
PROPRIETARY RIGHTS STATEMENT

THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE CRYSTAL CONSORTIUM. NEITHER THIS
DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED BY ANY
MEANS TO ANY THIRD PARTY, IN WHOLE OR IN PARTS, EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE CESAR
CONSORTIUM THIS RESTRICTION LEGEND SHALL NOT BE ALTERED OR OBLITERATED ON OR FROM THIS DOCUMENT. THE
RESEARCH LEADING TO THESE RESULTS HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S SEVENTH
FRAMEWORK PROGRAM (FP7/2007-2013) FOR CRYSTAL – CRITICAL SYSTEM ENGINEERING ACCELERATION JOINT
UNDERTAKING UNDER GRANT AGREEMENT N° 332830 AND FROM SPECIFIC NATIONAL PROGRAMS AND / OR FUNDING
AUTHORITIES.

CRitical SYSTem Engineering AcceLeration

Interoperability Specification (IOS) – V1

D601.021

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 2 of 36

DOCUMENT INFORMATION

Project CRYSTAL

Grant Agreement No. ARTEMIS-2012-1-332830

Deliverable Title Interoperability Specifications (IOS) – V1

Deliverable No. D601.021

Dissemination Level PU

Nature R

Document Version 1.0

Date 2014-05-30

Contact Frédéric Loiret

Organization OFFIS

Phone +49 441 9722 481

E-Mail Frederic.Loiret@offis.de

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 3 of 36

AUTHORS TABLE

Name Company E-Mail

Frédéric Loiret OFFIS Frederic.Loiret@offis.de

Gray Bachelor IBM gray_bachelor@uk.ibm.com

Rainer Ersch Siemens AG rainer.ersch@siemens.com

Andreas Keis Airbus Group Andreas.k.Keis@eads.net

REVIEWERS TABLE

Name Company E-Mail

Christian El-Salloum AVL christian.elsalloum@avl.com

Jean-Luc Johnson Airbus Group Jean-Luc.Johnson@eads.com

Rubén de Juan Marín ITI rjuan@iti.es

CHANGE HISTORY

Version Date Reason for Change
Pages

Affected

0.1 18-03-2014 Initial version.

0.2 29-03-2014 Table of content refined.

1.0 30-04-2014 Final version.

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 4 of 36

CONTENT

1 INTRODUCTION.. 7

1.1 PREAMBLE ... 7
1.2 ROLE OF DELIVERABLE .. 7
1.3 RELATIONSHIP TO OTHER CRYSTAL DOCUMENTS ... 8
1.4 STRUCTURE OF THIS DOCUMENT .. 8

2 IOS PREREQUISITES ... 9

2.1 IOS & RTP OVERVIEW .. 9
2.2 IOS ADOPTION HISTORY ... 10
2.3 BASIC TERMINOLOGY .. 11

2.3.1 Interoperability Scenarios .. 11
2.3.2 Engineering Artefacts and Lifecycle Artefacts ... 12
2.3.3 Adapters and Service Consumers/Providers .. 12

2.4 CRYSTAL IOS LAYERED ARCHITECTURE ... 13
2.4.1 IOS Positioning with OSLC ... 14
2.4.2 IOS Positioning with other existing Engineering Standards .. 15
2.4.3 Scope of the IOS V1 and Subsequent Versions ... 15

2.5 EXAMPLES OF CONCRETE SCENARIOS ... 16

3 IOS V1 BASIC LIFECYCLE INTEROPERABILITY SCENARIOS .. 17

3.1 OVERVIEW OF THE SCENARIOS .. 17
3.2 DESCRIPTIONS OF THE SCENARIOS ... 17

3.2.1 Interoperability Pattern 1: Access remote artefact .. 18
3.2.2 Interoperability Pattern 2: Store link to remote artefact ... 19
3.2.3 Interoperability Pattern 3: Access remote artefact with UI redirection .. 19

4 INTEROPERABILITY SPECIFICATIONS V1 .. 22

4.1 CORE CONCEPTS AND PRINCIPLES INHERITED FROM OSLC ... 22
4.1.1 IOS Vocabulary .. 22
4.1.2 Resources ... 22
4.1.3 Linktypes .. 22
4.1.4 Properties ... 22

4.2 NOTES ON APPLICATION OF OSLC V2.0 AT IOS V1.0 ... 22
4.3 IOS CHAPTER – CORE CAPABILITIES ... 22

4.3.1 Common Core Capabilities .. 22
4.3.2 Service Provider Capabilities .. 23
4.3.3 Service Consumer Capabilities .. 24
4.3.4 Advanced Core Capabilities .. 24

4.4 IOS CHAPTER – DOMAIN SUPPORT: REQUIREMENT MANAGEMENT .. 25
4.5 IOS CHAPTER – DOMAIN SUPPORT: ARCHITECTURE MANAGEMENT ... 25
4.6 IOS CHAPTER – DOMAIN SUPPORT: ASSET MANAGEMENT ... 26
4.7 IOS CHAPTER – DOMAIN SUPPORT: CHANGE REQUEST MANAGEMENT .. 26
4.8 IOS CHAPTER – DOMAIN SUPPORT: QUALITY MANAGEMENT ... 27

5 CRYSTAL ENGINEERING METHODS TO IOS SERVICES .. 29

5.1 ENGINEERING METHOD (EM) TO IOS SERVICES MAPPING METHODOLOGY ... 29
5.2 ENGINEERING METHOD STEPS – IOS SERVICE MAPPING TABLE ... 29
5.3 ENGINEERING METHOD STEPS – IOS SERVICE MAPPING TABLE EXAMPLE ... 30

6 EXTENSION MECHANISMS OF IOS V1 ... 31

6.1 CRYSTAL EXTENSIONS ... 31

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 5 of 36

6.2 TOWARDS IOS SUSTAINABILITY .. 31

7 TERMS, ABBREVIATIONS AND DEFINITIONS ... 33

8 REFERENCES ... 34

9 ANNEX ... 35

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 6 of 36

Content of Tables

Figure 1: RTP & RTP Instances ... 10
Figure 2: Lifecycle Artefacts and Engineering Artefacts. .. 12
Figure 3: The CRYSTAL IOS Layered Architecture. .. 14
Figure 4: IOS Interoperability Pattern 1: Access remote Lifecycle Artefact ... 18
Figure 5: IOS Interoperability Pattern 1: Access remote artefact - Sequence diagram 18
Figure 6: IOS Interoperability Pattern 2: Store link to remote artefact ... 19
Figure 7: IOS Interoperability Pattern 2: Store link to remote artefact - Sequence diagram 19
Figure 8: IOS Interoperability Pattern 3: Access remote artefact with UI redirection 20
Figure 9: IOS Interoperability Pattern 2: Access remote artefact using a delegated UI - Sequence diagram . 20
Figure 10: Example of an EM – IOS Service Mapping table (excerpt) ... 30

Content of Figures

Table 1: Terms, Abbreviations and Definitions ... 33
Table 2: Examples of Concrete Scenarios related to "Lifecycle Interoperability" and "other Interoperability
Topics" .. 35

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 7 of 36

1 Introduction

1.1 Preamble

CRYSTAL aims at fostering Europe’s leading edge position in embedded systems engineering in particular

regarding quality and cost effectiveness of safety-critical embedded systems and architecture platforms.

However, because of the heterogeneity and complexity of such systems covered by the project, requiring

multiple engineering competences across various engineering disciplines, their developments become a

huge challenge to overcome by European developing organizations, notably because of:

 The heterogeneity of engineering tools & data involved in their development platforms across the

development lifecycle (encompassing requirements engineering, design, wide range of V&V

activities from dynamic testing, formal analysis, fault-tree analysis, etc.),

 The increasing need in the context of safety-critical systems to bridge the gap between development

platforms and operational ones (e.g., for including human in-the-loop or virtual testing,

heterogeneous co-simulation, or for monitoring and maintaining large-scale distributed applications),

with the goal to improve the development and decision-making processes in large developing

organizations,

 The distributed and multi-tiers nature of development teams in nowadays’ large European

organizations, spread over multiple countries and suppliers.

In order to overcome these challenges, CRYSTAL leverages on a momentum initiated by past and on-going

ARTEMIS projects
1
 around a common vision for the Establishment of Recognized International Open

Standards of Lifecycle Tool & Data Integration Platforms for Systems Engineering (or “Tool Chains”). The

main idea of the so-called Interoperability Specifications (IOS) initiated in these projects is to rely on common

interoperability services, providing a common ground for integrating lifecycle and engineering tools across

different engineering disciplines and from multiple stakeholders involved in the development of large scale

safety-critical systems (e.g., requirements engineers, developers, V&V experts, but also business analysts

and managers). The common denominator of the IOS across the projects, and among the CRYSTAL’s

partners, is based on a lightweight and domain-agnostic approach, providing basic capabilities for handling

the whole lifecycle of engineering artefacts manipulated throughout the development of safety-critical

embedded systems, and is presented in this deliverable.

1.2 Role of deliverable

This deliverable presents a first outcome of extensive technical discussions that have been conducted in the
first year of the project among representatives of all CRYSTAL’s stakeholders (i.e., end-users from
aerospace, automotive, healthcare and rail domains, tool and integration solution providers, and technology
brick providers from SP6), in order to reach a first level of consensus regarding the shape, scope, and
content of the CRYSTAL IOS, and based on the approach that has been initially proposed, adopted and
refined in the ARTEMIS projects CESAR, iFEST and MBAT, and on which CRYSTAL use case owners put a
clear focus.

Therefore, this deliverable has to be considered as a first baseline for finalizing such a consensus in the
project, and for presenting directions on how the CRYSTAL IOS will be extended in the subsequent versions
of it (by inputs from other ARTEMIS projects such as MBAT, and of course from within CRYSTAL, as

1
 In particular CESAR, iFEST and MBAT.

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 8 of 36

outcomes of its Technical Management Process that has been deployed and kick-started across its work
packages structure).

Moreover, the content of the specification presented in this deliverable ought to be used as a first reference
document for implementing basic IOS-compliant CRYSTAL bricks focused on lifecycle interoperability
scenarios, already covering a large part of the V-model, from requirements engineering to architecture and
quality management, including change request management, and traceability throughout the development
process. The current version of the specification presented in the deliverable can be already applied to cover
significant parts of basic lifecycle interoperability needs already elicited by the CRYSTAL Use Cases in their
Engineering Methods.

1.3 Relationship to other CRYSTAL Documents

This document is related to the deliverable D601.031 - Report on Standardisation Work - V1.

1.4 Structure of this document

This deliverable is structured as follows:

 The section 2 provides the prerequisites for comprehending the main concepts and principles
behind the CRYSTAL Interoperability Specification (IOS), and presents its layered architecture used
as a reference conceptual model in the project for characterizing the scope and content of the IOS.

 The section 3 presents the basic and generic lifecycle interoperability scenarios and patterns from
the CRYSTAL use cases that are already supported by the IOS concepts V1 defined in this
document.

 The section 4 defines, from a detailed technical standpoint, the Interoperability Specification V1,
focused on Lifecycle Interoperability so far, and consisting of so-called IOS Chapters.

 The section 5 gives an overview of the part of the CRYSTAL Technical Management Process that
has been deployed within the project which is focused on the mapping of CRYSTAL Engineering
Methods (or workflows) onto IOS V1 concepts and services defined in this deliverable.

 Finally, the section 6 gives a brief overview of the extension process of the CRYSTAL IOS, which
outcomes will be presented in the subsequent versions of this deliverable, and aiming at paving the
way towards IOS sustainability beyond the project.

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 9 of 36

2 IOS Prerequisites

2.1 IOS & RTP Overview

The IOS – as it has been defined by former ARTEMIS projects (see next section, IOS Adoption History) --
consists of a specification for achieving common Tool & Data Interoperability in heterogeneous Systems
Engineering development environments. In particular, it encompasses the specification of three main
aspects:

 The specification of communication paradigms and protocols to be used for exchanging information
between integrated Tools and Data repositories,

 The specification of data exchange formats (or syntax, referring to the formats used for serializing
data as strings, e.g., RDF/XML, XMI/XML, JSON, etc.), and

 The specification of the semantics of the information to be interpreted and exchanged across these
Tools and Data repositories (or abstract syntax, referring to the definition of sets of concepts for
lifecycle integration, defined with their properties and relationships).

In general, the CRYSTAL Interoperability Specification (IOS):

 Relies on Common Interoperability Principles,

 Is based on existing Interoperability Standards,

 Is based on, and related to, other relevant Interoperability & Engineering Standards,

 Is open (i.e., IOS is royalty-free use),

 Is extensible,

 Aims to be widely accepted by industrial users and tool vendors.

In particular, the CRYSTAL IOS (as described in detail section 2.4) is focused on:

 Lifecycle Interoperability, and on

 Other Interoperability Topics for supporting In Depth Systems Engineering Activities.

The part of the IOS focused on Lifecycle Interoperability is based on Artefacts used in Systems
Engineering Development Environments (“Tool Chains”):

 To support collaboration between stakeholders of different roles, different engineering disciplines,
and different industrial domains,

 To enable status reporting, traceability, dashboarding, analysis, prediction, data collection for
reports, automation support, etc., between Tools and Data Repositories.

The key idea pushed forward in the IOS consists in relying on standardized integration interfaces for
supporting lifecycle interoperability, with the goal to overcome redundant integration problems (e.g., related
to point-to-point and ad-hoc integration architectures, isolated tool silos, users locked-in, reusability &
maintenance of integration assets) across the boundaries of engineering disciplines, application domains
and tool providers. Such standardized integration interfaces have to define lightweight and generic concepts
as a common denominator for all the artefacts used holistically throughout the development cycle of
CRYSTAL Use Cases. In the context of lifecycle interoperability, the main focus is put on the semantics of
the links and dependencies between the artefacts crossing the boundaries between the engineering
disciplines (i.e., related to requirement engineering, design & implementation, and V&V related activities).

The part of the IOS focused on Other Interoperability Topics for supporting In Depth Systems
Engineering Activities will be based on existing Engineering Standards identified as already widely used
among CRYSTAL partners and European developing organizations. Indeed, CRYSTAL aims at supporting

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 10 of 36

engineering activities focused on end-users’ businesses, and which require detailed, specific and “bespoke”
semantics and methodologies besides lifecycle interoperability. Such engineering activities encompass
heterogeneous co-simulation, combination of dynamic testing and formal static analysis, variability
management, design space exploration, just to name a few.

It is worth noting that by nature, activities related to lifecycle interoperability on the one hand, and those
related to in depth Systems Engineering on the other hand are entangled. It is therefore in the scope of
CRYSTAL to clearly elaborate on the complementarities and areas of overlap between these two dimensions
of interoperability in order to fully fulfil integration requirements and needs from the CRYSTAL Use Cases.

The concept of a European Reference Technology Platform (RTP) has also emerged within the ARTEMIS
eco-system (initially introduced in the CESAR project). Basically, the main assets of the RTP are the
following:

 A library of ready-to-integrate Engineering Tools, with their respective adapters implementing IOS-
compliant integration interfaces,

 A set of Integration Software Development Kits (SDKs) and dedicated Support Tools (e.g.,
CRYSTAL Platform Builder related tools) for specifying, implementing, instantiating, tailoring,
deploying and maintaining RTP instances (or “Tool Chains”),

 A set of Methodologies and guidelines for supporting advanced lifecycle interoperability scenarios
and in depth Systems Engineering activities by the CRYSTAL technical work packages.

The Figure 1 presents a graphical representation of the RTP and RTP instances. The latter consists of an
integrated subset of RTP bricks based on the IOS.

CRYSTAL RTP

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool
Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Service
Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Service

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool
Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool

IOS Integration
Interfaces

Tool

IOS Integration
Interfaces

Tool

IOS Integration
Interfaces

Tool

IOS Integration
Interfaces

Tool
M

et
ho

do
lo
gi
es

Integration Software Development Kits (SDKs), and

Support Tools for instantiating RTP Instances

CRYSTAL RTP Instance

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Service

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool
Integration
Interface

Tool

Integration
Interface

Tool
IOS Integration

Interfaces

Tool

IOS Integration
Interfaces

Tool

IOS Integration
Interfaces

Tool

CRYSTAL RTP Instance

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Service

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool
Integration
Interface

Tool

Integration
Interface

Tool
IOS Integration

Interfaces

Tool

IOS Integration
Interfaces

Tool

IOS Integration
Interfaces

Tool

CRYSTAL RTP Instance

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Service

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool

Integration
Interface

Tool
Integration
Interface

Tool

Integration
Interface

Tool
IOS Integration

Interfaces

Tool

IOS Integration
Interfaces

Tool

IOS Integration
Interfaces

Tool

Tailoring, Instantiation and Deployment

from End-User Scenarios and Integration Needs

Figure 1: RTP & RTP Instances

2.2 IOS Adoption History

Embedded systems are getting more and more complex and the different engineering disciplines and
stakeholders are using more and more highly specialized methods and tools to execute their tasks.
Unfortunately, most of those methods and tools manage their information in isolated environments and keep
them behind private APIs. Attempts to bring all information together in one single, universal repository to

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 11 of 36

connect them better typically failed because the universal repositories do not provide enough functionality for
the highly specialized tasks. In addition, new innovative approaches to optimize tasks in the engineering
process, because they cannot be introduced due to the inflexibility of such centralized environments.

Therefore, the importance of Interoperability in Engineering Environments is rising and it is becoming more
and more crucial for successful and efficient systems engineering. The CESAR project

2
 introduced the idea

of a “Reference Technology Platform“ (RTP), where the different parts where connected based on a
standardized Interoperability Specification (IOS).

After some investigations in different interoperability technologies, the CESAR project has selected the
emerging open standard OSLC

3
 (Open Services for Lifecycle Collaboration) as basis for the CESAR

Interoperability Specification IOS. Other projects (iFEST
4
, MBAT

5
, and now CRYSTAL) followed this

approach. The iFEST project came in an independent evaluation to the same conclusion that OSLC is the
right solution for their interoperability needs. MBAT continued with the IOS foundation laid by CESAR and
adopted it for their “Combined Model-based Analysis and Testing of Embedded Systems” methodologies.
CRYSTAL has now taken over with writing the story further.

In the meantime, the OSLC open initiative has grown up from a “loosely coupled” web community, to a
member section of the open standard organization OASIS

6
. Many commercial and open source products

have adopted the open standard and the number of participating organizations is constantly growing. The
ARTEMIS projects are very well connected with the OSLC standard organization though key project
members serving as OSLC Steering Committee members and workgroup leads. Although OSLC is already
an excellent basis for the CRYSTAL IOS, the project has already identified some additional needs for
interoperability in their use cases, which will most likely lead to enhancements of the OSLC standard and an
extension of the CRYSTAL IOS by other standards.

2.3 Basic Terminology

In this section are simply given definitions of the most important terms to be grasped by the readers as a
prerequisite for understanding the basic concepts underlying the IOS.

2.3.1 Interoperability Scenarios

In the context of Systems Engineering development environments, an Interoperability Scenario elicits a
workflow for which each activity explicitly captures an exchange of information between stakeholders, tools,
and data repositories, and in particular across the boundaries of engineering disciplines. These activities are
either performed manually or automatically. Elicitations of Interoperability Scenarios with the characterization
of information to be exchanged for each activity (e.g., types of artefacts to be exchanged) and by which
means (e.g., via browsing or graphical representations of artefacts, via manual or automatic notification
mechanisms, etc.), constitute the main inputs to be considered for defining the IOS and its extensions.

The CRYSTAL Engineering Methods can be considered as elicitations of Interoperability Scenarios (but it is
worth noting that in some cases, some activities defined by the end-users are not directly related to
interoperability per se, but are focused on engineering activities performed internally from within a tool
without any need of exchanging information beyond its scope).

2
 http://www.cesarproject.eu

3
 http://open-services.net

4
 http://www.artemis-ifest.eu

5
 http://www.mbat-artemis.eu

6
 http://oasis-oslc.org

http://open-services.net/
http://oasis-oslc.org/

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 12 of 36

2.3.2 Engineering Artefacts and Lifecycle Artefacts

The Figure 2 below illustrates two integrated engineering tools (or RTP Bricks) with their adapters (see the
definition of the latter in the next subsection, an adapter basically consists of Service Providers and/or
Service Consumers, only the providers are represented on Figure 2), and introduces the notions of Lifecycle
Artefact and Engineering Artefact.

Integrated
Engineering Tool

(RTP Brick)

IOS/Lifecycle
Artefacts

Adapters

Engineering
Artefacts

Textual Req

Formal Req.

Expose

Test Case

TC Exec Res.

Expose

Integrated
Engineering Tool

(RTP Brick)

Specific
Semantics

Generic
Semantics

Link

ElemA
ElemB

ElemC

Engineering Model
Engineering Artefact

ElemA
ElemB

ElemC

Engineering Model
Engineering Artefact

RTP
Bricks

Figure 2: Lifecycle Artefacts and Engineering Artefacts.

Basically, Engineering Artefacts constitute the assets used internally within the Engineering Tools (e.g., as
files or as data chucks stored in a database). Their semantics and syntaxes are defined by standard formats
(e.g., UML/XMI or standard C and executable files) or by proprietary formats (e.g., MDL files used within
Simulink). An Engineering Artefact is generally defined as a container and namespace of Artefact Elements
(e.g. a set of classes stored in a UML class diagram).

Engineering Artefacts and their Elements are mapped onto Lifecycle Artefacts, the latter being the first class
entities used for supporting Lifecycle Interoperability scenarios. The syntax and semantics of Lifecycle
Artefacts, the basic services defined for manipulating them (read and write access), and the communication
protocols used for serializing them between integrated tools and data repositories are defined by the IOS, as
presented in section 2.4.

2.3.3 Adapters and Service Consumers/Providers

As already introduced above, an Adapter consists of Service Consumers and Providers.

As described in the IOS layered architecture (see section 2.4), major parts of the IOS will be based on
RDF/XML and HTTP & Core Web Technologies. The preferred architectural style, to be used with the IOS, is
the so-called Representational state transfer (REST

7
). One basic concept of this architectural style is the

separation of concerns in Clients and Servers. This means clients do not have direct access to data stored
(or “owned”) by a server, but the server “provides” services which can be “consumed” by the client to read,
query and manipulate the data. In the IOS we call the servers providing services “Providers” and the client
consuming services “Consumers”.

7
 For a detailed description of REST, see http://en.wikipedia.org/wiki/Representational_state_transfer

http://en.wikipedia.org/wiki/Representational_state_transfer

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 13 of 36

Typical services are:

C.R.U.D Services:

- Create a resource using HTTP POST and content being resource format of choice,

- Read a resource using HTTP GET and standard HTTP content negotiation,

- Update a resource using HTTP GET to get resource properties to be updated and HTTP PUT to
send updated resource,

- Link a resource using properties where values are just URIs (Unified Resource Identifiers),

- Delete a resource using HTTP DELETE.

Querying for resources

- Query Capability, which has a base URI,

- Clients form query URI and HTTP GET the results,

UI Preview & Delegation

- Rich hover:
Scenario supported: hover over link to get in context preview of resource

- Resource Delegation:
Simple resource format defined and retrieved using HTTP content negotiation
(e.g. Resource Picker for links, or Creation Factory)

Many of these services are defined in the specification of the OSLC standard. They are clustered by so
called (engineering) domains: Change (Request) Management, Requirements Management, Quality
Management, Architecture Management and others. Common principles are defined in the Core
Specification (presented in section 4).

Ideally, the tools, used to build the Engineering Environments for the CRYSTAL Use Cases, would provide
these services out of the box. As a matter of fact, there are already some commercial and open source
products which have IOS compliant service interfaces and some of the CRYSTAL partners have agree to
build such services for their products. In these cases the tools with the out of the box service interfaces
would be already suitable bricks for the RTP library. If a tool does not have an IOS compliant interface, an
adapter can be built, containing a web component to provide the needed IOS service(s) and uses internally
the proprietary APIs to connect to the backend of the application. The tool together with the IOS adapter will
then constitute an RTP brick. Where necessary, the brick providers in the CRYSTAL project are responsible
for building the adapters for the tools needed for the CRYSTAL Use Cases.

2.4 CRYSTAL IOS Layered Architecture

The Figure 3 presents the IOS layered architecture, which has been enhanced in CRYSTAL from the
CESAR and the MBAT IOS. The top part of the figure encompasses the tool and domain-specific syntax and
semantics, possibly based on proprietary and island solutions, which is basically out-of-scope of the IOS. On
the contrary, the bottom part sketches the scope of the IOS, (a) specifying a common way for handling
Lifecycle Interoperability (with respect to communication protocols, syntax, services and semantics used as a
common ground for exchanging lifecycle artefacts and control flows between integrated engineering tools in
a standardized way), and (b), the set of other Engineering/Interoperability Standards, supporting in depth
Systems Engineering activities, and to be interfaced with Lifecycle Interoperability concepts.

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 14 of 36

Specific	
Seman c	Layer	

Specific	
Syntax	Layer	

Syntax	Layer	

Communica on	
Layer	

Services	Layer	

Interoperability	
Seman c	Layer	

Engineering	Tools	for	Cyber-Physical	
Systems	

Languages	and	Formalisms		
Management/Engineering	Methods	&	

Workflows	

Tool-Specific, Proprietary & Domain-Specific Layers (out-of-scope of the IOS)

CRYSTAL IOS

Other Interoperability Topics for In Depth
Systems Engineering Activities

…

…

(e.g., for Measurement
and Calibration)

Other	

Other	

Other	

(e.g., for Heterogeneous
Co-Simulation)

Other

Other	

Other	

Other	

HTTP & Core Web Technologies

Authen ca on	 Indexing	Query	

Addi onal	Concepts	 RM	 AM	

RDF/XML	

Addi onal	
Services	

Lifecycle Interoperability

Scope of the IOS V1 based on a subset of OSLC

Guidelines
for Integration

Mapping implemented by Brick Providers

QM	

Asset	M	 Change	Req.	M	

OSLC	Core	

Scope of the IOS V2

Figure 3: The CRYSTAL IOS Layered Architecture.

2.4.1 IOS Positioning with OSLC

The Lifecycle Interoperability related part of the CRYSTAL IOS is based on a subset of OSLC (Open
Services for Lifecycle Collaboration

8
). OSLC defines a set of specifications

9
 focusing on the support of

lifecycle activities, but only a subset of these specifications have been assessed to be part of the CRYSTAL
IOS so far, and are the following:

 OSLC Core specification (see detail in section 4.1), relying on HTTP and core Web technologies,
defining standardized way for encoding and representing lifecycle artefacts, defining basic services
for creating, requesting, updating, and deleting artefacts,

 OSLC Requirement Management specification (see detail in section 4.4), defining primary
requirement lifecycle artefacts,

 OSLC Architecture Management specification (see detail in section 4.5), defining primary
architecture lifecycle artefacts,

 OSLC Quality Management specification (see detail in section 4.8), defining primary lifecycle
artefacts related to testing activities,

 OSLC Change Request Management specification (see detail in section 4.7), defining primary
lifecycle artefacts for handling change requests across the engineering disciplines,

 OSLC Asset Management specifications (see detail in section 4.6), mainly used in the context of
CRYSTAL for defining a standardized way for wrapping Engineering Artefacts (i.e., assets used
internally within the engineering tools as described in section 2.3.2).

8
 http://open-services.net

9
 http://open-services.net/specifications/

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 15 of 36

These OSLC specifications have been considered to be integral part of the IOS for lifecycle interoperability
after evaluations conducted on CRYSTAL Engineering Methods and across the Domains (i.e., from SP2 to
SP5). En example of such an assessment is presented in section 5.

2.4.2 IOS Positioning with other existing Engineering Standards

Besides Lifecycle Interoperability, the CRYSTAL IOS will also cover other interoperability topics for system
engineering activities and will include relevant specifications and standards. Examples for topics that have
been identified in the use cases are:

 Functional Mock-up Interface (FMI) for co-simulation,

 ASAM ODS for measurement data,

 Semantic-preserving model transformations between input and output models,

 ReqIF to interchange requirements,

 AUTOSAR specifications in the automotive sector.

In several scenarios these standards are employed independently of each other, but in many cases a
conceptual link has to be established between such standards and OSLC for Lifecycle Interoperability. The
IOS will define specifications to bridge such standards and guidelines for their integration.

Proposals to integrate a standard in the IOS can come from each use case owner. They are first evaluated
by WP6.1, and the final decisions will be made by the Technical Board of CRYSTAL.

The focus of the Interoperability Specification V1 is on Lifecycle Interoperability, therefore the concrete
content for this section will be provided in the subsequent versions of this deliverable.

2.4.3 Scope of the IOS V1 and Subsequent Versions

The Figure 3 also illustrates the scope of the content of this first version of the CRYSTAL Interoperability
Specifications (“IOS V1”, presented in detail in section 0). The current version is then exclusively focused on
Lifecycle Interoperability, and based on a subset of the existing OSLC specifications. In the subsequent
versions of this deliverable (i.e., in D601.022 and D601.023, respectively “IOS V2” and “IOS V3”, to be
released at M24 and M36), significant enhancements of the IOS will be compiled, notably via:

 Support of other Engineering Standards as mentioned in section 2.4.2, for which areas of overlap
with the concepts defined for Lifecycle Interoperability will be clearly identified (in particular via
“Guidelines for Integration”),

 Extensions of the current Lifecycle Interoperability specifications (as represented on Figure 3 by the
boxes “Additional Concepts” and “Additional Services”). These extensions will come from the
following inputs:

o From IOS extensions that have been already adopted in ARTEMIS projects, notably from
iFEST and MBAT (e.g., MBAT proposed IOS lifecycle interoperability extensions for
supporting tight combination of testing and analysis methodologies),

o From other existing OSLC specifications that will be evaluated in CRYSTAL (e.g., related to
support for automation, reporting or configuration management),

o And most importantly from CRYSTAL SP6 technical work packages (i.e., WP6.3 to WP6.13)
and CRYSTAL domain ontology work packages (i.e., WP2.9, WP3.8, WP4.7 and WP5.4,
respectively addressing ontologies for the aerospace, automotive, healthcare and rail
domains). The cross-WP activities for defining these extensions are integral part of the so-
called CRYSTAL Technical Management Process, and are driven by the Engineering
Methods and Requirement elicited by the CRYSTAL use cases.

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 16 of 36

2.5 Examples of Concrete Scenarios

For illustrative purposes, simple examples of scenarios focused on Lifecycle Interoperability and on other
Interoperability Topics (based on, and related to other Engineering Standards) are given in Annex I (page
35).

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 17 of 36

3 IOS V1 Basic Lifecycle Interoperability Scenarios

3.1 Overview of the Scenarios

As already detailed around the Figure 3 presenting the CRYSTAL IOS layered architecture, this first version
of the deliverable is focused on the support of Lifecycle Interoperability activities, and the current content of
the IOS consists of the OSLC Core specifications defining the cornerstone principles of the IOS, and of the
OSLC specifications for Requirement, Architecture, Quality Management (respectively OSLC RM, AM and
QM), and the OSLC Change Request Management and Asset Management specifications.

This set of specifications can be notably used for supporting the following generic lifecycle interoperability
operations and scenarios:

1. The Creation, Request, Update and Delete (CRUD) operations to be performed on Lifecycle
Artefacts (from OSLC Core),

2. The creation of links, and navigation between and across Lifecycle Artefacts in a systematic way
(from the W3C Linked Data principle, part of OSLC Core),

3. The redirection of User Interfaces (UI) for basic query or creation of remote Lifecycle Artefacts, or for
displaying user friendly graphical representations of Engineering Artefacts across the engineering
disciplines and stakeholders (from OSLC Core),

4. Included here are examples of the application of these basic services patterns across the domains
as defined today by OSLC:

a) The exposition of basic Lifecycle Artefacts from different engineering phases (from OSLC RM,
AM and QM),

b) The lifecycle scenario for supporting basic change requests (from OSLC Change Request
Management),

c) The scenarios for which Engineering Artefacts (i.e., not IOS/OSLC based) have to be exposed
as “raw data/file” (from OSLC Asset Management).

3.2 Descriptions of the Scenarios

The basic multiple brick interoperability scenarios covered here use the following convention:

 Brick A is a “local” tool which originates the transaction from either a User Interface (UI) or a program
event. Local meaning as initiating or having primary control of processing or receiving the results of
remote processing, or being the place that flow returns to after some secondary processing.

 Brick B is a “remote” tool which receives and responds to the transaction. Remote meaning as
directed or secondary processing or receiving temporary control of processing or parallel processing
or relinquishing control to another tool.

 Brick C is an “intermediate” or “additional” tool needed to complete the transaction, e.g. it may be a
specific UI component of say Brick A or B but its purpose is to enable Web compliant information
rendering (i.e. via HTTP and HTML) in response to say a GET.

Bricks can have local, or remote, or distributed functions, e.g., thick client, thin client, browser, and server
components. No distinction is made whether tools have user interfaces.

Bricks, in IOS V1 use services to communicate and so may use infrastructure components like Web or proxy
servers, these are out of scope (transparent) for the basic tool interoperability scenarios.

The IOS V1 specification addresses the external interfacing needed for tool interoperability and not the
enabling infrastructure, like co-existence of operating systems or protocol conversion.

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 18 of 36

These schemes aim to indicate recurring patterns of interoperability and do not show any needed
authentication of users or services, nor the internal interfaces required to add or enable service-based
transaction, nor do they address licensing needs.

3.2.1 Interoperability Pattern 1: Access remote artefact

Within Brick A access a remote artefacts for Create, Read, Update or Delete (CRUD) in remote Brick B.

Figure 4: IOS Interoperability Pattern 1: Access remote Lifecycle Artefact

Note: Implementers need to ensure the idempotency (i.e., the result of the request should be independent of
the number of times the service is executed) of HTTP operations on remote artefacts, particularly PUT and
POST.

An overview of the main transactions to achieve this scenario follows on the Figure below.

Figure 5: IOS Interoperability Pattern 1: Access remote artefact - Sequence diagram

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 19 of 36

3.2.2 Interoperability Pattern 2: Store link to remote artefact

Within Brick A saves (holds) a local link (URI) to a remote artefact owned by Brick B

Figure 6: IOS Interoperability Pattern 2: Store link to remote artefact

It is assumed that the URI is used to associate Artefact A with Artefact B, it is also possible that Brick A just
registers the URI in a catalogue.

An overview of the main transactions to achieve this scenario follows on the Figure below.

Figure 7: IOS Interoperability Pattern 2: Store link to remote artefact - Sequence diagram

3.2.3 Interoperability Pattern 3: Access remote artefact with UI redirection

Redirected user interface for remote artefact to Brick C, e.g., a browser.

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 20 of 36

Figure 8: IOS Interoperability Pattern 3: Access remote artefact with UI redirection

Note: Brick C is a separate UI component. It can be hosted by Brick A, B or a separate Brick C. An example
is an OSLC delegated UI which is Brick B UI hosted by Brick A.

An overview of the main transactions to achieve this scenario follows on the Figure below.

Figure 9: IOS Interoperability Pattern 2: Access remote artefact using a delegated UI - Sequence diagram

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 21 of 36

Within scenario 3 the IOS provides multiple options such as query and creation dialogs and delegated user
interfaces. A delegated UI removes the burden from Brick A of processing data that is likely to be
incompatible with its own native data.

These basic scenarios are tailored by the use of domain vocabulary such as for:

1. Exposing of Lifecycle Artefacts from different engineering phases like Requirements, model
Resources and Test Plans (using OSLC RM, AM and QM respectively),

2. Support for change requests (OSLC Change Management). Note here that there is no implied
lifecycle state control; any consumer wishing to change the state of a resource is assumed to do so
by a POST of a new status property/value pair to a Change Request resource.

3. Support where Artefacts are exposed without reference to one of the lifecycle domain directly (e.g.
not IOS/OSLC based) examples could be part of a file system used by a tool which is not available
as a Brick “raw data/file” (using the OSLC Asset Management spec).

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 22 of 36

4 Interoperability Specifications V1

4.1 Core Concepts and Principles inherited from OSLC

At V1 the CRYSTAL IOS is concerned with the following tool interoperability styles:

 Service based tool interoperability used WWW and loosely coupled principles.

CRYSTAL IOS adopts:

 Service based tool interoperability from OASIS
10

, which defines service as "a mechanism to
enable access to one or more capabilities, where the access is provided using a prescribed
interface and is exercised consistent with constraints and policies as specified by the service
description

11
."

 RESTful
12

 Web service technologies.

4.1.1 IOS Vocabulary

Crystal IOS V1.0 adopts an information model that is defined through OSLC V2.0 domains. The IOS
vocabulary is defined with the domain specifications selected from OSLC V2.0.

4.1.2 Resources

The various defined Resources are detailed below with the domains.

4.1.3 Linktypes

The various defined linktypes are defined below with the domains

4.1.4 Properties

The various defined properties are defined below with the domains.

4.2 Notes on application of OSLC V2.0 at IOS V1.0
There are certain logs of issues with the OSLC V2.0 that implementers should also refer to, these are noted.
It is recommended that implementers follow, review and join the OASIS OSLC working group proceedings
around these issues to draw upon the community experience.

4.3 IOS Chapter – Core Capabilities

4.3.1 Common Core Capabilities

IOS
ref.

Capability Description Source Org Source ref Notes

1 Service entry
point

Uniform Resource
Identifier (URI)

W3C/IETF http://tools.ietf.org/html/rfc3
986

10

 http://en.wikipedia.org/wiki/OASIS_%28organization%29
11

 http://en.wikipedia.org/wiki/Service_%28systems_architecture%29 - cite_note-1
12

 http://en.wikipedia.org/wiki/Representational_State_Transfer

http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://en.wikipedia.org/wiki/OASIS_%28organization%29
http://en.wikipedia.org/wiki/Service_%28systems_architecture%29#cite_note-1
http://en.wikipedia.org/wiki/Representational_State_Transfer

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 23 of 36

2 Service protocol Hypertext Transfer
Protocol (HTTP)

W3C/IETF http://tools.ietf.org/html/rfc2
616

3 Resource
definition &
operations

Resource Description
Framework

OSLC

W3C LDP

http://open-
services.net/bin/view/Main/
OslcCoreSpecification?sort
col=table;table=up -
OSLC_Defined_Resources

http://www.w3.org/TR/PR-
rdf-syntax/

http://www.w3.org/2000/01/
rdf-schema - >

4 Service document
types

RDF/XML W3C http://www.w3.org/TR/REC-
rdf-syntax/

http://www.w3.org/TR/2014/
REC-turtle-20140225/

5 Error responses HTTP status codes W3C http://www.w3.org/Protocol
s/rfc2616/rfc2616-
sec10.html

6 Namespace
extension

 W3C http://www.w3.org/TR/REC-
xml-names/

7 Paging Resource Paging OSLC http://open-
services.net/bin/view/Main/
OslcCoreSpecification?sort
col=table;up= -
Resource_Paging

http://open-
services.net/resources/tutor
ials/oslc-primer/resource-
paging/

8 Simple query A simplified and
specific query

OSLC http://open-
services.net/bin/view/Main/
OslcCoreSpecification#Que
ry_Capabilities

Non
SPARQL
query

4.3.2 Service Provider Capabilities

IOS
ref.

Capability Description Source
Org

Source ref Notes

9 Discovery Engage a provider to
understand service
content available

OSLC

http://open-
services.net/wiki/core/Discov
ery-3.0/

10 Service
provider
catalogue

Service Provider OSLC http://open-
services.net/bin/view/Main/O
slcCoreSpecification?sortcol
=table;up= -
Service_Provider_Resources

11 Resource Create, Read, Update OSLC http://open- PUT should

http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;table=up#OSLC_Defined_Resources
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;table=up#OSLC_Defined_Resources
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;table=up#OSLC_Defined_Resources
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;table=up#OSLC_Defined_Resources
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;table=up#OSLC_Defined_Resources
http://www.w3.org/TR/PR-rdf-syntax/
http://www.w3.org/TR/PR-rdf-syntax/
http://www.w3.org/2000/01/rdf-schema#>
http://www.w3.org/2000/01/rdf-schema#>
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/2014/REC-turtle-20140225/
http://www.w3.org/TR/2014/REC-turtle-20140225/
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;up=#Resource_Paging
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;up=#Resource_Paging
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;up=#Resource_Paging
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;up=#Resource_Paging
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;up=#Resource_Paging
http://open-services.net/resources/tutorials/oslc-primer/resource-paging/
http://open-services.net/resources/tutorials/oslc-primer/resource-paging/
http://open-services.net/resources/tutorials/oslc-primer/resource-paging/
http://open-services.net/resources/tutorials/oslc-primer/resource-paging/
http://open-services.net/bin/view/Main/OslcCoreSpecification#Query_Capabilities
http://open-services.net/bin/view/Main/OslcCoreSpecification#Query_Capabilities
http://open-services.net/bin/view/Main/OslcCoreSpecification#Query_Capabilities
http://open-services.net/bin/view/Main/OslcCoreSpecification#Query_Capabilities
http://open-services.net/wiki/core/Discovery-3.0/
http://open-services.net/wiki/core/Discovery-3.0/
http://open-services.net/wiki/core/Discovery-3.0/
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;up=#Service_Provider_Resources
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;up=#Service_Provider_Resources
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;up=#Service_Provider_Resources
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;up=#Service_Provider_Resources
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;up=#Service_Provider_Resources
http://open-services.net/wiki/reconciliation/OSLC-Reconciliation-Specification-Version-2.0/

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 24 of 36

CRUD
services

and Delete Resource
through GET, PUT
POST and DELETE
transactions

services.net/wiki/reconciliatio
n/OSLC-Reconciliation-
Specification-Version-2.0/

not be
assumed to
be
idempotent

12 Creation
Factory

A service to create
new resources

OSLC

13 Dialogs User interaction dialog OSLC http://open-
services.net/bin/view/Main/O
slcCoreSpecification

See
resource:
Dialog

14 Delegated
User Interface
(DUI)

In-context information
displayed from a link

OSLC http://open-
services.net/bin/view/Main/O
slcCoreSpecification?sortcol
=table;table=up;up= -
Delegated_User_Interface_D
ialogs

http://open-
services.net/wiki/core/User-
Interface-Previews-3.0/

15 UI preview User interface or
resource preview

OSLC http://open-
services.net/bin/view/Main/O
slcCoreUiPreview

4.3.3 Service Consumer Capabilities

IOS
ref.

Capability Description Source Org Source ref Notes

16 Provider
registration

A consumer client
registers a Service
provider (URI and
description)

OSLC http://open-
services.net/resources/tutoria
ls/integrating-products-with-
oslc/implementing-an-oslc-
provider/providing-service-
providers-and-catalogs/

Tutorial

17 Provider
authenticati
on

A consumer can
authenticate
successfully with a
Service Provider

OSLC http://open-
services.net/bin/view/Main/O
slcCoreSpecification?sortcol
=table;up= - Authentication

18 Service
selection

A consumer can locate
a service type from a
provider

OSLC http://open-
services.net/bin/view/Main/O
slcCoreSpecification

See
Overview

19 Delegated
UI usage

A consumer client can
provide a frame for a
provider UI and render
the content

OSLC http://open-
services.net/bin/view/Main/O
slcCoreSpecification?sortcol
=table;table=up;up= -
Delegated_User_Interface_D
ialogs

4.3.4 Advanced Core Capabilities

IOS Capability Description Source Org Source ref Notes

http://open-services.net/wiki/reconciliation/OSLC-Reconciliation-Specification-Version-2.0/
http://open-services.net/wiki/reconciliation/OSLC-Reconciliation-Specification-Version-2.0/
http://open-services.net/wiki/reconciliation/OSLC-Reconciliation-Specification-Version-2.0/
http://open-services.net/bin/view/Main/OslcCoreSpecification
http://open-services.net/bin/view/Main/OslcCoreSpecification
http://open-services.net/bin/view/Main/OslcCoreSpecification
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;table=up;up=#Delegated_User_Interface_Dialogs
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;table=up;up=#Delegated_User_Interface_Dialogs
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;table=up;up=#Delegated_User_Interface_Dialogs
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;table=up;up=#Delegated_User_Interface_Dialogs
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;table=up;up=#Delegated_User_Interface_Dialogs
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;table=up;up=#Delegated_User_Interface_Dialogs
http://open-services.net/wiki/core/User-Interface-Previews-3.0/
http://open-services.net/wiki/core/User-Interface-Previews-3.0/
http://open-services.net/wiki/core/User-Interface-Previews-3.0/
http://open-services.net/bin/view/Main/OslcCoreUiPreview
http://open-services.net/bin/view/Main/OslcCoreUiPreview
http://open-services.net/bin/view/Main/OslcCoreUiPreview
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://open-services.net/resources/tutorials/integrating-products-with-oslc/implementing-an-oslc-provider/providing-service-providers-and-catalogs/
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;up=#Authentication
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;up=#Authentication
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;up=#Authentication
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;up=#Authentication
http://open-services.net/bin/view/Main/OslcCoreSpecification
http://open-services.net/bin/view/Main/OslcCoreSpecification
http://open-services.net/bin/view/Main/OslcCoreSpecification
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;table=up;up=#Delegated_User_Interface_Dialogs
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;table=up;up=#Delegated_User_Interface_Dialogs
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;table=up;up=#Delegated_User_Interface_Dialogs
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;table=up;up=#Delegated_User_Interface_Dialogs
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;table=up;up=#Delegated_User_Interface_Dialogs
http://open-services.net/bin/view/Main/OslcCoreSpecification?sortcol=table;table=up;up=#Delegated_User_Interface_Dialogs

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 25 of 36

ref.

20 Service and
User
Authenticati
on

Open standard for
Authentication (OAUTH)

IETF RFC5849 - The OAuth 1.0
Protocol

OSLC http://open-
services.net/resources/tutor
ials/oslc-primer/oauth/

Guideline

4.4 IOS Chapter – Domain Support: Requirement Management

IOS
ref.

Capability Description Source Org Source ref Notes

21 Requireme
nt

Primary Requirements
Management artefact

OSLC http://open-
services.net/bin/view/Main/
RmSpecificationV2

22 Vocabulary
for
Resources

Requirements
Management vocabulary

OSLC http://open-
services.net/bin/view/Main/
RmSpecificationV2?sortcol
=table;up= -
RM_Resource_Definitions

23 Linkage
predicates

Requirements
Management
specification

OSLC http://open-
services.net/bin/view/Main/
RmSpecificationV2?sortcol
=table;up= -
RM_Relationship_Propertie
s

24 Resource
states

Requirement lifecycle
states

OSLC Not defined in OSLC V2.0
as not present in OSLC
V2.0

25 Issues V2.0 Spec issues OSLC http://open-
services.net/wiki/requireme
nts-management/OSLC-
Requirements-
Management-version-2.0-
issues/

4.5 IOS Chapter – Domain Support: Architecture Management

IOS
ref.

Capability Description Source
Org

Source ref Notes

26 Resource Primary
Architecture
Management
resource

OSLC http://open-services.net/wiki/architecture-
management/OSLC-Architecture-
Management-Specification-Version-2.0/

27 Vocabulary for
Resources

Architecture
Management
vocabulary

OSLC http://open-services.net/wiki/architecture-
management/OSLC-Architecture-
Management-Specification-Version-2.0/ -
AM-Resource-Definitions

28 Linktype Architecture
Management

OSLC http://open-services.net/wiki/architecture-
management/OSLC-Architecture-

http://tools.ietf.org/html/rfc5849
http://tools.ietf.org/html/rfc5849
http://open-services.net/resources/tutorials/oslc-primer/oauth/
http://open-services.net/resources/tutorials/oslc-primer/oauth/
http://open-services.net/resources/tutorials/oslc-primer/oauth/
http://open-services.net/bin/view/Main/RmSpecificationV2
http://open-services.net/bin/view/Main/RmSpecificationV2
http://open-services.net/bin/view/Main/RmSpecificationV2
http://open-services.net/bin/view/Main/RmSpecificationV2?sortcol=table;up=#RM_Resource_Definitions
http://open-services.net/bin/view/Main/RmSpecificationV2?sortcol=table;up=#RM_Resource_Definitions
http://open-services.net/bin/view/Main/RmSpecificationV2?sortcol=table;up=#RM_Resource_Definitions
http://open-services.net/bin/view/Main/RmSpecificationV2?sortcol=table;up=#RM_Resource_Definitions
http://open-services.net/bin/view/Main/RmSpecificationV2?sortcol=table;up=#RM_Resource_Definitions
http://open-services.net/bin/view/Main/RmSpecificationV2?sortcol=table;up=#RM_Relationship_Properties
http://open-services.net/bin/view/Main/RmSpecificationV2?sortcol=table;up=#RM_Relationship_Properties
http://open-services.net/bin/view/Main/RmSpecificationV2?sortcol=table;up=#RM_Relationship_Properties
http://open-services.net/bin/view/Main/RmSpecificationV2?sortcol=table;up=#RM_Relationship_Properties
http://open-services.net/bin/view/Main/RmSpecificationV2?sortcol=table;up=#RM_Relationship_Properties
http://open-services.net/bin/view/Main/RmSpecificationV2?sortcol=table;up=#RM_Relationship_Properties
http://open-services.net/wiki/requirements-management/OSLC-Requirements-Management-version-2.0-issues/
http://open-services.net/wiki/requirements-management/OSLC-Requirements-Management-version-2.0-issues/
http://open-services.net/wiki/requirements-management/OSLC-Requirements-Management-version-2.0-issues/
http://open-services.net/wiki/requirements-management/OSLC-Requirements-Management-version-2.0-issues/
http://open-services.net/wiki/requirements-management/OSLC-Requirements-Management-version-2.0-issues/
http://open-services.net/wiki/requirements-management/OSLC-Requirements-Management-version-2.0-issues/
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/#AM-Resource-Definitions
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/#AM-Resource-Definitions
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/#AM-Resource-Definitions
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/#AM-Resource-Definitions
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/#Resource_Link_Type_Resource_LTR
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/#Resource_Link_Type_Resource_LTR

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 26 of 36

specification Management-Specification-Version-2.0/ -
Resource_Link_Type_Resource_LTR

29 Resource
states

Resource
lifecycle

OSLC Not provided in IOS V1 as not present in
OSLC V2.0

30 Issues OSLC V2.0
issues

OSLC http://open-services.net/wiki/architecture-
management/OSLC-Architecture-
Management-v2.0-Specification-Issues/

4.6 IOS Chapter – Domain Support: Asset Management

IOS
ref.

Capability Description Source
Org

Source ref Notes

31 Asset Primary Asset
Management
resource

OSLC http://open-services.net/wiki/asset-
management/OSLC-Asset-
Management-2.0-Specification/ -
Asset

32 Artefact Primary Asset
Management
resource

OSLC http://open-services.net/wiki/asset-
management/OSLC-Asset-
Management-2.0-Specification/ -
Artifact

33 Artefact
media

Primary Asset
Management
resource

OSLC http://open-services.net/wiki/asset-
management/OSLC-Asset-
Management-2.0-Specification/ -
Artifact_Media

34 Vocabulary
for
Resources

Asset
Management
vocabulary

OSLC http://open-services.net/wiki/asset-
management/OSLC-Asset-
Management-2.0-Specification

See OSLC
Asset: Start
of additional
properties

35 Linkage
predicates

Asset
Management
specification

OSLC http://open-services.net/wiki/asset-
management/OSLC-Asset-
Management-2.0-Specification

See
Relationship
Properties

36 Resource
states

Resource lifecycle OSLC Not provided in V1.0 as not present
in OSLC V2.0

37 Issues OSLC V2.0
Issues

OSLC http://open-services.net/wiki/asset-
management/OSLC-Asset-
Management-2.0-specification-
issues/

4.7 IOS Chapter – Domain Support: Change Request Management

IOS
ref.

Capability Description Source
Org

Source ref Notes

38 Change
Request

Primary
Change
Manageme
nt artefact

OSLC http://open-
services.net/bin/view/Main/CmSpecification
V2?sortcol=table;up= -
Resource_ChangeRequest

39 Vocabulary
for
Resources

Change
Manageme
nt
vocabulary

OSLC

http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/#Resource_Link_Type_Resource_LTR
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/#Resource_Link_Type_Resource_LTR
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-v2.0-Specification-Issues/
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-v2.0-Specification-Issues/
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-v2.0-Specification-Issues/
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-Specification/#Asset
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-Specification/#Asset
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-Specification/#Asset
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-Specification/#Asset
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-Specification/#Artifact
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-Specification/#Artifact
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-Specification/#Artifact
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-Specification/#Artifact
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-Specification/#Artifact_Media
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-Specification/#Artifact_Media
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-Specification/#Artifact_Media
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-Specification/#Artifact_Media
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-Specification
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-Specification
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-Specification
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-Specification
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-Specification
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-Specification
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-specification-issues/
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-specification-issues/
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-specification-issues/
http://open-services.net/wiki/asset-management/OSLC-Asset-Management-2.0-specification-issues/
http://open-services.net/bin/view/Main/CmSpecificationV2?sortcol=table;up=#Resource_ChangeRequest
http://open-services.net/bin/view/Main/CmSpecificationV2?sortcol=table;up=#Resource_ChangeRequest
http://open-services.net/bin/view/Main/CmSpecificationV2?sortcol=table;up=#Resource_ChangeRequest
http://open-services.net/bin/view/Main/CmSpecificationV2?sortcol=table;up=#Resource_ChangeRequest

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 27 of 36

40 Linkage
predicates

Change
Manageme
nt
specificatio
n

OSLC http://open-
services.net/bin/view/Main/CmSpecification
V2?sortcol=table;up= -
Resource_ChangeRequest

Relationship
properties

41 Change
Request
states

1

Change
Manageme
nt
Specificatio
n

OSLC http://open-
services.net/bin/view/Main/CmSpecification
V2?sortcol=table;up= - State_Predicates

See also

OSLC CM:
Start of
additional
properties
and State
predicate
properties

42 Issues OSLC V2.0
issues

OSLC http://open-services.net/wiki/change-
management/Issues-2.0/

Note: Neither IOS V1 nor OSLC V2.0 provide control over Artefacts through events e.g. like a POST. Artefact
state change is achieved through normal use of PUT.

4.8 IOS Chapter – Domain Support: Quality Management

IOS
ref.

Capability Description Source
Org

Source ref Notes

43 Test Plan Primary
Quality
Manageme
nt artefact

OSLC http://open-
services.net/bin/view/Main/QmSpecification
V2?sortcol=table;up= - Resource_TestPlan

44 Test Case Primary
Quality
Manageme
nt artefact

OSLC http://open-
services.net/bin/view/Main/QmSpecification
V2?sortcol=table;up= - Resource_TestCase

45 Test Script Primary
Quality
Manageme
nt artefact

OSLC http://open-
services.net/bin/view/Main/QmSpecification
V2?sortcol=table;up= -
Resource_TestScript

46 Test
Execution
Record

Primary
Quality
Manageme
nt artefact

OSLC http://open-
services.net/bin/view/Main/QmSpecification
V2?sortcol=table;up= -
Resource_TestExecutionRecord

47 Test result Primary
Quality
Manageme
nt artefact

OSLC http://open-
services.net/bin/view/Main/QmSpecification
V2?sortcol=table;up= -
Resource_TestResult

48 Vocabulary
for
Resources

Quality
Manageme
nt
vocabulary

OSLC http://open-
services.net/bin/view/Main/QmSpecification
V2

49 Linkage
predicates

Quality
Manageme
nt
specificatio
n

OSLC http://open-
services.net/bin/view/Main/QmSpecification
V2

Relationship
properties

http://open-services.net/bin/view/Main/CmSpecificationV2?sortcol=table;up=#Resource_ChangeRequest
http://open-services.net/bin/view/Main/CmSpecificationV2?sortcol=table;up=#Resource_ChangeRequest
http://open-services.net/bin/view/Main/CmSpecificationV2?sortcol=table;up=#Resource_ChangeRequest
http://open-services.net/bin/view/Main/CmSpecificationV2?sortcol=table;up=#Resource_ChangeRequest
http://open-services.net/bin/view/Main/CmSpecificationV2?sortcol=table;up=#State_Predicates
http://open-services.net/bin/view/Main/CmSpecificationV2?sortcol=table;up=#State_Predicates
http://open-services.net/bin/view/Main/CmSpecificationV2?sortcol=table;up=#State_Predicates
http://open-services.net/wiki/change-management/Issues-2.0/
http://open-services.net/wiki/change-management/Issues-2.0/
http://open-services.net/bin/view/Main/QmSpecificationV2?sortcol=table;up=#Resource_TestPlan
http://open-services.net/bin/view/Main/QmSpecificationV2?sortcol=table;up=#Resource_TestPlan
http://open-services.net/bin/view/Main/QmSpecificationV2?sortcol=table;up=#Resource_TestPlan
http://open-services.net/bin/view/Main/QmSpecificationV2?sortcol=table;up=#Resource_TestCase
http://open-services.net/bin/view/Main/QmSpecificationV2?sortcol=table;up=#Resource_TestCase
http://open-services.net/bin/view/Main/QmSpecificationV2?sortcol=table;up=#Resource_TestCase
http://open-services.net/bin/view/Main/QmSpecificationV2?sortcol=table;up=#Resource_TestScript
http://open-services.net/bin/view/Main/QmSpecificationV2?sortcol=table;up=#Resource_TestScript
http://open-services.net/bin/view/Main/QmSpecificationV2?sortcol=table;up=#Resource_TestScript
http://open-services.net/bin/view/Main/QmSpecificationV2?sortcol=table;up=#Resource_TestScript
http://open-services.net/bin/view/Main/QmSpecificationV2?sortcol=table;up=#Resource_TestExecutionRecord
http://open-services.net/bin/view/Main/QmSpecificationV2?sortcol=table;up=#Resource_TestExecutionRecord
http://open-services.net/bin/view/Main/QmSpecificationV2?sortcol=table;up=#Resource_TestExecutionRecord
http://open-services.net/bin/view/Main/QmSpecificationV2?sortcol=table;up=#Resource_TestExecutionRecord
http://open-services.net/bin/view/Main/QmSpecificationV2?sortcol=table;up=#Resource_TestResult
http://open-services.net/bin/view/Main/QmSpecificationV2?sortcol=table;up=#Resource_TestResult
http://open-services.net/bin/view/Main/QmSpecificationV2?sortcol=table;up=#Resource_TestResult
http://open-services.net/bin/view/Main/QmSpecificationV2?sortcol=table;up=#Resource_TestResult
http://open-services.net/bin/view/Main/QmSpecificationV2
http://open-services.net/bin/view/Main/QmSpecificationV2
http://open-services.net/bin/view/Main/QmSpecificationV2
http://open-services.net/bin/view/Main/QmSpecificationV2
http://open-services.net/bin/view/Main/QmSpecificationV2
http://open-services.net/bin/view/Main/QmSpecificationV2

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 28 of 36

50 Resource
states

Quality
Manageme
nt
Specificatio
n

OSLC Not provided in IOS V1.0 as not present in
OSLC V2.0

See status
under
additional
properties

51 Issues OSLC V2.0
issues

OSLC http://open-
services.net/bin/view/Main/QmSpecV2Issue
s

http://open-services.net/bin/view/Main/QmSpecV2Issues
http://open-services.net/bin/view/Main/QmSpecV2Issues
http://open-services.net/bin/view/Main/QmSpecV2Issues

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 29 of 36

5 CRYSTAL Engineering Methods to IOS Services

5.1 Engineering Method (EM) to IOS Services Mapping Methodology

For the CRYSTAL scenario based approach, it is important to identify where and which IOS functionality is
needed to make the scenario interoperable. During analysis steps of the scenarios/use cases, the required
building blocks (Bricks) are already identified and reusable “sub scenarios” (Engineering Methods, EMs) are
defined as described in the overall CRYSTAL Technical Management Process.

The identification of the IOS needs is based on these EMs. In order to do this, the Use Case owners need to
describe their EMs on a detail level, which allows assigning the necessary IOS functionality (IOS services) to
the individual EM steps (e.g., the EM step “get a list of requirements” can be mapped to an “OSLC basic
query service” provided by a requirement management brick).

For the Lifecycle Interoperability based on OSLC, many services are already defined by the OSLC standard
and can be used as a first set to be assigned to EM steps. Missing services (Lifecycle Interoperability and
others services) can be described in addition. If such a service is needed by multiple EMs, it can be a
candidate for an IOS extension. If the service is not chosen to be a part of IOS, it can still be implemented as
an individual solution for the EM. Detailed criteria for accepting services to be part of IOS still need to be
defined, but the general applicability in multiple EMs and in multiple industrial domains as well as the
chances for standardization will be among them.

This approach allows, and the Use Case owners are encouraged to, to define the IOS mapping in multiple
iterations. In a first iteration, only those IOS services should be listed which are obvious or needed for a first
implementation of the Use Case. With later iterations, more and more IOS services can be added.

Owners of the EM description and the IOS mapping are the Use Case owners, the IOS team has appointed
IOS experts for each domain to help identifying the right IOS services. Also the brick owner of the bricks
used for the EM should be involved in the IOS service identification process.

Training material for the IOS mapping has been provided and multiple webcasts have been conducted to
train this mapping process.

Already during the first EM step to IOS service mapping exercises, this process has be shown to be very
useful, not only to define the necessary services but also to clarify the engineering steps and make decisions
regarding the implementation.

5.2 Engineering Method Steps – IOS service mapping table

In order to do the mapping of the EM steps and IOS service, the EM description template has been extended
by the EM step to IOS service mapping table.

This table has the following columns:

IOS Domain: Identifies the IOS (engineering) domain where the service is selected from

 Examples: OSLC-RM, OSLC-QM, OSLC-CM, FMI or other

 The value “none” should be used if the EM step is completely handled within
 a brick and no interoperability with other bricks is required.

IOS Service: IOS service to be used for the EM step

 Examples: create, read, update, basic-query, DUI-picker, export-FMU

IOS Service Detail (optional): Additional service parameters can be specified (e.g., properties to be used,
 special values required)

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 30 of 36

Brick Allocation (provider): Identifies the brick that need to provide the service (typically the data owner)

Brick Allocation (consumer): Identifies the brick that consumes the service (typically user interactions)

EM / EM Step: EM name as defined in the EM sheet of the same document

 EM step number as assigned in the EM sheet of the same document

Comments: Any additional comment, e.g., for the implementer of the service,
 or remark why this IOS service was chosen in favour of another possible
 IOS service.

5.3 Engineering Method Steps – IOS service mapping table example

This is an (abbreviated) example of an EM step – IOS mapping table to illustrate how such a table can look
like. It is a part of UC 401 of the Healthcare domain and describes IOS services used for the EM “Verify
Requirements”.

Figure 10: Example of an EM – IOS Service Mapping table (excerpt)

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 31 of 36

6 Extension Mechanisms of IOS V1

6.1 CRYSTAL Extensions

As already described in section 2.4.3, the CRYSTAL IOS V1 has to be extended for supporting advanced
lifecycle interoperability and in depth Systems Engineering activities as elicited by the CRYSTAL use cases.
Pragmatically, there are three ways for envisaging extending the current version of the IOS for fulfilling
integration needs and requirements not yet covered in V1, as detailed in the following:

1. Extensions of the IOS V1 chapters presented in section 4 can be proposed. Basically, it would simply
consist in extending the IOS V1 resource vocabulary with additional linktypes and properties (e.g.,
with domain-specific, use-case-specific or brick-specific properties), or by proposing new resource
types for these chapters.

2. New IOS chapters defining their own vocabularies (i.e., their own resource types with their sets of
properties and linktypes) can be proposed for supporting advanced lifecycle interoperability
scenarios specific to CRYSTAL needs, or new chapters can be simply reused/adopted from external
sources (e.g., from other ARTEMIS projects such as MBAT, defining lifecycle vocabulary for
supporting tight combination of testing and analysis methodologies, or from the OSLC community,
e.g., defining vocabulary and services related to automation support, configuration management or
reporting).

3. Finally, in order to support other interoperability topics related to in depth Safety-Critical Systems
Engineering activities, other existing engineering standards can be adopted (see section 2.4.2), and
will then consists of new IOS chapters as well. The content of such chapters in the subsequent
version of the IOS deliverable is still to be established, but will most likely consist of (i) the definition
of new lifecycle vocabulary for bridging the gap between these Engineering Standards and Lifecycle
Interoperability, and of (ii) integration guidelines.

The inputs for such extensions will come from:

 External projects (such as MBAT) or communities (such as the OSLC community),

 From CRYSTAL domain ontology work packages (for the aerospace, automotive, healthcare and rail
domains),

 From the CRYSTAL Technical Management Process that has been deployed in the project, and in
particular from its Engineering Method to IOS Services Mapping Methodology (introduced in section
5). This methodology is driven by the CRYSTAL use case owners, and consists in allocating lifecycle
related steps from the use cases onto CRYSTAL bricks and IOS Services (conducted with the brick
providers from SP6 technical work packages and with the IOS experts from WP6.1). As a result of
this process, clear gaps between the current IOS V1 and interoperability needs from the use cases
will be identified, and will have to be fulfilled by CRYSTAL-specific IOS extensions.

 From the brick providers, e.g., for supporting specific methodologies implemented by their bricks.

The IOS extension candidates will be evaluated by WP6.1, and will be submitted to the CRYSTAL Technical
Board for adoption before their publication in the subsequent versions of this deliverable.

6.2 Towards IOS Sustainability

In order to make the CRYSTAL Interoperability Specification a sustainable result, it is important to gather
experience and to start communication with existing bodies regarding interoperability standardization (or de-

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 32 of 36

facto standardization). The CRYSTAL deliverable D601.031 (Report on Standardisation Work - V1
13

) reports
on activities and achievements with regard to the standardization of the Interoperability Specification.
Furthermore, within this deliverable, the alignments with other projects are documented and evaluated.

13

 https://projects.avl.com/11/0154/Data
Exchange/006_Results/Deliverables_Submitted_to_JU/SP6/CRYSTAL_D_601_031_v1.0.pdf

https://projects.avl.com/11/0154/Data%20Exchange/006_Results/Deliverables_Submitted_to_JU/SP6/CRYSTAL_D_601_031_v1.0.pdf
https://projects.avl.com/11/0154/Data%20Exchange/006_Results/Deliverables_Submitted_to_JU/SP6/CRYSTAL_D_601_031_v1.0.pdf

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 33 of 36

7 Terms, Abbreviations and Definitions

Please add additional terms, abbreviations and definitions for your deliverable.

Table 1: Terms, Abbreviations and Definitions

Term Description Source

Brick A tool conforming to the IOS Crystal term

Capability A function that achieves some useful

measurable outcome

TOGAF

DODAF

Engineering

Method (EM)

 Crystal specific

IT Information Technology

Reference

Technology

Platform

(RTP)

The RTP (Reference Technology Platform) is a

set of pre-integrated tools and services that can

randomly be compiled and installed based on a

respective business or engineering use case.

Crystal specific

(from MBAT)

Resource In general something made available on the

web, in V1.0 this is using RDF

Resource A specific Resource (RDF) representation in the

OSLC AM Spec

Resource

Description

Framework

A means to model information resources in

subject-predicate-object expressions, aka

triples, specifically in V1.0 this is RDF/XML

W3C

Scenario A path through or subset of a use-case

Service A mechanism to provide capabilities using a

prescribed interface. Here we refer to IT based

services.

Tool A software program which works with or on data

to transform or product it

Tool flow or

Tool chain

Combination of tools and services which are

used in scenarios, to fulfil the IT part a use case.

The tool chain respects a specific work and data

flow (engineering process, architecture).

Based on MBAT RTP V1.5

Tool
Interoperability

The ability of two or more tools to exchange
information and to use the information that has
been exchange

Based on IEEE610

Use case A description of the steps through an expected

functionality of a system to reach a business

goal.

Based on MBAT RTP V1.5

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 34 of 36

8 References

OASIS OSLC

http://www.oasis

-oslc.org/node/2

OASIS OSLC

Community site

http://open-

services.net/

CRYSTAL

Deliverable

D601.031 -

Report on

Standardisation

Work - V1

https://projects.avl.com/11/0154/Data

Exchange/006_Results/Deliverables_Submitted_to_JU/SP6/CRYSTAL_D_601_031_v1.0

.pdf

http://www.oasis-oslc.org/node/2
http://www.oasis-oslc.org/node/2
http://open-services.net/
http://open-services.net/
https://projects.avl.com/11/0154/Data%20Exchange/006_Results/Deliverables_Submitted_to_JU/SP6/CRYSTAL_D_601_031_v1.0.pdf
https://projects.avl.com/11/0154/Data%20Exchange/006_Results/Deliverables_Submitted_to_JU/SP6/CRYSTAL_D_601_031_v1.0.pdf
https://projects.avl.com/11/0154/Data%20Exchange/006_Results/Deliverables_Submitted_to_JU/SP6/CRYSTAL_D_601_031_v1.0.pdf

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 35 of 36

9 Annex

Annex I: Example of Concrete Scenarios

Table 2: Examples of Concrete Scenarios related to "Lifecycle Interoperability" and "other Interoperability
Topics"

Lifecycle Interoperability
Scenarios

Other Interoperability Topics
related to Lifecycle

Interoperability Scenarios

Other Interoperability Topics
NOT related to Lifecycle

Interoperability Scenarios

Traceability between Artefact
Elements to requirements and
test/analysis cases

Querying lifecycle artefacts (e.g.,
Requirements) from multiple
repositories

Browsing the changes history on
artefacts from multiple tools and
repositories

Displaying the impact of a
requirement update on a set of
design artefacts and simulation
tasks

 FMI for co-simulation with a
mapping, e.g., from FMI
simulation inputs and results
onto IOS-based lifecycle artefacts
traced back to requirements and
design artefacts

FMI for co-simulation and model
exchange

 Relating ECU measurement and
calibration data from ASAM
Standards to other Lifecycle
Artefacts (e.g. Requirements)

Gathering and transferring of ECU
measurement and calibration
data based on the ASAM standard

 Traceability between
Requirements and EAST-ADL
Models from multiple
repositories

Traceability between
Requirements and Models based
on EAST-ADL repository

Creating a list of requirements
using selection criteria from
different repositories

 Exchange a list of requirements in
ReqIF Format via offline
collaboration to an external
project partner

 Relating artefacts within one
repository according to a
proprietary format

 Creating a list of requirements
based on attributes in one
requirement proprietary
repository

Relating artefacts of the same

D601.021
Interoperability Specification

(IOS) – V1

Version Nature Date Page

V1.0 R 2014-05-30 36 of 36

type (e.g. change request)
between different instances of
the same tool
 Working toolset with established

interoperability within one client
(e.g., with Modelbus, Eclipse or
vendor proprietary solutions)

Relating artefacts stored in a
central repository (e.g.,
Requirement) with standard
artefacts in a vendor specific
toolset

Change Impact Analysis on
multiple artefact types (e.g.,
change on a requirement
impacting on design models, test
cases, formal analysis results,
etc.)

 Semantic-preserving model
transformations with
traceability between input and
output artefacts

Merging on a dashboard
attributes from artefacts
manipulated at different
engineering phases which are of
relevance for a particular tool
chain stakeholder (e.g., analyst,
project manager,
Testing/Analysis expert)

