and green are the above mentioned new aspects being in the centre of attention for this use case.

V&V Manager

Test Modeling Tool

Rodin

Test Case Generator

Req Management Tool

Software

Design Modeling Tool

Architecture Modeling Tool

Req Management Tool

Component Design
Models (UML, SCADE)

Req Management Tool

User

Requirements

System

Requirements

System Test

Cases

Specification
Model

Source Code

Architecture
Model (UML)

Component
Test Models

V&V Report

Standards

System Test
Model

System Safety

Requirements

Safety Model
(Viewpoint)

Component

Test Cases

Binaries

System Test

Reports

Component

Test Reports
Component

Specification

Comp. Safety

Requirements

Safety Analysis Tool

FMEA

FTA

Safety App.

Conditions (SAC)

Integration

Test Reports

Automatic data flow

Semi-automatic data flow

Figure 2-1: Tools and artefacts in the development process.

D502.020 Brick Interfaces

Version Nature Date Page

V1.01 R 2014-04-30 8 of 18

3 Interaction

3.1 Development Activities Overview

V&V Management and Documentation

Customer Requirements
Specification

Technical Requirements
Specification

Architecture and
Specification Model

Development

Safety Analysis Implementation

Module Tests

Test Generation

Test Transformation

Test Execution

Figure 3-1: Development Activities

For defining tool interaction scenarios, we focus on the activities needed to create and maintain the artefacts
given in Figure 2-1, rather than the tools used to do so. Figure 3-1 gives an overview of the development
activities mainly addressed in the use case and general dependencies between them, without giving explicit
artefacts and tools. In the next subsection, tool interaction scenarios for these activities are described.
Source code version management is kept as is and not included in the interaction scenarios. Nonetheless,
references to artefacts under version control need to provide means to document the referenced version.

3.2 Tool Interaction Scenarios
In this section, for the development tasks within the scope of the use case, activities/situations where a user
will need or manipulate information from more than one tool are given in requirements style where “shall” is
used to express the requirement nature of the descriptions. Non-mandatory aspects use “should”. The
scenarios try to follow the expressed policy at TRAIL that a developer should be able to do as much as
possible from within the Eclipse development environment.

There are four types of interactions planned:

 Establishing and following traceability links

 Import of data (structure)

 Automated execution

 Information on updates/changes of elements in another tool

3.2.1 Technical Requirements Specification

Used integration types:

D502.020 Brick Interfaces

Version Nature Date Page

V1.01 R 2014-04-30 9 of 18

 Establishing and following traceability links

When defining technical requirements link references to user requirements, system variants and scenarios
shall be recorded. The requirements editor embedded in Eclipse shall provide a possibility to add a
reference. This shall open a selection dialog from the respective source and establish the link on both sides.

When reviewing requirements, a preview of the related artefacts (user requirements, variants, scenarios)
shall be available.

3.2.2 Architecture and Specification Model Development

Used integration types:

 Establishing and following traceability links

Specification models, further refining the technical requirements, shall trace back to the technical
requirements. In order to enter these requirement references, a dialog for adding them to the model shall be
provided.

When using UML models, a way to fill a stereotype tag slot with a reference to a (technical) requirement shall
be provided. The stereotypes and tags to fill shall be either defined in the SysML profile or in a proprietary
profile. For Event-B as specification model, establishing links from model elements to requirements shall be
provided in the editor. In both cases, previews of the requirements in the editor shall be available. If possible,
the link should be navigable from both sides – requirement to model element and model element to
requirement.

3.2.3 Safety Analysis

Used integration types:

 Establishing and following traceability links

 Import of data (structure)

The architecture of the system shall be imported from the specification model. References back to the origin
are to be kept in sync. Results of the safety analysis may lead to additional (safety) requirements and
additional architecture elements – pre-filled creation dialogs, together with implicit linking to the respective
safety analysis result shall be provided.

3.2.4 Implementation

Used integration types:

 Establishing and following traceability links

It shall be possible to easily embed references to requirements and to specification model elements into the
source code (e.g. via drag and drop from the requirements editor). A notation to uniquely identify source
code locations shall be defined. Adding references to the source code shall establish a backlink from the
requirements and model elements referenced. If possible, a preview of the referenced model from within the
source code editor should be provided.

3.2.5 Module Test

Used integration types:

 Establishing and following traceability links

 Automated execution

Module tests are done in the following steps:

 Generation of test cases from the model

 Transformation from test cases to test scripts

D502.020 Brick Interfaces

Version Nature Date Page

V1.01 R 2014-04-30 10 of 18

 Execution of tests

For all three steps, remote execution without user interaction shall be provided. The following traceability
links shall be persisted:

 Model element to test case (possibly including parameters, like mutation operators)

 (Abstract) test case to (concrete) test script

 Test script to test result

Queries shall be provided to give information about which test cases are new or obsolete from the last
model/requirements iteration and to allow prioritisation of test cases for test execution (e.g. new tests first,
shortest tests first, most effective tests i.e. tests with high coverage first)

Additionally, coverage analysis steps shall be provided, establishing coverage links to model elements and
to source code locations.

Automatically creating entries in the issue management system for failed test runs shall be supported.

3.2.6 V&V Management and Documentation

Used integration types:

 Establishing and following traceability links

 Automated execution

 Information on updates/changes of elements in another tool

Verification and validation activities are planned based on requirements, standards, defined processes and
safety analysis results. This is done in part automatically and in part by a V&V engineer. Automatically
created plans shall be automatically linked to the artefacts they are derived from. For plans created by a
user, dialogs for establishing the links shall be provided. Previews of the related elements shall be shown on
user request.

There are three modes of execution of the planned activities. All three are available as soon as the input
dependencies for the activity are available and the output of the activities is outdated with respect of to the
version of the inputs.

 Fully automated execution of the activities

 User triggered automated execution from the user’s task list

 Manual execution and documentation of the results via the user’s task list

Updates of artefacts on which the execution of V&V activities depends on shall be observed automatically.

When analysing execution progress, links to related artefacts shall be provided in a way that allows preview
of the artefacts.

Viewing of the user’s V&V management task list shall be possible in the same way as tasks in the issue
management system.

D502.020 Brick Interfaces

Version Nature Date Page

V1.01 R 2014-04-30 11 of 18

4 Tools and their interfaces
In the following, the interfaces of tools to be interconnected are described. The tools are grouped by tool
classes.

There are plans at TRAIL to use tools for managing variants and scenarios in the future. These tools are not
part of the use case, but are supported by foreseeing additional link targets in the technical requirements.

With the exception of the safety analysis tools, all interoperability requirements can be fulfilled by
implementing currently released OSLC specifications, namely:

 Architecture Management
1

 Asset Management
2

 Automation
3

 Change Management
4

 Quality Management
5

 Requirements Management
6

4.1 Requirements Management

4.1.1 DOORS

DOORS is a requirements management system from IBM and already used at TRAIL for management of
user requirements.

Interoperability features:
OSLC RM provider:

 requirements selection (delegated UI or OSLC query)

 requirements creation (delegated UI or OSLC requirements factory)

 requirements link creation (OSLC requirements factory)

 requirements update and requirements link update (OSLC requirements CRUD interface)

 requirements preview

Delegated user interfaces included/used:

 linked model elements preview

 linked requirements preview

Eclipse integration:

will be done via DOORS web access in an embedded browser

Availability:
DOORS provides a full OSLC RM implementation

4.1.2 ProR

ProR is an Eclipse plugin for requirements management. It’s currently planned to be used for managing
technical requirements. ProR is already integrated with the Event-B platform Rodin, it is planned to reuse this
integration and harmonize it with the other RM interoperability approaches.

Interoperability features:

1
 http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-

Version-2.0/
2
 http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-Specification/

3
 http://open-services.net/wiki/automation/OSLC-Automation-Specification-Version-2.0/

4
 http://open-services.net/bin/view/Main/CmSpecificationV2

5
 http://open-services.net/bin/view/Main/QmSpecificationV2

6
 http://open-services.net/bin/view/Main/RmSpecificationV2

http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-Specification/
http://open-services.net/wiki/automation/OSLC-Automation-Specification-Version-2.0/
http://open-services.net/bin/view/Main/CmSpecificationV2
http://open-services.net/bin/view/Main/QmSpecificationV2
http://open-services.net/bin/view/Main/RmSpecificationV2

D502.020 Brick Interfaces

Version Nature Date Page

V1.01 R 2014-04-30 12 of 18

OSLC RM provider:

 requirements selection (delegated UI or OSLC query)

 requirements creation (delegated UI or OSLC requirements factory)

 requirements link creation (OSLC requirements factory)

 requirements update and requirements link update (OSLC requirements CRUD interface)

 requirements preview

OSLC RM consumer:

 requirements link creation (OSLC requirements link factory)

Delegated user interfaces included/used:

 linked model elements preview

 linked requirements preview

Eclipse integration:

ProR is an Eclipse plugin

Availability:

Provision of an OSLC RM interface is an open feature request for ProR. Currently it is unclear how and when
this will be implemented.

4.2 Modelling

4.2.1 Rodin

Rodin is an Event-B modelling environment implemented on top of the Eclipse platform. It’s one of the
currently planned options to create and maintain specification models. Rodin features a notion of model
refinement and supports refinement checking of a new refinement towards a more abstract prior refinement.

Interoperability features:
OSLC AM provider:

 architecture element selection (delegated UI or OSLC query)

 architecture element creation (delegated UI or OSLC architecture element factory)

 architecture element link creation (OSLC architecture element factory)

 architecture element update and architecture element link update (OSLC architecture element CRUD
interface)

 architecture element preview

OSLC RM consumer:

 requirements link creation (OSLC requirements link factory)

Delegated user interfaces included/used:

 requirements selection dialog

 linked requirements preview

 linked test case preview

Eclipse integration:

Rodin is an Eclipse plugin

Availability:

IOS integration has to be developed. It is not yet clear how Rodin’s file based paradigm will be adapted to
provide web-based IOS access to the model for linking.

D502.020 Brick Interfaces

Version Nature Date Page

V1.01 R 2014-04-30 13 of 18

4.2.2 Topcased/Papyrus MDT

Topcased is an UML modelling environment implemented as an Eclipse plugin. It uses the Papyrus MDT
UML modelling component, which can also be used without the rest of Topcased. It is one of the currently
planned options to create and maintain specification models.

Interoperability features:
OSLC AM provider:

 architecture element selection (delegated UI or OSLC query)

 architecture element creation (delegated UI or OSLC architecture element factory)

 architecture element link creation (OSLC architecture element factory)

 architecture element update and architecture element link update (OSLC architecture element CRUD
interface)

 architecture element preview

OSLC RM consumer:

 requirements link creation (OSLC requirements link factory)

Delegated user interfaces included/used:

 requirements selection dialog

 linked requirements preview

 linked test case preview

Eclipse integration:

Topcased and Papyrus/MDT are Eclipse based tools

Availability:

In the project MBAT an integration approach for Papyrus has been developed by other partners. Reuse of
this integration still has to be investigated further. It is not yet clear how Papyrus/MDT’s file based paradigm
will be adapted to provide web-based IOS access to the model for linking.

4.3 Safety Analysis

4.3.1 Safety Architect

Safety Architect is a safety engineering tool by All4Tec.

Interoperability features:
OSLC AM consumer:

 architecture element and architecture element link CRUD interface

 architecture element query

OSLC RM consumer:

 requirement and requirement link CRUD interface

Safety resources provider

 safety resource read

 safety resource link CRUD

Delegated user interfaces included/used:

 architecture element preview

 architecture element selection

 architecture element creation

 requirement creation

Eclipse integration:

n/a

Availability:

D502.020 Brick Interfaces

Version Nature Date Page

V1.01 R 2014-04-30 14 of 18

All4Tec is developing the IOS integration for safety architect within CRYSTAL. Safety features to be exposed
via the safety resource provider are not fully defined yet (faults, barriers, failure modes, ..) and are not
supported by OSLC/IOS definitions up to now.

4.4 IDE

4.4.1 Eclipse for implementation

The Eclipse Java development environment is used for implementation. An approach for referencing to
source code elements is already in place. Advantages and drawbacks of changing this to use IOS will be
investigated. This change could be done by providing OSLC asset management access to the code –
defining source code files as asset and the respective code fragments/lines as asset fragments.

Interoperability features:
OSLC asset management provider:

 asset and artefact selection (delegated UI or OSLC query)

 artefact back-link creation (OSLC artefact link factory)

 artefact back-link update (OSLC artefact link CRUD interface)

OSLC RM consumer:

 requirements link creation (OSLC requirements link factory)

OSLC AM consumer:

 architecture element link creation (OSLC architecture link factory)

Delegated user interfaces included/used:

 requirements selection dialog

 architecture element selection dialog

 linked requirements preview

 linked architecture element preview

Eclipse integration:

Native Eclipse

Availability:

The integration needs to be developed. The achievable level of integration is currently unknown.

4.5 Test Case Generators

4.5.1 MoMuT::UML

MoMuT::UML generates test cases from UML models. Since test case generation can take substantial time
and computation power, it is done in batch mode. For this use case, MoMuT::UML will also act as OSLC
quality management system. In case there is another OSLC QM provider, QM related resources can also be
stored there. Test case transformation to test scripts will be possible via plugins, which can also be
scheduled as automation tasks. Pre-existing tests can be imported via the OSLC QM provider interface.

Interoperability features:

OSLC automation provider:

 automation request creation (OSLC automation request factory)
for execution of

o test case generation

o test case transformation

o mutation coverage analysis

o test script export to version management system

o test script import for tests developed by test engineer

 automation result retrieval (OSLC query, automation result read request)

D502.020 Brick Interfaces

Version Nature Date Page

V1.01 R 2014-04-30 15 of 18

OSLC quality management provider:

 test case creation (OSLC test case factory)

 test script creation (OSLC test script factory)

 test execution run creation (OSLC test execution run factory)

 test report creation (OSLC test report factory)

 QM resource queries and read access

OSLC quality management consumer:

 QM resource CRUD access

Delegated user interfaces included/used:

 linked requirements preview (from generated test case)

 linked architecture element preview (from generated test case)

Eclipse integration:

There is no Eclipse integration planned. Management of test case generation tasks is done either via
WEFACT or via MoMuT::UML’s own web interface.

Availability:

Basic integration (automation provider) is available from project MBAT. More sophisticated aspects need to
be developed.

4.5.2 MoMuT::Event-B

MoMuT::Event-B is a new front end for MoMuT to be developed within CRYSTAL. It will share the
interoperability features with MoMuT::UML.

4.5.3 Sonar

Sonar is used to evaluate code coverage at TRAIL. An automation provider for Sonar will be developed in
order to execute coverage analysis and track coverage analysis results from WEFACT:

Interoperability features:

OSLC automation provider:

 automation request creation (OSLC automation request factory)
for execution of

o test case coverage analysis

Eclipse integration:

n/a

Availability:

Needs to be developed.

4.6 Test Execution

4.6.1 Hudson build and test server

The Hudson build and test server is used to execute JUnit regression tests. Therefore it will also be used to
execute the tests generated from the specification model(s). Remote execution of test runs will be provided
to be used by WEFACT.

Interoperability features:
OSLC automation provider:

 automation request creation (OSLC automation request factory)
for test execution

 automation result retrieval (OSLC query, automation result read request)

D502.020 Brick Interfaces

Version Nature Date Page

V1.01 R 2014-04-30 16 of 18

Delegated user interfaces included/used:

 n/a

Eclipse integration:

n/a

Availability:

An OSLC automation provider for Hudson is available as open source software.

4.7 Workflow and Traceability

4.7.1 WEFACT

WEFACT manages validation and verification activities and related artefacts. It triggers automatable tasks
and tracks traceability links and resource updates.

Interoperability features:
OSLC change management provider

 change request query

 change request read and update

OSLC automation consumer

 automation request creation

 automation plan query

 read automation report

OSLC asset management consumer

 asset query/read

Safety resources consumer

 safety resource read

 safety resource link CRUD

Delegated user interfaces included/used:

 linked resource preview

 automation plan selection (delegated UI or OSLC query)

 asset selection (delegated UI or OSLC query)

Eclipse integration:

Via Mylyn OSLC change management consumer.

Availability:

Automation and asset management consumers are available from MBAT. Other specification parts need to
be developed.

An additional specification, currently under development but helpful for optimizing the interoperability, will be
Tracked Resource Sets

7
. When adopting it, WEFACT will be able to recognize changed resources more

easily.

4.7.2 Mylyn task management front end

Issues are managed at TRAIL with the JIRA issue tracking system. To allow developers a single view on
their tasks, integration of JIRA and WEFACT into Eclipse is envisioned, using the Mylyn task management
plugin for Eclipse, which can connect to multiple task repositories, including Jira and OSLC change
management.

Interoperability features:

7
 http://open-services.net/wiki/core/TrackedResourceSet-2.0/

D502.020 Brick Interfaces

Version Nature Date Page

V1.01 R 2014-04-30 17 of 18

OSLC change management client

 change request query

 change request read and update

Eclipse integration:

Mylyn is an Eclipse plugin.

Availability:

Mylyn OSLC CM integration is available as open source software.

D502.020 Brick Interfaces

Version Nature Date Page

V1.01 R 2014-04-30 18 of 18

5 Terms, Abbreviations and Definitions

Please add additional terms, abbreviations and definitions for your deliverable.

AM Architecture Management

CRYSTAL CRitical SYSTem Engineering AcceLeration

CO Confidential, only for members of the consortium (including the JU).

CRUD Create/Reade/Update/Delete

D Demonstrator

O Other

P Prototype

PP Restricted to other program participants (including the JU).

PU Public

QM Quality Management

R Report

RE Restricted to a group specified by the consortium (including the JU).

RM Requirements Management

SP Subproject

TAS PLF Abbreviation for “TAS Control Platform”

TCG Test Case Generator

UC Use Case

V&V Verification and Validation

WP Work Package

Table 5-1: Terms, Abbreviations and Definitions

